1,559,944 research outputs found

    Setting Parameters by Example

    Full text link
    We introduce a class of "inverse parametric optimization" problems, in which one is given both a parametric optimization problem and a desired optimal solution; the task is to determine parameter values that lead to the given solution. We describe algorithms for solving such problems for minimum spanning trees, shortest paths, and other "optimal subgraph" problems, and discuss applications in multicast routing, vehicle path planning, resource allocation, and board game programming.Comment: 13 pages, 3 figures. To be presented at 40th IEEE Symp. Foundations of Computer Science (FOCS '99

    Frequentist coverage of adaptive nonparametric Bayesian credible sets

    Get PDF
    We investigate the frequentist coverage of Bayesian credible sets in a nonparametric setting. We consider a scale of priors of varying regularity and choose the regularity by an empirical Bayes method. Next we consider a central set of prescribed posterior probability in the posterior distribution of the chosen regularity. We show that such an adaptive Bayes credible set gives correct uncertainty quantification of "polished tail" parameters, in the sense of high probability of coverage of such parameters. On the negative side, we show by theory and example that adaptation of the prior necessarily leads to gross and haphazard uncertainty quantification for some true parameters that are still within the hyperrectangle regularity scale.Comment: Published at http://dx.doi.org/10.1214/14-AOS1270 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Minor-Embedding in Adiabatic Quantum Computation: I. The Parameter Setting Problem

    Full text link
    We show that the NP-hard quadratic unconstrained binary optimization (QUBO) problem on a graph GG can be solved using an adiabatic quantum computer that implements an Ising spin-1/2 Hamiltonian, by reduction through minor-embedding of GG in the quantum hardware graph UU. There are two components to this reduction: embedding and parameter setting. The embedding problem is to find a minor-embedding GembG^{emb} of a graph GG in UU, which is a subgraph of UU such that GG can be obtained from GembG^{emb} by contracting edges. The parameter setting problem is to determine the corresponding parameters, qubit biases and coupler strengths, of the embedded Ising Hamiltonian. In this paper, we focus on the parameter setting problem. As an example, we demonstrate the embedded Ising Hamiltonian for solving the maximum independent set (MIS) problem via adiabatic quantum computation (AQC) using an Ising spin-1/2 system. We close by discussing several related algorithmic problems that need to be investigated in order to facilitate the design of adiabatic algorithms and AQC architectures.Comment: 17 pages, 5 figures, submitte

    Futility Analysis in the Cross-Validation of Machine Learning Models

    Full text link
    Many machine learning models have important structural tuning parameters that cannot be directly estimated from the data. The common tactic for setting these parameters is to use resampling methods, such as cross--validation or the bootstrap, to evaluate a candidate set of values and choose the best based on some pre--defined criterion. Unfortunately, this process can be time consuming. However, the model tuning process can be streamlined by adaptively resampling candidate values so that settings that are clearly sub-optimal can be discarded. The notion of futility analysis is introduced in this context. An example is shown that illustrates how adaptive resampling can be used to reduce training time. Simulation studies are used to understand how the potential speed--up is affected by parallel processing techniques.Comment: 22 pages, 5 figure

    Semiparametric estimation of duration models when the parameters are subject to inequality constraints and the error distribution is unknown

    Get PDF
    This paper proposes a semiparametric method for estimating duration models when there are inequality constraints on some parameters and the error distribution may be unknown. Thus, the setting considered here is particularly suitable for practical applications. The parameters in duration models are usually estimated by a quasi-MLE. Recent advances show that a semiparametrically efficient estimator [SPE] has better asymptotic optimality properties than the QMLE provided that the parameter space is unrestricted. However, in several important duration models, the parameter space is restricted, for example in the commonly used linear duration model some parameters are non-negative. In such cases, the SPE may turn out to be outside the allowed parameter space and hence are unsuitable for use. To overcome this difficulty, we propose a new constrained semiparametric estimator. In a simulation study involving duration models with inequality constraints on parameters, the new estimator proposed in this paper performed better than its competitors. An empirical example is provided to illustrate the application of the new constrained semiparametric estimator and to show how it overcomes difficulties encountered when the unconstrained estimator of nonnegative parameters turn out to be negative.Adaptive inference; Conditional duration model; Constrained inference; Efficient semiparametric estimation; Order restricted inference; Semiparametric efficiency bound.

    Nonparametric Specification Testing for Nonlinear Time Series with Nonstationarity

    Get PDF
    This paper considers a nonparametric time series regression model with a nonstationary regressor. We construct a nonparametric test for testing whether the regression is of a known parametric form indexed by a vector of unknown parameters. We establish the asymptotic distribution of the proposed test statistic. Both the setting and the results differ from earlier work on nonparametric time series regression with stationarity. In addition, we develop a bootstrap simulation scheme for the selection of suitable bandwidth parameters involved in the kernel test as well as the choice of simulated critical values. An example of implementation is given to show that the proposed test works in practice.integrated regressor, kernel test, nonparametric regression, nonstationary time series, random walk
    • ā€¦
    corecore