62,968 research outputs found

    Syndetic proximality and scrambled sets

    Full text link
    This paper is a systematic study about the syndetically proximal relation and the possible existence of syndetically scrambled sets for the dynamics of continuous self-maps of compact metric spaces. Especially we consider various classes of transitive subshifts, interval maps, and topologically Anosov maps. We also present many constructions and examples

    Reducing the size and number of linear programs in a dynamic Gr\"obner basis algorithm

    Full text link
    The dynamic algorithm to compute a Gr\"obner basis is nearly twenty years old, yet it seems to have arrived stillborn; aside from two initial publications, there have been no published followups. One reason for this may be that, at first glance, the added overhead seems to outweigh the benefit; the algorithm must solve many linear programs with many linear constraints. This paper describes two methods of reducing the cost substantially, answering the problem effectively.Comment: 11 figures, of which half are algorithms; submitted to journal for refereeing, December 201

    A Library-Based Synthesis Methodology for Reversible Logic

    Full text link
    In this paper, a library-based synthesis methodology for reversible circuits is proposed where a reversible specification is considered as a permutation comprising a set of cycles. To this end, a pre-synthesis optimization step is introduced to construct a reversible specification from an irreversible function. In addition, a cycle-based representation model is presented to be used as an intermediate format in the proposed synthesis methodology. The selected intermediate format serves as a focal point for all potential representation models. In order to synthesize a given function, a library containing seven building blocks is used where each building block is a cycle of length less than 6. To synthesize large cycles, we also propose a decomposition algorithm which produces all possible minimal and inequivalent factorizations for a given cycle of length greater than 5. All decompositions contain the maximum number of disjoint cycles. The generated decompositions are used in conjunction with a novel cycle assignment algorithm which is proposed based on the graph matching problem to select the best possible cycle pairs. Then, each pair is synthesized by using the available components of the library. The decomposition algorithm together with the cycle assignment method are considered as a binding method which selects a building block from the library for each cycle. Finally, a post-synthesis optimization step is introduced to optimize the synthesis results in terms of different costs.Comment: 24 pages, 8 figures, Microelectronics Journal, Elsevie

    A new proof of the graph removal lemma

    Get PDF
    Let H be a fixed graph with h vertices. The graph removal lemma states that every graph on n vertices with o(n^h) copies of H can be made H-free by removing o(n^2) edges. We give a new proof which avoids Szemer\'edi's regularity lemma and gives a better bound. This approach also works to give improved bounds for the directed and multicolored analogues of the graph removal lemma. This answers questions of Alon and Gowers.Comment: 17 page

    On structures in hypergraphs of models of a theory

    Get PDF
    We define and study structural properties of hypergraphs of models of a theory including lattice ones. Characterizations for the lattice properties of hypergraphs of models of a theory, as well as for structures on sets of isomorphism types of models of a theory, are given
    • …
    corecore