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Abstract

Let H be a fixed graph with h vertices. The graph removal lemma states that every graph on n

vertices with o(nh) copies of H can be made H-free by removing o(n2) edges. We give a new proof

which avoids Szemerédi’s regularity lemma and gives a better bound. This approach also works

to give improved bounds for the directed and multicolored analogues of the graph removal lemma.

This answers questions of Alon and Gowers.

1 Introduction

Szemerédi’s regularity lemma [31] is one of the most powerful tools in graph theory. It was introduced

by Szemerédi in his proof [30] of the Erdős-Turán conjecture on long arithmetic progressions in dense

subsets of the integers. Roughly speaking, it says that every large graph can be partitioned into a small

number of parts such that the bipartite subgraph between almost every pair of parts is random-like.

This structure is useful for approximating the number of copies of some fixed subgraph.

To properly state the regularity lemma requires some terminology. The edge density d(X,Y )

between two subsets of vertices of a graph G is the fraction of pairs (x, y) ∈ X × Y that are edges

of G. A pair (X,Y ) of vertex sets is called ϵ-regular if for all X ′ ⊂ X and Y ′ ⊂ Y with |X ′| ≥ ϵ|X|
and |Y ′| ≥ ϵ|Y |, we have |d(X ′, Y ′) − d(X,Y )| < ϵ. A partition V = V1 ∪ . . . ∪ Vk is called equitable

if ||Vi| − |Vj || ≤ 1 for all i and j. The regularity lemma states that for each ϵ > 0, there is a positive

integer M(ϵ) such that the vertices of any graph G can be equitably partitioned V (G) = V1 ∪ . . .∪ Vk
into k ≤M(ϵ) parts where all but at most ϵk2 of the pairs (Vi, Vj) are ϵ-regular. For more background

on the regularity lemma, see the excellent survey by Komlós and Simonovits [19].

In the regularity lemma,M(ϵ) can be taken to be a tower of twos of height proportional to ϵ−5. On

the other hand, Gowers [12] proved a lower bound on M(ϵ) which is a tower of twos of height propor-

tional to ϵ−1/16, thus demonstrating that M(ϵ) is inherently large as a function of ϵ−1. Unfortunately,

this implies that the bounds obtained by applications of the regularity lemma are usually quite poor.

It remains an important problem to determine if new proofs giving better quantitative estimates for

certain applications of the regularity lemma exist (see, e.g., [14]). One such improvement is the proof

of Gowers [15] of Szemerédi’s theorem using Fourier analysis.
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The triangle removal lemma of Ruzsa and Szemerédi [26] is one of the most influential applications

of Szemerédi’s regularity lemma. It states that any graph on n vertices with o(n3) triangles can be

made triangle-free by removing o(n2) edges. It easily implies Roth’s theorem [24] on 3-term arithmetic

progressions in dense sets of integers. Furthermore, Solymosi [29] gave an elegant proof that the triangle

removal lemma further implies the stronger corners theorem of Ajtai and Szeméredi [1], which states

that any dense subset of the integer grid contains the vertices of an axis-aligned isosceles triangle.

The triangle removal lemma was extended by Erdős, Frankl, and Rödl [9] to the graph removal

lemma. It says that for each ϵ > 0 and graph H on h vertices there is δ = δ(ϵ,H) > 0 such that

every graph on n vertices with at most δnh copies of H can be made H-free by removing at most

ϵn2 edges. The graph removal lemma has many applications in graph theory, additive combinatorics,

discrete geometry, and theoretical computer science.

One well-known application of the graph removal lemma is in property testing. This is an ac-

tive area of computer science where one wishes to quickly distinguish between objects that satisfy a

property from objects that are far from satisfying that property. The study of this notion was ini-

tiated by Rubinfield and Sudan [25], and subsequently Goldreich, Goldwasser, and Ron [11] started

the investigation of property testers for combinatorial objects. One simple consequence of the graph

removal lemma is a constant time algorithm for subgraph testing with one-sided error (see [2] and its

references). A graph on n vertices is ϵ-far from being H-free if at least ϵn2 edges need to be removed

to make it H-free. The graph removal lemma implies that there is an algorithm which runs in time

Oϵ(1) which accepts all H-free graphs, and rejects any graph which is ϵ-far from being H-free with

probability at least 2/3. The algorithm samples t = 2δ−1 h-tuples of vertices uniformly at random,

where δ is picked according to the graph removal lemma, and accepts if none of them form a copy of

H, and otherwise rejects. Any H-free graph is clearly accepted. If a graph is ϵ-far from being H-free,

then it contains at least δnh copies of H, and the probability that none of the sampled h-tuples forms

a copy of H is at most (1− δ)t < 1/3. Notice that the running time as a function of ϵ depends on the

bound in the graph removal lemma.

Ruzsa and Szemerédi [26] derived the triangle removal lemma in the course of settling an extremal

hypergraph problem asked by Brown, Erdős, and Sós [6]. Let gr(n, v, e) be the maximum number

of edges an r-uniform hypergraph may have if the union of any e edges span more than v vertices.

Ruzsa and Szemerédi [26] use the triangle removal lemma to settle the (6, 3)-problem, which states

that g3(n, 6, 3) = o(n2). Equivalently, any triple system on n vertices not containing 6 vertices with 3

or more triples has o(n2) triples. This was generalized by Erdős, Frankl, and Rödl [9] using the graph

removal lemma to establish gr(n, 3r − 3, 3) = o(n2).

For most of the applications of the graph removal lemma in number theory, new proofs using Fourier

analysis were discovered which give better bounds (see, e.g., [15], [28]). However, for the applications

which are more combinatorial, no such methods exist. The only known proof of the graph removal

lemma used the regularity lemma, leading to weak bounds for the graph removal lemma and its

applications. Hence, finding a proof which yields better bounds by avoiding the regularity lemma is a
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problem of considerable interest and has been reiterated by several authors, including Erdős [8], Alon

[2], Gowers [13], and Tao [33].

Our main result is a new proof of the graph removal lemma which avoids using the regularity

lemma and gives a better bound.

Theorem 1. For each graph H on h vertices, if δ−1 is a tower of twos of height 5h4 log ϵ−1, then

every graph G on n vertices with at most δnh copies of H can be made H-free by removing ϵn2 edges.

For comparison, the regularity proof necessarily gives a bound on δ−1 that is a tower of twos of

height polynomial in ϵ−1.

We next sketch the proof idea of the regularity lemma and our proof of the graph removal lemma.

At each stage of the proof of the regularity lemma, we have a partition V (G) = V1 ∪ . . . ∪ Vk of the

vertex set of a graph G on n vertices into parts which differ in cardinality by at most 1. Let pi = |Vi|/n.
The mean square density with respect to the partition is

∑
1≤i,j≤k pipjd(Vi, Vj)

2. A refinement of a

partition P of a set V is another partition Q of V such that each member of Q is a subset of some

member of P. If the partition does not satisfy the conclusion of the regularity lemma, then using

the Cauchy-Schwarz defect inequality, the partition can be refined such that the mean square density

increases by Ω(ϵ5) while the number of parts is at most exponential in k. This process must stop after

O(ϵ−5) steps as the mean square density cannot be more than 1. We thus get a bound on M(ϵ) which

is a tower of twos of height O(ϵ−5).

Now we sketch the proof of Theorem 1. Let H be a fixed graph with h vertices. We suppose for

contradiction that G = (V,E) is a graph on n vertices for which ϵn2 edges need to be removed to make

it H-free and yet G contains less than δnh copies of H. We pass to a subgraph G′ of G consisting

of the union of a maximum collection of edge-disjoint copies of H in G. As the removal of the edges

of G′ leaves an H-free subgraph of G, the graph G′ has at least ϵn2 edges. Let d = 2e(G′)/n2 ≥ 2ϵ.

At each stage of our proof, we have a partition V = V1 ∪ . . . ∪ Vk of the vertex set into parts such

that almost all vertices are in parts of the same size. Let pi = |Vi|/n. The mean entropy density with

respect to the partition is
∑

1≤i,j≤k pipjf(d(Vi, Vj)) where f(x) = x log x for 0 < x ≤ 1 and f(0) = 0.

A convexity argument shows that the mean entropy density with respect to any partition of V is at

least d log d. The fact that f(x) is nonpositive for 0 ≤ x ≤ 1 implies that the mean entropy density

is always nonpositive. We prove a key lemma which shows how to “shatter” sets with few copies of

H, and a Jensen defect inequality for such a shattering. These lemmas enable us to show that we

can refine the partition such that the mean entropy density increases by Ω(d) while the number of

parts only goes up exponentially in c(ϵ, h)k, where c(ϵ, h) = 2(h/ϵ)
O(h2)

. So essentially in each iteration

the number of parts is one exponential larger. This process must stop after O(log d−1) = O(log ϵ−1)

steps as the mean entropy density is at least d log d, increases Ω(d) at each refinement, and is always

nonpositive. We thus get a bound on δ−1 in the graph removal lemma which is a tower of twos of

height O(log ϵ−1).

In the next section, we prove a key lemma showing how to “shatter” sets with few copies of H
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between them. In Section 3, we prove a Jensen defect inequality. We use these lemmas in Section 4 to

prove Theorem 1. In the concluding remarks, we discuss several variants of the graph removal lemma

for which we obtain similar improved bounds, and some open problems. We do not make any serious

attempt to optimize absolute constants in our statements and proofs. All logarithms are assumed to

be base e.

2 Key Lemma

The purpose of this section is to prove a key lemma, Lemma 5, for the proof of Theorem 1. Let H be

a labeled graph with vertex set [h] := {1, . . . , h}. Lemma 5 shows that if V1, . . . , Vh are vertex subsets

of a graph such that there are few copies of H with the copy of vertex i in Vi for i ∈ [h], then there

is an edge (i, j) of H such that the pair (Vi, Vj) can be shattered in the following sense. An (α, c, t)-

shattering of a pair (A,B) of vertex subsets in a graph G is a pair of partitions A = A1 ∪ . . .∪Ar and

B = B1∪ . . .∪Bs such that r, s ≤ t and the sum of |Ai||Bj | over all pairs (Ai, Bj) with d(Ai, Bj) < α is

at least c|A||B|. Note that if α′ ≥ α, c′ ≤ c, and t′ ≥ t, then an (α, c, t)-shattering for a pair (A,B) is

also an (α′, c′, t′)-shattering for (A,B). Before proving the key lemma, we first establish some auxiliary

results on ϵ-regular tuples in uniform hypergraphs.

2.1 Regular tuples in hypergraphs

A hypergraph Γ = (V,E) consists of a set V of vertices and a set E of edges, which are subsets of

V . A hypergraph is k-uniform if every edge contains precisely k vertices. A k-uniform hypergraph

Γ = (V,E) is k-partite if there is a partition V = V1 ∪ . . . ∪ Vk such that every edge of Γ contains

exactly one vertex from each Vi. In a hypergraph Γ, for vertex subsets V1, . . . , Vk, let e(V1, . . . , Vk)

denote the number of k-tuples in V1× · · ·×Vk which are edges of Γ, and let d(V1, . . . , Vk) =
e(V1,...,Vk)
|V1|···|Vk| ,

which is the fraction of k-tuples in V1 × · · · × Vk which are edges of H.

We begin with a simple lemma which follows by an averaging argument.

Lemma 1. Let Γ be a k-uniform hypergraph and A1, . . . , Ak be nonempty vertex subsets. If 1 ≤ ai ≤
|Ai| for i ∈ [k], then there are subsets Bi, Ci ⊂ Ai each of cardinality ai such that d(B1, . . . , Bk) ≥
d(A1, . . . , Ak) ≥ d(C1, . . . , Ck).

Proof. By averaging, the expected value of d(X1, . . . , Xk) with Xi ⊂ Ai chosen uniformly at random

with |Xi| = ai is d(A1, . . . , Ak). Hence, there are choices of Bi, Ci ⊂ Ai for each i ∈ [k] satisfying the

desired properties.

In a k-uniform hypergraph Γ, a k-tuple (V1, . . . , Vk) of vertex subsets is (α, β)-superregular if

d(U1, . . . , Uk) ≥ β holds for all k-tuples (U1, . . . , Uk) with |Ui| ≥ α|Vi| for i ∈ [k].
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Lemma 2. Suppose Γ is a k-uniform hypergraph and A1, . . . , Ak are vertex subsets each of cardinality

n with d = d(A1, . . . , Ak). If 0 < α, β < 1/4 are such that d ≥ 2β and (A1, . . . , Ak) is not (α, β)-

superregular, then there are Bi ⊂ Ai for i ∈ [k] with |B1| = . . . = |Bk| ≥ αn and d(B1, . . . , Bk) ≥
(1 + αk

2 )d.

Proof. Since (A1, . . . , Ak) is not (α, β)-superregular, there are subsets Ai,1 ⊂ Ai such that |Ai,1| ≥
α|Ai| and d(A1,1, . . . , Ak,1) < β. By Lemma 1, we may suppose that |Ai,1| = ⌈αn⌉ for i ∈ [k]. Let

Ai,2 = Ai \Ai,1, so |Ai,j | ≥ αn for i ∈ [k] and j ∈ {1, 2}.
Summing over all (j1, . . . , jk) ∈ {1, 2}k with (j1, . . . , jk) ̸= (1, . . . , 1), we have∑

|A1,j1 | · · · |Ak,jk | = |A1| · · · |Ak| − |A1,1| · · · |Ak,1|

and∑
d(A1,j1 , . . . , Ak,jk)|A1,j1 | · · · |Ak,jk | =

∑
e(A1,j1 , . . . , Ak,jk) = e(A1, . . . , Ak)− e(A1,1, . . . , Ak,1)

= d(A1, . . . , Ak)|A1| · · · |Ak| − d(A1,1, . . . , Ak,1)|A1,1| · · · |Ak,1|

> d|A1| · · · |Ak| − β|A1,1| · · · |Ak,1|.

By averaging, there is (j1, . . . , jk) ∈ {1, 2}k with (j1, . . . , jk) ̸= (1, . . . , 1) such that

d(A1,j1 , . . . , Ak,jk) >
d|A1| · · · |Ak| − β|A1,1| · · · |Ak,1|
|A1| · · · |Ak| − |A1,1| · · · |Ak,1|

= d+ (d− β)c/(1− c) ≥ d+ (d− β)αk

≥ d

(
1 +

αk

2

)
,

where c =
|A1,1|···|Ak,1|
|A1|···|Ak| ≥ αk. By Lemma 1, for each i ∈ [k] there is a subset Bi of Ai,ji of cardinality

⌈αn⌉ such that d(B1, . . . , Bk) ≥ d(1 + αk

2 ).

The following lemma is a straightforward generalization of a result of Komlós that dense graphs

contain large superregular pairs.

Lemma 3. Suppose Γ is a k-uniform hypergraph, and A1, . . . , Ak are disjoint vertex subsets each of

cardinality n. If 0 < α, β < 1/4 are such that d(A1, . . . , Ak) ≥ 2β, then there are subsets Vi ⊂ Ai for

i ∈ [k] with |V1| = . . . = |Vk| ≥ α3α−k log β−1
n for which (V1, . . . , Vk) is (α, β)-superregular.

Proof. We repeatedly apply Lemma 2 until we arrive at subsets Vi ⊂ Ai of the same size for i ∈ [k]

such that (V1, . . . , Vk) is (α, β)-superregular. In each application of Lemma 2 we pass to subsets

each with size at least an α-fraction of the size of the original set and the density between them is

at least a factor (1 + αk

2 ) larger than the density between the original sets. After t iterations, the

density between them is at least (1 + αk

2 )td(A1, . . . , Ak) ≥ (1 + αk

2 )t2β. This cannot continue for

more than 3α−k log β−1 iterations since otherwise the density would be larger than 1. Hence, we have

|V1| = · · · = |Vk| ≥ α3α−k log β−1
n, which completes the proof.

5



The next lemma allows us to find a large matching of regular k-tuples.

Lemma 4. Suppose α, β, c, d > 0 with α, β < 1/4 and d ≥ 2β, Γ is a k-uniform hypergraph, and

(A1, . . . , Ak) is a (c, d)-superregular k-tuple of disjoint vertex subsets each of cardinality N . Then

there is a positive integer r such that for each i ∈ [k] there is a partition Ai = Ai,0 ∪ Ai,1 ∪ . . . ∪ Ai,r

with |Ai,0| < cN , and for each j ∈ [r] the k-tuple (A1,j , . . . , Ak,j) is (α, β)-superregular with |A1,j | =
|A2,j | = · · · = |Ak,j | ≥ α3α−k log β−1

cN .

Proof. In the first step, we pick out subsets Ai,1 ⊂ Ai for i ∈ [k] such that the k-tuple (A1,1, . . . , Ak,1)

is (α, β)-superregular and |Ai,1| = . . . = |Ak,1| ≥ α3α−k log β−1
N . We can do this by Lemma 3 since the

k-tuple (A1, . . . , Ak) is (c, d)-superregular and hence d(A1, . . . , Ak) ≥ d ≥ 2β.

Suppose we have already picked out Ai,ℓ for i ∈ [k], ℓ ∈ [j] satisfying that for each ℓ, (A1,ℓ, . . . , Ak,ℓ)

is (α, β)-superregular, and |A1,ℓ| = · · · = |Ak,ℓ| ≥ α3α−k log β−1
cN . Let Bi = Ai \

∪
ℓ∈j Ai,ℓ, so |B1| =

· · · = |Bk|. If |B1| < cN , then we let Ai,0 = Bi for i ∈ [k] and the proof is complete. Otherwise, we

pick out subsets Ai,j+1 ⊂ Bi for i ∈ [k] satisfying

|A1,j+1| = · · · = |Ak,j+1| ≥ α3α−k log β−1 |B1| ≥ α3α−k log β−1
cN

and (A1,j+1, . . . , Ak,j+1) is (α, β)-superregular. We can do this by Lemma 3 since (A1, . . . , Ak) is

(c, d)-superregular, |Bi| ≥ cN = c|Ai| for i ∈ [k], and hence d(B1, . . . , Bk) ≥ d ≥ 2β. As each Ai,j

has cardinality at least α3α−k log β−1
cN , this process terminates in at most N/

(
α3α−k log β−1

cN
)

=

c−1α−3α−k log β−1
steps, and when this happens, we have the desired partitions.

2.2 Shattering sets with few copies of H

The following lemma is the main result of this section and is crucial for the proof of Theorem 1. Before

going into the precise statement and proof, we give a rough sketch. Let H be a graph with vertex set

[h] and suppose G is a graph with disjoint vertex sets V1, . . . , Vh of the same size with few copies of

H with the copy of vertex i in Vi for i ∈ [h]. The lemma then says that there is an edge (i, j) of H for

which there is an (α, c, t)-shattering of (Vi, Vj), where c > 0 depends only on h and t is not too large

as a function of α and h.

The proof is by induction on h, with the base case h = 2 being trivial. Let H ′ be the induced

subgraph of H with vertex set [h−1]. The proof splits into two cases. In the first case, there are large

subsets V ′
i ⊂ Vi with few copies of H ′ between V ′

1 , . . . , V
′
h−1 with the copy of vertex i lying in V ′

i . In

this case, by induction, we can shatter a pair (V ′
i , V

′
j ) with (i, j) an edge of H ′ (and hence of H), and

this extends to a shattering of (Vi, Vj), completing this case.

In the second case, for all large subsets V ′
i ⊂ Vi there are a substantial number of copies of H ′

between V ′
1 , . . . , V

′
h−1 with the copy of i lying in V ′

i . We create an auxiliary (h − 1)-partite (h − 1)-

uniform hypergraph Γ with parts V1, . . . , Vh−1 where (v1, . . . , vh−1) ∈ V1 × . . .× Vh−1 is an edge of Γ

if these vertices form a copy of H ′ in G with vertex vi the copy of i. In this case we can use Lemma 4

6



to partition each Vi = Vi,0 ∪ . . . ∪ . . . ∪ Vi,z with i ∈ [h− 1] such that for each j ∈ [z] the (h− 1)-tuple

(V1,j , . . . , Vh−1,j) is (α, β)-superregular in Γ with β not too small, |V1,j | = . . . = |Vh−1,j | is large, and
|Vi,0| not too large. By this superregularity and the definition of Γ, each vertex v ∈ Vh which has for

some j at least α|Vi,j | neighbors in Vi,j for each neighbor i of h in H is a vertex of many copies of H

in G with the copy of i in Vi. As there are few copies of H with the copy of i in Vi for each i, this

implies that for each j, there are few vertices in Vh which have at least α|Vi,j | neighbors in Vi,j for

each neighbor i of h. In other words, for most vertices v ∈ Vh there is a neighbor i of h such that v

has less than α|Vi,j | neighbors in Vi,j . We partition Vh where a vertex v ∈ Vh lies in a certain subset

in this partition depending on which pairs (i, j) with i a neighbor of h in H and j ∈ [z] the vertex v

has less than α|Vi,j | neighbors in Vi,j . We get that for some neighbor i of h in H, this partition of Vh

and the partition of Vi form an (α, c, t)-shattering of (Vi, Vh).

Lemma 5. Let 0 < α < 1/4 and dh = 2−(2/α)h
2

. Let H be a graph with vertex set [h]. Suppose G is

a graph with disjoint vertex subsets V1, . . . , Vh each of size n such that the number of copies of H with

the copy of vertex i in Vi for i ∈ [h] is at most dhn
h. Then there is an edge (i, j) of H for which there

is an (α, h−2, 2d
−1
h )-shattering of the pair (Vi, Vj).

Proof. The proof is by induction on h. In the base case h = 2, as the number of edges between V1

and V2 is at most d2n
2 < αn2, the trivial partitions of V1 and V2 form an (α, 1, 1)-shattering of the

pair (V1, V2). Thus the base case holds. The induction hypothesis is that the lemma holds for h− 1.

Let H ′ be the induced subgraph of H on vertex set [h− 1]. Let Γ be the (h− 1)-partite (h− 1)-

uniform hypergraph on V1, . . . , Vh−1 such that (v1, . . . , vh−1) ∈ V1 × . . . × Vh−1 forms an edge of Γ if

(vi, vj) is adjacent in G whenever (i, j) is an edge of H ′.

The proof splits into two cases, depending on whether or not (V1, . . . , Vh−1) is (1 − 1
h , dh−1)-

superregular in Γ.

Case 1: (V1, . . . , Vh−1) is not (1− 1
h , dh−1)-superregular in Γ. In this case, there are sets Wi ⊂ Vi for

i ∈ [h−1] with |Wi| ≥ (1− 1
h)|Vi| and d(W1, . . . ,Wh−1) < dh−1. By Lemma 1, letting n′ = ⌈(1− 1

h)n⌉,
we may suppose further that |W1| = . . . = |Wh−1| = n′. Therefore, the number of copies of H ′ with

the copy of vertex i in Vi for i ∈ [h− 1] is at most dh−1n
′h−1. By the induction hypothesis, there is an

edge (i, j) of H ′ (and hence also of H) and partitions Wi = A1 ∪ . . .∪Ar−1 and Wj = B1 ∪ . . .∪Bs−1

with r− 1, s− 1 ≤ 2d
−1
h−1 and the sum of |Ap||Bq| over all pairs (Ap, Bq) with d(Ap, Bq) < α is at least

(h− 1)−2|Wi||Wj | ≥ (h− 1)−2(1− 1
h)

2|Vi||Vj | = h−2|Vi||Vj |. Letting Ar = Vi \Wi and Bs = Vj \Wj ,

we have an (α, h−2, 2d
−1
h−1 + 1)-shattering of the pair (Vi, Vj), which completes the proof in this case.

Case 2: (V1, . . . , Vh−1) is (1 − 1
h , dh−1)-superregular in Γ. In this case, by Lemma 4, there are

partitions Vi = Vi,0 ∪ Vi,1 ∪ . . . ∪ Vi,z for i ∈ [h − 1] with |Vi,0| < (1 − 1
h)|Vi| = (1 − 1

h)n such that

for each j ∈ [z] the (h − 1)-tuple (V1,j , . . . , Vh−1,j) is (α, β)-superregular in Γ with β = dh−1/2, and

|V1,j | = |V2,j | = · · · = |Vh−1,j | ≥ γn where

γ = α3α1−h log β−1
(1− 1

h
) > β3α

−h
=

(
dh−1

2

)3α−h

> d4α
−h

h−1 = 2−4α−h(2/α)(h−1)2 ≥ 2−(2/α)h
2−h+1

.
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Since each Vi,j has cardinality at least γn and each Vi has cardinality n, we have z ≤ n
γn = γ−1.

Let I denote the set of neighbors of h in H. Suppose for contradiction that there is j ∈ [z] such

that at least |Vh|/h vertices v ∈ Vh have at least α|Vi,j | neighbors in Vi,j for all i ∈ I. For i ∈ I, let

N(v, i) denote the set of neighbors of v in Vi,j , and for i ∈ [h − 1] \ I, let N(v, i) = Vi,j . So for at

least |Vh|/h vertices v ∈ Vh, |N(v, i)| ≥ α|Vi,j | for i ∈ [h− 1]. Since the (h− 1)-tuple (V1,j , . . . , Vh−1,j)

is (α, β)-superregular in Γ, the number of copies of H containing such a fixed v and with the copy of

vertex i in Vi,j for i ∈ [h− 1] is at least

β|N(v, 1)| · · · |N(v, h− 1)| ≥ βαh−1|V1,j | · · · |Vh−1,j | ≥ βαh−1 (γn)h−1 .

Hence, the number of copies of H with the copy of vertex i in Vi for i ∈ [h] is at least

|Vh|
h
βαh−1 (γn)h−1 = h−1βαh−1γh−1nh ≥ (2h)−1dh−1α

h−12−(h−1)(2/α)h
2−h+1

nh > 2−(2/α)h
2

nh = dhn
h,

contradicting that there are at most dhn
h copies of H with the copy of vertex i in Vi for i ∈ [h].

So, for every j ∈ [z], less than |Vh|/h vertices v ∈ Vh have at least α|Vi,j | neighbors in Vi,j for all

i ∈ I. For each subset S ⊂ I × [z], let AS denote the set of vertices v ∈ Vh with less than α|Vi,j |
neighbors in Vi,j for all (i, j) ∈ S and at least α|Vi,j | neighbors in Vi,j for all (i, j) ∈ (I × [z]) \ S.
We have Vh =

∪
S∈I×[z]AS is a partition of Vh into 2|I|z subsets. As for each j ∈ [z], we have

|V1,j | = · · · = |Vh−1,j | and more than (1−1/h)|Vh| vertices in Vh have less than α|Vi,j | neighbors in Vi,j
for some i ∈ I, the sum of |AS ||Vi,j | over all S ⊂ I×[z] and i ∈ I for which d(AS , Vi,j) < α is more than

(1−1/h)|Vh||V1,j |. Summing over all j ∈ [z], the sum of |AS ||Vi,j | over all S ⊂ I× [z], i ∈ I, and j ∈ [z]

for which d(AS , Vi,j) < α is at least
∑

j∈[z](1−1/h)|Vh||V1,j | ≥ (1−1/h)|Vh|(|V1|/h) = (1−1/h)h−1n2.

Hence, there is i ∈ I such that the sum of |AS ||Vi,j | over all S ⊂ I×[z], j ∈ [z] for which d(AS , Vi,j) < α

is at least 1
|I|(1−1/h)h−1n2 ≥ h−2n2. As also z+1, 2|I|z ≤ 2(h−1)z ≤ 2d

−1
h , it follows that the partitions

Vh =
∪

S⊂I×[z]AS and Vi =
∪

0≤j≤z Vi,j form an (α, h−2, 2d
−1
h )-shattering of the pair (Vi, Vh).

3 A defect inequality for convex functions

Jensen’s inequality states that if f is a convex function, ϵ1, . . . , ϵs are nonnegative real numbers which

sum to 1, and x1, . . . , xs are real numbers, then

ϵ1f(x1) + · · ·+ ϵsf(xs) ≥ f(ϵ1x1 + · · ·+ ϵsxs).

The following lemma is a simple consequence of Jensen’s inequality.

Lemma 6. Let f : R≥0 → R be a convex function, ϵ1, . . . , ϵs and x1, . . . , xs be nonnegative real

numbers with
∑

1≤i≤s ϵi = 1. For I ⊂ [s], c =
∑

i∈I ϵi with 0 < c < 1, u =
∑

i∈I ϵixi/c, and

v =
∑

i∈[s]\I ϵixi/(1− c), we have∑
1≤i≤s

ϵif(xi) ≥ cf(u) + (1− c)f(v).
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Proof. By Jensen’s inequality, we have

f(u) ≤
∑
i∈I

ϵi
c
f(xi)

Since c =
∑

i∈I ϵi and 1 =
∑

1≤i≤s ϵi, then 1− c =
∑

i∈[s]\I ϵi. By Jensen’s inequality, we have

f(v) ≤
∑

i∈[s]\I

ϵi
1− c

f(xi)

From the two previous inequalities, we get

cf(u) + (1− c)f(v) ≤
∑

1≤i≤s

ϵif(xi).

Note that equality holds in Jensen’s inequality when the numbers x1, . . . , xs are equal. A defect

inequality shows that if these numbers are far from being equal, then Jensen’s inequality can be

significantly improved. The following lemma is a defect inequality for a particular convex function

which we will use in the proof of Theorem 1. The lemma assumes that a proportion c of the weight is

distributed amongst numbers which are at most 1/10 of the average.

Lemma 7. Let f : R≥0 → R be the convex function given by f(x) = x log x for x > 0 and f(0) = 0.

Let ϵ1, . . . , ϵs, and x1, . . . , xs be nonnegative real numbers with
∑

1≤i≤s ϵi = 1, and a =
∑

1≤i≤s ϵixi.

Suppose β < 1 and I ⊂ [s] is such that xi ≤ βa for i ∈ I and let c =
∑

i∈I ϵi. Then∑
1≤i≤s

ϵif(xi) ≥ f(a) + (1− β + f(β))ca.

Proof. Notice that if a or c is 0, the desired inequality is Jensen’s inequality. We may therefore assume

a, c > 0. We also have c < 1 as otherwise c = 1, ϵi = 0 for i ∈ [s]\I, and a =
∑

1≤i≤s ϵixi =
∑

i∈I ϵixi ≤
βa as xi ≤ βa for i ∈ I, a contradiction. Let u =

∑
i∈I ϵixi/c, which is a weighted average of the xi with

i ∈ I, and v =
∑

i∈[s]\I ϵixi/(1−c). Let δ = u/a, so δ ≤ β, and δ′ = v/a = (1−δc)/(1−c) = 1+ (1−δ)c
1−c .

Note also that cu = caδ, (1− c)v = a(1− c)δ′, and cu+ (1− c)v = a. Hence, by Lemma 6, we have∑
1≤i≤s

ϵif(xi) ≥ cf(u) + (1− c)f(v) = f(a) + caf(δ) + a(1− c)f(δ′)

≥ f(a) + caf(δ) + a(1− c)
(1− δ)c

1− c
= f(a) + (f(δ) + 1− δ) ca,

where the first equality follows from substituting in f(x) = x log x for 0 < x ≤ 1 and f(0) = 0, and

the second inequality follows from substituting x = δ′ into the inequality f(x) ≥ x−1 for x ≥ 0. Since

0 ≤ δ ≤ β < 1, and f(x) + 1 − x is a decreasing function on the interval [0, 1], we get the desired

inequality.
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4 Proof of Theorem 1

In this section we prove Theorem 1. Our presentation is chosen to elucidate the similarities and

differences with the well known proof of Szemerédi’s regularity lemma.

Let G = (V,E) be a graph. Recall that for vertex subsets A and B, e(A,B) denotes the number of

pairs (a, b) ∈ A×B that are edges of G and d(A,B) = e(A,B)
|A||B| is the density of the pair (A,B), which

is the fraction of pairs (a, b) ∈ A×B that are edges of G. For a function f : R≥0 → R define

f(A,B) =
|A||B|
|V |2

f(d(A,B)).

For partitions A of A and B of B, let

f(A,B) =
∑

A′∈A,B′∈B
f(A′, B′)

and f(A) = f(A,A).

Lemma 8. Let f : R≥0 → R be a convex function, G = (V,E) be a graph, and d = d(V, V ) =

2|E|/|V |2.

1. For vertex subsets A,B ⊂ V and partitions A of A and B of B, we have f(A,B) ≥ f(A,B).

2. If P is a partition of V , then f(P) ≥ f(d).

3. If P and P ′ are partitions of V and P ′ is a refinement of P, then f(P ′) ≥ f(P).

4. Suppose that A,B are vertex subsets with d(A,B) ≥ 10α, partitions A of A and B of B form an

(α, c, t)-shattering of (A,B), and f(x) = x log x for x > 0 and f(0) = 0. Then

f(A,B) ≥ f(A,B) +
c

2

e(A,B)

|V |2
.

Proof. We have

f(A,B) =
∑

A′∈A,B′∈B
f(A′, B′) =

∑
A′∈A,B′∈B

|A′||B′|
|V |2

f(d(A′, B′))

=
|A||B|
|V |2

∑
A′∈A,B′∈B

|A′||B′|
|A||B|

f(d(A′, B′)) ≥ |A||B|
|V |2

f(d(A,B)) = f(A,B).

where we used
∑

A′∈A,B′∈B
|A′||B′|
|A||B| = 1 and Jensen’s inequality. This establishes part 1. For part 2,

note that if P is a partition of V , then by part 1 we have

f(P) = f(P,P) ≥ f(V, V ) = f(d).

Part 3 is an immediate corollary of part 1. For part 4, we use Lemma 7 such that for each A′ ∈ A and

B′ ∈ B, there is an i corresponding to the pair (A′, B′) with ϵi =
|A′||B′|
|A||B| and xi = d(A′, B′), and we let
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a =
∑

i ϵixi = d(A,B), β = 1/10, and I be the set of i such that xi ≤ α ≤ βa. Since A is a partition

of A and B is a partition of B, the sum of all ϵi is 1. By the definition of an (α, c, t)-shattering, we

have
∑

i∈I ϵi ≥ c. We conclude that

f(A,B) = |A||B|
|V |2

∑
i

ϵif(xi) ≥
|A||B|
|V |2

(f(a) + ca(1− β + f(β))) ≥ f(A,B) +
c

2

e(A,B)

|V |2
.

The next lemma shows how to refine a partition into not too many parts so that almost all vertices

are in parts of the same size, and the remaining vertices are in parts of smaller size.

Lemma 9. Suppose Q is a partition of a set V of size n into at most k parts and υ > 0. Then there

is a refinement Q′ of Q into at most (2υ−1 + 1)k parts and a number r such that all parts have size

at most r, and all but at most υn vertices are in parts of size r.

Proof. If k > υn, then let r = 1 and Q′ be the partition of V into parts of size 1. Otherwise, let

r = ⌊υn/k⌋. Refine each part in Q into parts of size r, with possibly one remaining part of size less

than r. The number of parts is at most n/r + k ≤ (2υ−1 + 1)k. The number of vertices in parts of

size less than r is at most kr ≤ υn.

The next lemma allows us to refine a vertex partition of a graph with many edge-disjoint copies of

H but with relatively few (total) copies of H so that the mean entropy density increases significantly,

while the number of parts is roughly one exponential larger.

Lemma 10. Let H be a graph on h vertices. Suppose G = (V,E) is a graph on n vertices, whose edge

set can be partitioned into ϵ0n
2 copies of H. Let n0 ≤ ϵ0

4 n be a positive integer and P be a partition

of V into at most T parts with all parts of size at most n0, and all but at most ϵ0
8 n vertices in parts

of size n0. Suppose further that G has at most 2−(40/ϵ0)h
2

T−hnh copies of H. Let f(x) = x log x for

x > 0 and f(0) = 0. Then there is a refinement P ′ of P with at most sT parts with s = 22
(50/ϵ0)

h2

,

such that f(P ′) ≥ f(P) + ϵ0
4h2 and all but at most ϵ0

8 n vertices are in parts of equal size, and all other

parts are of smaller size.

Proof. We refine the partition P as follows. Let α = ϵ0/20, c = h−2, and t = 22
(2/α)h

2

. For every

pair Pi, Pj ∈ P of distinct parts each of size n0 for which there is an (α, c, t)-shattering of (Pi, Pj), let

Pij denote the partition of Pi and Pji denote the partition of Pj in an (α, c, t)-shattering of the pair

(Pi, Pj). For each i, let Pi be the partition of Pi which is the common refinement of all partitions Pij ,

so Pi has at most tT parts. Let Q be the partition of V consisting of all parts of the partitions Pi. As

each of the at most T parts of P is refined into at most tT parts, the number of parts of Q is at most

TtT .

Let G′ be the subgraph of G obtained by deleting edges which are inside parts of P, contain a

vertex in a part of P of size not equal to n0, or go between parts of P with density less than ϵ0/2.
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The number of edges inside parts is at most nn0/2 ≤ ϵ0n
2/8. As all but at most ϵ0

8 n vertices are in

parts of size n0, the number of edges containing a vertex in a part of size not equal to n0 is at most
ϵ0
8 n

2. The number of edges between parts of density less than ϵ0/2 is at most (ϵ0/2)n
2/2 ≤ ϵ0n

2/4. So

the number of edges of G deleted to obtain G′ is at most ϵ0n
2/8 + ϵ0n

2/8 + ϵ0n
2/4 = ϵ0n

2/2. Hence,

G′ contains at least ϵ0n
2 − ϵ0n

2/2 = ϵ0n
2/2 edge-disjoint copies of H. Each copy of H in G′ has its

vertices in different parts each of size n0, and its edges go between parts with density at least ϵ0/2. As

every part of P has size at most n0 and there are T parts, n0 ≥ n/T . Note that the number of copies

of H in G is at most 2−(40/ϵ0)h
2

T−hnh = dh(n/T )
h ≤ dhn

h
0 . For each copy of H in G′, by Lemma 5,

at least one of its edges goes between parts which are (α, c, t)-shattered. Hence, the number of edges

of G which are between parts of size n0 with density at least ϵ0
2 = 10α between them and which are

(α, c, t)-shattered is at least the number of edge-disjoint copies of H in G′, which is at least ϵ0n
2/2.

By Lemma 8, parts 1 and 4, we have

f(Q) ≥ f(P) +
∑

(Pi,Pj)

c

2

e(Pi, Pj)

n2
≥ f(P) +

c

2

ϵ0n
2/2

n2
≥ f(P) + cϵ0/4 = f(P) +

ϵ0
4h2

,

where the sum is over all pairs (Pi, Pj) of parts of P of size n0 with i < j and density at least ϵ0
2 = 10α

between them that are (α, c, t)-shattered.

By Lemma 9 with υ = ϵ0
8 , there is a refinement P ′ of Q into at most

(2υ−1 + 1)|Q| ≤ (16ϵ−1
0 + 1)TtT ≤ 17ϵ−1

0 TtT ≤ sT

parts, such that all but at most ϵ0
8 n vertices are in parts of equal size, and all other parts are of smaller

size. By Lemma 8, part 3, we have f(P ′) ≥ f(Q) ≥ f(P) + ϵ0
4h2 , which completes the proof.

We now have the necessary lemmas for the proof of Theorem 1.

Proof of Theorem 1: Suppose for contradiction that there is a graph G on n vertices with at most

δnh copies of H and for which ϵn2 edges need to be removed from G to make it H-free. Let G′ be a

subgraph of G which consists of the union of a maximum collection of edge-disjoint copies of H in G.

As the removal of the edges of G′ from G leaves an H-free subgraph of G, the graph G′ has at least

ϵn2 edges. Let ϵ0n
2 denote the number of edge-disjoint copies of H in G′, so e(G′) = e(H)ϵ0n

2.

As there is at least one and at most δnh copies of H, we have n ≥ δ−1/h. Let P0 be an arbitrary

partition V = V1 ∪ . . . ∪ Vk of the vertex set of G′ into parts of size n0 = ⌈ ϵ08 n⌉, except possibly one

remaining set of size less than ϵ0
8 n. The number p0 of parts of P0 is at most 8ϵ−1

0 + 1 ≤ 5h2ϵ−1. By

Lemma 8, part 2, we have f(P0) ≥ f(d) = d log d, where d = 2e(G′)/n2 ≥ 2ϵ. We repeatedly apply

Lemma 10 to obtain a sequence of partition refinements P0,P1, . . ., and we let pi denote the number

of parts of Pi. Once we have the partition Pi, as long as δ ≤ 2−(40/ϵ0)h
2

p−h
i , we can apply Lemma

10 to obtain a refinement Pi+1 of Pi. After i iterations, f(Pi) ≥ f(P0) + i ϵ0
4h2 and pi ≤ spi−1 , where

s = 22
(50/ϵ0)

h2

. Roughly, at each iteration the number of parts is one exponential larger than in the
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previous iteration. As δ−1 is a tower of twos of height 5h4 log ϵ−1, this process continues for at least

i0 := ⌈4h4 log ϵ−1⌉ iterations. Also using the inequalities h2ϵ0 > 2e(H)ϵ0 = d and d ≥ 2ϵ, we have

f(Pi0) ≥ f(P0) + i0
ϵ0
4h2

≥ d log d+
(
4h4 log ϵ−1

) ϵ0
4h2

= d log d+ h2ϵ0 log ϵ
−1 > d log(d/ϵ) > 0,

which contradicts that f applied to any partition is nonpositive.

5 Concluding remarks

We gave a new proof of the graph removal lemma with an improved bound. Below we discuss improved

bounds for several variants of the graph removal lemma and finish with some open problems.

Removing homomorphisms. There is a seemingly stronger variant of the graph removal lemma

mentioned in [9] which we refer to as the homomorphism removal lemma. It states that for every

graph H on h vertices and every ϵ > 0, there is δ > 0 such that if G is a graph on n vertices with at

most δnh copies of H, then ϵn2 edges of G can be removed to obtain a graph G′ for which there is

no homomorphism from H to G′. It is rather straightforward to obtain this result from Szemerédi’s

regularity lemma. However, one can further show that the δ in the homomorphism removal lemma is

closely related to the δ in the graph removal lemma, and thus Theorem 1 implies a similar improved

bound in the homomorphism removal lemma. The proof of this fact is quite simple, so we only sketch

it below.

Suppose G is a graph on n vertices which has at most δnh copies of H. A homomorphic image

of a graph H is a graph F for which there is a surjective homomorphism from H to F . As each

homomorphic image of H has at most |H| vertices, the number of homomorphic images of H is finite.

Notice that to remove all homomorphisms from H to G, it suffices to remove all copies of homomorphic

images of H in G. If there are few copies in G of each homomorphic image of H, then by the graph

removal lemma we can remove few edges and remove all homomorphisms from H to G. So there must

be a homomorphic image F of H for which there are many copies of F in H, say cnk with c > δh
−h

,

where k is the number of vertices of F . Let f be a surjective homomorphism from H to F , and for

each vertex i of F , let ai denote the number of vertices of H which map to vertex i in f . The blow-up

F (a1, . . . , ak) of F is the graph obtained from F by replacing each vertex i by an independent set

Ii of order ai, and a pair of vertices in different parts Ii and Ij are adjacent if and only if i and j

are adjacent in F . Note that H is a subgraph of the blow-up F (a1, . . . , ak). Let S denote the set

of sequences (v1, . . . , vk) of k vertices of G which form a copy of F with vi the copy of vertex i. If

A1, . . . , Ak are vertex subsets of G with |Ai| = ai and all k-tuples in A1 × · · · ×Ak belong to S, then
these vertex subsets form a copy of F (a1, . . . , ak) in G, and hence also make a copy of H in G. As

G has cnk copies of F , a simple convexity argument as in [10] shows that if c ≫ n−1/(a1···ak), then

S contains at least (1− o(1))ca1···akna1+···+ak = (1− o(1))ca1···aknh k-tuples of disjoint vertex subsets

(A1, . . . , Ak) with |Ai| = ai and A1 × · · · ×Ak ⊂ S. Thus, G contains at least

(1− o(1))ca1···aknh ≥ (1− o(1)δ(3
1/3/h)hnh ≥ h!δnh
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labeled copies of H, where we use a1 · · · ak ≤ 3h/3 as a1, . . . , ak are positive integers which sum to h,

and c > δh
−h

. This contradicts G has at most δnh copies of H.

Directed, colored, and arithmetic removal lemmas. The directed graph removal lemma, proved

by Alon and Shapira [3], states that for each directed graph H on h vertices and ϵ > 0 there is

δ = δ(ϵ,H) > 0 such that every directed graph G = (V,E) on n vertices with at most δnh copies

of H can be made H-free by removing at most ϵn2 edges. The proof of Theorem 1 can be slightly

modified to obtain a similar bound as in Theorem 1 for the directed graph removal lemma. The proof

begins by finding a subgraph G′ of G which is the disjoint union of ϵ′n2 copies of H, with ϵ′ ≥ 2h−2ϵ.

There is a partition V = V1 ∪ . . . ∪ Vh with at least h−hϵ′n2 edge-disjoint copies of H with the copy

of vertex i in Vi. Indeed, in a uniform random partition into h parts, each copy of H has probability

h−h that its copy of vertex i lies in Vi for all i ∈ [h]. We then let G′′ be the subgraph of G′ which

consists of the union of these at least 2h−h−2ϵn2 edge-disjoint copies of H. The proof of the directed

graph removal lemma is then essentially the same as the proof of Theorem 1, except we start with the

partition V = V1 ∪ . . . ∪ Vh and refine it further at each step.

There is also a colored graph removal lemma. For each ϵ > 0 and positive integer h, there is

δ = δ(ϵ,H) > 0 such that if ϕ : E(H) → [k] is a k-edge-coloring of the edges of a graph H on h

vertices, and ψ : E(G) → [k] is a k-edge-coloring of the edges of a graph G on n vertices such that

the number of copies of H with coloring ϕ in the coloring ψ of G is at most δnh, then one can remove

all copies of H with coloring ϕ by deleting at most ϵn2 edges of G. We can also obtain a similarly

improved bound on the colored graph removal lemma, and the proof is identical to the proof of the

directed graph removal lemma.

Green [18] developed an arithmetic regularity lemma and used it to deduce an arithmetic removal

lemma. It states that for each ϵ > 0 and integer m ≥ 3 there is δ > 0 such that if G is an abelian

group of order N , and A1, . . . , Am are subsets of G such that there are at most δNm−1 solutions to

the equation a1+ · · ·+am = 0 with ai ∈ Ai for all i, then it is possible to remove at most ϵN elements

from each set Ai so as to obtain sets A′
i for which there are no solutions to a′1 + · · · + a′m = 0 with

a′i ∈ A′
i for all i. Like Szemerédi’s regularity lemma, the bound on δ−1 grows as a tower of twos of

height polynomial in ϵ−1. Green’s proof of the arithmetic regularity lemma relies on techniques from

Fourier analysis and does not extend to nonabelian groups. Král, Serra, and Vena [20] found a new

proof of Green’s removal lemma using the directed graph removal lemma which extends to all groups.

They proved that for each integer m ≥ 3 and ϵ > 0 there is δ > 0 such that the following holds. Let

G be a group of order N , A1, . . . , Am be sets of elements of G, and g be an arbitrary element of G.

If the equation x1x2 · · ·xm = g has at most δNm−1 solutions with xi ∈ Ai for all i, then there are

subsets A′
i ⊂ Ai with |Ai \A′

i| ≤ ϵN such that there is no solution to x1x2 · · ·xm = g with xi ∈ A′
i for

all i. Their proof relies on the removal lemma for directed cycles, and we thus obtain a new bound

for this removal lemma as well.

Further directions. Alon [2] showed that the largest possible δ(ϵ,H) in the graph removal lemma
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has a polynomial dependency on ϵ if and only if H is bipartite. For nonbipartite H, he showed that

there is c = c(H) > 0 such that δ(ϵ,H) < (ϵ/c)c log(c/ϵ). Note that this upper bound is far from the

lower bound provided by Theorem 1, and it would be extremely interesting to close the gap. Similarly,

Alon and Shapira [3] determined for which directed graphs H the function δ(ϵ,H) in the directed

graph removal lemma has a polynomial dependency on ϵ. It is precisely when the core of H, which

is the smallest subgraph K of H for which there is a homomorphism from H to K, is an oriented

tree or a directed cycle of length 2. A similar bound also holds for Green’s removal lemma. All of

the superpolynomial lower bounds are based on variants of Behrend’s construction [5] giving a large

subset of the first n positive integers without a three-term arithmetic progression.

A great deal of research has gone into proving a hypergraph analogue of the removal lemma [16],

[17], [22], [23], [32], leading to new proofs of Szemerédi’s theorem and some of its extensions. Using

a colored version of the hypergraph removal lemma, Shapira [27] and independently Král, Serra, and

Vena [21] proved a conjecture of Green establishing a removal lemma for systems of linear equations.

It would be interesting to find new proofs of these results without using any version of the regularity

lemma.
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[26] I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, in

Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18, Volume II, 939–945.

[27] A. Shapira, A proof of Green’s conjecture regarding the removal properties of sets of linear

equations, J. London Math. Soc. 81 (2010), 355–373.

[28] I. D. Shredkov, On a Generalization of Szemerédi’s Theorem, Proc. London Math. Soc. 93 (2006),
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