3 research outputs found

    On Language Equations with One-sided Concatenation

    Get PDF
    Language equations are equations where both the constants occurring in the equations and the solutions are formal languages. They have first been introduced in formal language theory, but are now also considered in other areas of computer science. In the present paper, we restrict the attention to language equations with one-sided concatenation, but in contrast to previous work on these equations, we allow not just union but all Boolean operations to be used when formulating them. In addition, we are not just interested in deciding solvability of such equations, but also in deciding other properties of the set of solutions, like its cardinality (finite, infinite, uncountable) and whether it contains least/greatest solutions. We show that all these decision problems are ExpTime-complete.This report has also appeared as TUCS Technical Report, Turku Centre for Computer Science, University of Turku, Finland

    Using parametric set constraints for locating errors in CLP programs

    Full text link
    This paper introduces a framework of parametric descriptive directional types for constraint logic programming (CLP). It proposes a method for locating type errors in CLP programs and presents a prototype debugging tool. The main technique used is checking correctness of programs w.r.t. type specifications. The approach is based on a generalization of known methods for proving correctness of logic programs to the case of parametric specifications. Set-constraint techniques are used for formulating and checking verification conditions for (parametric) polymorphic type specifications. The specifications are expressed in a parametric extension of the formalism of term grammars. The soundness of the method is proved and the prototype debugging tool supporting the proposed approach is illustrated on examples. The paper is a substantial extension of the previous work by the same authors concerning monomorphic directional types.Comment: 64 pages, To appear in Theory and Practice of Logic Programmin

    Set Constraints in Some Equational Theories

    Get PDF
    AbstractSet constraints are relations between sets of ground terms over a given alphabet. They give a natural formalism for many problems in program analysis, type inference, order-sorted unification, and constraint logic programming. In this paper we start studies of set constraints in the environment given by equational specifications. We show that in the case of associativity (i.e., in free monoids) as well as in the case of associativity and commutativity (i.e., in commutative monoids) the problem of consistency of systems of set constraints is undecidable; in linear nonerasing shallow theories the consistency of systems of positive set constraints is NEXPTIME-complete and in linear shallow theories the problem for positive and negative set constraints is decidable
    corecore