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Abstract

This paper proposes a semiparametric method for estimating duration models when
there are inequality constraints on some parameters and the error distribution may be
unknown. Thus, the setting considered here is particularly suitable for practical ap-
plications. The parameters in duration models are usually estimated by a quasi-MLE.
Recent advances show that a semiparametrically efficient estimator[SPE] has better
asymptotic optimality properties than the QMLE provided that the parameter space
is unrestricted. However, in several important duration models, the parameter space is
restricted, for example in the commonly used linear duration model some parameters
are non-negative. In such cases, the SPE may turn out to be outside the allowed param-
eter space and hence are unsuitable for use. To overcome this difficulty, we propose
a new constrained semiparametric estimator. In a simulation study involving dura-
tion models with inequality constraints on parameters, the new estimator proposed in
this paper performed better than its competitors. An empirical example is provided
to illustrate the application of the new constrained semiparametric estimator and to
show how it overcomes difficulties encountered when the unconstrained estimator of
nonnegative parameters turn out to be negative.

Key Words: Adaptive inference; Conditional duration model; Constrained inference; Effi-

cient semiparametric estimation; Order restricted inference; Semiparametric efficiency bound.
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1 Introduction

The availability of intraday tick-by-tick financial data increased substantially during the past

two decades, which in turn has had a phenomenal impact on research in financial market

microstructure. Such high frequency data are usually analyzed using essentially two classes

of models: generalized autoregressive conditional heteroscedasticity [GARCH] models and

duration models. In GARCH type models, the response variable is observed at equally

spaced time points. An example is the hourly Dow-Jones index. By contrast, in duration

models, the time elapsed between two consecutive events, such as financial transactions, is

the response variable. A range of so called duration models has been proposed and studied

in the literature to model the data generating process of durations. The class of such models

forms an essential tool for the study of market microstructure (Bauwens and Giot 2001).

To introduce the basics of the duration model, let Xi denote the duration between (i −
1)th and the ith events, Fi denote the information up to and including time i, and ψi =

E(Xi | Fi−1), the expected duration. A duration model is usually expressed as Xi = ψiεi

where εi is referred to as the error term which is assumed to satisfy E(εi) = 1 to ensure

identifiability of the model. The main objective of duration analysis is to model ψi as a

function of {. . . , Xi−2, Xi−1; . . . , ψi−2, ψi−1}. For example, a special case of the well-known

linear autoregressive conditional duration[ACD] model of Engle and Russell (1998) is the

following ACD(1,1) model:

ψi = α + βXi−1 + γψi−1, α ≥ 0, β ≥ 0, γ ≥ 0. (1)

More generally, the model may take the form ψi = g(. . . , Xi−1; . . . , ψi−1; θ) where g is a

given function and θ = (θ1, . . . , θk)
T is an unknown parameter. Further, g may also depend

on exogenous variables.

The objectives of this paper are the following:

1. To propose a method of estimating the unknown parameter θ in duration models
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when the error distribution is unknown and there are inequality constraints on some

parameters, for example, some parameters may be nonnegative as in the foregoing

ACD model (1).

2. To compare the proposed new constrained estimator with a semiparametrically efficient

estimator and the standard quasi-maximum likelihood estimator.

For simplicity, let us temporarily assume that the error terms, ε1, . . . , εn, are indepen-

dently and identically distributed with f denoting their common probability density func-

tion[pdf]. If f is known then the model can be estimated by maximum likelihood (for

example, see Bauwens and Giot 2000). Since f is usually unknown, the quasi maximum

likelihood estimator[QMLE], which is equal to the MLE corresponding to exponential distri-

bution for the error terms, is the standard choice. However, such a QMLE is not necessarily

the most efficient if f deviates from the exponential distribution and/or the error terms are

not independent. This is important because the time-series nature of {Xi} suggests that the

error terms {εi} are unlikely to be independent and identically distributed with a known

density function.

Recently, Drost and Werker (2004) proposed a semiparametrically efficient estimator of

the unknown parameeter θ in the duration model when the error distribution is unknown and

ε1, . . . , εn may not be independent. In this context, ”semiparametrically efficient” essentially

means that the estimator has the highest possible asymptotic efficiency in the class of all

asymptotically normal estimators. Detailed accounts of this topic are given in Bickel et al.

(1993), Tsiatis (2006) and Kosorok (2008).

By definition, duration Xi is nonnegative, and hence ψi ≥ 0. Consequently, the parame-

ters α, β and γ in (1) must be nonnegative as well (Nelson and Cao 1992). Further, we also

have α + β ≤ 1. However, the Drost-Werker[DW]-estimator does not incorporate such in-

equality constraints and hence it may turn out to be negative even when the true parameter

is known to be nonnegative. If the DW-estimators β̂ and γ̂ turn out to be negative, one may
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be tempted to simply truncate and redefine them as β̂ = γ̂ = 0. Such a method of truncating

estimators is crude, particularly because there is already a well-developed body of statistical

theory for incorporating such inequality constraints (Silvapulle and Sen, 2005). The litera-

ture on statistical inference under inequality constraints, also known as order restrictions, is

quite extensive indeed. Some recent relevant references are El Barmi and Mukerjee (2005),

El Barmi et al. (2006), Peddada et al. (2005), Peddada et al. (2006), Hwang and Peddada

(1994), and Silvapulle and Sen (2005).

In this paper, we propose a new constrained semiparametric estimator θ̄ of θ when some

components of θ are known to be non-negative, or more generally when there are constraints

of the form h(θ) ≥ 0 where h is a vector function. A feature of our constrained estimator is

that if the DW-estimator satisfies the inequality constraints on the parameters, then the two

estimators are the same. Otherwise, the constrained estimator is the point on the boundary

of the parameter space that is ”closest” to θ̂ in some sense. A theoretical result in section

2.2 provides the asymptotic distribution of our inequality constrained estimator θ̄ and shows

that it is closer to the true value than the unconstrained DW-estimator θ̂.

The main findings of a simulation study to compare the foregoing estimators may be

summarized as follows:

1. There are inequality constraints on the parameters of the duration models: The con-

strained semiparametric estimator θ̄ introduced in this paper is better than the corre-

sponding unconstrained semiparametrically efficient estimator θ̂.

2. There are inequality constraints on the parameters and the errors do not satisfy the

condition that they are iid with common distribution exp(1): If the true parameter

does not lie in a small particular region of the parameter space, which we shall refer to

as A, then our proposed estimator is better than the QMLE and the DW-estimator.

In several published empirical studies (see later) we observed that the estimators were

not in the region A. Therefore, overall the constrained semiparametric estimator θ̄ is
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better than the unconstrained DW-estimator and the constrained QMLE.

3. The errors are iid and their common distribution is exponential: In this ideal case,

which will serve as a benchmark, the QMLE is equal to the MLE and hence one would

expect that the QMLE would be the best. The simulation results are consistent with

this, but the differences between QMLE and the semiparametric estimators turned out

to be generally small.

We conclude that, when there are constraints on parameters, (i) a theoretical result shows

that the estimator proposed in this paper is asymptotically better than the semiparametri-

cally efficient estimator, and (ii) in a large scale simulation study, the estimator proposed

in this paper performed better than the ’gold standard’ QMLE and the semiparametrically

efficient estimator, which corroborates the aforementioned theoretical result. Therefore, the

estimator proposed in this paper deserves serious consideration for estimating duration mod-

els when there are inequality constraints on parameters.

The plan of the paper is as follows. Section 2 discusses the methodological aspects. In

subsection 2.1, we recall some known results on efficient semiparametric inference, and in

subsection 2.2 we develop the methodological aspects and propose new inequality constrained

semiparametric estimators. Section 3 provides the results of a simulation study, section 4

provides an empirical example to illustrate the new constrained semiparametric estimator,

and section 5 concludes.

2 Semiparametric Estimation of Duration Models

As in the previous section, Xi denotes the ith observation of a duration variable X, Fi

denotes the information up to and including the ith observation Xi, ψi = E(Xi | Fi−1) and

εi = Xi/ψi. Fernandes and Grammig (2006) provided a survey of such duration models. Two

examples with inequality constraints on parameters are given below.

1. Linear ACD Model: ψi = α + βXi−1 + γψi−1
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2. Power ACD Model: ψλ
i = α + βXλ

i−1 + γψλ
i−1

Let θ denote the unknown parameter in the duration model; for example, θ = (α, β, γ)>

for the linear ACD(1,1) model in (1). Within the framework of this paper we do not assume

that the error distribution belongs to any known parametric family. Hence θ does not include

parameters of the error distribution. To ensure that the parameters are identified, we assume

that E(εi | Fi−1) = 1. Usually, the errors are assumed to be independently and identically

distributed [iid] for simplicity. However, the nature of the durations in practice suggests that

this is unlikely to be the case in most practical situations and hence it would be desirable

for the method of inference to be robust against violation of the assumption of iid errors. To

this end, let Hi−1 ⊂ Fi−1 and assume that the conditional distribution of εi given the past

depends only on the information in the set Hi−1. Thus, the smaller information set Hi−1

contains the relevant past variables that are assumed to affect the distribution of εi given

the past. Now, with ψi = E(Xi | Fi−1), the semiparametric model is defined formally by

Xi = ψiεi, ψi = g(. . . , Xi−1; . . . , ψi−1; θ), and L(εi | Fi−1) = L(εi | Hi−1) (2)

where g is a known function and L(εi | Fi−1) refers to the distribution of εi given Fi−1.

The special case of independently and identically distributed errors is obtained by setting

Hi equal to the trivial field {φ, Ω}.
The next subsection provides the essentials on semiparametric inference, and states the

relevant results in a concise form. For convenience, previously known results are discussed

in the next subsection and the new methodological developments are given in subsection 2.2

2.1 Semi-parametric Estimation

Let fi denote the probability density function [pdf] corresponding to L(εi | Hi−1). We shall

assume that fi is smooth, for example, it has continuous first derivative. It follows that the

conditional pdf of Xi given Fi−1 is ψ−1
i fi(x/ψi) and hence the loglikelihood `(θ) is given

by `(θ) =
∑

`i(θ), where `i(θ) = ln{ψ−1
i fi(Xi/ψi)}. If fi were known, then the maximum
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likelihood estimator [MLE] of θ would be argmaxθ `(θ) and it would be asymptotically

efficient. In practice, fi is usually unknown. In this setting, the model is semiparametric

and θ can be estimated consistently by a quasi maximum likelihood estimator[QMLE] ob-

tained by choosing the quasi likelihood equal to the loglikelihood when fi is the exponential

distribution with unit mean (see Bauwens and Giot 2001). Efficient estimation in general

semiparametric models has a specialized but a growing literature (see Tsiatis 2006, Kosorok

2008). An important result in this area is that a desirable estimator of an unknown finite

dimensional parameter θ in semiparametric models is the so called, semiparametrically effi-

cient estimator, which essentially means that the estimator of θ is efficient in some sense for

the model with the density function of errors treated as an unknown nuisance function. De-

tailed discussions of such estimators and their relevance for inference are also given in Newey

(1990). In this subsection, we shall state the main relevant results, without the technical

details or proofs.

To introduce the semiparametrically efficient estimator, first let us suppose that the

error density function is known. Let ġ(θ) denote (∂/∂θ)g(θ) for any function g, and let

θ̃ denote a n1/2-consistent estimator of θ, for example it could be the QMLE introduced

in section 1. Let us note that this QMLE is n1/2-consistent under a very broad range of

conditions, for example the error distribution may not be exp(1). The estimator, {θ̃ +

{n−1Σn
i=1

˙̀
i(θ̃) ˙̀

i(θ̃)>}−1n−1Σn
i=1

˙̀
i(θ̃)}, is called the one-step estimator. It is asymptotically

equivalent to the MLE, and is obtained by applying a Newton-Raphson type iteration once,

starting from any n1/2-consistent estimator such as θ̃ (see Bickel et al. 1993).

Now, let us temporarily relax the assumption that the error density function is known.

Consequently, ˙̀
i in the foregoing expression for the one-step estimator is also unknown. The

main approach in semiparametrically efficient estimation involves replacing this unknown

function by ˜̀̇∗
i which is a ’suitable’ estimator of the so called semiparametrically efficient score

function, which we denote by ˙̀∗
i (θ). The exact form of ˙̀∗

i (θ) would depend on the particular
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assumptions made about the information set Hi in (2). In this paper, we shall assume that

Hi = Fi so that quite minimal assumptions are made about the serial dependence of the

error terms; this is particularly suitable for empirical studies. Drost and Werker (2004)

referred to this as ’martingale error’ structure. In this case,

˙̀∗
i (θ) = {(εi − 1)/var(εi|Hi−1)}(∂/∂θ) log(ψi). (3)

In this paper, we propose to compute the residual ε̃i as Xi/ψ(θ̃), and define ˜̀̇∗
i as the sample

analogue of ˙̀∗
i . This leads to the semiparametrically efficient estimator,

θ̂ = θ̃ +
(
n−1

n∑
i=1

˜̀̇∗
i (θ̃)˜̀̇∗i (θ̃)>

)−1

n−1

n∑
i=1

˜̀̇∗
i (θ̃). (4)

We shall refer to this as the Drost-Werker estimator[DW-estimator]. See Drost and Werker

(2004) for more details.

Let us note that with the stronger assumptions Hi equal to {φ, Ω} and σ(εi), which

Drost and Werker (2004) referred to as iid and markov error structures, we obtain different

estimators. In our simulation studies we also evaluated these two forms, but they did not

perform as well as the aforementioned estimator with martingale errors. The complete

simulation results will be reported elsewhere, but for this paper we restrict to the best of

the three, namely the one defined by (3, 4).

2.2 Estimation subject to inequality constraints

For the linear ACD(1,1) model ψi = α + βXi−1 + γψi−1, we have that α ≥ 0, β ≥ 0

and γ ≥ 0, because ψi ≥ 0 and Xi ≥ 0 for every i (Nelson and Cao 1992). However, the

semiparametrically efficient estimator (4) may not satisfy such inequality constraints. In this

section, we modify the approach in Drost and Werker (2004) to ensure that such constraints

are satisfied. To this end we adopt results from constrained statistical inference (Silvapulle

and Sen 2005). There is no unique way to define suitable constrained estimators. In what

follows we propose a suitable method and provide theoretical results to support the proposed

method.
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Let Θ denote the parameter space of θ. We shall assume that Θ is defined by various

combinations of constraints of the form g(θ) ≥ 0 and h(θ) = 0 where g and h are continuously

differentiable functions of θ. For example, Θ could be of the form {θ : g1(θ) ≥ 0, . . . , gk(θ) ≥
0, h1(θ) = 0, . . . , hm(θ) = 0}, where g1, . . . , gk, h1, . . . , hm are continuously differentiable

functions. The parameter space for the linear ACD models are of this form (Nelson and Cao

1992). More precisely, we require the parameter space to be Chernoff Regular( see Silvapulle

and Sen (2005)). Further, we make the mild assumption that n1/2(θ̂ − θ0)
d→ Z where

Z ∼ N(0, V ) for some positive definite matrix V where θ̂ is the DW-estimator.

To motivate the ideas underlying the constrained estimator to be introduced, let us

temporarily suppose that n1/2(θ̂ − θ0) is distributed exactly as N(0, V ). Therefore, we

may treat θ̂ as a single observation from N(θ0, n
−1V ). The corresponding log likelihood

is (−1/2)(θ̂ − θ)>V −1(θ̂ − θ) and the MLE of θ0 is

θ̄
∗

= arg min
θ∈Θ

(θ̂ − θ)>V −1(θ̂ − θ). (5)

Therefore, θ̄
∗

is the projection of θ̂ onto Θ with respect to the inner product 〈x,y〉V =

x>V −1y. The left panel in Figure 1 illustrates this for the simple case of two-dimensions and

Θ equal to the first quadrant {θ1 ≥ 0, θ2 ≥ 0}.
Now, let us relax the assumption that n1/2(θ̂ − θ0) is distributed exactly as N(0, V )

and assume that the latter is only the limiting distribution and that V is unknown. Then,

motivated by the definition of θ̄
∗

in (5), a natural constrained semiparametric estimator is

θ̄ = arg min
θ∈Θ

(θ̂ − θ)>W−1
n (θ̂ − θ) (6)

where Wn is positive definite. In general, we would choose Wn to be a consistent estimator

of V , for example, Wn =
(
n−1

∑n
i=1

˜̀̇∗
i (θ̃)˜̀̇∗i (θ̃)>

)−1

.

Now, to discuss the theoretical results on θ̄, let us briefly recall some definitions. Let

T (Θ; θ0) denote the tangent cone (also known as cone of tangents) of Θ at θ0 (see Silvapulle

and Sen 2005). Intuitively, the tangent cone T (Θ; θ0) is constructed as follows: First,
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Figure 1: (a) The unconstrained estimator θ̂ and the constrained estimator θ̄
∗

of θ0 subject

to θ ∈ Θ = {(θ1, θ2) : θ1 > 0, θ2 > 0} for two possible values of θ̂, one in Θ and the

other outside Θ in the second quadrant, when V = (1, 0.5 | 0.5, 1). (b) The unconstrained

estimator θ̂ and the constrained estimator θ̄ subject to θ ∈ Θ = {(α, β, γ) : α ≥ 0, β ≥
0, γ ≥ 0, β +γ ≤ 1} with θ̂ lying outside Θ and θ̄ lying on the face spanned by the rectangle

ABCD of the wedge-shaped Θ.

approximate the boundaries of Θ at θ0 by tangents, and then approximate Θ by the cone,

A(Θ; θ0), formed by these tangents. This is called the approximating cone of Θ at θ0.

Now, translate the parameter space so that θ0 moves to the origin. Consequently, the

approximating cone becomes the tangent cone with its vertex at the origin. These are

illustrated in Figure 2.

For any x ∈ Rp, a p×p positive definite matrix W and a set C, let ‖x‖W = {x>W−1x}1/2

and ΠW{z | C} = arg minθ∈C ‖z − θ‖W . Thus, ΠW{z | C} denotes the projection of z onto

C with respect to the inner product 〈x,y〉W = x>W−1y. A simple illustration of Π(θ̂ | C),

which is equal to θ̄
∗
, is given in Figure 1 when C is the positive orthant in two dimensions.

¡
¡

¡
¡

@
@

@
@¾ -T

r
0

¡
¡

¡
¡

@
@

@
@¾ -A

¾ -Θ
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Figure 2: The approximating cone A of Θ at θ0 and the corresponding tangent cone T with

its vertex at the origin, 0.
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Now, we provide a result about the distribution of θ̄.

Proposition 1. Suppose that Θ is convex, n1/2(θ̂ − θ0)
d→ Z where Z ∼ N(0, V ) for some

positive definite matrix V and that Wn
p→ W where W and Wn are positive definite. Then

n1/2(θ̄ − θ0)
d→ ΠW{Z | T (Θ; θ0)} (7)

where θ̄ is the constrained estimator defined in (6). Further, θ̄ is closer to the true value θ0

than θ̂ in the following sense:

pr{‖θ̄ − θ0‖Wn ≤ ‖θ̂ − θ0‖Wn} = 1, (8)

pr(θ̄ = θ̂) → pr(Z ∈ T (Θ; θ0), (9)

pr{‖θ̄ − θ0‖Wn < ‖θ̂ − θ0‖Wn} → pr(Z 6∈ T (Θ; θ0). (10)

In the rest of this subsection, we shall comment on other possible alternatives to the

foregoing approach. The general approach to constructing a constrained estimator exploits

the fact that one needs to use only the local behavior of the objective function in an n−1/2-

neighborhood of the true value θ0. The foregoing θ̄ adopts this approach. It is also possible

to construct other similar estimators. For example, another estimator may be defined as

θ̂(λ0) where θ̂(λ) =
[
θ̃ + λ

(
n−1

∑n
i=1

˜̀̇∗
i (θ̃)˜̀̇∗i (θ̃)>

)−1
n−1

∑n
i=1

˜̀̇∗
i (θ̃)

]
for 0 ≤ λ ≤ 1 and λ0

is the maximum value of λ in [0, 1] for which θ̂(λ) lies in Θ. This says that the one-step

iteration in (4) moves from θ̃ in the direction suggested by the DW-estimator but stops

before crossing the boundary of Θ.

Another estimator may be defined as arg maxθ∈Θ q(θ) where

q(θ) = (θ − θ̃)>n−1

n∑
i=1

˜̀̇∗
i (θ̃)− 2−1(θ − θ̃)>

(
n−1

n∑
i=1

˜̀̇∗
i (θ̃)˜̀̇∗i (θ̃)>

)
(θ − θ̃),

which may be seen as a pseudo likelihood with score function n−1
∑n

i=1
˜̀̇∗
i (θ̃) and information

(
n−1

∑n
i=1

˜̀̇∗
i (θ̃)˜̀̇∗i (θ̃)>

)
. Since the unconstrained maximum of q(θ) is the DW-estimator θ̂,

the foregoing estimator arg maxθ∈Θ q(θ) can be seen as a constrained version of the DW-
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estimator. This estimator turns out to be the same as θ̄ in (6) if the Wn in (6) is equal to
(
n−1

∑n
i=1

˜̀̇∗
i (θ̃)˜̀̇∗i (θ̃)>

)−1

.

3 Simulation Study

In this section, we report the results of a simulation study conducted to compare θ̂, θ̄ and

the standard QMLE; in this study we used the constrained QMLE, which is the maximiser

of the quasilikelihood under the inequality constraints.

Design of the study:

We studied the two duration models introduced at the beginning of section 2. For each

of these models, the following error distributions were studied:

(a) εi ∼ exp(1), (b) εi ∼ Γ(λ−2
i , λ2

i ) and (c) εi ∼ LN(−2−1log(1 + λ2
i ), log(1 + λ2

i )),

where Γ(a, b) is the Gamma distribution with parameters (a, b), and LN(µ, σ2) is the lognor-

mal distribution. For the purpose of this simulation study, these distributions are particularly

relevant. The case εi ∼ exp(1) is important because, it is the ideal setting, for example, its

role in duration models is similar to that of the normal distribution in linear regression anal-

ysis. The gamma distribution was chosen as a more flexible and general alternative to the

exponential distribution, and also because this is the most general form for which the semi-

parametrically efficient estimator is adaptive and hence has the same asymptotic efficiency

as the MLE provided that the true parameter is an interior point. The choice (λ−2
i , λ2

i ) for

the parameters of the gamma distribution ensures that εi has mean 1 as required by the

usual standardization for identifiability of the duration model. The lognormal distribution

provides a departure from the exponential and gamma distributions so that the performance

of the estimators may be evaluated under conditions that are not ideal for the QMLE and

the semiparametrically efficient estimator. A dynamic structure on λi allows us to depart

from the usual desired assumption that the error terms are iid, and evaluate the reliability
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Figure 3: MSE-efficiency of θ̄ relative to θ̂ for the ACD model.
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Figure 4: MSE-efficiency of θ̄ relative to θ̂ for the PACD model.

of the semiparametric estimator in the presence of unknown dynamics in the distribution of

εi.

For the gamma and lognormal error distributions in the foregoing settings (b) and (c),

we set λ2
i = 0.1 + 0.9εi−1. The estimation methods that are compared in this paper do

not require the exact form of dependence of λi on other variables. This would enable us to

compare the estimators when the errors are not iid.

Without loss of generality, the unconditional mean of Xi was set equal to 1. All the

computations were programmed in MATLAB, and the optimizations were carried out using

the optimization toolbox in MATLAB. Since our main objective is to compare the QMLE

with the semiparametric estimators, we shall report estimates of relative MSE Efficiency

which we define as {MSE of QMLE/ MSE of the estimator}. The results of the simulation

study are based on sample size n = 500 and 500 repeated samples.



14

Table 1: MSE-efficiency of θ̄ relative to QMLE for the linear ACD model

True value ε ∼ EXP ε ∼ NG ε ∼ LN

α0 β0 γ0 α β γ α β γ α β γ

0.05 0.30 0.65 103 96 97 179 182 182 153 147 151

0.05 0.05 0.90 99 96 95 156 193 162 143 194 149

0.10 0.20 0.70 106 99 101 174 188 173 144 164 148

*0.25 0.05 0.70 58 96 61 78 162 86 65 212 76

0.10 0.15 0.75 109 99 103 169 195 170 148 174 151

0.05 0.10 0.85 102 97 97 238 207 209 181 184 174

0.20 0.20 0.60 104 101 99 149 168 145 127 155 132

*0.20 0.05 0.75 76 95 76 89 170 98 79 215 91

*0.30 0.10 0.60 76 98 78 86 166 89 78 166 85

0.10 0.10 0.80 104 98 98 147 196 151 138 184 143

0.70 0.20 0.10 87 103 90 107 153 103 111 139 114

0.70 0.25 0.05 88 104 94 150 156 147 122 145 127

0.80 0.10 0.10 82 100 83 106 172 98 101 174 97

0.80 0.12 0.08 86 103 87 120 166 110 106 171 103

0.80 0.15 0.05 89 103 91 143 165 131 112 164 110

MSE-efficiency for θi is defined as MSE(QMLE)/MSE(θ̄).

Results:

The histograms of the MSE of θ̄ relative to θ̂ and QMLE are shown in Figures 3 - 4.

Each figure has three histograms: the one on left, middle and right correspond to εi being

exp(1), Γ(λ−2
i , λ2

i ) and LN(−2−1log(1+λ2
i ), log(1+λ2

i )), respectively. Now, let us summarise

the main observations.

(A) Comparison of the constrained semiparametric estimator θ̄ with QMLE:

First, let us consider the case when the errors are iid with common error distribution

exp(1). Recall that the QMLE is equal to the MLE in this case. Since this setting is ideal

for QMLE, we would expect the QMLE to perform at least as well as, if not better than,
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Table 2: MSE-efficiency of θ̄ relative to QMLE for the linear Power ACD model

True Value ε ∼ EXP ε ∼ NG ε ∼ LN

α0 β0 γ0 λ0 α β γ λ α β γ λ α β γ λ

0.05 0.30 0.65 2 121 94 93 91 1197 136 204 142 498 120 165 110

0.05 0.05 0.9 2 72 84 96 69 352 136 176 101 1108 139 216 93

0.1 0.2 0.70 1.5 107 96 96 92 226 149 200 207 165 128 171 119

*0.25 0.05 0.70 1.5 81 86 82 47 83 117 92 53 90 127 98 59

0.1 0.15 0.75 2 104 89 95 85 579 132 211 136 221 122 179 105

0.05 0.1 0.85 2 73 90 95 83 893 123 189 123 350 129 167 106

0.20 0.2 0.60 1.5 110 97 98 90 182 144 191 198 127 125 141 120

*0.20 0.05 0.75 1.5 89 91 88 56 106 123 115 76 102 146 110 66

*0.3 0.1 0.6 0.5 94 97 95 90 92 123 95 153 82 125 89 92

0.1 0.1 0.8 0.5 115 95 110 85 136 160 140 164 142 150 150 140

0.7 0.2 0.1 0.5 91 99 95 89 107 115 108 136 110 114 113 129

0.7 0.25 0.05 1.5 91 100 96 87 136 111 129 117 111 116 114 99

0.8 0.1 0.1 0.5 91 99 92 90 99 88 93 120 110 119 107 82

0.05 0.05 0.9 0.5 97 92 99 84 158 177 157 123 130 194 142 85

0.8 0.15 0.05 0.5 91 104 92 104 119 97 113 155 113 112 114 101

MSE-efficiency for θi is defined as MSE(QMLE)/MSE(θ̄i).

the semiparametric estimators [SPE]. The column with the heading ε ∼ EXP in Tables

1 and 2 show that, as expected, the QMLE performed at least as well as the constrained

semiparametric estimator. However, the differences were small in most cases.

Now, let us consider the case when the error distribution is not exponential. The results

for these cases are shown under the headings ε ∼ NG and ε ∼ LN in Tables 1 and 2.

These results show clearly that the constrained semiparametric estimator performed better,

often substantially better, than the QMLE. If the true value of θ is not in the set A, where

A = {(α, β, γ) : β and (β/α) are close to zero, and α and γ are not close to zero }, ( for eg.,

the rows with ’*’ in Tables 1 and 2), then θ̄ performs better than QMLE. Even if the true

parameter lies in the set A, QMLE does not dominate θ̄; Tables 1 and 2 show that, in region
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A, θ̄ is better than QMLE for β, but not for (α, γ). In several empirical studies reported in

the literature, for example Engle and Russell (1998), Engle and Russell (1997), Fernandes

and Grammig (2006) and Zhang et al. (2001), the estimated value of θ turned out to be

away from the aforementioned region A. Therefore, it appears that θ̄ performs better than

QMLE in the part of the parameter space that is of practical relevance.

(B) Comparison of the constrained and the unconstrained semiparametric estimators, θ̄ and

θ̂:

Figures 3 and 4 show that the relative MSE-efficiencies are at least 100%. Thus, the

constrained estimator θ̄ performed at least well as the unconstrained DW-estimator θ̂ for

all true parameter values. The cases for which the relative efficiencies are equal to 100% or

slightly higher, correspond to the case when the parameter value is away from the boundary

and lie deep in the interior of the parameter space. Similarly, relative efficiencies that are

substantially higher than 100% correspond to the case when the parameter value is close to

the boundary. Therefore, as expected, the constrained estimator θ̄ performed better than

the unconstrained estimator θ̂.

Summary of the results:

For the Linear ACD and Power ACD models studied in this paper, for which α, β and

γ must be nonnegative and β + γ ≤ 1, the new constrained estimator θ̄ performed better

than the (unconstrained) semiparametrically efficient θ̂. Further, θ̄ performed better than

the QMLE in the part of the parameter space that appears to be practically relevant based

on past empirical studies.

4 An empirical example

In this section, we use the IBM transaction data for November 1990, to illustrate the im-

portance of the constrained estimator θ̄. In this example, we do not plan to model the

data in order to draw substantive conclusions about IBM transactions, and therefore we do
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not carry out diagnostics to evaluate goodness of fit. We estimated the parameters in the

linear ACD(2,2) model, ψi = α + β1Xi−1 + β2Xi−2 + γ1ψi−1 + γ2ψi−2, by QMLE and the

semiparametric methods. For this model, the parameter space Θ is given by

Θ = {θ : θ = (α, β1, β2, γ1, γ2)
>; α ≥ 0; 0 ≤ β1, β2, γ1, γ2, β1 + β2 + γ1 + γ2 ≤ 1}. (11)

It is possible to allow other constraints on θ, but the ones in (11) are sensible from an

economic point of view.

The computed values are given in Table 3. To compute the QMLE, we maximized the log

likelihood corresponding to the assumption εi ∼ exp(λ). Since the unconstrained QMLE,

given in Table 3, is an interior point of Θ, it is also equal to the QMLE under the constraint

θ ∈ Θ.

Although the unconstrained QMLE satisfies the constraint θ ∈ Θ, the DW-estimator

θ̂ is outside the parameter space Θ. This is an example of the type of settings where a

constrained estimator such as θ̄ would be essential. Since θ̄ is not asymptotically normal

when the true parameter lies on the boundary of the parameter space, it is not particularly

meaningful to provide standard errors for θ̄. If a measure of variability is desired, a confidence

region can be constructed by inverting an inequality constrained test based on θ̄. This is not

a trivial computational task, but possible to do. In any case, it follows from Proposition 1

that the constrained estimator θ̄ in Table 3 is closer to the true value than the unconstrained

estimator θ̂.

Note that, the constrained estimation resulted in the unconstrained estimate of β2 moving

from outside its allowed range (=−0.041) to its boundary β2 = 0, the estimate of γ2 moving

from outside its allowed range (=−.082) to an interior point (=0.27), and the estimate of γ1

moving from outside the parameter space (=1.005) to an interior point (=0.616).

This example illustrates that when θ̂ fails to satisfy the constraints imposed by the

parameter space Θ, the constrained estimation method introduced in this paper offers a

methodologically sound way of obtaining estimators that lie in the parameter space Θ. Not
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Table 3: Estimates of parameters for the ACD(2,2) model for the IBM transaction data

α β1 β2 γ1 γ2

Unconstrained Estimators

QMLE 0.561 0.098 0.018 0.375 0.492

θ̂ 0.321 0.108 -0.041 1.005 -0.082

Constrained Estimators

θ̄ 0.471 0.099 0.000 0.616 0.270

only does the constrained estimator satisfies the constraints imposed by the parameter space,

it is also likely to be closer to the true value than even the unconstrained semiparametrically

efficient estimator.

5 Conclusion

We studied estimation of parameters in duration models where the parameter space is re-

stricted. The estimator proposed in this paper is specifically designed for situations when

there are constraints on parameters, such as nonnegativity constraints, the error distribution

is unknown, and the errors themselves may not be independent. Since such situations are

expected to be common in practice and the new method proposed in this paper performed

better than its competitors, we conclude that the the proposed method is of significant

practical importance.

We used the theoretical results of Drost and Werker (2004) as building blocks, to propose

a new semiparametric method of estimation for duration models when some parameters are

known to satisfy inequality constraints, for example nonnegativity constraints as in the

standard linear ACD model of Engle and Russell (1998). We showed that our proposed

constrained estimator is asymptotically better than the unconstrained DW-estimator when

there are inequality constraints on parameters.
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We carried out a simulation study to compare our estimator with the semiparametrically

efficient DW-estimator and the QMLE. In this simulation study, the inequality constrained

estimator proposed in this paper performed better than the DW-estimator and the QMLE

in most cases of practical interest. Once the unconstrained estimator has been computed, it

is straight forward to compute the constrained estimator θ̄.

An empirical application involving the ACD(2,2) model illustrates the relevance and

importance of the new method. For example, it illustrates how the new method leads to

nonnegative estimates for nonnegative parameters when the unconstrained semiparametri-

cally efficient estimators are negative.

In this paper, we did not discuss about semiparametric efficiency bound when there are

inequality constraints of the form h(θ) ≥ 0. This is because the relevant theory has not been

developed yet even for much simpler cases. However, since our constrained estimator θ̄ is

based on the building blocks of a semiparametrically efficient estimator, it appears that θ̄ is

likely to be ’efficient’ in some intuitive sense although it is difficult to formalise.

In summary, the constrained estimator proposed in this paper is better than the corre-

sponding unconstrained estimator and the QMLE when there are inequality constraints.
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Appendix: Proof of Proposition 1

Main steps only: The technical details of the proof of (7) uses the result that the parameter

space Θ can be approximated by its approximating cone at the true value for the purposes

of deriving the first order asymptotic properties. For example, the projections of θ̂ onto

Θ and onto the approximating cone A(Θ; θ0) of Θ at θ0 are asymptotically equivalent:

n1/2(θ̄ − θ†) = op(1) where θ† = ΠWn(θ̂ | A(Θ; θ0)). Now treating θ0 as the origin, we have

n1/2(θ† − θ0) = ΠWn{n1/2(θ̂ − θ0) | A(Θ; θ0)− θ0} d→ ΠW (Z | T (Θ; θ0)),

the last step follows because ΠW (z | T ) is a continuous function of (z,W ).

Applying Proposition 3.12.3 on page 114 in Silvapulle and Sen (2005)) for the inner

product defined by 〈x, y〉 = x>W−1
n y, we have that (θ̄ − θ0)

>W−1
n (θ̂ − θ0) ≤ 0. Therefore,

‖θ̂ − θ0‖Wn ≥ ‖θ̄ − θ0‖Wn . Since Wn
p→ W and (θ̂ − θ0) = Op(n

−1/2), we have, by Lemma

4.10.2 on page 216 in Silvapulle and Sen (2005) that n1/2‖θ̂−θ0‖Wn = n1/2‖θ̂−θ0‖W +op(1)

and n1/2‖θ̄ − θ0‖Wn = n1/2‖θ̄ − θ0‖W + op(1). Now, the proof of (10) follows.
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