16,923 research outputs found

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Distributed processing of large remote sensing images using MapReduce - A case of Edge Detection

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Advances in sensor technology and their ever increasing repositories of the collected data are revolutionizing the mechanisms remotely sensed data are collected, stored and processed. This exponential growth of data archives and the increasing user’s demand for real-and near-real time remote sensing data products has pressurized remote sensing service providers to deliver the required services. The remote sensing community has recognized the challenge in processing large and complex satellite datasets to derive customized products. To address this high demand in computational resources, several efforts have been made in the past few years towards incorporation of high-performance computing models in remote sensing data collection, management and analysis. This study adds an impetus to these efforts by introducing the recent advancements in distributed computing technologies, MapReduce programming paradigm, to the area of remote sensing. The MapReduce model which is developed by Google Inc. encapsulates the efforts of distributed computing in a highly simplified single library. This simple but powerful programming model can provide us distributed environment without having deep knowledge of parallel programming. This thesis presents a MapReduce based processing of large satellite images a use case scenario of edge detection methods. Deriving from the conceptual massive remote sensing image processing applications, a prototype of edge detection methods was implemented on MapReduce framework using its open-source implementation, the Apache Hadoop environment. The experiences of the implementation of the MapReduce model of Sobel, Laplacian, and Canny edge detection methods are presented. This thesis also presents the results of the evaluation the effect of parallelization using MapReduce on the quality of the output and the execution time performance tests conducted based on various performance metrics. The MapReduce algorithms were executed on a test environment on heterogeneous cluster that supports the Apache Hadoop open-source software. The successful implementation of the MapReduce algorithms on a distributed environment demonstrates that MapReduce has a great potential for scaling large-scale remotely sensed images processing and perform more complex geospatial problems

    The role of earth observation in an integrated deprived area mapping “system” for low-to-middle income countries

    Get PDF
    Urbanization in the global South has been accompanied by the proliferation of vast informal and marginalized urban areas that lack access to essential services and infrastructure. UN-Habitat estimates that close to a billion people currently live in these deprived and informal urban settlements, generally grouped under the term of urban slums. Two major knowledge gaps undermine the efforts to monitor progress towards the corresponding sustainable development goal (i.e., SDG 11—Sustainable Cities and Communities). First, the data available for cities worldwide is patchy and insufficient to differentiate between the diversity of urban areas with respect to their access to essential services and their specific infrastructure needs. Second, existing approaches used to map deprived areas (i.e., aggregated household data, Earth observation (EO), and community-driven data collection) are mostly siloed, and, individually, they often lack transferability and scalability and fail to include the opinions of different interest groups. In particular, EO-based-deprived area mapping approaches are mostly top-down, with very little attention given to ground information and interaction with urban communities and stakeholders. Existing top-down methods should be complemented with bottom-up approaches to produce routinely updated, accurate, and timely deprived area maps. In this review, we first assess the strengths and limitations of existing deprived area mapping methods. We then propose an Integrated Deprived Area Mapping System (IDeAMapS) framework that leverages the strengths of EO- and community-based approaches. The proposed framework offers a way forward to map deprived areas globally, routinely, and with maximum accuracy to support SDG 11 monitoring and the needs of different interest groups
    corecore