8,212 research outputs found

    Efficient state reduction methods for PLA-based sequential circuits

    Get PDF
    Experiences with heuristics for the state reduction of finite-state machines are presented and two new heuristic algorithms described in detail. Results on machines from the literature and from the MCNC benchmark set are shown. The area of the PLA implementation of the combinational component and the design time are used as figures of merit. The comparison of such parameters, when the state reduction step is included in the design process and when it is not, suggests that fast state-reduction heuristics should be implemented within FSM automatic synthesis systems

    Technology Mapping for Circuit Optimization Using Content-Addressable Memory

    Get PDF
    The growing complexity of Field Programmable Gate Arrays (FPGA's) is leading to architectures with high input cardinality look-up tables (LUT's). This thesis describes a methodology for area-minimizing technology mapping for combinational logic, specifically designed for such FPGA architectures. This methodology, called LURU, leverages the parallel search capabilities of Content-Addressable Memories (CAM's) to outperform traditional mapping algorithms in both execution time and quality of results. The LURU algorithm is fundamentally different from other techniques for technology mapping in that LURU uses textual string representations of circuit topology in order to efficiently store and search for circuit patterns in a CAM. A circuit is mapped to the target LUT technology using both exact and inexact string matching techniques. Common subcircuit expressions (CSE's) are also identified and used for architectural optimization---a small set of CSE's is shown to effectively cover an average of 96% of the test circuits. LURU was tested with the ISCAS'85 suite of combinational benchmark circuits and compared with the mapping algorithms FlowMap and CutMap. The area reduction shown by LURU is, on average, 20% better compared to FlowMap and CutMap. The asymptotic runtime complexity of LURU is shown to be better than that of both FlowMap and CutMap

    A recursive paradigm to solve Boolean relations

    Get PDF
    A Boolean relation can specify some types of flexibility of a combinational circuit that cannot be expressed with don't cares. Several problems in logic synthesis, such as Boolean decomposition or multilevel minimization, can be modeled with Boolean relations. However, solving Boolean relations is a computationally expensive task. This paper presents a novel recursive algorithm for solving Boolean relations. The algorithm has several features: efficiency, wide exploration of solutions, and customizable cost function. The experimental results show the applicability of the method in logic minimization problems and tangible improvements with regard to previous heuristic approaches

    Exploiting partial reconfiguration through PCIe for a microphone array network emulator

    Get PDF
    The current Microelectromechanical Systems (MEMS) technology enables the deployment of relatively low-cost wireless sensor networks composed of MEMS microphone arrays for accurate sound source localization. However, the evaluation and the selection of the most accurate and power-efficient network’s topology are not trivial when considering dynamic MEMS microphone arrays. Although software simulators are usually considered, they consist of high-computational intensive tasks, which require hours to days to be completed. In this paper, we present an FPGA-based platform to emulate a network of microphone arrays. Our platform provides a controlled simulated acoustic environment, able to evaluate the impact of different network configurations such as the number of microphones per array, the network’s topology, or the used detection method. Data fusion techniques, combining the data collected by each node, are used in this platform. The platform is designed to exploit the FPGA’s partial reconfiguration feature to increase the flexibility of the network emulator as well as to increase performance thanks to the use of the PCI-express high-bandwidth interface. On the one hand, the network emulator presents a higher flexibility by partially reconfiguring the nodes’ architecture in runtime. On the other hand, a set of strategies and heuristics to properly use partial reconfiguration allows the acceleration of the emulation by exploiting the execution parallelism. Several experiments are presented to demonstrate some of the capabilities of our platform and the benefits of using partial reconfiguration

    Generating Property-Directed Potential Invariants By Backward Analysis

    Full text link
    This paper addresses the issue of lemma generation in a k-induction-based formal analysis of transition systems, in the linear real/integer arithmetic fragment. A backward analysis, powered by quantifier elimination, is used to output preimages of the negation of the proof objective, viewed as unauthorized states, or gray states. Two heuristics are proposed to take advantage of this source of information. First, a thorough exploration of the possible partitionings of the gray state space discovers new relations between state variables, representing potential invariants. Second, an inexact exploration regroups and over-approximates disjoint areas of the gray state space, also to discover new relations between state variables. k-induction is used to isolate the invariants and check if they strengthen the proof objective. These heuristics can be used on the first preimage of the backward exploration, and each time a new one is output, refining the information on the gray states. In our context of critical avionics embedded systems, we show that our approach is able to outperform other academic or commercial tools on examples of interest in our application field. The method is introduced and motivated through two main examples, one of which was provided by Rockwell Collins, in a collaborative formal verification framework.Comment: In Proceedings FTSCS 2012, arXiv:1212.657
    • …
    corecore