research

Minor-Embedding in Adiabatic Quantum Computation: I. The Parameter Setting Problem

Abstract

We show that the NP-hard quadratic unconstrained binary optimization (QUBO) problem on a graph GG can be solved using an adiabatic quantum computer that implements an Ising spin-1/2 Hamiltonian, by reduction through minor-embedding of GG in the quantum hardware graph UU. There are two components to this reduction: embedding and parameter setting. The embedding problem is to find a minor-embedding GembG^{emb} of a graph GG in UU, which is a subgraph of UU such that GG can be obtained from GembG^{emb} by contracting edges. The parameter setting problem is to determine the corresponding parameters, qubit biases and coupler strengths, of the embedded Ising Hamiltonian. In this paper, we focus on the parameter setting problem. As an example, we demonstrate the embedded Ising Hamiltonian for solving the maximum independent set (MIS) problem via adiabatic quantum computation (AQC) using an Ising spin-1/2 system. We close by discussing several related algorithmic problems that need to be investigated in order to facilitate the design of adiabatic algorithms and AQC architectures.Comment: 17 pages, 5 figures, submitte

    Similar works

    Full text

    thumbnail-image

    Available Versions