
Efficient state reduction methods for PLA-based
sequential circuits

1

/ -
PI ’ -

M.J . Avedillo
J .M. Quintana
J.L. Huertas

/ -
combinational /PO

logic -

Indexing terms: Finite sequential machines, Programmable logic arrays, Stare minimisation

/

Abstract: Experiences with heuristics for the state
reduction of finite-state machines are presented
and two new heuristic algorithms described in
detail. Results on machines from the literature and
from the MCNC benchmark set are shown. The
area of the PLA implemention of the com-
binational component and the design time are
used as figures of merit. The comparison of such
parameters, when the state reduction step is
included in the design process and when it is not,
suggests that fast state-reduction heuristics should
be implemented within FSM automatic synthesis
systems.

/
/ /

~ register

1 Introduction

Nowadays, technological advances lead to more and
more sophisticated digital system. It is impracticable to
realise them without the help of CAD tools [l-31.
Systems for the design of finite state machines (FSM)
have been implemented since the early 1960s but, few of
them included state minimisation because the inherent
complexity of this process. In particular, it was shown
that the reduction of completely specified finite automata
can be achieved in O(n log n) steps [4]. The minimisation
of incompletely specified finite automata is a NP-
complete problem [SI. Nevertheless, FSM designers have
recently pointed out the need for efficient algorithms for
the minimisation of large machines [lS, 161.

The minimisation of the number of states is an import-
ant task in the optimal design of sequential circuits.
Reducing the number of states corresponds to decreasing
the number of transitions of the sequencing functions and
eventually to reducing the number of implicants in a two-
level logic realisation or reducing the number of literals
in a multilevel one. Moreover, a reduction of the number
of states may correspond to a reduction of the number of
bits that is needed for the state encoding [6].

Another area where state minimisation applies is the
test generation for sequential machines. Many of the
reported approximations are ineffective when the number
of states in the circuit is large and the test demands long
input sequences.

In this paper we deal with the state minimisation
problem as a part of an automatic synthesis system. After

giving some basic concepts to make the paper self con-
tained, we review existing methods for state minimisation
of a FSM. Emphasis is placed on heuristic approaches,
establishing a distinction between constructive heuristics
and iterative improvement techniques. Two new methods
for solving this problem are described, each from one of
the two categories above. Experimental results are given
and a detailed comparison is carried out mainly in terms
of silicon area and computer time.

I state reduction 1

state assignment

t
1 logic minimisation I

Paper 9098E (C2, ElO), first received 16th July 1991 and in revised form
18th June 1992
The authors are with the Departamento de Disefio Analogico, Centro
Nacional de Microelectronica, Edif. CICA, Avda. Reina Mercedes s/n,
41012-Sevilla, Spain

I E E PROCEEDINGS-E, Vol. 139, No . 6 , NOVEMBER I992

minimised next state and output functions
Fig. 2 Designflow

49 1

Symbolic descriptions consist of a set of symbolic
implicants [7]. Each symbolic implicant has four com-
ponents :

i s 6(i, s) L(i, s)

and represents the state transition and outputs produced
when input i is applied to the FSM being in state s. The
present state s and the next state 6(i, s) are symbolic rep-
resentations (labels) which will be coded in the state
assignment phase. Input and output functions can be
both symbolic, in which case they will also be optimally
encoded, or binary-valued due to the constraints imposed
by other components of the system being designed. If the
next state or outputs are not specified for all (input,
present state)-pairs the FSM is said to be incompletely
specified.

State tables (tabular symbolic descriptions) are the
starting point of classical state reduction theory [SI. The
problem can be stated as: ‘given a state table, find
another one which specifies the same external behaviour
with a minimum number of states’.

We briefly review for the sake of completeness some
basic concepts in state reduction [8-1 11. Internal states s,
and s j are compatible if:

(a) for any input i, E I such that both I(i, , si) and >.(i,,
s,) are specified

A(&, si) = sJ)

(b) for any input i, E 1 such that both 6(ik, si) and
6(ik , s,) are specified

6(i,, si) is compatible to 6(i,, s,)

A compatibility class or compatible C , is a set of states
such that members of the set are pairwise compatible. A
compatible which is not a proper subset of any other
compatibility class is called a maximal compatible (MC).
If there is an input such that sk is the next state of si and
sf is the next state of s, and (s,, sf) # (sir sJ) then we say
that (sk, sf) is implied by (s i , s j) .

The class set P i implied by the compatible C, is the set
of all compatibles Cij implied by Ci for all inputs ij , such
that

(i) Cij has more than one element
(ii) Ci, @ Ci
(iii) C , @ C , if C, E P ,

The closure class set E i of a compatible Ci is a set of all
compatibles implied by Ci obtained by repeated use of
transitivity of implication, such that the compatibles
which are subsets of either Ci or any other member of Ei
are removed from the set.

A compatible Ci dominates a compatible CJ if C, 2 C,
and P i L P , . A compatible that is not dominated by any
other compatible is called a prime compatibility class
W).

A collection of compatibles covers all states of a state
table if every state is contained in at least one compatible
in the collection.

A collection of compatibles is closed if for each com-
patibility class in it, Ci = isil, s i 2 , . . . , si,,,} and any input
i,, the set of states {6(ik, sil), 6(ik , si2), ..., & k , si,,,)} is
contained in at least one compatible of the collection.

3 Exact minimisation approaches

A fundamental theorem [lo] states that, given an incom-
plete state table, another state table specifying the same
external behaviour corresponds to each closed set of

492

compatibility classes which covers all internal states of
the given table. Classical approaches to the state
reduction problem are structured in two well differen-
tiated steps:

(a) generation of the complete set of some kind of com-
patibility classes (prime compatibles [9], prime closed
sets [12], etc.)

The allowed compatibility classes are those for which
there is assurance a minimum cardinality closed cover
exits which is composed uniquely of them. There are
drawbacks related to both steps. Concerning the first one,
the number of those compatibility entities might be too
large precluding an efiicient generation. The second step
implies the solution of a minimum closed covering
problem, which is known to belong to the class of NP-
complete problems for incompletely specified finite state
machines. Then, the very nature of this problem has pre-
cluded the inclusion of a state minimisation step in many
FSM design systems during the 1970s and early 1980s.

However, advances both in computing power and heu-
ristic algorithms have convinced researchers that revising
state minimisation concepts is worthwhile [13-161. But
nowadays FSM designers are no more interested in sym-
bolic descriptions with a minimum number of states;
instead they focus the FSM synthesis process as a global
optimisation task aimed at obtaining minimal cost imple-
mentations both in terms of silicon area and design time.
It is well known that a symbolic description with a
minimal number of states is not necessarily the appropri-
ate starting point when minimal area implementations
are looked for; however, usually a reduction in the
number of states leads to a reduction in the complexity of
the resulting FSM. Then, there is a need for developing
efficient algorithms which are able to produce FSMs
optimised in terms of silicon area, speed, testability, etc.

(b) extraction of a minimum closed cover.

4 Heuristic minimisation approaches: previous

There are several styles of heuristic strategies for solving
combinatorial optimisation problems. We classify these
strategies into two categories: constructive approaches,
and iterative improvement methods. In constructive heu-
ristics, a good solution to the problem being solved is
built up piece by piece. This kind of approach to the
state-reduction problem follows the structure of classical
methods but, instead of attempting to determine
minimum solutions, near-minimum (minimal) ones are
heuristically selected through

(a) generation of a set (usually, a complete set) of some
kind of compatibles

(b) heuristic selection of minimal closed cover.

Heuristic algorithms were developed as early as 1972 by
Bennets 1181. In this pioneering work it was pointed out
that the type of initial compatibles on which they are
based is not so critical. Bennets proposed a reduction
algorithm based on the maximal compatible sets, MCs.
Using this subset of the prime compatible set reduces (in
some cases drastically) the number of candidate compat-
ibles. The procedure consists of selecting one of the essen-
tial (or quasi-essential) MCs and attempting to satisfy its
closure requirements (generating one of the smallest set
of MCs that satisfies the violated closure requirements
for the MC selected). The result will be a closed set of
MCs that may or may not provide full covering on the

work

I E E PROCEEDINGS-E, Vol. 139, No . 6 , NOVEMBER 1992

initial set of states. The procedure is repeated until a full
cover is achieved.

Very recently, several heuristic algorithms for FSM
minimisation have been proposed. Kannan and Sarma
[lS] begin by generating the set of all the maximal com-
patibles. Then a minimal set of maximal compatibles
which covers all the states is built up. Finally, if the FSM
is incompletely specified and the minimal cover is not the
complete set of maximal compatibles, this minimal cover
is expanded to obtain an optimal closed cover. Two dif-
ferent heuristic algorithms are proposed for the last step.
In the ‘large set’ approach, each compatible in the
minimal cover is checked for closure and appropriate
compatibles are added to fulfill closure requirements. At
every step, extra states are tried to be added to compat-
ibles in the cover. New sets are created only if absolutely
necessary. In the ‘lean set’ approach, all the states that
occur more than once in the set of maximal compatibles
in the minimal cover are removed. Then closure require-
ments are satisfied adding states to the existing compat-
ibles or adding new compatibles.

Hachtel et al. [16] stated that exact state minimisation
is feasible for a large class of practical examples but have
also pointed out the interest of heuristic techniques for
the state minimisation of FSM generated by sequential
synthesis systems. Two heuristic approaches are pre-
sented to solve the problem. In both of them they
attempt to reduce the time and memory requirements by
generating only a subset of the prime class set for the
subsequent closed covering problem. First, a closed cover
composed of maximal compatibles uniquely is found.
Then, only the prime classes contained in the maximal
compatibles of the previous solution are computed and
used to formulate a binate covering problem [9, 101
which is then solved exactly. There are two different heu-
ristics reported to find a closed cover of maximal com-
patibles. One of them is suitable for machines with a high
number of maximal compatibles and is based on the
concept of isomorphic states so that not all the maximal
compatibles are taken into account in the process of
building up a closed cover. The other one is for machines
with a large number of prime classes. In this case, the
complete set of maximal compatibles is generated and a
minimum closed cover is found.

Although these recent references appear as very inter-
esting, the field is worth exploring further.

In iterative improvement strategies an existing solu-
tion is perturbed in the direction of a lower cost one.
These strategies have been only applied to the final steps
of some methods and thus they may be considered as
refinements [13, 161 of solutions obtained by constructive
approaches. But in our opinion, iterative improvement
strategies have not been explored in depth. There seems
to be a parallelism between the history of logic mini-
misation and that of state reduction. Approaches to logic
minimisation exist which simultaneously identify and
select implicants for a cover. This is the case of the well
known logic minimiser Espresso [19]. No similar
approach exists for state reduction. So an interesting
objective is developing state-reduction algorithms which
simultaneously identify and select compatibles for the
closed cover, and comparing them with existing
approaches.

REDUCES(T)
/* state reduction algorithm based on maximal compatibles
(MCs) *,’
{
CCSS = Get-MC(T);
Q = GetLconstraints(CCSS. T) ,
cc = {a};
while(CC! =closed cover)
{ if (CC ! = closed)

CC = +Select-CC(violated closure constraints) :
else
{CC = +SelecttCC(violated covering constraints),
}

1 I ; = Get-Table(CC);

Select-CC(violated type constraints)
{ Cand = Mosttrestrictive(vio1ated type constraints),

for (each CC in (2nd)
Compute-CO;
return (M , maximises C);

>

5 A new constructive heuristic

We have developed a state-reduction algorithm, Reduces
[20], using a constructive heuristic based on maximal

IEE PROCEEDINGS-E, Vol. 139, NO. 6, NOVEMBER I992

compatibles. The state reduction is achieved by pro-
cessing the state table T , from which the set of maximal
compatibles CCSS is obtained. The global process is
described using Pidgin-C in Fig. 3. Then, a table Q with
the covering and closure constraints is derived by Get-
constraints() in Fig. 3. Covering and closure constraints

member of a closed cover set and c, = 0 if M , is not selec-
ted. These covering and closure constraints are shown in
Fig. S.

Initially, C C = 0 and the procedure Select-CC() is
called with the set of covering constraints (1-9 in Fig. 5) as
argument. Expr. 4 in Fig. S is the most restrictive violated
one, as it is satisfied only by the selection of M I or M ,
(these MCs are the only ones that cover state s,).

Fig. 4

Table 1 : FSM example 121 I to clarify how new algorithm
works

A B C D

Maximal compatibles for FSM in Table I

s2.- sa . - - s3, -
S s , - sg,- - -

s,,- s,, -
s z , - SI,- S g , - s 5 , -

s e * -
s,. 0 - s q . - -, 1
s5, 1 s2,- - -
s 5 , - - - s,. 0
s5, - S) , - - -

- -

_ - -

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(1 0)
(11)
(1 2)
(1 3)

-1 + c , +cs +cg +c,o > 0
-1 + c 2 + C) + c5 + ce + c , + c , +cg + c , o
-1 + c 3 + C6 + c , + c , o > 0
-1 + c 1 +ca 2 0
-1 + c , + c 2 + c 4 + c 5 + c , + c g b 0
-1 +c.+c5 + c 6 + c 9 + c , o > 0
-1 + c 1 + C , + C , > O

-1 + c , + c 2 + c , + c , + c , > o
-1 + c , + c 2 + c 3 + c , +c5 + C 6 2 0
-c, + c2 + c5 + c , + c g > 0
-c , +C, +c,o > 0
- c , +cg > 0
-c* +c4 + c 5 + c g > 0
- c , + c , + C , b o
-c2 + cg + C I O b 0

(16) -c3 + c 4 + c 5 +cg > 0

-c4 + c , +cg > 0 (1 8)
(1 9) -cq +cg +c,o 2 0
(20) -c, +c5 + C 6 + C 9 +c,o 2 0
(21) -c5 +cg > 0
(22) -c5 + c g + C 6 2 0

-c,+c,>O (23)

-c,+c,+c,>O

(26) -c, + c , +c4 > 0
-c, + c , o > 0
-c, + C 5 +cg > 0 (28)
-c , + c , + c 4 > 0

(30) -c9+c , +c,>o
(31) -c,+c,+c,,>O

(32) -c,o+c, + c , > o

(33) - c , , + c , + c , b o

-c,,+c,+c,>o (34)

Covering and closure constraints for FSM in Table I

0

(14)
(1 5)

(1 7) -c3 + c , + c , b 0

-ce +c2 + c , > 0 (241
(25)

(27)

(29)

~ i ~ . 5

494

It is clear that M , and/or M , will be members of any
closed cover set, including that of minimum cardinality.
Then, Cand = { M , , M , } , and C is computed for both
MCs:

b for M ,

P C (M ,) = S because MI = (s,, s 5 , s, , s,, sg) covers five
uncovered states of the original table. That is, the selec-
tion of this MC satisfies five violated inequalities: expr. 4,
5, 7, 8 and 9. N C (M ,) = 3 because the consequence of
selecting M , is the violation of inequalities 10, 11, 12
which express the closure requirements of MI. That is, if
M , is selected as a member of a closed cover, MCs con-
taining compatibles (s,, s 2 , sJ, (s2, s5) and (s,, s 5 , s,) will
have to be included too.

C (M ,) = P C (M ,) - 2 N C (M ,) = - 1

b for M ,

PC(M,) = 4 N C (M ,) = 3
C (M ,) = PC(M,) - 2NC(M,) = -2

M , is selected (CC = { M , }) because it maximises the
parameter C . Now there are some closure constraints
violated (expr. 10, 11, 12) and the algorithm tries to
satisfy them firstly, so procedure Selec-CC() is called for
these constraints. Among this set, expr. 12 is the most
restrictive one and Cand = { M , } . In this case, as there is
only one candidate MC, we do not need to compute C .
M , becomes a member of C C .

Now, the set of violated closure constraints is {(ll),
(31)) and

C a n d = { M , , M , , M l o)
C (M ,) = 0 C (M ,) = 2 C (M , ,) = - 1

M , is selected. The only inequality not satisfied is expr.
31 and the algorithm evaluates C for each of the MCs
whose selection satisfies that constraint, i.e. :

Cand = { M 6 . Mlo}

C(M,) = -1 C (M , ,) = -1

Arbitrarily, M , is selected. As a consequence of adding
this MC to C C , expr. 24 is violated:

Cand = { M 2 , M 3 }

C (M ,) = 1 C (M 3) = 1
M , is added to CC (CC = {MI, M , , M , , M , , M ?))
which now is a closed cover of the original table descnb-
ing the FSM.

6 Iterative improvement heuristic

6.1 Motivations
The strategy we propose herein is similar to that in
Espresso [19] for the heuristic minimisation of com-
binational functions. That is, a set of basic operations is
defined which transforms a symbolic description of the
FSM in another one with a smaller number of states.
Our algorithm Arnes [22, 231 may be described, from a
high level point of view, as a sequence of transformations
(functions) which, starting with the initial description of
the FSM, results in a sequence of intermediate descrip-
tions of such a machine with a decreasing number of
states. The process finishes when the application of the
functions implemented by the algorithm does no longer
reduce the number of states. The main advantage of this

IEE PROCEEDINGS-E, Vol. 139, No. 6 , NOVEMBER 1992

approach is the avoidance of generating any complete set
of compatibles, as in classical state reduction algorithms.

6.2 The new algorithm
Primary objective in Arnes is reducing the number of
states in the symbolic description of a FSM being used as
an input to other phases of the design process of sequen-
tial circuits. Moreover, once it obtains a solution with a
reduced number of states, Arnes operates on it to maxi-
mise the number of 'don't cares' in excitation functions.
This aims at simplifying the task of state assignment
programs and logic minimisers [13, 161, so better solu-
tions are obtained.

In Fig. 6 the algorithm control block is described
using Pidgin-C, where T is a symbolic description of a
FSM using state tables, C is a closed cover for table T ,
that is, a closed set of compatibles which covers all inter-
nal states in T , and (€J is the number of compatibles in C
(number of internal states in the description of the FSM).
Procedure init(T) initialises C to the set of internal states

ARNES(T)
{ C=" init(T),

@* = 9 = cost(C).
(@, C) = expand(C. T) ,
(@, C) = reduction(C, 77.
T' = table(C. 77.
I f (@ < @*)
{ ARNES(T').
>

}

Fig. 6 Pidgin-C description of control block oJthe algorithm

expand(C. T)
/*given a closed cover of T, returns a closed cover composed by

larger compatibles (eventually prime compatibles) without
having generated them previously*l

{ @* = @ = cost(C).
for (I = 1 , i G IC1 , I + +)

{ expandl (C,),
@ = cost(C).

}
If (@ i @*)
{expand(C. 77.
>

Fig. 7 Pidgin-C description ofprocedure expand

in the initial description T which is a closed cover of the
FSM. Function cost(C) evaluates the cost of a solution,
C. There are two main functions in Arnes: expand and
reduction which we describe in detail. Once C has been
transformed by the application of basic previous func-
tions, procedure table(C, T) builds a symbolic description
T for the FSM defining an internal state for each com-
patible in C. If the cost of this new description is smaller
than that of the initial one, the whole process is repeated
for T .

Now, we explain the main procedures of Arnes. Pro-
cedure expand adds states to each compatible Ci in C,
includes those compatibles needed to fulfill closure
requirements of C,? (expanded compatible) and elim-
inates those in C that are now covered. Given Ci to be
expanded, an optimum expanded compatible Cppt is
defined such that

a = card (W(Cpp'))

- card (DIMP(CPpi)) is maximum (1)

(2)
where DIMP(CP") is the closure set 4"' of CYp elim-
inating those compatibles which are members of C,
W,{Cppt) is the set of compatibles which can be elim-
inated from C, when substituting C i by Cpp' because they
are included in C:p', and W,(CPpr) is the set of compatibles
which can be eliminated from C, when substituting Ci by
Cppi because they are included in one compatible in
DIMP(CYp'). If all compatibles C 3 C i could be enumer-
ated, we would select one satisfying eqn. 1. Instead, since
this operation is computationally too expensive, the basic
operation expandl obtains C: that is a good approx-
imation to eqn. 1. In Fig. 7 and 8 procedures expand and
expandl are described using Pidgin-C.

Procedure expandl begins by computing the set of
states that are compatible to all states in Ci and storing
them in set comp. Then, for each potential expanded com-
patible C + j = Ci U s j , where s j is a state in set comp, a is
evaluated. One of the expanded compatibles which maxi-
mises 1 is selected to be Ci and procedure expandl is
repeated for this new C i . The expansion of one compat-
ible finishes when there are not compatible states to the
current expanded compatible or a is negative for all
potential expanded compatibles. After expanding a com-
patible, C i s still a closed cover for T . Moreover, expand-

W(CPP') = W , (C y) U W,(cppr)

expandl (C,)
/*given C, , compatible in C. returns C,' which is a good approximation to (1) *
{ flag = 1 ,

while(flag= = 1)
{ comp = compatibles(C,)

if(comp1 ={a})
{ for(each s, E comp)

stores in comp those states which are compatible to all states in C,/

CT' = c. v s,,
select C:' which maximises 2. and store in C'
C = (C U C: U DIMP(C:)) ~ C, - W(C:)

/*C: is a compatible which contains C,*
/*DIMP(C,*) is the closure set €7 of C: minus those compatibles in C*
l*W is the set of ComDatibleS in C contained in C' or in any compatible in DIMP'I
if(a < 0 for all C:')

flag = 0 , /*C, expansion is not continued because expanding means increasing the number of compatibles in C'/

&se
flag = 0 . /*C, expansion is not continued because there are not compatible states to C,*/

Fig. 8 Pidgin-C description of procedure expandl

IEE PROCEEDINGS-E, Vol. 139, No . 6, NOVEMBER 1992 49s

ing is only allowed if it does not mean an increment in
the cardinality of C.

Procedure reduction transforms C in a new C* where
each Ci is sequentially substituted by a reduced compat-
ible C ; c Ci, such that

{C - C,} U C; is a closed cover

For reducing each Ci, first the set of states in C, covered
by unless another compatible in C, H , is derived. All
states in H could be removed from Ci and C still would
be a cover of T but may be not a closed set of compat-
ibles, Procedure MCEE selects the largest subset of H
that can be eliminated from Ci, such that C is still a
closed cover of T .

Procedure reduction allows to move away from one
solution to another of less cost, as the application of the
whole procedure to state table T , might lead to less
costly solutions. Moreover, reduction eliminates states
that are covered by more than one compatible. The mini-
misation of such number of states leads to the maximisa-
tion of ‘don’t cares’ in excitation functions [13]. In Fig. 9
we describe the procedure. Fig. 10 contains a description
of the basic function in reduction (procedure MCEE).
MCEE complexity increases exponentially with the
number of states in the set H . From our experience we
conclude this is not a problem, even for large machines.

We use again the machine described in Table 1 to
show how the algorithm works. As seen from the fore-
going description there are three main blocks in the algo-
rithm: initialisation, expansion and reduction.

6.3 Example
Initialisation: We initialise C to the set of internal states
in the original state table and evaluate the cost of such

Expansion: Procedure expand1 is called for the first com-
patible in C. That is, C , = (s,). States which are compat-
ible to all states in C, are stored in comp:

comp = i s z , s 3 , ss, s 6 , sa}

(x is evaluated for each C:J = C, U s j , where s j is an
element from comp.

for sz:

c:’ = (SI, s2)

DIMP(C:’) = { (S Z s 6) ? (s4s9), (sIs6), (sIs3),

(szssb (S3%)> (s1sa)l

W,(c:? = ((s 2) J

W,(C:’) = {(s,), (s4), (s9b (S d (SSL (sa)}

I t can be eliminated from C because it is covered by C : 2 ;

They can be eliminated from C because they are covered
by compatibles in D I M P .

card(W(C:’)) = 7

card(DIMP(CT2)) = 7

a = 7 - 7 = 0

This means, expanding s1 with sz leads to a closed cover
with the same number of compatibles.

reduction(C T)
/*returns C* where each compatible C is substituted sequentially by C minimum Compatible which when substituting C,, verifies that

C* is still a closed cover of T*

for(;= 1 ; i < ICI; i ++)
{

{ H = { 0 > ;
for(/ = 1 ; I < IC1 : I + +)
{ If(i1 =/)

{H = H U (C, n C,),
>

I j*H is the set of states in C, covered by at least another compatible in C’
If(HI = 0)

Fig. 9 Pidgin-C description of procedure reduciion

MCEE(H)
/‘given H, a set of states in C, covered by at least another comparible in C returns the largest subset of H that can be eliminated from C,

{ if (all states in H can be eliminated)
{ return (H)

else
{ s, = select-state(H)

H- = MCEE(H,),
H i = MCEE(H;)
H‘ = merge(H H ’)
return (H‘),

such that (C - (C,)) U (C, - MCEE(H)) isstilla closedcover of T*

>
‘selects the first stare in H still not selected’

/*tries a solution without eliminating s, from C,*
‘tries a solution eliminating s, from C
selects the set with the largest cardinality

>
}

Fig 10

496

Pidgin-C description of procedure M C E E

I E E PROCEEDINGS- t , Vol 139, N o 6, N O V E M B E R 1992

Summarising the results of the evaluation of z for each
state s j from comp:

C:”

s3 is selected to expand C , . C is updated. New closed
cover and cost are

= {(sIs3), (s3 (s1s8)? (s Z s S) 3 (s4)3 (s6), (s7)> (s9)}

@ = 8

New compatible C, in Cis expanded

Cl = {(s1s3)}

camp = {SZ > s6 > sa}

Again, a is evaluated for each C;’.

C:’*

As a is positive, state s2 is added to C,. New closed cover
and cost are

= {(s1sZs3s8), (sZs5s6) , (s1s6), (s4sY) , (ST)}

@ = S

There are not compatible states to C, = {(s,szsJs8)}, and
so the expansion of this compatible is not continued.
Now the algorithm tries to expand compatible C, in C.

The expansion of C, is not continued because z is
negative for all states in comp. The number of states in
closed cover C would increase if we used s, or s9 to
expand C, = {(s2s5s6)}.

The algorithm goes on with C3

I(sls6sZ)<o I (s l s 6 s 3) < 0 1 (s I s 6 s S) < o I

a is negative for each C: and C3 is not expanded.

IEE PROCEEDINGS-E, Vol . 139, No. 6 , NOVEMBER 1992

C is updated by expanding C, with s, .

= {(slsZ s3 (s 2 s5 s 6) 3 (Sls6), (s4 s7 s9)}

@ = 4

Now C, = {(s4s7 sg)} comp = {ss, sE)
C: ’a

j(s,s7s9s5)<O I (s 4 s 7 s , s 8) < o ~

C, is not expanded because a is negative for all potential
expanded compatible Caj.

Reduction ; Procedure reduction sequentially removes
from the compatibles in C, those states which are not
necessary to fulfill covering constraints nor closure ones.
In this example no state is eliminated.

As @ = 4 is less than @* = 9 the whole procedure is
repeated for the new state table derived from the final
closed cover. No improvement is achieved in this case.

7 Experimental results

Experiments have been carried out on a large set of
FSMs to test the algorithms previously described. Both
of them have been coded in C. The program implement-
ing the constructive one is called Reduces and the iter-
ative improvement one, Arnes. Results both for machines
from the literature and for machines in the MCNC
benchmark set [24] are shown.

7.1 Figures of merit
We focus on three figures of merit: the final number of
states in the FSM representation, the area occupied by
the combinational component in a PLA-based implemen-
tation of the FSM, and the time which is required for
design. We introduce them in more detail:

(a) the number of states in the symbolic description
after state reduction. This is an important parameter to
evaluate how well the state reduction algorithms work. It
is the main concern of all the algorithms described in
classic papers on the subject. If state assignment prog-
rams which use minimum length codes are employed, the
number of states determines the number of memory ele-
ments.

(h) the area of the combinational component. We use a
PLA to implement the combinational component of the
FSM. The area in this case is

area = Kp(2ni + 3n, + ne) (3)
where ni is the number of input variables, n, is the
number of state variables, and no is the number of output
variables.

(c) design time. This parameter reports the time needed
for passing from the initial symbolic description to the
minimised Boolean representation of next state and
output functions. It is composed of three partial times:

t , time for state reduction phase (if implemented)

491

tz time for state assignment phase

t , time for final logic minimisation

time = t , + t , + t 3

7.2 Results on machines from the literature
We have tried many examples of machines from switch-
ing circuit textbooks and journal papers about mini-
misation [26]. In many of them the gains were
significant. Table 2 shows the number of states (ns), the
number of product terms (t p) and the size of the PLAs
implementing the combinational part of the machines
after state assignment and logic minimisation for four dif-
ferent initial descriptions: state tables as they appear in
the literature, state tables reduced by the application of
an implementation of a classic state reduction algorithm
(Bennets algorithm [18]), state tables reduced by the
application of Reduces, and state tables obtained by
Arnes. This parameter size has been obtained with a
K , = 1 in eqn. 3. Reported times in the last three include
the time invested in the state reduction step. In all cases,
the optimal state assignment algorithm we used was the
'i-hybrid complement' algorithm in Nova [25].

From Table 2 Arnes obtains minimum cardinality
solutions in 14 of 15 cases, including the well known (and
difficult) 22-state machine (FSM6) in Reference 17. Also,
from this table, it should be clear that the size of the final
circuit when Arnes is applied is lower than the size when
starting with original FSMs except for FSMlO (equal
size). In ten machines Arnes gave less area realisations
than solutions supplied by the well-known Bennets algo-
rithm. Only for FSMl and FSM10 did the implementa-
tion of Bennets algorithm achieve better size results than
Arnes. Summarising the comparison between Reduces
and Arnes, in nine machines Arnes gave area savings
while Reduces obtained better results for three machines.

For each of the machines in Table 2 two ratios have
been calculated

0 1 -

(4)
size, time,

A = - and T = v
sizeo time,

FSM12r
FSM9r -FSM15

I

This is the area occupied by the PLA, obtained using
Arnes, divided by the area resulting when the original
description is used for state assignment. In the same way,
the design time with state reduction using Arnes is
divided by the design time without state reduction step.

We represent the pair (A , T) for each machine in a
design space whose Y-axis represents the time ratio and
the X-axis the area ratio. There are two significant lines
in this space, defined as A = 1 and T = 1, respectively.
For any machine FSMi with coordinates (A i , 7J below
the line defined by T = I, the design time decreases when
state reduction is included in the synthesis process. For
any machine FSMi with coordinates (A i , TJ on the left of
the line defined by A = 1, the state-reduction step is
advantageous in terms of silicon area.

Advantages in both area and time correspond with
machines inside the region limited by those lines. Also its
borders represent favourable situations. That is, they rep-
resent cases where state reduction achieves a decreasing
in one of the design coordinates without changing the
other one. In Fig. 11, pairs (A , T) for the machines in
Table 2 have been drawn. The point labelled [FSM]
(0.45, 0.22) represents the average for the machines in
Table 2.

n 0 41

P I

I
FSM4r I

I
FSM3r

B I

Table 2: Minimisation results for machines from literature

Original FSM Bennets FSM

n, no ns tp size, time, ns, tp size time

Reduces FSM

nsR tp size time ns,

Arnes FSM ns,,,

tp size, time,

FSMl
FSM2
FSM3
FSM4
FSM5
FSM6
FSM7
FSM8
FSMS
FSMlO
F S M l l
FSMl2
FSM13
FSM14
FSMl5

2 1 5 7 98 2 7 4 4 44 1 4
2 1 9 10 170 1 2 1 6 10 140 3 7
2 1 7 9 126 4 8 4 7 77 1 5
2 1 6 7 98 3 1 4 4 44 1 0
2 1 6 8 112 4 3 4 6 66 1 2
2 1 22 25 500 261 2 12 16 272 1803
2 1 9 14 238 1 6 5 5 10 140 2 6
2 1 6 8 112 5 0 4 6 66 1 4
3 1 9 15 285 3 5 2 4 9 117 3 0
3 1 8 14 224 1 6 4 5 13 208 4 8
2 1 6 9 126 6 1 5 9 126 3 5
2 1 9 11 187 1 5 3 4 7 77 1 7
3 1 6 1 1 176 66 3 5 65 1 3
2 1 6 7 9 8 2 8 2 3 2 4 0 6
3 1 10 10 190 2 3 6 4 7 91 1 9

4 4 44 1.2 3
5 10 140 3 1 4
4 7 77 1.2 4
3 4 44 0.8 3

4 6 66 1.2 3
11 12 204 23.9 9
6 10 140 2.7 4
4 6 66 1.3 3
4 11 143 2.7 3
5 13 208 4.7 5
5 9 126 3.2 4
4 7 77 1.4 3
3 5 65 1.4 3
2 3 24 0.6 2
4 6 78 1.9 4

5 55 0.8 3
7 77 1.8 4

5 55 1.8 4
4 44 1.2 3
5 55 1.2 3

13 231 55.9 9
8 88 1.8 4
6 66 1.2 3
5 65 1.7 3

14 224 7.5 4
7 77 1.5 4
6 66 1.3 3
4 52 1.2 3
3 24 0.4 2
5 65 1.5 4

n,. number of input variables; n o . number of output functions; ns. nsg. nsR, ns,. states in descriptions obtained from
papers. Bennets algorithm. Reduces and Arnes. respectively; ns,,,, minimum number of states; tp, number of product
terms; size. PLA size evaluated by Nova: time, time in seconds on a Sun 3/260 workstation

498 IEE PROCEEDINGS-E, Vol. 139, No. 6, NOVEMBER 1992

Table 3: Minimisat ion results for machines i n MCNC benchmark

Original FSM Reduces FSM Arnes FSM

n , n o ns tp size, timeo ns; tp size time ns; tp size, time,

t . t , + t , t . r,+t,

0
B 0 0 -
m
b

-o 0 6 -

z"
0 4 -

bbara
bbsse
beecount
ex1
ex2
ex3
ex5
ex7
lion9
markl
opus
scf
se . bbsse
tbk
train1 1

I I .bbora I
A- tmcnc,- beecount ~

e x 3 r I I

4 2 10 25

3 4 7 1 0
9 19 20 50
2 2 19 36
2 2 10 18
2 2 9 1 8
2 2 10 17
2 1 9 9
5 16 15 17
5 6 10 16

7 7 16 29
6 3 32 170
2 1 11 12

7 7 16 29

27 56 121 146 1

550
957
1 90

2600
756
324
324
306
153
646
448

91 26
957

51 00
204

17.1
47.0

7 8
350.3

95.0
14.5
11.6
17.3
8.7

51.5
11.6

9676.6
49.4

7840.0
14.5

7 20
13 29
4 9

18 43
10 19
6 10
4 8
4 7
4 7

12 17
9 16

97 128
13 29
16 52
4 6

380
957
144

2236
342
150
96
84
77

646
448

16768
957

1404
66

0 8
4 1
0 3

32 3
3 6
0 9
0 8
0 9
0 5
4 1
1 1

5 0
39 5
0 5

137

8.1 7
435.2 13

3.4 4
281.5 18

13.8 7
3.5 5
2.3 3
2.3 4
2.4 4

225.6 12
10.0 9

7234.0 97
459.2 13

1426.9 16
2.6 4

20
29

9
43
13

9
6
9
7

16
16

128
29
52

6

380
957
144

2236
195
135
72

108
77

608
448

16768
957

1404
66

0.2
3.5
0.2

24.3
4.3
0.9
0.3
0.4
0.1
4.2
0.4

3.5
30.8

0.1

112

8.8
39.8

3.7
281.5

6.9
5.1
2.3
3.1
2.6

44.1
9.8

7234.0
40.0

1425.3
3.4

shown in the column labelled t , for each of our algo-
rithms. The columns labelled t , + t 3 give the time in-
vested in state assignment and logic minimisation with
the 'i-greedy complement' option in Nova.

From the Table for almost half of the machines area
savings of more than 50% are achieved when the reduced
machine obtained with Arnes or Reduces is used as input
for the state assignment phase. The time to obtain such
solutions with Arnes (t l + t , + t , in time, column) is less
than that resulting from applying Nova to the original
machine (time, column) for all of them. Concerning the
state assignment and minimisation steps, there are three
machines (bbsse, sse, markl) for which the Nova time
when using Reduces (t 2 + t , in Reduces column) is higher
than the Nova time when the original description is used.
It is due to the symbolic descriptions generated by the
state minimisers which are then used as input to the state
assignment phase. In some cases, they are descriptions
with a large number of symbolic implicants and the logic
minimisation step slows down. However, this is a feature
of the algorithm's implementation which can be cor-
rected. In Fig. 12, pairs (A , T) for the machines in Table 3
have been drawn.

t-- l 0 C - - - _ _ - _ - _ _ _ _ _ _ _ _ _ _ _ -
A bbsse,sse

.ex1)opus

1 r s c f , A I MC N C I

0 0 2 0 4 0 6 0 8 1 0

A ~ r n e s . ~ c v a ' A o r l g . N~~~

Fig. 12
mark

Experimental results when Arnes I S applied fa M C N C bench-

Nevertheless, the discussion of results would be incom-
plete if we did not consider what happens with machines
for which state reduction does not achieve any reduction.
When provided with a description of a machine to be
implemented, we do not know beforehand whether there
are compatible states or not. This means the state reducer

IEE PROCEEDINGS-E, Vol . 139, No. 6, NOVEMBER 1992

will be invoked and a certain amount of time invested in
checking if there are compatible states. If so, a descrip-
tion with less states will be tried, but the state reducer
can fail in finding such one. Thus, the result of this pro-
cessing being the same initial description and co-
ordinates for this machine (A = l , T > l). It is difficult to
carry out an estimation of how this increasing in the
computer time may affect. To give a rough idea, we have
evaluated coordinates (A , T) for the whole MCNC set
(about the half of the machines do not have compatible
states), the average result leading to the point (0.76, 0.83),
point [MCNC] in the Figure, which is inside the striped
region in Fig. 12. Of course, the average value for those
MCNC machines admitting minimisation is much better
(point [mcnc] with coordinates (0.63,0.53) in the Figure).

From the set of machines from the literature, the
superiority of Arnes against Reduces in area is evident.
They are similar in time. The superior performance of
Arnes is not so clear for the machines in the MCNC
benchmark. The key point to understand the differences
is whether the selection of maximal compatibles as vari-
ables to formulate the LP integer problem (Reduces)
implies a limitation to the quality of the solutions it can
obtain. This is the case for the literature machines but,
obviously, it is not for the MCNC benchmark.

Since there have been two other approaches recently
[IS, 161, it is convenient to compare our results with
them. From the published results, we have elaborated
Table 4 where the minimisation achieved on MCNC

Table 4: Comparison of minimisat ion results achieved on
MCNC machines

Kannan Hachtel Reduces Arnes
er a/ 1151 er a/ 1161

ns * ns* ns* ns*

bbara 7 7 7 7
bbsse - 13 13 13
beecount 4 4 4 4
ex1 - 18 18 18
ex2 10 5 10 7
ex3 4 6 5
ex5 4 3 4 3
ex7 4 3 4 4
lion9 - 4 4 4
markl 12 12 12 12
opus 9 9 9 9
scf 97 97 97 97
sse 13 13 13 13
tbk 16 16 16 16
train11 4 4 4 4

ns', number of states in reduced descriptions

~

499

machines is depicted. Concerning the state reduction
itself, that is comparing the number of states in the
reduced descriptions (ns*) obtained with each approach,
Arnes gave results similar to those reported in References
15 and 16. However, we have not been able to compare
them in terms of silicon area because we do not have
enough detail from the papers. Comparing computer
time is not significant because the machines used have
very different power.

8 Conclusions

The experiments carried out suggest that fast state
reduction heuristics should be included within FSM
automatic synthesis systems to achieve both area and
time savings.

Probably new improvements of all of these methods
will come about in the future, but they are promising in
terms of augmenting the present capabilities of design
automation for FSM. In that sense, Arnes opens the door
to a new way of solution compared with traditional
approaches like Reduces or other, more recently re-
ported, contributions.

9 References

1 BROWN, D W.: ‘A state-machine synthesizer’. Proceedings of the
18th conference on Design automation. 1981, pp. 301-305

2 SAUCIER, G., CRASTES DE PAULET, M., and SICARD, P.:
‘ASYL: A rule-based system for controller synthesis‘, lEEE Trans.,
1987, CAD-6, (6), pp. 1088-1097

3 AMANN, R., NEHER, M., RIETSCHE, G., and ROSENSTIEL.
W.: ’CASTOR: FSM synthesis in a digital synthesis system’. Pro-
ceedings of European conference on Solid-state circuits, 1989, pp.
105-108

4 HOPCROFT, J.: ‘An n log n algorithm for minimizing stales in a
finite automaton’, in KOHAVI, Z. (Ed.): ‘Theory of machines and
computation’ (Academic Press 19711, pp. 189-196

5 PFLEEGER, C.: ‘State reduction of incompletely specified finite
state machines’, IEEE Trans., 1973, C-26, pp. 1099-1 102

6 DE MICHELI, G.: ‘Synthesis of control systems‘, in DE MICHELI,
G., SANGIOVANNI-VINCENTELLI, A., and ANTOGNETTI, P.
(Eds.): ‘Design systems for VLSI circuits’ (Martinus NijholT, 1987).
pp. 327-364

7 DE MICHELI, G.: ‘Computer-aided synthesis of PLA-based
systems’. PhD dissertation, Berkeley University, USA, 1984

8 PAUL, M.C., and UNGER, S.H.: ‘Minimizing the number of states
in incompletely specified sequential switching functions’, IRE Trans.
1959. EC-8, pp. 356-367

9 GRASSELLI, A., and LUCCIO, F.: ‘A method for minimizing the
number of internal states in incompletely specified sequential net-
works’, IEEE Trans., 1965, EC-14, pp. 350-359

10 GRASSELLI, A., and LUCCIO, F.: ‘Some covering problem in
switching theory’, in ‘Network and switching theory’ (Academic
Press, 1968)

I I FRIEDMAN, A.D.. and MENON, R.. ’Theory and design of
switching circuits’ (Computer Snence Press, 1975)

12 DE SARKAR, S.C., BASU, A.K., and CHOUDHURY. A.K.: ‘Sim-
plification of incompletely specified flow tables with the help of
prime closed sets’. IEEE Trans., 1969, C-18, pp. 953-956

13 PERKOWSKI, M.A., and NGUYEN, N.: ‘Minimization of finite
state machines in Superpeg’. Proceedings of the Midwest conference
on Circuits and systems, Louisville, KY, USA, 1985, pp. 139-147

14 PERKOWSKI, M.A., and LIU, J.: ‘Generation and optimization of
finite state machines from parallel program graphs’. DIADES
Research Group Report l0:89, 1989

15 KANNAN, L.N., and SARMA, D.: ’Fast heuristic algorithms for
finite state machine minimization’. Proceedings of EDAC‘91,
Amsterdam, 1991, pp. 192-196

16 HACHTEL, G.D., RHO, J.K., SOMENZI, F., and JACOBY, R.:
‘Exact and heuristic algorithms for the minimization of incompletely
specified state machines’. Proceedings of EDAC‘91, Amsterdam,

17 HOUSE, S.: ‘A new rule for reducing CC tables’, IEEE Trans.. 1970,

18 BENNETS, R.G., WASHINGTON, JL.. and LEWIN. D.W.. ‘A
computer algorithm for state table reductions’, Radio & Electron.
Eng.. 1972,42, pp. 513-520

19 BRAYTON, R.K., HATCHEL, G.D., McMULLEN, C., and SAN-
GIOVANNI, A.L.: ’Logic minimization algorithms for VLSI syn-
thesis’ (Kluwer, Hingham, MA, USA, 1984)

20 AVEDILLO, M.J., QUINTANA, J.M.. and HUERTAS, J.L.: ’A
new method for the state reduction of incompletely specified finite
sequential machines’. Proceedings of EDAC‘90, Glasgow, 1990,
pp. 552-556

21 UNGER. S.H.: ‘Asynchronous sequential switching circuits’ (Wiley-
Interscience, New York, 1969)

22 AVEDILLO, M.J., QUINTANA. J M., and HUERTAS, J.L.: ’New
approach to the state reduction in incompletely specified sequential
machines’. Proceedings of IEEE international symposium on Cir-
C U I I S and systems, New Orleans, LA, USA, 1990, pp. 440-443

23 AVEDILLO, M.J., QUINTANA, J.M., and HUERTAS, J.L.: ’State
reduction of incompletely specified finite sequential machines’ in
MICHEL, P., and SAUCIER, G. (Eds.): ‘Proceedings of the IFlP
Working Conference on Logic and Architecture Synthesis’ (Elsevier
Science Publishers, 1991)

24 LISANKE, R.: ‘Introduction of synthesis benchmark’. Presented at
international workshop on Logic synthesis, North Carolina, USA,
1989

25 VILLA, T., and SANGIOVANNI-VINCENTELLI, A.: ‘NOVA:
state assignment of finite state machines for optimal two-level logic
implementation’. IEEE Trans , 1990, CAD-9, (9), pp. 905-924

26 REUSCH, B., and MERZENICH, W ‘Minimal coverings for
incompletely specified sequential machines’. A d a Inform., 1986, (22).
pp. 663-678

1991,pp. 184-191

c-19, pp. 1108- I I I O

500 I E E PROCEEDINGS-E, Vol. 139, No. 6 , NOVEMBER 1992

