4,834 research outputs found

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Frame-Based Phone Classification Using EMG Signals

    Get PDF
    This paper evaluates the impact of inter-speaker and inter-session variability on the development of a silent speech interface (SSI) based on electromyographic (EMG) signals from the facial muscles. The final goal of the SSI is to provide a communication tool for Spanish-speaking laryngectomees by generating audible speech from voiceless articulation. However, before moving on to such a complex task, a simpler phone classification task in different modalities regarding speaker and session dependency is performed for this study. These experiments consist of processing the recorded utterances into phone-labeled segments and predicting the phonetic labels using only features obtained from the EMG signals. We evaluate and compare the performance of each model considering the classification accuracy. Results show that the models are able to predict the phonetic label best when they are trained and tested using data from the same session. The accuracy drops drastically when the model is tested with data from a different session, although it improves when more data are added to the training data. Similarly, when the same model is tested on a session from a different speaker, the accuracy decreases. This suggests that using larger amounts of data could help to reduce the impact of inter-session variability, but more research is required to understand if this approach would suffice to account for inter-speaker variability as well.This research was funded by Agencia Estatal de Investigación grant number ref.PID2019-108040RB-C21/AEI/10.13039/50110001103

    EMG-to-Speech: Direct Generation of Speech from Facial Electromyographic Signals

    Get PDF
    The general objective of this work is the design, implementation, improvement and evaluation of a system that uses surface electromyographic (EMG) signals and directly synthesizes an audible speech output: EMG-to-speech

    Integrating user-centred design in the development of a silent speech interface based on permanent magnetic articulography

    Get PDF
    Abstract: A new wearable silent speech interface (SSI) based on Permanent Magnetic Articulography (PMA) was developed with the involvement of end users in the design process. Hence, desirable features such as appearance, port-ability, ease of use and light weight were integrated into the prototype. The aim of this paper is to address the challenges faced and the design considerations addressed during the development. Evaluation on both hardware and speech recognition performances are presented here. The new prototype shows a com-parable performance with its predecessor in terms of speech recognition accuracy (i.e. ~95% of word accuracy and ~75% of sequence accuracy), but significantly improved appearance, portability and hardware features in terms of min-iaturization and cost

    A new paradigm for BCI research

    Get PDF
    A new control paradigm for Brain Computer Interfaces (BCIs) is proposed. BCIs provide a means of communication direct from the brain to a computer that allows individuals with motor disabilities an additional channel of communication and control of their external environment. Traditional BCI control paradigms use motor imagery, frequency rhythm modification or the Event Related Potential (ERP) as a means of extracting a control signal. A new control paradigm for BCIs based on speech imagery is initially proposed. Further to this a unique system for identifying correlations between components of the EEG and target events is proposed and introduced

    EARS: Electromyographical Automatic Recognition of Speech

    Get PDF
    In this paper, we present our research on automatic speech recognition of surface electromyographic signals that are generated by the human articulatory muscles. With parallel recorded audible speech and electromyographic signals, experiments are conducted to show the anticipatory behavior of electromyographic signals with respect to speech signals. Additionally, we demonstrate how to develop phone-based speech recognizers with carefully designed electromyographic feature extraction methods. We show that articulatory feature (AF) classifiers can also benefit from the novel feature, which improve the F-score of the AF classifiers from 0.467 to 0.686. With a stream architecture, the AF classifiers are then integrated into the decoding framework. Overall, the word error rate improves from 86.8 % to 29.9 % on a 100 word vocabulary recognition task.

    Silent Speech Interfaces for Speech Restoration: A Review

    Get PDF
    This work was supported in part by the Agencia Estatal de Investigacion (AEI) under Grant PID2019-108040RB-C22/AEI/10.13039/501100011033. The work of Jose A. Gonzalez-Lopez was supported in part by the Spanish Ministry of Science, Innovation and Universities under Juan de la Cierva-Incorporation Fellowship (IJCI-2017-32926).This review summarises the status of silent speech interface (SSI) research. SSIs rely on non-acoustic biosignals generated by the human body during speech production to enable communication whenever normal verbal communication is not possible or not desirable. In this review, we focus on the first case and present latest SSI research aimed at providing new alternative and augmentative communication methods for persons with severe speech disorders. SSIs can employ a variety of biosignals to enable silent communication, such as electrophysiological recordings of neural activity, electromyographic (EMG) recordings of vocal tract movements or the direct tracking of articulator movements using imaging techniques. Depending on the disorder, some sensing techniques may be better suited than others to capture speech-related information. For instance, EMG and imaging techniques are well suited for laryngectomised patients, whose vocal tract remains almost intact but are unable to speak after the removal of the vocal folds, but fail for severely paralysed individuals. From the biosignals, SSIs decode the intended message, using automatic speech recognition or speech synthesis algorithms. Despite considerable advances in recent years, most present-day SSIs have only been validated in laboratory settings for healthy users. Thus, as discussed in this paper, a number of challenges remain to be addressed in future research before SSIs can be promoted to real-world applications. If these issues can be addressed successfully, future SSIs will improve the lives of persons with severe speech impairments by restoring their communication capabilities.Agencia Estatal de Investigacion (AEI) PID2019-108040RB-C22/AEI/10.13039/501100011033Spanish Ministry of Science, Innovation and Universities under Juan de la Cierva-Incorporation Fellowship IJCI-2017-3292
    corecore