42 research outputs found

    Sets as graphs

    Get PDF
    The aim of this thesis is a mutual transfer of computational and structural results and techniques between sets and graphs. We study combinatorial enumeration of sets, canonical encodings, random generation, digraph immersions. We also investigate the underlying structure of sets in algorithmic terms, or in connection with hereditary graphs classes. Finally, we employ a set-based proof-checker to verify two classical results on claw-free graph

    Regularity of Edge Ideals and Their Powers

    Full text link
    We survey recent studies on the Castelnuovo-Mumford regularity of edge ideals of graphs and their powers. Our focus is on bounds and exact values of  reg I(G)\text{ reg } I(G) and the asymptotic linear function  reg I(G)q\text{ reg } I(G)^q, for q≥1,q \geq 1, in terms of combinatorial data of the given graph G.G.Comment: 31 pages, 15 figure

    Graph Colouring with Input Restrictions

    Get PDF
    In this thesis, we research the computational complexity of the graph colouring problem and its variants including precolouring extension and list colouring for graph classes that can be characterised by forbidding one or more induced subgraphs. We investigate the structural properties of such graph classes and prove a number of new properties. We then consider to what extent these properties can be used for efficiently solving the three types of colouring problems on these graph classes. In some cases we obtain polynomial-time algorithms, whereas other cases turn out to be NP-complete. We determine the computational complexity of k-COLOURING, k-PRECOLOURING EXTENSION and LIST k-COLOURING on PkP_k-free graphs. In particular, we prove that k-COLOURING on P8P_8-free graphs is NP-complete, 4-PRECOLOURING EXTENSION P7P_7-free graphs is NP-complete, and LIST 4-COLOURING on P6P_6-free graphs is NP-complete. In addition, we show the existence of an integer r such that k-COLOURING is NP-complete for PrP_r-free graphs with girth 4. In contrast, we determine for any fixed girth g≥4g\geq 4 a lower bound r(g)r(g) such that every Pr(g)P_{r(g)}-free graph with girth at least gg is 3-colourable. We also prove that 3-LIST COLOURING is NP-complete for complete graphs minus a matching. We present a polynomial-time algorithm for solving 4-PRECOLOURING EXTENSION on (P2+P3)(P_2+P_3)-free graphs, a polynomial-time algorithm for solving LIST 3-Colouring on (P2+P4)(P_2+P_4)-free graphs, and a polynomial-time algorithm for solving LIST 3-COLOURING on sP3sP_3-free graphs. We prove that LIST k-COLOURING for (Ks,t,Pr)(K_{s,t},P_r)-free graphs is also polynomial-time solvable. We obtain several new dichotomies by combining the above results with some known results

    Boundary properties of graphs

    Get PDF
    A set of graphs may acquire various desirable properties, if we apply suitable restrictions on the set. We investigate the following two questions: How far, exactly, must one restrict the structure of a graph to obtain a certain interesting property? What kind of tools are helpful to classify sets of graphs into those which satisfy a property and those that do not? Equipped with a containment relation, a graph class is a special example of a partially ordered set. We introduce the notion of a boundary ideal as a generalisation of a notion introduced by Alekseev in 2003, to provide a tool to indicate whether a partially ordered set satisfies a desirable property or not. This tool can give a complete characterisation of lower ideals defined by a finite forbidden set, into those that satisfy the given property and to those that do not. In the case of graphs, a lower ideal with respect to the induced subgraph relation is known as a hereditary graph class. We study three interrelated types of properties for hereditary graph classes: the existence of an efficient solution to an algorithmic graph problem, the boundedness of the graph parameter known as clique-width, and well-quasi-orderability by the induced subgraph relation. It was shown by Courcelle, Makowsky and Rotics in 2000 that, for a graph class, boundedness of clique-width immediately implies an efficient solution to a wide range of algorithmic problems. This serves as one of the motivations to study clique-width. As for well-quasiorderability, we conjecture that every hereditary graph class that is well-quasi-ordered by the induced subgraph relation also has bounded clique-width. We discover the first boundary classes for several algorithmic graph problems, including the Hamiltonian cycle problem. We also give polynomial-time algorithms for the dominating induced matching problem, for some restricted graph classes. After discussing the special importance of bipartite graphs in the study of clique-width, we describe a general framework for constructing bipartite graphs of large clique-width. As a consequence, we find a new minimal class of unbounded clique-width. We prove numerous positive and negative results regarding the well-quasi-orderability of classes of bipartite graphs. This completes a characterisation of the well-quasi-orderability of all classes of bipartite graphs defined by one forbidden induced bipartite subgraph. We also make considerable progress in characterising general graph classes defined by two forbidden induced subgraphs, reducing the task to a small finite number of open cases. Finally, we show that, in general, for hereditary graph classes defined by a forbidden set of bounded finite size, a similar reduction is not usually possible, but the number of boundary classes to determine well-quasi-orderability is nevertheless finite. Our results, together with the notion of boundary ideals, are also relevant for the study of other partially ordered sets in mathematics, such as permutations ordered by the pattern containment relation

    Polynomial growth of concept lattices, canonical bases and generators:: extremal set theory in Formal Concept Analysis

    Get PDF
    We prove that there exist three distinct, comprehensive classes of (formal) contexts with polynomially many concepts. Namely: contexts which are nowhere dense, of bounded breadth or highly convex. Already present in G. Birkhoff's classic monograph is the notion of breadth of a lattice; it equals the number of atoms of a largest boolean suborder. Even though it is natural to define the breadth of a context as being that of its concept lattice, this idea had not been exploited before. We do this and establish many equivalences. Amongst them, it is shown that the breadth of a context equals the size of its largest minimal generator, its largest contranominal-scale subcontext, as well as the Vapnik-Chervonenkis dimension of both its system of extents and of intents. The polynomiality of the aforementioned classes is proven via upper bounds (also known as majorants) for the number of maximal bipartite cliques in bipartite graphs. These are results obtained by various authors in the last decades. The fact that they yield statements about formal contexts is a reward for investigating how two established fields interact, specifically Formal Concept Analysis (FCA) and graph theory. We improve considerably the breadth bound. Such improvement is twofold: besides giving a much tighter expression, we prove that it limits the number of minimal generators. This is strictly more general than upper bounding the quantity of concepts. Indeed, it automatically implies a bound on these, as well as on the number of proper premises. A corollary is that this improved result is a bound for the number of implications in the canonical basis too. With respect to the quantity of concepts, this sharper majorant is shown to be best possible. Such fact is established by constructing contexts whose concept lattices exhibit exactly that many elements. These structures are termed, respectively, extremal contexts and extremal lattices. The usual procedure of taking the standard context allows one to work interchangeably with either one of these two extremal structures. Extremal lattices are equivalently defined as finite lattices which have as many elements as possible, under the condition that they obey two upper limits: one for its number of join-irreducibles, other for its breadth. Subsequently, these structures are characterized in two ways. Our first characterization is done using the lattice perspective. Initially, we construct extremal lattices by the iterated operation of finding smaller, extremal subsemilattices and duplicating their elements. Then, it is shown that every extremal lattice must be obtained through a recursive application of this construction principle. A byproduct of this contribution is that extremal lattices are always meet-distributive. Despite the fact that this approach is revealing, the vicinity of its findings contains unanswered combinatorial questions which are relevant. Most notably, the number of meet-irreducibles of extremal lattices escapes from control when this construction is conducted. Aiming to get a grip on the number of meet-irreducibles, we succeed at proving an alternative characterization of these structures. This second approach is based on implication logic, and exposes an interesting link between number of proper premises, pseudo-extents and concepts. A guiding idea in this scenario is to use implications to construct lattices. It turns out that constructing extremal structures with this method is simpler, in the sense that a recursive application of the construction principle is not needed. Moreover, we obtain with ease a general, explicit formula for the Whitney numbers of extremal lattices. This reveals that they are unimodal, too. Like the first, this second construction method is shown to be characteristic. A particular case of the construction is able to force - with precision - a high number of (in the sense of "exponentially many'') meet-irreducibles. Such occasional explosion of meet-irreducibles motivates a generalization of the notion of extremal lattices. This is done by means of considering a more refined partition of the class of all finite lattices. In this finer-grained setting, each extremal class consists of lattices with bounded breadth, number of join irreducibles and meet-irreducibles as well. The generalized problem of finding the maximum number of concepts reveals itself to be challenging. Instead of attempting to classify these structures completely, we pose questions inspired by Turán's seminal result in extremal combinatorics. Most prominently: do extremal lattices (in this more general sense) have the maximum permitted breadth? We show a general statement in this setting: for every choice of limits (breadth, number of join-irreducibles and meet-irreducibles), we produce some extremal lattice with the maximum permitted breadth. The tools which underpin all the intuitions in this scenario are hypergraphs and exact set covers. In a rather unexpected, but interesting turn of events, we obtain for free a simple and interesting theorem about the general existence of "rich'' subcontexts. Precisely: every context contains an object/attribute pair which, after removed, results in a context with at least half the original number of concepts

    Boundary properties of graphs

    Get PDF
    A set of graphs may acquire various desirable properties, if we apply suitable restrictions on the set. We investigate the following two questions: How far, exactly, must one restrict the structure of a graph to obtain a certain interesting property? What kind of tools are helpful to classify sets of graphs into those which satisfy a property and those that do not? Equipped with a containment relation, a graph class is a special example of a partially ordered set. We introduce the notion of a boundary ideal as a generalisation of a notion introduced by Alekseev in 2003, to provide a tool to indicate whether a partially ordered set satisfies a desirable property or not. This tool can give a complete characterisation of lower ideals defined by a finite forbidden set, into those that satisfy the given property and to those that do not. In the case of graphs, a lower ideal with respect to the induced subgraph relation is known as a hereditary graph class. We study three interrelated types of properties for hereditary graph classes: the existence of an efficient solution to an algorithmic graph problem, the boundedness of the graph parameter known as clique-width, and well-quasi-orderability by the induced subgraph relation. It was shown by Courcelle, Makowsky and Rotics in 2000 that, for a graph class, boundedness of clique-width immediately implies an efficient solution to a wide range of algorithmic problems. This serves as one of the motivations to study clique-width. As for well-quasiorderability, we conjecture that every hereditary graph class that is well-quasi-ordered by the induced subgraph relation also has bounded clique-width. We discover the first boundary classes for several algorithmic graph problems, including the Hamiltonian cycle problem. We also give polynomial-time algorithms for the dominating induced matching problem, for some restricted graph classes. After discussing the special importance of bipartite graphs in the study of clique-width, we describe a general framework for constructing bipartite graphs of large clique-width. As a consequence, we find a new minimal class of unbounded clique-width. We prove numerous positive and negative results regarding the well-quasi-orderability of classes of bipartite graphs. This completes a characterisation of the well-quasi-orderability of all classes of bipartite graphs defined by one forbidden induced bipartite subgraph. We also make considerable progress in characterising general graph classes defined by two forbidden induced subgraphs, reducing the task to a small finite number of open cases. Finally, we show that, in general, for hereditary graph classes defined by a forbidden set of bounded finite size, a similar reduction is not usually possible, but the number of boundary classes to determine well-quasi-orderability is nevertheless finite. Our results, together with the notion of boundary ideals, are also relevant for the study of other partially ordered sets in mathematics, such as permutations ordered by the pattern containment relation.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC)University of Warwick. Centre for Discrete Mathematics and its Applications (DIMAP)GBUnited Kingdo
    corecore