

Distributed Processing Of Large Remote Sensing Images
Using MapReduce

A case of Edge Detection

Ermias Beyene Tesfamariam

Distributed Processing of Large Remote Sensing
Images using MapReduce

A case of Edge Detection

Supervisor

Dr. Theodor Foerster
Institute for Geoinformatics

Universität Münster, Germany

Co-supervisors

Katharina Henneböhl
Institute for Geoinformatics

Universität Münster, Germany

and

Prof. Dr. Mario Caetano
Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa, Portugal

February, 2011
Münster, North-Rhine Westphalia, Germany

Disclaimer

This document describes work undertaken as part of a program of study at
Universitat Jaume I, Westfälische Wilhelms-Universität Münster and
Universidade Nova de Lisboa. All view and opinions expressed therein remain
the sole responsibility of the author, and do not necessarily represent those of
the universities.

Author’s Declaration

I hereby declare that this Master thesis has been written independently by me,
solely based on the specified literature and resources. All ideas that have been
adopted directly or indirectly from other works are denoted appropriately. The
thesis has not been submitted for any other examination purposes in its present
or a similar form and was not yet published in any other way.

Signed: __

Date: ____________28 February 2011_________________________

i

Acknowledgements

I would like to express my special gratitude to my supervisors Dr. Theodor
Foerster, Katharina Henneböhl, and Prof. Dr. Mario Caetano for their scientific
guidance and critical reviews to bring the research into shape. I have gained a
lot of scientific experience throughout the period of the thesis work.

I am grateful to the European Union and the Erasmus Mundus Consortium of
Universitat Jaume I, Spain; Westfälische Wilhelms-Universität Münster,
Germany; and Universidade Nova de Lisboa, Portugal for awarding me the
scholarship to undertake this master’s course.

I am pleased to extend my sincere thanks to Prof. Dr. Joaquin Huerta, Mrs.
Dolores C. Apanewicz, Dr. Christoph Brox, and Prof. Dr. Werner Kuhn for their
support and hospitality during my stay in Germany and Spain. I also thank my
fellow classmates and friends for sharing their knowledge and giving me
inspirations during the past eighteen months. I am also grateful to members of
Institute for Geoinformatics for their warm friendship.

I also would like to thank Hadoop User groups and Hadoop mailing list for their
detailed replies and advices.

Finally, my heartfelt gratitude goes to my parents Beyene Tesfamariam and
Weini Zekarias who raised me with endless love and values.

ii

Abstract

Advances in sensor technology and their ever increasing repositories of the
collected data are revolutionizing the mechanisms remotely sensed data are
collected, stored and processed. This exponential growth of data archives and
the increasing user’s demand for real-and near-real time remote sensing data
products has pressurized remote sensing service providers to deliver the
required services. The remote sensing community has recognized the challenge
in processing large and complex satellite datasets to derive customized
products. To address this high demand in computational resources, several
efforts have been made in the past few years towards incorporation of high-
performance computing models in remote sensing data collection, management
and analysis. This study adds an impetus to these efforts by introducing the
recent advancements in distributed computing technologies, MapReduce
programming paradigm, to the area of remote sensing.

The MapReduce model which is developed by Google Inc. encapsulates the
efforts of distributed computing in a highly simplified single library. This simple
but powerful programming model can provide us distributed environment
without having deep knowledge of parallel programming. This thesis presents a
MapReduce based processing of large satellite images a use case scenario of
edge detection methods. Deriving from the conceptual massive remote sensing
image processing applications, a prototype of edge detection methods was
implemented on MapReduce framework using its open-source implementation,
the Apache Hadoop environment. The experiences of the implementation of the
MapReduce model of Sobel, Laplacian, and Canny edge detection methods are
presented. This thesis also presents the results of the evaluation the effect of
parallelization using MapReduce on the quality of the output and the execution
time performance tests conducted based on various performance metrics. The
MapReduce algorithms were executed on a test environment on heterogeneous
cluster that supports the Apache Hadoop open-source software. The successful
implementation of the MapReduce algorithms on a distributed environment
demonstrates that MapReduce has a great potential for scaling large-scale
remotely sensed images processing and perform more complex geospatial
problems.

iii

Contents
Acknowledgements ... i

Abstract .. ii

List of Figures ... vi

List of Tables.. vii

List of Listings ... viii

List of Acronyms ... ix

CHAPTER 1 Introduction .. 1

1.1 Background .. 1

1.1.1 Distributed Computing Technologies ... 2

1.1.2 Distributed Remote Sensing Image Processing.. 3

1.2 Research Objectives ... 5

1.3 Research Questions .. 6

1.4 Thesis Structure ... 6

CHAPTER 2 Fundamentals .. 9

2.1 Remote Sensing Data ... 9

2.2 Remote Sensing Image Processing ... 11

2.2.1 Convolution based image transformation ... 12

2.2.2 Edge Detection ... 13

2.3 Distributed Systems ... 17

2.4 MapReduce Programming Model .. 18

2.4.1 Basic concepts of MapReduce ... 18

2.4.2 Parallelism in MapReduce .. 19

2.4.3 Fault tolerance ... 19

2.4.4 Comparison to other systems .. 20

2.5 Apache Hadoop .. 21

2.5.1 Hadoop Distributed File System ... 22

2.5.2 Hadoop Data Input and Output ... 22

iv

2.5.3 Hadoop Mapper and Reducer .. 23

CHAPTER 3 Design of MapReduce based Remote Sensing Image Processing 24

3.1 Overview of Components .. 25

3.2 Data Input and Output ... 27

3.3 Data Splitting and Merging .. 28

3.4 MapReduce functions .. 29

3.4.1 Mapper ... 30

3.4.2 Combiner .. 32

3.4.3 Reducer .. 32

3.5 MapReduce Driver ... 33

CHAPTER 4 Implementation... 34

4.1 Extending Hadoop API .. 34

4.2 Edge Detection Algorithms .. 37

4.2.1 Sobel edge detection ... 37

4.2.2 Laplacian edge detection ... 37

4.2.3 Canny edge detection .. 38

4.3 MapReduce functions .. 39

4.3.1 Mapper ... 39

4.3.2 Combiner .. 40

4.3.3 Reducer .. 40

4.4 MapReduce Driver ... 41

CHAPTER 5 Evaluation .. 43

5.1 Testing Environment .. 43

5.2 Test Datasets .. 45

5.3 Qualitative Evaluation .. 46

5.3.1 Sobel method ... 46

5.3.2 Laplacian method ... 47

5.3.3 Canny edge detection method ... 48

5.4 Performance Tests ... 50

5.4.1 Dependency on number of nodes .. 53

v

5.4.2 Dependency on size of the data ... 55

5.4.3 Performance based on Neighborhood size .. 58

5.4.4 Dependency on number of mappers and reducers 58

CHAPTER 6 Conclusions and Future Works ... 60

6.1 Conclusions .. 60

6.2 Future Works.. 62

Appendices ... 64

References ... 65

vi

List of Figures
Figure 1-1 Thesis structure .. 8

Figure 2-1: A Convolution operation for image filtering [Schowengerdt, 2007]. 12

Figure 2-2: 1st spatial derivative and 2nd order spatial derivative of 1-D signal. 14

Figure 2-3: A horizontal and vertical Sobel filter kernels .. 15

Figure 2-4: Commonly used Laplacian filters. .. 15

Figure 3-1 Simpliefied view of the MapReduce process for image processing................... 26

Figure 3-3: RasterRecordReader that extends Hadoop's RecordReader interface. 28

Figure 3-4: Input image splitting strategy to handle border pixels for a 3x3 filter. 29

Figure 3-5: Implements of Mapper and Reducer. ... 30

Figure 3-6: Sequence diagram for the map phase. ... 31

Figure 3-7: Sequence diagram for the reduce phase. .. 33

Figure 4-1: Sobel operator class diagram. .. 37

Figure 5-1: Test environment setup. .. 44

Figure 5-2: Band 4 Landsat image (courtesy of the U.S.G.S.) ... 45

Figure 5-3: Edges detected by Sobel method .. 47

Figure

 5-4: Edges detected by Laplacian filter with 3x3 kernel (left) and 5x5 kernel
(right) .. 48

Figure

 5-5: Edges detected by Canny method with Gausian filter of (a) σ=1, kernel
size=3, (b) σ=1.4 kernel size=7, (c) σ=2.0 kernel size=9 (d), and σ=2.5 kernel
size=16. ... 49

Figure

 5-6: Edges detected using Canny method by quantiles parameterization of
thresholds (left) and by fixed Thigh=0.8, Tlow=0.3 thresholds (right). 50

Figure 5-7: A screenshot of Jobtracker page at Hadoop web based interface. 52

Figure 5-8: Computation performance for the Sobel, Laplacian, and Canny methods. ... 53

Figure 5-9: Speed up ... 54

Figure 5-10: Efficiency ... 55

Figure 5-11: Scaleup .. 56

Figure 5-12: Sizeup for the Canny method. ... 57

Figure 5-13: Performance of Canny method with varying Gaussian filters kernel size. . 58

Figure

 5-14: Computation time breakdown with increasing number of mappers for the
Canny method. ... 59

vii

List of Tables
Table 2-1: Landsat Satellites band characteristics [NASA, 2010]. .. 11

Table 5-1: Test environment system hardware information ... 44

Table 5-2: performance of the Canny method with increasing data size. 57

viii

List of Listings
Listing 2-1: Definition of map and reduce functions. .. 19

Listing 4-1: Hadoop's RecordReader interface expanded to deal with images. 36

Listing 4-2: Canny edge detection method .. 38

Listing 4-3: mapper for edge detection ... 39

Listing 4-4: reducer for merging image tiles ... 41

ix

List of Acronyms
API Application Programming Interface

CCA Common Component Architecture

CDH2 Cloudera Hadoop 2

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DFS Distributed File System

DN Digital Number
EC2 Amazon Elastic Compute Cloud

ETM+ Enhanced Thematic Mapper Plus

EOSDIS Earth Observation System Data and information System

EROS Earth Resources Observation and Science

GEOTIFF Geographic Tag Image Input Format

GFLOPs Giga Floating Point Operations Per Second

GFS Google File System

GSFC Goddard Space Flight Center

G-POD Grid Processing on Demand

GPU Graphic Processing Unit

GRASS Geographic Resources Analysis Support System

HDFS Hadoop Distributed File System

I/O Input Output

JDAF Java Distributed Application Framework

LAN Local Area Network

MPI Message Passing Interface

MPMD Multiple Program Multiple Data
MR MapReduce

NASA National Aeronautic Space Agency

OpenCL Open Compute Language

OpenMP Open Multi-processing

QGIS Quantum GIS

SARA Synthetic Aperture Radar Atlas

x

SPOT Satellite Pour l'Observation de la Terre

SPMD Single Program Multiple Data

TIFF Tag Image Input Format

TM Thematic mapper

URI Uniform Resource Identifier

USGS United States Geological Survey

WAN Wide Area Network

1

Chapter 1 Introduction

The research carried out in this thesis covers the topic of high performance
computing in the field of remote sensing to address the computational
requirement for processing of large remote sensing images. This chapter
discusses the background and rationale of the research in relation to previous
research efforts. Based on the rationale and identified research problems the
objectives and the research questions that is research addresses are presented.
Finally, the last section gives an overview of the organization of the thesis.

1.1 Background

Nowadays, with the wide support for spatial data sharing, more and more
remotely sensed images are becoming publicly available where users can
download them freely. Analyzing of these remotely sensed images requires high
speed network connection for downloading them and powerful storage and
computing resources for local processing [Shen et al., 2006; Teo, 2003].
Therefore it might be more efficient to process satellite images remotely,
preferably on a high-performance computer server that are close to the data
servers [Hawick et al., 2003]. However, as satellite images continue to increase
rapidly in size and complexity due to increase in spatial and temporal
resolution, it becomes difficult to seamlessly access and process them using the
state-of-the-art services where processing is done on a stand-alone, centralized
processing server.

In this context, infrastructures that employ distributed computing resources can
be a potential to provide the required computational power for scaling data
processing in remote sensing applications [Aloisio and Cafaro, 2003; P. Votava et
al., 2002]. Distributed computing infrastructures are suitable to store large-
scale data like satellite images that have to be written only once and read
frequently. The systems in distributed infrastructure can be and heterogeneous
and do not need to be dedicated processing resources where their primary
purpose can be other tasks and that makes it a low-cost supercomputing
resource.

Within the framework of the aforementioned technologies the emerging
distributed computing paradigm, MapReduce programming model, provides a

2

potential for large-scale processing of satellite images on clusters of commodity
computers. MapReduce is highly simplified distributed programming model for
easy programming of applications that aim to process huge datasets in a parallel
mode [Dean and Ghemawat, 2008]. MapReduce based large scale and high
performance distributed services has gained a wide support from industrial
sector through the Apache Hadoop open-source implementation and is recently
gaining attention from the scientific community. The following two sections will
briefly introduce the concept of Distributed computing technologies and
satellite images processing, while the detail of parallel and distributed
computing systems and MapReduce programming basics is covered in Chapter
2.

1.1.1 Distributed Computing Technologies

Distributed computing is a type of computing that deals with applications that
run simultaneously on distributed systems that communicate through computer
network in order to solve massive computational problems. Tanenbaum and
Steen have defined a distributed system as “a collection of independent
computers that appears to its users as a single coherent system” [Tanenbaum and
Steen, 2007]. The main driving force for the development of distributed
computing is the requirement for high-performance computing resources for
solving massive scientific computational problems, which led to the idea of
dividing the problems into smaller tasks to be processed in parallel across
multiple computers [Allan et al., 2006]. The development of computing and
high-speed network infrastructures in the past few years has also made it
possible for distributed computing systems to provide a coordinated and
reliable access to high performance computational resources.

Distributed computing can be classified broadly into types. The first is high-
performance computing on parallel heavy-duty systems that provide access to
large-scale computational resource and are common for computationally
intensive applications[Silva, 2006]. These resources involve high investment
cost and are usually limited at few institutions and research centers. Another
distributed computing solution is that is becoming increasingly popular recently
is to perform computations on clusters of low-cost commodity computers
connected over high speed network. The advances in high-speed network
communications and its inexpensive availability made this trend more practical
over expensive parallel supercomputers.

MapReduce programming model harnesses most of the requirements of
distributed computing while hiding the intricate system-level details and
providing highly-simplified abstractions [Ghemawat et al., 2003; Pike et al.,
2005]. MapReduce is designed to enable automatic parallelization and

3

distribution of large-scale data computations to achieve high-performance on
clusters of low-cost commodity servers [Dean and Ghemawat, 2008; 2010]. This
scale-out approach is perhaps the most notable feature of the MapReduce
paradigm which makes it easy to develop highly scalable parallel applications
[Lin and Dyer, 2010]. Several tests done by companies such as Google, Yahoo,
New York Times etc demonstrated through their MapReduce implementation
that the MapReduce programming model can achieve world record
performance [White, 2009].

The MapReduce programming model is also a highly transparent framework as
it effectively hides the details of fault-tolerance, data distribution, replication
and load balancing while still able to handle failures and redundancy
automatically [Dean and Ghemawat, 2008]. Since, many data-intensive
computations do not require high processing power it is preferable for the
computations to be done on the data side which saves transferring of massive
datasets over the network. With this philosophy as its core principle,
MapReduce is therefore creatively built on the top of a distributed file system,
which takes advantage of data locality to perform the computation close to the
data server [Dean and Ghemawat, 2010]. This is discussed in detail in section
2.4. These qualities of the MapReduce programming model make it an excellent
candidate for processing of massive datasets such as satellite images where
both computation and memory requirement are often expensive.

1.1.2 Distributed Remote Sensing Image Processing

Remote sensing technologies especially satellite images have a wide range
applications in many areas including meteorology, global change detection and
monitoring, minerals and oil exploration, natural resources management,
agriculture, environmental assessment and monitoring, disaster and relief,
military surveillance etc [Schowengerdt, 2007]. Those satellite Images are
exponentially growing in size and complexity as the spatial, spectral and
temporal resolution of the satellite sensors continue to develop rapidly. For
example NASA’s Earth Observing System Data and Information System
(EOSDIS) ground stations currently receive in excess of 2 terabytes of satellite
data transmitted daily from various satellite missions and an excess of 4
petabytes of earth science data products are currently archived [Behnke et al.,
2005; NASA, 2007]. This growth in acquisition technology has a put very
important impetus for the amount and quality of the satellite images that are
available to the geosciences community.

Along with this development comes the challenge of managing those massive
satellite image databases for storage, access, processing and distribution in
order to make it easily available to the users [Petr Votava et al., 2002]. The

4

computational resources needed for processing such large volume of satellite
images often exceeds those available in stand-alone centralized servers and
can’t satisfy today’s real- and near real-time requirement for image processing.
This leads to the need for looking of other solutions such as grid or cluster
computing.

A great deal researches and projects exist concerning parallel and distributed
processing of remote sensing data. A prominent example is the Beowulf Cluster
of NASA’s Goddard Space Flight Center (GSFC) which uses commodity
computers to build a cluster for remote sensing data processing calculations
that exceeds a peak performance of 2457.6 GFLOPs [Plaza and Chang, 2008;
Sterling et al., 1995]. Another project which involves distributed systems
framework implementation is the Common Component Architecture (CCA)
which is used as a plug-and-play environment for construction of climate,
weather, and ocean applications. It is implemented through the Ccaffeine
framework to support single program multiple data (SPMD) and multiple
program multiple data (MPMD) programming models [Allan et al., 2006].

Among the many projects that involve the use of grid computing technology for
high performance satellite data processing is the European Space Agency’s
Earth Observation Grid Processing on Demand (G-POD) that implements the
layered approach based on the Grid-ENGINE which interfaces the application
layer with different Grid middleware [Cossu et al., 2009]. SARA/Digital Puglia
(Synthetic Aperture Radar Atlas), is also another remote sensing application
that demonstrates the application of grid technologies and high performance
computing to build dynamic earth observation systems for the management and
processing of large amount of satellite data [Aloisio and Cafaro, 2003]. This grid
implementation is based on Globus Toolkit grid middleware and enables users
to browse the available satellite data in distributed repositories through
sophisticated resource brokers and start on-demand parallel processing on
remote computational grids.

Votava et al (2002) have also demonstrated the development a flexible and
extensible java based distributed framework, the Java Distributed Application
Framework (JDAF), specifically designed for parallel and distributed processing
of remote sensing data with flexibility and performance as its main goal.
Reliability can also be included as part of this framework considering the
reputable fault-tolerance capability of Java programming language. However,
the authors do not believe that the Java programming language is matured
enough for high performance computing of large amounts of remote sensing
data.

5

The MapReduce programming model is a relatively new paradigm in the area of
distributed computing which has only gained popularity in the area of academia
recently and therefore only a handful of researches are available especially in
the area of Geographic Information Systems and Remote Sensing. Rather much
of the input has been from the industry sector. A noteworthy work has been
done by Winslett et al. on parallel processing of spatial datasets using the
MapReduce programming model [Winslett et al., 2009]. The research focused
how the MapReduce framework can be applied for massive parallel processing
of both vector and raster data representations and it achieved a reasonable
performance using MapReduce and the its open-source implementation – the
Hadoop framework. Another interesting work that has been done recently is the
adoption of image coaddition algorithms to MapReduce for the purpose of
astronomical images processing where they used Hadoop’s API to implement
their algorithms [Wiley et al., 2010]. [Golpayegani and Halem, 2009; Lv et al.,
2010] have also made an effort to implement some satellite image processing
algorithms Hadoop’s MapReduce model but they did not use the image files as a
raw input to be processed by MapReduce, rather the satellite images were first
converted into text format then to binary format before being processed in
Hadoop environment. It is therefore obvious that the preparation of data will
consume much of the computation time than the actual processing of the images
especially with large multi dimensional images [Golpayegani and Halem, 2009].
In this study it is proposed to extend Hadoop’s file management API so that it
can take images as an input and that might significantly reduce the execution
time.

1.2 Research Objectives

The core aim of this study is to investigate how the processing of large satellite
images can benefit from distributed computing environment through massive
parallelization. The study evaluates different parallelization approaches of the
processing algorithms for efficient and scalable computations with primary
focus on massive data parallelization. In this study the MapReduce
programming model is proposed as a framework for parallel processing of
remote sensing images and its features such as fault-tolerance, scalability,
replica management and distributed output checking that make this approach
suitable are explored. The research addresses how the MapReduce
programming model can be applied and tuned to process large satellite images.
The research implements various spatial transformation algorithms for
enhancement and detection of edges from multispectral Landsat satellite images
as a prototype. The research also experimentally evaluates and quantifies the
performance of the algorithms in their execution time, scalability, and quality of

6

output images for the different use-case scenarios on normal commodity
hardware. The effort is mainly directed towards the minimization of the
computation time of the algorithms and to describe and discover and describe
the optimal data parallelization and communication scheme for heterogeneous
network of computers.

1.3 Research Questions

The hypothesis presented in this master's thesis is that processing of large
satellite images can benefit from distributed computing and the following are
the main research questions of this study:

1. Can performance of large satellite image processing be augmented
through implementation on a distributed environment?

2. What are the requirements to implement distributed processing of
satellite images using the MapReduce programming model?

3. What is the performance of the MapReduce processes compared to
sequential processes?

4. How do the different edge detection algorithms perform in a distributed
environment?

5. Which data partitioning and communication scheme is preferred in
order to be executed concurrently?

1.4 Thesis Structure

A brief outline of the chapters that follow in this thesis is discussed below. These
chapters are structured to cover the entire spectrum of the research (Figure
1-1).

Chapter2: Fundamentals

This chapter reviews the state-of-art techniques of processing of remotely
sensed images their mathematical properties and a prototype of edge detection
methods is presented. Some main ideas are drawn from these concepts in order
to develop an application that exploits the ease of the MapReduce without
compromising the quality of the final product. This chapter also reviews the
common distributed systems architecture and the current technology and trend
of distributed systems. It also covers fundamentals of the MapReduce
programming paradigm and the existing features of Apache Hadoop Framework
and also the key factors for a successful distributed implementation using
Hadoop environment.

7

Chapter 3: System Design

This chapter discusses the design considerations and requirements for
successful implementation of remote sensing image processing algorithms on
distributed environment using MapReduce. This chapter harnesses the image
processing component to the implementation component of this study by
following standard application design frameworks in order to achieve the
desired performance.

Chapter 4: MapReduce Implementation of Satellite Image Processing

In this chapter the actual implementation of the satellite image processing
algorithms of the prototype of edge detection methods based on the framework
designed in the previous chapter and the underlying implementation details are
described. This includes the description of how the edge detection algorithms
are adopted to the MapReduce model and the various optimization strategies
used are explained.

Chapter 5: Performance Evaluation

This chapter starts with the description of the test environment setup and the
physical configurations followed by the description of the dataset that is going
to be used in this test. It then presents the various experiments conducted and
evaluation results of the prototype algorithms on the distributed environment.
The benchmarking with respect to the sequential methods and strengths and
limits of MapReduce found during the experiments are described. The
experiments also evaluate the performance of the algorithms in terms of
dependency to size of datasets and data splitting mechanisms.

Chapter 6: Conclusion and Future works

This final chapter concludes the work by providing a summary and a short
outlook of the chosen approach. It includes recommendations and further
trends on the application of MapReduce for distributed processing of large
remote sensing images.

8

Statement of objectives
and research questions

Chapter 2

Chapter 1

Framework of MR based distributed
processing of large remote sensing

images

System implementation of proposed
MR based framework for the

prototype remote sensing algorithms

Evaluation of the algorithms on a
distributed infrastructure

Remote Sensing Image
processing

Distributed computing
technologies

MapReduce framework &
existing middleware

A prototype of remote
sensing image

processing algorithms

Chapter 3

Chapter 5

Chapter 4

Figure 1-1 Thesis structure

9

Chapter 2 Fundamentals

This chapter introduces the basic concepts of distributed remote sensing image
processing which are essential for understanding this study and can roughly be
grouped in to two main parts. The two sections give a general overview of
remote sensing data characteristics and the state-of-art remote sensing image
processing techniques respectively. A theoretical background of the edge
detection methods which are going to be implemented as a prototype in this
thesis are also presented in the second section. In the second part, the basic
ideas of distributed systems and parallel computing is discussed in the third
section followed by a discussion on the detailed overview of a special kind of
distributed system framework, the MapReduce programming model, in the
subsequent section. Finally the open-source MapReduce implementation,
Apache Hadoop software, is presented in the last section. Some main ideas are
drawn from these concepts in order to develop an application that exploits the
ease of the MapReduce without compromising the quality of the output product.

2.1 Remote Sensing Data

Over the past few decades, remote sensing data especially acquired by satellite
sensors, have been playing a major role in studying the earth’s surface
efficiently and consistently for a wide range of applications. One of the chief
advantages of these remote sensing data is its availability in digital format in the
form of two-dimensional images which allow us to easily process and
manipulate them on computers [Richards and Jia, 2006]. Cost effectiveness,
repetitive coverage and wide-ranging applicability are also some of the other
advantages of remote sensing data compared to other forms of data collected
through methods such as ground-based acquisition methods.

Remote sensing data are usually represented in raster format as discrete three
dimensional data space with the two coordinates representing spatial extent
and the third spectral wavelength recorded as Digital Number (DN). The
characteristics of a remotely sensed data principally depend on the nature of the
corresponding sensor that determines the image resolution which can mean the
spectral resolution, spatial resolution, radiometric resolution or temporal
resolution [Schowengerdt, 2007].

10

The spatial resolution specifies the dimension on the earth’s surface that is
covered by a single pixel in the acquired image and the higher spatial resolution
of sensors the more detailed the acquired image and the smaller is the area
covered by a single pixel [Lillesand and Kiefer, 2001]. The other significant
characteristic of a remote sensing sensor is the spectral resolution used in the
image acquisition process. A sensor’s spectral resolution specifies the number of
bands that a particular sensor can acquire.

Resolution can also mean the radiometric resolution of the sensor, usually
expressed as bits per pixel, which indicates how the continuous data
measurement is quantized into binary numbers. For example, sensors Thematic
Mapper (TM) and SPOT have a radiometric resolution of 8 bits per pixel while
Aqua MODIS and most hyperspectral sensors have 12 bits per pixel
[Schowengerdt, 2007]. These three fundamental characteristics determine the
amount of data that is generated by a sensor and understanding them is
significant for the proper design of image processing algorithms.

If we look for example at the U.S. Geological Survey’s (USGS) Earth Resources
Observation and Science (EROS) data center where remote sensing data from
various satellite sensors is preprocessed, archived and distributed as public
domain. The Landsat data alone comprises more than 1 petabyte of archive
composed of about 2.34 million scenes which is growing by 300 gigabytes daily
[NASA, 2010]. The Landsat program began in 1971 with the launch of Landsat1
and was followed by a series of more advanced satellites until Landsat 7 was
launched in 1999.

The Landsat7 satellite carries the Enhanced Thematic Mapper Plus (ETM+)
instrument which comprises eight bands [Parkinson et al., 2006]. Bands 1 to
band 7 have a spatial resolution of 30meters while the spatial resolution of the
thermal band (band 6) has increased from 120meters of Landsat 4 and 5’s
Thematic Mapper to 60meters. A visible panchromatic band of 15meters
resolution was also introduced on ETM+ as an eights band (Table 2-1). The
Landsat7 takes images of the Earth’s surface by dividing it into 28,892 path/row
scenes each scene of 183km X 170km coverage on the ground, and repeats any
given area of the planet once every 16 days [Goward et al., 2001]. The
radiometric resolution all the bands of ETM+ is 8 pixels per bit and spatial
resolution 30 meters except for the thermal band 6 and 8 where the resolution
is 60 and 15meters respectively. From this information we can estimate the
images generated by one scene of Landsat ETM+ have an uncompressed size of
more than 280 Mbytes.

11

Table 2-1: Landsat Satellites band characteristics [NASA, 2010].

Satellite Sensor Bandwidths (µm) Bits per
pixel

Resolution
(m)

LANDSATs 4-5 MSS (4) 0.5 – 0.6 7 82
 (5) 0.68 – 0.7 7 82
 (6) 0.7 -0.8 7 82
 (7) 0.8 – 1.1 6 82

 TM (1) 0.45 – 0.52 8 30
 (2) 0.52 – 0.60 8 30
 (3) 0.63 – 0.69 8 30
 (4) 0.76 - 0.90 8 30
 (5) 1.55 - 1.75 8 30
 (6) 10.4 – 12.5 8 120
 (7) 2.08 – 2.35 8 30

LANDSAT 7 ETM+ (1) 0.45 – 0.52 8 30
 (2) 0.52 – 0.60 8 30
 (3) 0.63 – 0.69 8 30
 (4) 0.76 - 0.90 8 30
 (5) 1.55 - 1.75 8 30
 (6) 10.4 – 12.5 8 60
 (7) 2.08 – 2.35 8 30
 (8) PAN 0.50 to 0.90 8 15

2.2 Remote Sensing Image Processing

Remote sensing image processing is concerned with the extraction of
measurements and information from images using various algorithms and
usually involves mathematical treatment to analyze complex scenes. Image
processing algorithms may be categorized into two kinds of transformations
according to the space in which they operate: spectral transformation and
spatial transformation [Schowengerdt, 2007]. Transformations based on the
image data space (such as contrast enhancement and histogram equalization)
that alter the spectral space of an image are called spectral transformations and
these techniques are commonly applied in radiometric enhancements. These
transformations are characterized by generating new pixel values based on
mathematical operation on the existing pixel value and doesn’t depend on the
neighboring pixels therefore they are sometimes referred as point or pixel-
specific operations [Richards and Jia, 2006]. While transforms purely on the
image plane modify the spatial information of a pixel by computing the new
pixel value based on the surrounding pixels. Some of these transforms are local
in nature (e.g. Convolution) which use only local image information within a
small neighborhood of a pixel, while other spatial transforms use global spatial
information of the image (e.g. Fourier Transform) to compute the resultant
images. There are also image transformations that use both the global and local

12

information of an image such as the Wavelet transform and the Gaussian and
Laplacian pyramids [Schowengerdt, 2007].

2.2.1 Convolution based image transformation

Convolution operation is one of the fundamental techniques in remote sensing
image analysis and is most commonly used in image smoothing and blurring,
edge detection and morphological processing [Richards and Jia, 2006].
Convolution operators use a single grey-scale image as an input and generate
another grey-scale image as output. The convolution operator uses a moving
kernel over the input image and it modifies the pixels that fall within that
kernel. The kernel is usually positioned with its center at the pixel to be
processed, and then this kernel is shifted one pixel along the row of the image to
process the next pixel. Upon reaching the end of the row of the image the kernel
moves down to the next row and the process is repeated (Figure 2-1).
Mathematically the output g of a two dimensional discrete convolution
operation of an impute image f can be represented as a weighted sum of pixels
within a moving kernel w of size Nx × Ny [Schowengerdt, 2007].

𝑔𝑔𝑖𝑖𝑖𝑖 = � � 𝑓𝑓𝑚𝑚𝑚𝑚𝑤𝑤𝑖𝑖−𝑚𝑚,𝑗𝑗−𝑛𝑛

𝑁𝑁𝑦𝑦−1

𝑛𝑛=0

𝑁𝑁𝑥𝑥−1

𝑚𝑚=0

Equation 2-1

Where m and n are the rows and columns of an input image respectively.

Figure 2-1: A Convolution operation for image filtering [Schowengerdt, 2007].

13

Generally, when in applying convolution operations using different sizes of
kernels it is usually difficult to directly apply filtering on the border images
because those pixels are the last rows and columns of the input image, they do
not have neighborhood pixels on one of their sides. This is especially
cumbersome when we try to apply parallel processing of images by splitting the
input image into smaller chunks. There are several techniques described by
[Schowengerdt, 2007] to compute those border pixel values to make the output
image the same size as the input image which are discussed in detail in Ch. 4.

The discrete convolution operation is usually computationally expensive as it
consist a set of multiplications and additions for each pixel output. The
calculation of a single pixel involves not just the input pixel only but also
information from the neighboring pixels by calculating multiplying each entry
pixel of the input pixel with the respective kernel [Chiarabini and Yen, 1998]. To
calculate a single pixel, the number of multiplications needed is equal to the size
of the kernel. For example, a convolution operation an image of 1024×1024 size
by a kernel of 3×3 dimension will involve (3×1024)2 multiplications [Richards
and Jia, 2006].

Many image enhancement and edge detection algorithms in digital image signal
processing applications usually use convolution operations with wider kernels
which usually depend on computationally expensive code sections involving
repetition of sequences of operations [Bräunl, 2001]. These applications are
generally are suitable for fully parallel implementation to improve the overall
exaction time of the filter operations.

2.2.2 Edge Detection

The delineation and extraction of features from remote sensing image is an
important task useful for a wide range of application fields such as object
recognition, image segmentation, data compression, land-water border
delineation etc. Edges in an image are signified by a significant image intensity
change which represents important object features and boundaries between
objects in an image. Edge detection therefore has an ubiquitous interest in the
field of image processing and is a fundamental pre-processing stage of feature
extraction from remote sensing images [Heath et al., 1998]. It is mostly done by
applications that depend on local operators using convolution filters which can
be a very slow process for several instances of processing large images.

There are many ways to perform edge detection using the convolution
operation. However, the majority of the different edge detection methods may
be grouped into two categories, first-order derivatives and second- derivatives
[Drewniok, 1994]. The first-order derivative, commonly called gradient method,

14

denotes methods that involve filters such as Roberts, Prewitt and Sobel
operators and detects the edges by searching for the maximum and minimum
values in the first derivative of the input image Fig 2. The second-order
derivative, the Laplacian method, searches for zero crossings in the second
derivative of the image to find edges [Marr and Hildreth, 1980]. If we consider
an edge has one-dimensional slope of change in intensity and calculating the
derivative of the original image can highlight the region of high intensity change
(Figure 2-2). All these edge detection algorithms involve a single or multiple
convolution filter kernels that can be of different sizes and the coefficients of
these filter kernels always sum up to zero.

Figure 2-2: 1st spatial derivative and 2nd order spatial derivative of 1-D signal.

Sobel edge detection

The Sobel operator applies a 2-D spatial gradient measurement on an image
represented by the equation below [Kittler, 1983]. It is typically used to find the
approximate absolute gradient magnitude at each point in an input grayscale
image. The discrete representation of the Sobel operator can be approximated
by a pair of 3x3 convolution kernels (Figure 2-3), one estimating the gradient in
the x-direction (columns) and the other estimating the gradient in the y-
direction (rows). The GX kernel highlights the edges in the horizontal direction
while the GY kernel highlights the edges in the vertical direction [Fisher et al.,
1996]. The magnitude |G| of both outputs detects edges in both directions which
is the brightness value of the output image.

𝐺𝐺𝑥𝑥 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝐺𝐺𝑦𝑦 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

Equation 2-2

15

Figure 2-3: A horizontal and vertical Sobel filter kernels

|𝐺𝐺| = �𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2

Equation 2-3

Laplacian edge detection

The Laplacian edge enhancement method is a second-order derivative of an
image and it is applied by convolving the non-directional Laplacian filter. The
second order derivative an edge will have a zero crossing in the region where
there is the highest change in intensity [Wang, 2009]. Therefore the location of
the edge can be obtained by detecting the zero-crossings of the second-order
derivative of the image and this is known as Laplacian filter which is an effective
detector for non-sharp edges where the pixel intensity level change over space
slowly [Torre and Poggio, 1986]. A single filtering kernel of different sizes (e.g.
3x3, 5x5, 7x7, etc.) that has low values (usually negative) in the middle of the
kernel surrounded by positive values can be used as Laplacian edge
enhancement (Figure 2-4). Because the Laplacian is an approximation of the
second-order derivative of an image preserving the high frequency components,
it is very sensitive to noise and therefore it is usually applied to an image that
has first been smoothed using the Gaussian filter in order to suppress noises in
the image [Fisher et al., 1996].

Figure 2-4: Commonly used Laplacian filters.

Canny edge detection

The Canny edge detection is considered as the optimal and standard edge
detector [Drewniok, 1994]. This multi-step method which was developed by

16

[Canny, 1986] with the aim to develop an optimal algorithms that satisfies three
main criteria. The first one is good edge detection by maximizing the signal-to-
noise ratio meaning the method should detect edges to the maximum possibility
but with low probability of detecting edges falsely. The second criterion is that
detected edges should be as close as possible to the real edges. The third
criterion is to have minimal number of response and edges should not be
detected more than once [Canny, 1986]. To satisfy these criteria, the algorithm
can be performed in the following four separate steps.

1. Smoothing: this step involves smoothing the image using a Gaussian filter to
suppress the noise and the degree of smoothing is controlled by the standard
deviation σ of the Gaussian filter.

𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 𝐺𝐺𝜎𝜎(𝑥𝑥, 𝑦𝑦) ∗ 𝑓𝑓(𝑥𝑥,𝑦𝑦)

Equation 2-4

Where * denotes convolution and

𝐺𝐺𝜎𝜎(𝑥𝑥,𝑦𝑦) =
1

2𝜋𝜋𝜎𝜎2 𝑒𝑒
[−𝑥𝑥

2+𝑦𝑦2

2𝜎𝜎2]

Equation 2-5

The two dimensional Gaussian kernel can be made first by independently
convolving a one dimensional Gaussian kernels in the horizontal and vertical
directions and then multiplying them which makes it more suitable for
computation.

𝐺𝐺𝜎𝜎(𝑥𝑥,𝑦𝑦) = 𝐺𝐺𝜎𝜎(𝑦𝑦) ∗ 𝐺𝐺𝜎𝜎(𝑦𝑦)

Equation 2-6

2. Gradient magnitude and direction: the gradient magnitude of the image is
computed using any of the gradient operators (e.g. Sobel, Roberts, Prewitt) by
using Equation 2-3. And the direction of the gradient is calculated using the
equation below and the angle is rounded to the closest 0, 45, 90 or 135 degree
angle.

𝜃𝜃(𝑥𝑥,𝑦𝑦) = 𝑡𝑡𝑡𝑡𝑡𝑡−1 𝐺𝐺𝑥𝑥
𝐺𝐺𝑦𝑦

Equation 2-7

3. Non-maximum suppression: From the image gradient the local maxima are
identified as edges based on its direction and the non-maximum image
intensities are suppressed.

17

4. Thresholding by hysteresis: assuming that true edges are continuous,
thresholding is done with hysteresis which requires upper and lower threshold.
The upper threshold selects those edges that are strong. These edges are used
then to trace the weak edges while applying the lower threshold to suppress
those edges that weak and not connected to the strong edges. After completion
of this process, the final image output becomes a binary format.

There are two parameters in the Canny edge detection method that affect the
effectiveness of the algorithm and also the computation time. The first one is the
size of the Gaussian smoothing filter which set by the parameter standard
deviation σ of the Gaussian function and the greater the filter size the
computationally expensive the process and the stronger the smoothing effect on
the image. The second parameter is the high and low thresholds used for
hysteresis and these thresholds are a function of the smoothing filter
parameters, properties of the first- or second-order derivatives filter and the
edge characteristics [Ziou and Tabbone, 1993].

2.3 Distributed Systems

The main motivation for distributed computing is low-cost resource sharing for
speedup of large-scale computational problems and this is usually done through
interconnection of autonomous and geographically distributed computing
resources to provide a reliable access to high-end computation [Foster et al.,
2001; Joseph and Fellenstein, 2004]. Some of the main characteristics of these
distributed systems are: scalability, fault-tolerance, reliability, transparency,
concurrency etc [Coulouris et al., 2005; Kshemkalyani and Singhal, 2008]. The
most common distributed computing systems are cluster computing and grid
computing [Tanenbaum and Steen, 2007]. There distinction between is these
two systems is fuzzy but generally cluster computing represents to computing
systems with tightly coupled commodity computing nodes with the high-speed
local area network configurations. While in grid computing the systems are
usually heterogeneous computers with different network configurations,
administrative rights, operating systems etc [Tanenbaum and Steen, 2007].The
main reason behind the popularity cluster computers is the high prices of
supercomputers, the exponential growth of low cost processors, and the
availability of high-speed network connections [Abbas, 2007]. Computer
clusters are usually used for parallel programming for compute- or data-
intensive tasks. Here parallel computing means any computing resource that
runs a given task in parallel therefore even involves multi-processor machines.

18

2.4 MapReduce Programming Model

MapReduce is a parallel programming model for processing of large datasets on
clusters of low-cost commodity computers [Dean and Ghemawat, 2008]. The
model, originally introduced by Google, is developed on a well known principle
of “divide-and conquer model” in parallel programming and has since then
revolutionized the area of distributed computing. It is especially designed to
process very large datasets on large cluster of low-cost commodity computers
with unreliable communication and with the assumptions that storage is cheap
and network communication is expensive. MapReduce is developed with a basic
principles such as: the Scale-out (cluster of large number of desktops) rather
than scaling up (few powerful supercomputers) solutions with a viewpoint of
minimizing investment cost; moving computations to data to take advantage of
data locality; fault-tolerance and reliability through data replication and
distributed filing system; and hiding system-level details through clean
abstractions and automatic parallelization and distribution [Lin and Dyer, 2010].
In MapReduce by default the codes for dividing the work, controlling the
progress and merging the output is hidden from the application developer
inside the framework. This abstraction comes at the expense of control over
data flow and other the processes compared to grid computing APIs such as
MPI [White, 2009]. Therefore, not all applications can be easily implemented
using MapReduce. MapReduce is suitable for algorithms do not require global
synchronization as the map and reduce tasks run in isolation on the computing
nodes. However, algorithms such as clustering, machine learning and neural-
network algorithms are challenging to implement in MapReduce as they depend
on shared global state for intermediate communication during processing [Lin
and Dyer, 2010]. This research explores how much applicable is MapReduce to
remote sensing image processing algorithms and what are the bottlenecks to
transform sequential image processing algorithms to parallel mode.

2.4.1 Basic concepts of MapReduce

The MapReduce model, inspired by functional programming languages, allows
doing the computation of two distinct phases: the map and the reduce phase
[Dean and Ghemawat, 2008]. The input data is split to be represented as a set
key-value pairs which are processed in a parallel mode by the map phase to
generate another intermediate key-value pairs (Listing 2-1). Those intermediate
values are then processed produce the overall result. The map and reduce phase
occur in an explicitly sequential mode where a reducer on an input can not start
until the map phase finishes, but within these phases are executed in parallel
within themselves. The application programmer specifies the map and reduces
functions in the following representations:

19

The map function takes a list of values and a processing function as input. The
processing function is applied to every list element and an intermediate list of
processed results is returned as key-value pairs. These are intermediate results
are pushed to the reducers which also receives them as key-value pairs and
combines the values list to a final output result. One of the fundamental
properties of MapReduce framework is locality, i.e., it tries to execute map tasks
on the same machine as the physical location of the data. This property greatly
reduces communication over the network.

2.4.2 Parallelism in MapReduce

The map functions run in parallel independent of each other and in isolation
creating different intermediate values from different input data sets. These
reduce functions also run in parallel, each working on a different output key of
the intermediate values. The MapReduce framework takes care of supplying the
mappers and reducers with the necessary input data and manages the exchange
of intermediate results between the mappers and the reducers. But the reduce
phase can’t start until a map phase of an input split completely finishes [White,
2009].

2.4.3 Fault tolerance

Fault tolerance is one of the fundamental requirements of distributed systems
[Coulouris et al., 2005; Cristian, 1991; Tanenbaum and Steen, 2007], and a fault-
tolerant system must be able to transparently handle failures without affecting
the performance and quality of results as much as possible. Since, MapReduce is
designed to work on commodity servers, it is designed with the expectation that
failures occur frequently [Lin and Dyer, 2010]. In MapReduce framework of
Hadoop for example the master server automatically detects failures in worker
nodes and re-executes the task on completed map tasks or waiting reducers. It
also efficiently manages failures caused by corrupted files by skipping them
after they fail to execute several times[White, 2009]. The features enable
MapReduce to provide fine-grained fault tolerance where partial failures in a
job do not interrupt the overall progress of the job [Dean and Ghemawat, 2010].
This is particularly important if the input data are independent of each other

map (in_key, in_value) ->
 (out_key, intermediate_value) list

reduce (out_key, intermediate_value list) ->
 out_value list

Listing 2-1: Definition of map and reduce functions.

20

and a specific job with multiple data inputs needs a lot of time to complete as we
can achieve partial results even if the whole job did not complete successfully.

2.4.4 Comparison to other systems

MapReduce is not the first model to adopt the idea of data-intensive distributed
processing; most of the issues raised now by MapReduce have been dealt to
some extent efficiently by other models. But none of them enjoyed the
performance and attention that MapReduce has achieved due to many reasons
[Lin and Dyer, 2010]. This section provides a brief comparison of MapReduce to
other parallel and distributed programming models that share some similarity
with MapReduce.

Grid Computing

Similar to MapReduce, Grid computing technologies have been performing large
scale data processing focusing on performing computations by distributing the
work across several computers [White, 2009]. However, grid based platforms
are often build servers that use a shared file system, which is practical for CPU-
intensive computations but have many limitations when it comes to data-
intensive computations as data sharing is by sending-receiving messages
between the processes. This is the core difference between MapReduce and grid
computing [Schmidt, 2009]. Message Passing Interface (MPI), which is
considered as the lingua franca of distributed-memory applications, is
extensively used in grid computing. In MPI programming the programmer need
to implement mechanisms for work load partitioning, task mapping and failure
handling explicitly compared to MapReduce where often only the map and
reduce functions have to be implemented. [Lin and Dyer, 2010; White, 2009] has
made some comparison between grid computing and MapReduce there it is
stated that the main advantage of MapReduce over grid computing is data
locality and simplicity.

Shared-Memory parallel computing

Shared-memory programming such as Pthreads and Open Multi-Processing
(OpenMP) has been utilized both for scientific and industrial computing for
many years and is being considered by many as the most extensive model
compared to other parallel models [Karavakis, 2010]. OpenMP, which was
introduced to provide a shared-memory parallelism in C, C++, python and
FORTRAN, has become the platform of choice in shared-memory parallel
programming since it [Basumallik et al., 2007; Karavakis, 2010]. If we compare
it to MapReduce, it is much more generic and provides a variety of solutions and
is also more portable across different operating systems, architectures and

21

compilers. However, OpenMP is primarily designed for shared-memory systems
and its implementation for large-scale applications requires high investment
cost as it follows the scale-up approach. Besides, there have been some
successful attempts in implementing MapReduce on Shared-Memory
multiprocessors which achieved a reasonable performance [Ranger et al., 2007].

General Purpose Programming for Graphic Processor Units (GPGPU)

As graphic processing units have become more powerful with the primary
intention of rendering images close to realism, it has also received a
considerable attention from general purpose programmers to take advantage of
its massively parallel architecture [HARRIS, 2005; OWENS et al., 2007]. NVidia
and ATI have been the main GPU manufactures of GPUs with different rendering
power and programmability [Advanced Micro Devices, 2009; NVIDIA, 2010].
Compute Unified Device Architecture (CUDA) has been used as a standard
programming platform for many years with a wide array of applications and
recently with recent release of OpenCL programming language based
development platform by ATI for its GPU architectures the programmability of
GPUs have become more approachable.

An implementation the edge detection algorithms for large satellite images on
ATI GPUs using OpenCL have showed that a computational performance of
more than 20x can be achieved compared to a central processing unit (CPU) that
have 5x more memory bandwidth [Tesfamariam, 2010]. The main constraint of
GPU programming despite its high performance is that the applications
programmed on GPU are hardware architecture and vendor specific.
MapReduce have also been implemented on GPUs, in projects such as Mars [He
et al., 2008] achieving good performance. This work reveals the wide range
applicability of MapReduce programming model and computationally-intensive
applications can be implemented on small-scale computers.

2.5 Apache Hadoop

This study has implemented the remote sensing image processing algorithms
for distributed processing on commodity clusters using MapReduce model and
its open-source implementation, the Apache Hadoop. Hadoop is an Apache
Software Foundation project that includes various sub-projects in it including
the MapReduce implementation and Hadoop Distributed File System (HDFS)
which are similar to Google’s MapReduce and Google File System
implementations [Venner, 2009]. In this study, Hadoop indicates the
MapReduce programming model and execution environment along with the
distributed file system. HDFS is a highly fault-tolerant distributed file system

22

designed for storing very large files on clusters of commodity hardware nodes
[Noll, 2004-2010; White, 2009]. MapReduce is build on the top of this file system
but independently which consists of JobTracker and Tasktrackers which control
the job execution process[Mann and Jones, 2008].

2.5.1 Hadoop Distributed File System

HDFS is an open-source implementation of Google File System (GFS). Externally,
HDFS appears as an ordinary file system and files stored there can be deleted,
moved, renamed etc [Venner, 2009]. But actually it is stored distributed among
the data nodes. HDFS adopts a master/slave architecture in which the master, in
Hadoop’s case is the Namenode, provides the metadata service and access
permissions and the slaves which are the Datanodes serve as storage blocks for
HDFS. All the file operations of HDFS are controlled by the master server and
the HDFS can only be accessed through Hadoop’s. Large files stored in the
distributed system are divided into blocks and replicated over multiple
datanodes. The default block size of HDFS is 64MB but can be modified and files
which are less than the block size are not divided [Mann and Jones, 2008]. This
replication of files by HDFS is one of the core features of fault-tolerance and
redundancy in Hadoop. And the map processes are usually performed on these
data blocks on the data node which significantly reduces the amount of data that
need to be transferred over the network [Yao et al., 2009]. The data transfer to
and from HDFS which is done through Hadoop’s API does not pass through the
NameNode only metadata and log information is stored at the NameNode. Since
the NameNode is usually a single server, to avoid failures there is a
SecondaryNamenode that replaces the NameNode in case of failures. HDFS is
used to store files that are to be used as an input for the Map phase and the
results from the reduce phase; it does not store the intermediate results from
the map phase [Mann and Jones, 2008].

2.5.2 Hadoop Data Input and Output

Hadoop have its own set of primitives for data input and output formats and
simple model for processing of these data [White, 2009]. The InputFormat
interface defines how and from where the map phase should read the input files.
It also defines the InputSplits which splits the file into smaller chunks before
being represented as key-value pairs. Hadoop can read and process a wide
range of file formats such as text, binary, database etc formats through the base
class FileInputformat which generalizes other file formats. The FileInputFormat
contains methods to define which files are included as input and also an
implementation for generating splits through the InputSplits. Hadoop also gives

23

us an option to override the splitting of input data in case we do not want to
split the data [White, 2009].

It also has another class for data outputs, the OutputFormat, which act similar to
the InputFormat. The FileOutputFormat base class of OutputFormat is used to
provide a dedicated directory where the reduce phase writes the results of the
reduce tasks. This class also generates the output results in to the desired file
format after the reduce computation.

Another important feature of Hadoop for managing data input and output is the
RecordReader which provides data access mechanisms for the map phase by
reading the data from its source based on the computed splits and converting it
into key-value pairs. The RecordReader is an iterator over the record which is
invoked repeatedly until the entire input splits are completely consumed by the
mappers [Venner, 2009]. The default implementations of the above data I/O
components can be replaced with customized implementations to process the
desired input format, in our case image formats.

2.5.3 Hadoop Mapper and Reducer

As discussed in section 2.4.1, MapReduce is straightforward in its programming
principles. The programmer has to specify a map function where one map job is
performed in parallel on the file splits. Each input split generated by the
RecordReader is assigned to each map task and after the map function has been
applied to each input split the output is stored in local storage and the
Tasktracker that is residing at the DataNode notifies the JobTracker of the job
completion. After that the reducer pulls the groups of key-value pairs form the
mapper and merges these values to produce a single key-value pair. This pulling
principle is proposed by Google for more fault-tolerance and to avoid re-
execution of all map tasks if one task fails [Dean and Ghemawat, 2010].

Before the reducers start merging the results in parallel, the output key-value
pairs with the same key have to be grouped together in order for the reduce
merge them to the final output. In order this to be done shuffling of
intermediate results over the network is needed. This process shuffling process
may take a considerable time if there are a large number of unsorted
intermediate results. To minimize this communication over the network
Hadoop gives an option to use a function, Combiner function, that merges the
with-in the map result [White, 2009]. The Combiner function is an optional
optimization strategy which can be ignored if considered redundant.

24

Chapter 3 Design of MapReduce based Remote
Sensing Image Processing

The main focus of this study is to test the feasibility of distributed processing of
large satellite images using the MapReduce model to solve the problem of data
bulkiness. The approach is to apply parallelize the process of those large images
by dividing the image into smaller images, process them by different processors
in parallel and merge to yield the final output. The assumption is that we have a
large amount of massive satellite images to perform computation in low-cost
commodity hardware. The MapReduce programming is chosen achieve this goal
because of its advantages over other distributed computing technologies
discussed in section 2.4.4. One of the main rationales is that in other distributed
computing services such as MPI, shared-memory models etc. the computing
nodes often have a shared filesystem and data has to be moved to the nodes for
computation each time a job is executed. While MapReduce built on a
distributed filesystem and therefore as moving data over the network is
expensive it is assumed that it is logical to process those large satellite images
where they are stored.

The MapReduce programming model have also provides a highly simplified
interface to the application developer compared to the other models as only the
map and reduce function are needed the whole distributed processing
application besides the data input and output handling. But this restricts us in
having control over issues such as where and when a mapper or reducer
executes, which input chunks are processed by a specific node or mapper and
which intermediate data is processed by a specific reducer [Lin and Dyer, 2010;
Venner, 2009; White, 2009]. This brings a challenge to on how to optimize our
algorithms to perform well especially if the distributed computing resource is
heterogeneous in nature. However, there are a number of mechanisms in
manipulating the data flow by assembling intricate data structures as key-value
pairs and shuffling mechanisms of intermediate results which are discussed in
detail in section 3.4.

Hadoop is chosen as testing platform because it is the main open-source
implementation of the MapReduce programming model and its simplicity in
setting up a Hadoop based system and run MapReduce based applications [Lin

25

and Dyer, 2010]. In this study, main issues to consider when implementing
MapReduce based algorithms in Hadoop environment are the file input and
output formats to be used for processing since Hadoop’s primary purpose was
bulk unstructured text processing. The second concern is how to divide the
raster datasets into smaller chunks so that they can be efficiently processed in
parallel. The third issue is how to systematically design the image processing
algorithms through the map and reduce functions. This chapter discusses the
design concepts to address these concerns and what needs to be implemented
for Hadoop to deal with the images for processing.

3.1 Overview of Components

As part of the design of MapReduce algorithms there are also other important
design and implementation that must be considered such as inducing the key-
value structure on the remote sensing image datasets [Lin and Dyer, 2010]. The
first thing to consider when designing an image processing algorithm in a
Hadoop environment is how to familiarize it to read, process, and write images
file formats. This should be done by extending the Hadoop API to allow images
to be parsed into the BytesWritable wrapper of Hadoop which is a container for
binary formats. The input image is read by from the underlying distributed file
system of Hadoop by tiling into several splits and where the sub images are then
processed by separate. The important issue here is how the pixel at the border
of the sub-images are handled, since all the detection algorithms involve
convolution operation the sub-images must have overlapping pixels at the
borders based on the kernel size of the convolution to avoid gaps when the
image is merged. Those tiled images are converted into key-value pair format so
that the map task can understand it where the key is generated from the file
name of the whole image and position of the tile in the original image and the
value holds the actual image data.

The mapper which contains our edge detection algorithms is applied to every
input image represented in the key-value pair to generate an intermediate edge
detected image is produced in another key-value pair representation. The
reducer is applied to those intermediate values after the map task is finished
after being sorted and shuffled among the worker nodes. In our
implementations the task of a reducer is to get the computed image tiles and use
the information associated with them (key) merge them to produce the final
output image.

26

Figure 3-1 depicts the major components of the two-stage system processing
structure where the Mappers are applied to all input key-value pairs, which
generate processed sub-images of intermediate key-value pairs. Combiner
gathers unit images of the same files together and Reducers are applied to
merge all images associated with the same key. Between the map and reduce
phases there is distributed data sorting. In this scenario the codes of the
mappers and reducers along with file format definition are packaged by a driver
together with some configuration parameters to produce one MapReduce
program where it can be submitted to a master server to process images. There
is no direct relationship between the input image files and the MapReduce
program and to execute this job the HDFS file path of the image files have to be
submitted along with the package to the master. All other aspects of the
distributed processing of the images such as distributed execution, failure-
handling, job scheduling etc [Venner, 2009]. The following sections discuss in
detail about the main components of the MapReduce program.

Figure 3-1 Simplified view of the MapReduce process for image processing.

27

3.2 Data Input and Output

The image input for our MapReduce job is typically large satellite image files
stored in the Hadoop Distributed File System. Our design assumes that these
images are stored in tiled TIFF format with augmented metadata where they
can be readily read by tiling methods within the boundary of the whole image
without restriction. Hadoop provides us with many input and output formats
such as text format, binary format, database format etc through the InputFormat
and OutputFormat interfaces [White, 2009]. These interfaces are extendable and
therefore we designed our own file format on the top of Hadoop’s
FileInputFormat class that reads image files. This customized FileInputFormat
defines from where the input files are to be read by taking the file input path as
an argument. It also defines how the input file should be tiled for processing
using the IputSplit interface.

The splits do not actually parse and get the tiled data, they are only a reference
to the chunk data [White, 2009]. Their primary purpose is how and into how
many will the data be sliced. But the actual loading and assigning of keys and
values is performed by the RecordReader which is defined by our
FileInputFormat and it is invoked iteratively on the input image until all the tiles
are finished. The RecordReader class of Hadoop was extended in order to be able
to load image data and converts it into Key-value objects that are suitable for
reading by the Mappers. The UML class diagram illustrated in Figure 3-3 shows
the extended RecordReader class with its necessary attributes and functions and
we can observe here this class does the job of converting the image splits into
key-value pairs by iterating using the next() method. We can then easily choose
to use our own file format to apply to the input files when configuring the job
and the mappers can use the information about the input split properties to
process those splits.

28

Figure 3-2: RasterRecordReader that extends Hadoop's RecordReader interface.

3.3 Data Splitting and Merging

Two kinds of data partitioning mechanisms can be performed on a multispectral
data: partition based on the image plane (the spatial domain) or on the spectral
space. Partitioning on the spectral space refers to when the input image is
portioned based on the spectral bands where the different bands of the same
image are to be processed in parallel [Valencia et al., 2008]. While partitioning
on the image plane splits the input image into smaller chunks on the spatial
domain (in terms of width and height of the image). In this study since the edge
detection algorithms are spatial filters that operate on the spatial domain and
one band is going to be used independently to enhance edges of the image, we
are going to be mainly concerned on how to apply partition of the satellite
image on the spatial domain. The performance of parallel implementation of
image processing algorithms is highly dependent on how the data is partitioned.

One of the key concerns that arise with partitioning images for parallel
processing in the spatial domain is the issue of accessing pixels outside the
spatial domain of the image splits available in the computing node. This is
usually managed by border handling strategy by replication of pixels at the
processors to avoid border effects. For instance, if we take the example of Sobel
operator which uses 3x3 filtering kernel as a convolution operation, the number
of pixels that have to be replicated Pr in the processing of an image can be
computed given by the equation below [Valencia et al., 2008].

𝑃𝑃𝑟𝑟 = 2 ∗ ��2 �
log2 𝑁𝑁

2
� 𝑡𝑡� − 1� ∗ 𝐼𝐼𝑅𝑅 + 2 ∗ ��2 �

log2 𝑁𝑁
2

�� − 1� ∗ 𝐼𝐼𝐶𝐶

29

 Where N is the number of partitions, IR is the number of rows in the original
image, and IC is the number of columns in the original image.

Original Input Image partitioned sub-images

Figure 3-3: Input image splitting strategy to handle border pixels for a 3x3 filter.

The sub-images are generated by splitting the image into regular chunks of the
same dimension in horizontal and vertical direction until the end of the whole
image. For the Sobel filter which the kernel size is 3x3 a two pixels wide gap
forms in the middle of the output image and the outer border pixels are also
lost. This is remediated by overlapping the sub-images by two pixels during the
slicing of the input image (Figure 3-4). The same strategy must be applied for
the 3x3 Laplacian filter. As for the 5x5 Laplacian filter a four pixel overlap was
need to remove the pixel gap.

The merging of the of the result images is straight forward as the edge detection
algorithms will produce tiles that exactly match at their borders. As outside for
the borders of the whole image, they can be ignored if the kernel size is small
but for the Canny method where Gaussian smoothing is applied with large
kernel sizes (up to 25 pixels width) some mechanism have to be devised to get
values for these pixels.

3.4 MapReduce functions

After the image splits are generated and represented in key-value format by our
RecordReader the map function is invoked for every key-value pair by

30

implementing the mapper class. The key-value pairs are the basic data structure
and are the only arguments that the map function needs to start processing
(Figure 3-4) [Lin and Dyer, 2010]. The key holds the image file name and the
sub-image ID and the value is the sub-image itself. The map function produces
an edge detected image as an intermediate value along with the new output
keys. In this study the task of the map function is to do the complete edge
processing task on the image tiles and give edge image outputs where they are
merged by the reduce function. The following sections discuss in detail about
the execution overview of the map, reduce, combiner functions and methods
involved within these functions.

Figure 3-4: Implements of Mapper and Reducer.

3.4.1 Mapper

It is clear that the map method is a pure function with a sole purpose to process
the data splits represented as key-value pairs in parallel mode with no
communication with among the other map processes. The map method also
receives two more parameters beside the key and value. The first one is the
OutputCollector which writes the output images in another key-value format to
be forwarded to the reduce tasks. The second instance is the Reporter which
reports information about the map task. The first thing our map function does is
grab the key and then decompress and read the value associated with it using
java image reader classes. After this image is read the image processing
algorithm is performed on this image tile. In this study the edge detection
algorithms which are explained in section 2.2 are implemented as a use case

31

scenario. The edge detection process is explicitly performed from start to end at
this stage. The sequential implementation of the edge detection algorithms can
be easily plugged into the map function with no or slight modifications. The
processed images are then compressed into array of bytes where they are
represented as key-value pairs and sent to the reducers. When a map task
finishes, then the master forward these key-value pairs to the reduce workers.
At this stage, in order to reduce the volume of the intermediate images to be
transferred to the reduce workers over the network, grouping of the
intermediate computed image tiles is made by the map worker nodes locally by
the combiner function (similar to the reduce function) which we will discuss it
in section 3.3.3. Since a MapReduce job have mappers and reducers running in
parallel and sharing the distributed file system, special attention is taken in the
file naming system of the intermediate files to avoid conflicts and
synchronization between the mappers. The mappers run until all the key-value
pairs are processed and after the finishing of all the mappers we can terminate
the code and close the data output streaming. Figure 3-5 shows a Unified
Modeling Language (UML2) sequence diagram depicting the main execution
overview of the map phase. It also shows how the execution framework
instantiates the map tasks.

Figure 3-5: Sequence diagram for the map phase.

32

3.4.2 Combiner

To minimize the communication over network during the sorting and shuffling
process a combiner function is used to aggregate the image out puts from the
mappers locally before being sent to the reduce workers. This combiner function
does exactly the same process as the reduce function but only aggregates output
image tiles if they are found next to each other in the whole image. This brought
a slight challenge to the reduce function as some of the image tiles are now
bigger in size but it greatly improves the performance of both the reduce and
the shuffle processes. This combiner function is especially important for the
canny method because the output tile is much smaller (more than 20% of the
original image) than the input tile as it is in binary format.

3.4.3 Reducer

The task of our reducer is straightforward, only to merge the result images from
the map tasks and to give the final image. The Hadoop API provides us with
options for initialization and closing of the reduce task and these reduce tasks
start as soon as each map task is finished. The first step is to set the destination
where the final aggregated image is going to be put. Here we use the
information from the original input image to create an output image with the
same dimension as the original image. We can then grab the key-value pairs that
have been produced by the mappers and sort them according their key id. From
this information we can identify original location of the tiled image within the
whole image and then the value can be read, decompressed and streamed to its
identified location after checking its boundary conditions. The reduce tasks are
run in parallel to write the images to the distributed file system until all image
tiles are stacked to their respective location in the complete image. We can
observe from the sequence diagram in Figure 3-6 that the major part of the
reduce tasks is reading and writing image files.

33

Figure 3-6: Sequence diagram for the reduce phase.

3.5 MapReduce Driver

Having specified the MapReduce jobs and how the image data format is going to
be read, final step is to design a driver program where we specify is how the job
is run on a Hadoop environment and also which data input and output formats
and from where to use data for processing. Hadoop API provides us a clear-cut
mechanism to set the parameters and other configurations that are necessary to
run a MapReduce job through the JobConf object [Venner, 2009; White, 2009]. By
creating the job to be done through this driver, we can specify the input and
output paths, input and output formats as well as our own parameters related to
the map job. How many reducers must the MapReduce job run is also set in this
driver. This class will be the main driver after the codes are packaged in JAR
compression and it will be responsible for job submission, running, and
progress reporting.

34

Chapter 4 Implementation

The Apache Hadoop MapReduce framework is favored as a distributed platform
for processing of large remote sensing images because of its simplicity in setup
and deployment and its high-level java development tools. The edge diction
algorithms are implemented using the apache Hadoop MapReduce framework
for as a map and reduce functions. All the development of the algorithms and
associated codes are developed in java. By extending the current API in the
Hadoop library a system is built that allows for parallel implementation of the
image processing algorithms. This chapter discusses the MapReduce
implementation details of these algorithms on Apache Hadoop environment.

4.1 Extending Hadoop API

The Hadoop API allows for creation an extension of input formats, by
implementing the FileInputFormat and RecordReader interfaces where it
becomes possible to describe the way the input image is split and sent to the
Mappers for processing. The BytesWritable container of Hadoop API was used
in this implementation to allow images to be parsed by the FileInputFormat.
The BytesWritable is a wrapper for an array of binary data and its serialized
format is an integer field that specifies the number of bytes to follow, followed
by the bytes themselves [White, 2009]. Therefore the input image tiles can be
easily parsed and wrapped using this container.

First, a class was created that extends the Hadoop RecordReader class to deliver
the image file contents as the value of the record. The RecordReader is an
important class that is used by the Map function to generate record key-value
pairs. This RasterRecordReader inherited class created is also used to generate
record key-value pairs for the image splits to be processed by the map function.
Since the input images are too big to be read at once for splitting, the Java
Advanced Imaging (JAI) API was used to read the image from the file system one
image split at a time and convert it into key-value pair format. The ImageReader
class of the API allows us to read rectangular tiles of the image in the horizontal
and vertical direction by specifying the starting x and y direction and the width
and length of the desired image tile. After decoding the image tile from the
stream it is converted in to an array of bytes and distinctive filename

35

(tilePositionX+_tilePositionY+_tileWidth+_tileHeight) which is the key part in the
key-value pair is given to it based on its location in the original image. The
process continues to read the next tile until the whole image is tiled. This
naming system is crucial for the reduce function which sorts and merge the
image tiles together based on this information.

This image splitting method is used inside our extended RasterRecordReader
which is able to split the image convert it to key-value pairs in the form of an
array of binary data and make it ready for the map function to process those
image split. The main methods that are implemented in this class can be seen in
Figure 3-3. It is also here where we define the number of pixel rows and
columns that are going to be overlapped among the image tiles depending on
which edge detection algorithm is being implemented. The pseudo code in
Listing 4-1 shows the important sections of code the adopted image reading and
splitting mechanism by the RasterRecordReader. Here, we can observe that the
minimum dimension of an image in order to be split is 1024x1024, images
below that size are directly converted to key-value pairs.

A second class that is extended in this study is the FileInputFormat (Figure 3-2)
which is the base class for any file-based input formats that provides a place to
define which files are included as the input to a job and also an implementation
for generating splits for the input files [White, 2009]. In our case, both are both
these are implemented by the RasterRecordReader class, therefore the main
purpose our extension of the FileInputFormat is to the instantiate the
RasterRecordReader. Another important argument is also passed in this
implementation: the FileInputFormat also by default splits data that are larger
than the HDFS block size. Since we have implemented our own splitting
mechanism in the within the RecordReader, any splitting by that might be done
by default by FileInputFormat is disabled by overriding the isSplittable()
method.

36

RecordReader<Text, BytesWritable>
declare variables
overlap; tile width; tile height;

 // start the splitting and key-value generation process
 initialize(FileSplit, Configuration);
 getHDFSFilePath();
 getFileSystem();
 hdfs.open(); //opens HDFS
 hdfs.mkdir(hdfs_path+"filename"+"output"); //create directory for tiles

 // Split the image only if it is > 1024x1024pixels
 if(width * height is less greater than 1024*1024){
 key(filename); &// URI format
 value(wholeImage);
 }
 else{
 count=0;
 for(i=0;i<horizontalNumberofTiles;i++) {
 for(j=0;j<verticalNumberofTiles;j++)

 {
 // read the desired portion of the image
 Read using ImageReader (0, TileBox);
 BufferImage(tileWidth+overlap, tileHeight+overlap, pxlValue);

 // create the key in the form of URI based on its original position
 key(filename+tilePostionX+tilePositionY);
 // write image tile to byte array
 write to byte array (tiledImage, "jpg", byteOutputStream);

 // set the value to the byte array with a starting offset and length
 image.set(byteTile, offset, byteTile.length);
 }

}
 count++;

 getProgress();
 closeInputStream();

Listing 4-1: Hadoop's RecordReader interface expanded to deal with images.

37

4.2 Edge Detection Algorithms

All the edge detection processes are run by the map function. The sequential
edge detection algorithms developed in java can be easily adopted to be plugged
into map function with little or no modification. The main difference between
the Sobel, Laplacian, and Canny algorithms in terms of coding and
implementation is when considering the width of the overlap of the image tiles.
Since the image splitting is done by the RasterRecordReader class, a separate
record reader class was developed for each of the algorithms. Besides that class
all the other codes can be used by the three algorithms without modification.

4.2.1 Sobel edge detection

The Sobel operator uses two 3x3 filter kernels in order to compute the
magnitude and direction of edges. To compute the Sobel operator at the border
pixels of the image tiles, the number of pixel rows and columns that must be
overlapped is two which is set in the record format during splitting. Figure 4-1
shows the main attributes and methods of the Sobel operator class. To further
optimize the Sobel operator during the process the computationally expensive square
root function that calculates the magnitude of the output as function of the horizontal
and vertical detected edges was replaced by the summation absolute values of the
horizontal and vertical edges. After processing the image with Sobel operator the
resulting magnitude image is compressed into an array of bytes, ready to be
processed by the reduce workers.

Figure 4-1: Sobel operator class diagram.

4.2.2 Laplacian edge detection

Similar principle to the Sobel operator was adopted to implement the Laplacian
edge detector Hadoop except by changing the values of the filtering kernels and
also using only one filter kernel instead of two. Two separate Laplacian filters
were implemented one with a kernel size of 3x3 and another one with 5x5. The
same splitting mechanism was performed in order to process the tile images by

38

the 3x3 sized kernel while for the 5x5 kernel a different record reader was used
to where the image is split with an overlap four pixel rows and columns.

4.2.3 Canny edge detection

The Canny edge detection method is a multi-step method where many
operations that involve setting parameters are involved. The main methods in
the code of the Canny algorithm was adopted from the sequential
implementation in java by [Gibara, 2009] with some modifications in
parameters setting and how to handle the border pixels. One of the challenges
that affect the border handling of the image tiles was setting the kernel width of
the Gaussian smoothing filter. This kernel width is computed by Equation 2-5
based on the given standard deviation σ parameter and therefore a separate
RecordReader class was implemented to create overlapping of borders between
the image tiles. The other parameters to be set are the low and high hysteresis
thresholds which trace the edges based on the gradient and connectivity of the
edges. Various statistical methods were attempted to automate the selection of
the thresholds of the hysteresis based on the value of the image pixels such as
using the 1st and 3rd quantiles of the pixel values. But this resulted some
degeneration in the quality of the edges detects which is discussed in the next
chapter.

declare variables
Gaussian Cutoff; Gaussian Standard deviation;
lowThreshold; highThreshold;

getSourceImage();
process();
// set hysteresis threshold
setLowThreshold(threshold);
setHighThreshold(threshold);
//set the Gaussian kernel width
getGaussianKernelWidth();
// Sets the strength of the Gaussian convolution kernel for smoothing
setGaussianKernelRadius(gaussianSigma);
gaussianSmooth(gaussianSigma, gaussiankernelWidth);
sobelGradient();

supressNonMaxima();
performHysteresis(lowThreshold, highThreshold);
writeEdges();

Listing 4-2: Canny edge detection method

39

4.3 MapReduce functions

The MapReduce implementation consists of two separate classes for a mapper
and reducer. Since the splitting of the image and converting into key-value pairs
structure has already been done by the RasterRecordReader the task of the
mapper is to take the key-value pair for processing by the edge detection
algorithms. The reducer will collect those edge detected image tiles and merge
them into one output image. In these functions the input key is particularly
important as is also hold location information of the image tiles in the original
image. In this context, there are a series of steps and methods have to be
implemented with close coordination between the two functions. The detail
implementation of the map and reduce functions is discussed below.

4.3.1 Mapper

As mentioned section 4.1 key-value pair represents the image splits in the form
of an array of bytes wrapped by Hadoop’s ByteWritable class. Each map task
processes a single image split that has been generated by our RecordReader. The
map function basically have three major steps: at the start of the process the
value is decoded using the java image reader and converted into a buffered
image before being processed by the edge detection algorithms. Then the edge
detection algorithm is called to process the decoded image and produce an edge
detected image as shown in listing 4-3. Finally, this edge image is converted
back to an array of bytes and represented as new key-value pair. The new
assigned key to the edge image is the file name of the original image.

map (key, value) // key: URI to image tile, value: image in byte array
 // we decode the byte array to buffered image
 read byte array (value);

 // apply edge algorithms to detect edges
 detect edges (get edge image);

 //get the bytes of the buffered edge image
 to byte array (edge image);
 //generate output key
 key (image filename);

 // output key-value pair
 output.create (key, image bytes);

Listing 4-3: mapper for edge detection

40

4.3.2 Combiner

The combiner phase simply collects the map output for each mapper and
combines those key-value pairs that are from the same image before being
pushed to the reducers. This class implements the reduce function using the
Reducer interface the same as the reduce phase (Appendix 1) but collects values
are only within one mapper node. Our implemented reduce function was used
in the combiner phase since the objective is to merge neighboring image splits
but the output of the combiner phase is in key-value pair since they are going to
be further processed by the reduce phase. By implementing this class we are
reducing the communications between the map and reduce phases and
therefore reducing the network load.

4.3.3 Reducer

The reduce phase collects the edge detected image tiles from the intermediate
map queue and combines them to the final image. The image subsets, sorted by
key, are dynamically assigned to the reducers by the scheduler of the execution
framework. Then the reducers merge those images to a final output image by
recursively writing to the distributed file system based on the location
information in the original image. Listing 4-4 depicts the main processes
involved during the reduce phase.

41

4.4 MapReduce Driver

The driver program handles the housekeeping of our MapReduce job so that it
can be submitted to a Hadoop environment. First a job configuration was
created using the JobConf object followed by the required parameters for the job
such as the input and output formats that the data input and output format,
directory where to look for data and the map and reduce classes. For the input
format the customized RecordReader class is used which is used as an input for
the map phase. The output format is set to TextOutputFormat but the reduce
phase overrides this format and writes the output images directly to the
distributed file system.

The next step is to configure the map, reduce, and combiner phases the setting
methods of the Job configuration. Here the number of reduce tasks that must
run in this job can also be set by the setNumbReduceTask() which determines

reduce (key, Iterator values):
 // create a buffered output image at HDFS
 bufferedImage(hdfsPath);
 // go through the values and collect the images
 while(values has next ())

{
 // get the image tiles
 imageTile.getBytes();
 //allocate image tile to original image box
 setRGB (startX, startY, witdth, height, byteArray, offset);

 //close the sub image
 close();
 // collect the output
 output.collect(key, list values);
 }
 // Create a data streaming to HDFS
 FSDataOutputStream (hdfsPath);
 // write the image file at hdfs
 DataOutputStream.write(byteArray, offset, array.length);

output.collect (key, result);

// close the streaming

 close();

Listing 4-4: reducer for merging image tiles

42

how the final image is going to be merged. Finally we call the static runJob()
which submits the job, reports the progress of the map and reduce phases. The
Tool interface in this class also gives us to use some optimization options for
passing arbitrary parameters from the command line interface such as setting
the number of reducer, putting files to the distributed cache.

43

Chapter 5 Evaluation

There are three primary objectives for evaluation conducted in this study.
Firstly, to demonstrate if the reliability and performance of the remote sensing
applications has been improved through the implementation on distributed
environment as proposed in the previous chapters. Secondly, that the
MapReduce programming framework is a feasible model for efficient processing
of large satellite images. Finally, the quality of the end product is not affected by
implementation of the remote sensing applications on a MapReduce framework.
This chapter will start in the first section with the description hardware and
software configurations of the testing environment where the prototype
framework and applications are run. The following section discusses the
characteristics of the test datasets that has been used in this study. The third
section discusses the qualitative evaluation of the output images from the
various algorithms tested. Finally, the last section illustrates the benchmarking
results obtained from the performance tests done to evaluate the computational
performance.

5.1 Testing Environment

All the experiments in this study are done on normal commodity PCs and
notebooks. One of the main characteristics of the test environment is its
heterogeneous configuration. The test bed is built on Linux operating system
(Ubuntu 10.10) on 4 computers each of different hardware architecture and
performance. Moreover, the two desktop PCs are connected through high-speed
Gigabit network connections and these are connected to the master workstation
(notebook 2) through wide area network (WAN). This heterogeneity in
hardware and network connection can be seen be one of the parameters for
evaluating Apache Hadoop’s transparency and fault-tolerance. But this type of
infrastructure also brings latency and unpredictability to the computational
performance.

44

Table 5-1: Test environment system hardware information

 Notebook1 Notebook2 PC2 PC1

OS Ubuntu 10.10 Ubuntu 10.10 Ubuntu 10.10 Ubuntu 10.10

Processor Intel Core 2 Duo
2.3Ghz

Intel Core 2 Duo
1.8Ghz

AMD Dual Core,
2.6 GHz

Pentium 4,
2.40Ghz

Cache 3072KB 2048KB 512KB 512KB

RAM 4GB 3GB 1.7GB 748.2MB

The Hadoop framework used in this experiment is Cloudera’s Distribution of
Hadoop 0.20.1 which is the settable version CDH2. It is deployed on each node
on the top of Java SE Runtime Environment version 1.6. Notebook 1 is used as
both as a masternode and datanode with jobtracker and namenode on it that
controls all MapReduce jobs and datanodes respectively Figure 5-1. The other
machines act as worker nodes with datanode and tasktracker on them. Each
node is set to be capable of running 2 Map jobs and 2 Reduce jobs concurrently
except for the last node which runs 1 Map and 1 Reduce job at a given time since
its processor is single-core. Therefore, in total if all the nodes are active in the
system have a total of 14 task capacity.

Figure 5-1: Test environment setup.

45

5.2 Test Datasets

The satellite images used in this experiment 4 scenes of a 30meters resolution
Landsat 7 Enhanced Thematic Mapper plus of Muenster area taken on the year
1999 and were downloaded from United States Geological Survey’s (USGS)
Earth Explorer portal (Figure 5-2). The Band 4 is used during the experiment as
it does not need contrast enhancement compared to the other bands. The
original data are Level-1 processed image, each scene with a dimension of
8251x7591 in an uncompressed 8bits per pixel Geographic Tag Image Input
Format (GeoTIFF) and a size of about 60MB. The image is fed to the HDFS along
with its metadata file to be read by the MapReduce applications. It is worth
noting that the transfer of the input file to the Hadoop Distributed system is not
part of the performance test as we are assuming that the image database is
stored using HDFS.

Figure 5-2: Band 4 Landsat image (courtesy of the U.S.G.S.)

46

5.3 Qualitative Evaluation

Assessment was made on the quality of images produced by the Sobel, Laplacian
and Canny edge detection methods to evaluate if the parallel implementation of
the algorithms using MapReduce affects the quality of the image and also to
evaluate the performance between the three methods. The quality of output
images are evaluated in according to three criteria set for visual interpretation
[Canny, 1986]. Firstly one is good edge extraction in terms of the probability of
detecting edges the maximum possible level with minimum falsely detected
edges (noises). Secondly is to evaluate how well are the edges connected and
look real. And finally, the detected edges must not be duplicated and their
position should be as close as possible to the actual edges.

It is known that quality of the detected edges is highly dependent on the image
characteristics and also the characteristics of the object of interest which
influences the parameters to be set for the edge detection algorithms [Canny,
1986; Drewniok, 1994; Heath et al., 1998; Liu and Jezek, 2004]. This suggests
that it difficult to generalize these parameters across all algorithms and all
images. Therefore, the quality of the detected edges from the three detection
methods is evaluated for a single image that has a fixed size and resolution and
the most relevant parameters are identified and adaptively tuned for each
detection method.

5.3.1 Sobel method

For the Sobel method, since a fixed 3x3 kernel size is used for convolution and
the final pixel value is the gradient magnitude of the Sobel operator, there are
no parameters to be set, therefore the output images can be visually compared
and evaluated. Figure 5-3 the out image of the implementation of Sobel edge
detector on MapReduce. It can be seen that the Sobel method does are
reasonably good job in detecting most of the edges with minimal inclusion of
false edges or noises. The edges are also well connected with few disconnected
lines. But the method seem to enhance mostly those edge that have sharp
contrast and this suggests that wider and non sharp edges are difficult to detect
using the Sobel operator. The MapReduce implementation of the Sobel method
provided the same results in terms of image output characteristics and quality
as the corresponding sequential implementation.

47

Figure 5-3: Edges detected by Sobel method

5.3.2 Laplacian method

The Laplacian method was evaluated for different kernel sizes (Figure 2-4) and
generally the Laplacian operators produce low contrast images where it is
difficult to identify most edges. This is due to the low contrast of the grey-scale
images of the Landsat bands and poor detection capability of the Laplacian
operator for low contrast images. Therefore to remedy this, the Laplacian
method was tuned to enhance the contrast of the output image until the most of
the edges are clear enough for visual inspection. The result after the contrast
enhancement shows that the Laplacian method recognizes many edges for all
the kernel sizes but the quality of the edges is low compared to that of Sobel
method. The detected edges are wider than the actual width of the edges
resulting less fine grained detail and also a considerable amount noise is
introduced by the operators. Many fragmented edges were also observed from
the result especially for the images processed with a 3x3 dimensioned kernel
Figure 5-4 (left). The edges from the image processed by the 5x5 kernel have
also thinner width compared to image processed by 3x3 kernel.

48

Figure 5-4: Edges detected by Laplacian filter with 3x3 kernel (left) and 5x5 kernel
(right)

Similar to the Sobel method the MapReduce implementation of the Laplacian
method provided exactly the same image output quality when compared the
corresponding sequential implementation.

5.3.3 Canny edge detection method

For the Canny edge detection method there are three parameters that must be
tuned in order to obtain optimal edge detection [Canny, 1986; Heath et al.,
1998]. The first one is the standard deviation σ of the Gaussian filter which
controls the degree of smoothing and the kernel width. The second and third
parameters are the values of the lower and upper hysteresis thresholds
respectively. Various levels of smoothing were tested to identify the best
smoothing Gaussian filter using filter kernels with σ levels of 1, 1.4, 2.0 and 2.5.
The filtering kernels were computed using Equation 2-5 to generate kernels of
different sizes and the Gaussian filter with σ = 2.0 which have kernel size of 9
gave the best result of detected edges (Figure 5-5).

The optimal hysteresis parameters values for the high and low thresholds were
estimated from the gradient magnitudes by setting them to 1st and 3rd quintiles
(25% and 75%) of the magnitude. This gave a good quality detection of edges
when implemented on a sequential mode but when this algorithm was
implemented on MapReduce, the result was poor quality edges of the output
image with considerable amount of falsely detected edges and noises in some
regions of the image (Figure 5-6 left).

49

 (a) (b)

(c) (d)

Figure 5-5: Edges detected by Canny method with Gausian filter of (a) σ=1, kernel
size=3, (b) σ=1.4 kernel size=7, (c) σ=2.0 kernel size=9 (d), and σ=2.5 kernel size=16.

This is because the sub-images are processed independent of each other and
estimating the upper and lower thresholds using the quantiles will result false
detection of edges especially in those sub-images that have few actual edges.
Therefore for the MapReduce implementation fixed higher and lower thresholds
were set after doing some tuning and the best value of the high threshold for
hysteresis was found to be 0.8 where gradient magnitudes above this threshold
are unambiguously considered as edges. The optimal best value of the low
threshold was found to be 0.3 and magnitudes below this level are considered

50

as non-edges and set to zero. The magnitudes that have a value between 0.8 and
0.3 are considered as edges only if they are connected the edges that has been
selected by the high threshold otherwise they are considered as non-edges.

Figure 5-6: Edges detected using Canny method by quantiles parameterization of
thresholds (left) and by fixed Thigh=0.8, Tlow=0.3 thresholds (right).

Generally the Canny method showed good edge detection, good localization but
in some cases poor localizations were observed especially the edge corners and
this is due to the use of Gaussian smoothing which blurs the borders of objects
in an image.

5.4 Performance Tests

The performance evaluation generally addresses the following parameters: the
involved number of worker nodes, size of the satellite image, and the number of
map and reduce jobs [Ranger et al., 2007; Winslett et al., 2009]. The principal
metric for the evaluation of the computational performance is execution time of
a job ordered by the master node. The performance in the job completion times
were experimentally evaluated for the Sobel, Laplacian (with 5x5 kernel size)
and the Canny detection methods using the above parameters.

Hadoop provides an integrated multi-paged web user interface where
information about the job progress, completion time, failed tasks, job history
and other statistics of the job can be tracked (Figure 5-7). The job completion

51

time here means the total time consumed by the job for the worker nodes to
process the input images and send the result to the master node. It must be
noted that during the performance experiments the time of hour and day the job
is executed have an impact on the computation time as the nodes are connected
through WAN. Therefore, to minimize this effect of network latency and traffic,
each job order was repeated more than 10 times and the average completion
time is computed to capture the global performance of the algorithms. However,
it is difficult to judge if the peak performance has been explored using this
highly heterogeneous and few computing nodes but generally a good range of
performance has been observed.

First a sequential implementation of the Sobel, Laplacian and Canny algorithms
was made using java to obtain a control case for the performance evaluation
MapReduce implementations. In the following sections, the performance of
1node denotes to the sequential implementation of the algorithms. To evaluate
MapReduce programming model four performance metrics are used which are
discussed in detail in the sections below [Ranger et al., 2007; Winslett et al.,
2009]:

a. Number of nodes
b. Size of data,
c. Kernel sizes of the filtering.
d. Number of mappers and reducers.

52

Figure 5-7: A screenshot of Jobtracker page at Hadoop web based interface.

53

5.4.1 Dependency on number of nodes

To measure the performance of the MapReduce implementations with regard to
computation time, the total image size was kept constant while increasing the
number of nodes in the cluster [Xu et al., 1999]. We first evaluate the
computation time on a single computer and then increase number of computers
in the system until 4 computers. Figure 5-8 shows the computation time
consumed to process the five image files each with a dimension of 8251x7591
pixels using the Sobel method, Laplacian method with 5x5 kernel size, and the
Canny method with Gaussian filter of 9x9 kernel size. Those images are
processed in parallel as a single MapReduce job. From this figure it can be
observed that the computation time of the MapReduce implementation
significantly decreases with increasing number of computers for all the
algorithms. The Canny method achieved better performance compared to the
Sobel and Laplacian methods. This is because generally the Canny method is
more data-intensive and needs more processing power than the others since its
algorithm is a multi-step process involving more mathematical operations
compared to the Sobel and Lapalcian methods.

Figure 5-8: Computation performance for the Sobel, Laplacian, and Canny methods.

1 2 3 4

Sobel 89.80884095 51.9937604 52.55503704 41.42472631

Laplacian5 103.3931233 54.69056711 54.83274222 48.85574471

Canny 208.2206975 113.6413254 97.604346 80.77401545

0

50

100

150

200

250

Co
m

pu
ta

tio
n

tim
e

(s
ec

)

number of nodes

Computation Time in seconds

54

This observation can be clearly seen when we compute the speedup and
efficiency from the above results. The speedup is measured as the ratio of the
computation time of the sequential implementation on single computer to that
of the distributed implementation on n computers while efficiency is the
measure of the utilization of n computers in the system [Eager et al., 1989].

Speedup(𝑛𝑛) =
Time on single computer

Time on 𝑛𝑛 computers
 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑛𝑛)
𝑛𝑛

The Speedup is described in terms of the number of computing nodes used in
the distributed implementation and

Figure 5-9 and Figure 5-10 show the graph of the speedup and efficiency versus
the number of nodes for the three edge detection methods respectively and it
can be observed that generally a good speed up is achieved especially by the
Canny method.

Figure 5-9: Speed up

In ideal situation the speedup increases linearly with increase in number of
computing processors but this is difficult to achieve since the cost of
communication increases with increase in processors [DeWitt and Gray, 1992].
According to [Goller et al., 2001] processes with greater than 0.5 (50%)
efficiency are considered to have achieved good performance. However, a
significant deterioration of speed up and efficiency is observed when the third
node was added. The reason for this deterioration is that the 2nd node connected
to the 1st node (master server) through Local Area Network (LAN) dedicated to

0

0.5

1

1.5

2

2.5

3

1 2 3 4

Sp
ee

du
p

number of nodes

Speedup

Sobel

Laplacian

Canny

55

both computers while the 3rd and 4th node are connected to the master through
Wide Area Network which is of lower speed. And also although there
communication cost is not that much great during the MapReduce processing, a
considerable amount is consumed due to the shuffling process after the
finishing of the map processes especially for larger datasets. The speedup
increased again when the 4th node is added to the system though not at the
previous rate. From this it can be deduced that better performance can be
achieved if the number of computing nodes are increased or if there is a high-
speed network connection between the nodes.

Figure 5-10: Efficiency

5.4.2 Dependency on size of the data

To investigate how the MapReduce programming model reacts to very large
satellite images, the scaleup approach was evaluated where the computation
time was measured while increasing the data size and number of nodes by the
same fold. The concept of scaleup is to keep the amount of job on each
computing node constant. By using the scaleup approach we can investigate the
bottlenecks in the distributed system as the each computer node is processing
the same amount of data and the effect load balancing problem and
inefficiencies caused by the distributed method is avoided [DeWitt and Gray,
1992; Goller et al., 2001]. This metric is a good way of evaluating the capability
of the MapReduce implementation to cope with different sizes of data. Ideally
the graph of scaleup will have a straight horizontal line where data size makes

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4

Ef
fic

ie
nc

y

number of nodes

Efficiency

Sobel

Laplacian

Canny

56

no impact with the computation time staying constant[Goller et al., 2001]. In this
experiment started with data size of 59.7 megabytes and increased the size by
adding 59.7MB every time we add a computer node. Figure 5-11 shows the
performance results and all the Sobel, Laplacian, and Canny methods scale well
until the second computing node but it increases when the third computer is
added to the system indicating that the network connection bandwidth is the
main bottleneck of the distributed system. We can infer from this that had the
datanodes been connected through high speed network, they would have
scaledup well and the graph would have looked more flat.

Figure 5-11: Scaleup

The sizeup approach was also explored for the Canny method where the
number of computing nodes is held constant while the size of the data set is
increased by some factor. We tested the computing performance for each group
of nodes while increasing the dataset by doubling it starting from 59.7MB and
increasing the size by 59.7 MB up to 358 MB.

Table 2-1 shows the elapsed computation time for different sizes of data and it
can be seen that for processing on a single computer the computation time
increases steeply while for the parallel processing the slope of increase is
considerably lower. This can be further observed when the sizeup metric is
computed from Table 5-2 using by the ratio of increased data size to the original
data size which is 59.7MB for each of the computing nodes [Xu et al., 1999].

Sizeup =
Time of increased data size
Time of original data size

0

20

40

60

80

100

120

1 2 3 4

Co
m

pu
ta

tio
n

tim
e

(s
ec

)

number of nodes

Scaleup

Sobel

Laplacian

Canny

57

Table 5-2: performance of the Canny method with increasing data size.

Computation time (sec)

Data Size (MB) 1node 2node 3node 4node

59.7 86.16515 47.49669 39.62422 33.95762

119 174.5037 89.77618 85.88436 78.97992

179 249.6478 154.4281 128.4724 114.3664

239 351.1648 225.1332 214.3879 163.6579

298 439.9121 295.8607 272.3931 210.0497

358 537.3904 344.4746 338.3546 245.0497

Figure 5-12 shows the graph of sizeup for the Canny edge detection method and
it can be observed that the sizeup is reasonable for all the nodes for considered
the increase in communication cost with increase in dataset. If we see the
example for the 4nodes cluster to process image data size that is 6 times larger
than the original data 8 times more computation time is needed. From this it can
be deduced that increasing the dataset achieves better performance and this is
due to the fact that the processing time at the workers compensates the
overheads at the startup of the process and network communications during
shuffling process.

Figure 5-12: Sizeup for the Canny method.

0

2

4

6

8

10

59.7 119 179 239 298 358

Si
ze

up

Data size (MB)

Sizeup

1node

2node

3node

4node

58

5.4.3 Performance based on Neighborhood size

One observation seen during the performance tests of the edge detection
algorithms implemented using MapReduce was that the computation time
varies significantly with varying size of neighborhood of the convolution filter
operators especially for the Canny method since smoothing step uses Gaussian
filters of large kernel size. Therefore, performance evaluation was made to test
dependence of the computation time on the neighborhood size. For this test the
Canny method with Gaussian filters of 5x5, 7x7, 9x9, and 16x16 kernel size were
evaluated on the 4node cluster and the results can be seen in Figure 5-13. When
the test was done for two images each with a dimension of 8251x7591pixels,
there is no significant difference in computation time between the different
kernel sizes. But when the number of images was increased to 4 images to have
a total data size of about 239MB, as significant difference in the elapsed
computation time was observed with varying kernel size. And the computation
time generally increases with increase in kernel size mainly due to the reason
that more multiplication operations are involved with bigger kernels but also
the number of overlapping pixels at the borders of image partitions also
significantly higher.

Figure 5-13: Performance of Canny method with varying Gaussian filters kernel size.

5.4.4 Dependency on number of mappers and reducers

In this experiment performance test was conducted to evaluate the dependency
of the MapReduce algorithms on the number of mappers and reducers used to
process an image of given size. Because in MapReduce we cannot directly
control the number of mappers that is run by a specific job as is it determined
by the number of image subsets, the performance was done by tuning the

0

50

100

150

200

250

5x5 7x7 9x9 16x16

Co
m

pu
ta

tio
n

tim
e

(s
ec

)

Kernel size

performance with varying kernel

59

number of image subsets. To test the computation performance the dataset is
kept constant while the numbers of mappers are increased from 4 up to 36.
Figure 5-14 shows the computation time breakdown for the Canny method and
it can be clearly seen that much of the computation time is consumed during the
map phase while the shuffle (sort) and reduce phases share less of the total
time. This is logical as the task of the reducer is only to shuffle and merge the
output images from the mapper.

The important observation is this experiment is that the computation time
greatly decreases with increase in the mappers up to 12 mappers but beyond
that the performance deteriorates significantly. The reason for this is that, since
we have four nodes each which is capable of running only 7 mappers in parallel,
the mappers cannot be completed within on round and therefore an overhead
occurs. It was expected that the performance will deteriorate as the number of
mappers becomes greater than the number of nodes. But this decrease in
performance did not occur instantly after the number of mappers surpassed the
resources available, the deterioration occurred when the mappers are more
than 12. This is mainly due the heterogeneous nature of the test environment
where some nodes have significantly inferior computing power and Hadoop’s
dynamic load balancing and rescheduling mechanism handles this issue
reasonably well in distributing the work efficiently. But eventually the
performance deteriorates with greater number of mappers. This is because we
are running more mappers for the same data size meaning the size of sub-
images fed to each mapper are smaller. Hence, Hadoop is spending more time
setting up the mappers than processing the input data.

Figure 5-14: Computation time breakdown with increasing number of mappers for the
Canny method.

0
20
40
60
80

100
120
140
160
180
200

4 6 9 12 16 25

co
m

pu
ta

tio
n

tim
e

(s
ec

)

number of mappers

reduce

sort

map

60

Chapter 6 Conclusions and Future Works

6.1 Conclusions

The research undertaken is an effort to address one of the core issues in remote
sensing studies –solving large-scale computational demanding problems in
remote sensing image processing. Advances in sensor technology and their ever
increasing repositories of the collected data are revolutionizing the mechanisms
remotely sensed data are collected, stored and processed. This exponential
growth of data archives and the increasing user’s demand for real-and near-real
time remote sensing data products has pressurized remote sensing service
providers to deliver the required services. The remote sensing community has
recognized the challenge in processing large and complex satellite datasets to
derive customized products. To address this high demand in computational
resources, several efforts have been made in the past few years towards
incorporation of high-performance computing models in remote sensing data
collection, management and analysis. This study adds an impetus to these
efforts by introducing the recent advancements in distributed computing
technologies, MapReduce programming paradigm, to the area of remote
sensing. The general conclusions derived from this research and the arguments
for the research questions raised in section 1.3 are discussed below.

Research question 1: Can performance of large satellite image processing be
augmented through implementation on a distributed environment?

This question has been addressed in section 5.4 and based on the results of the
performance evaluation conducted using standard metrics MapReduce
programming paradigm has been proved to be a simple and efficient framework
for large-scale processing of remote sensing images in low-cost distributed
environments.

In the experiments done the edge detection algorithms scaled well when the
volume of data to be processed is significantly large. This establishes that
MapReduce is suitable for processing large-scale archives of remote sensing
images and also high resolution images are usually massive in size. However
further optimization strategies have to be explored also to increase the
computational performance on smaller datasets.

61

Research question 2: What are the requirements to implement distributed
processing of satellite images using the MapReduce programming model?

This question has been discussed in sections 2.4 and partially in chapter 3.
Considering the complexity of distributed computing technologies, MapReduce
have few prerequisites that must be satisfied in order to successfully implement
image processing algorithms. The first one is to identify which algorithms to
implement as not all computational problems related with remote sensing
image processing can be solved through MapReduce especially those algorithms
that need global communication between the distributed processors. It has been
seen that the map tasks run concurrently in isolation with no communication
between them.

The other issue to consider is that MapReduce was primarily designed for large
scale text batch processing. Therefore there need to be some tasks to familiarize
image formats to a MapReduce environment.

The third is that data must be large enough in order to achieve considerable
performance improvement as have been observed in section 5.4.2.

The final requirement is regarding hardware configurations. It has been
observed that high speed network connection between the nodes is more
important than high processing power in the computing nodes. Therefore, the
scale out approach seems a feasible option for distributed computing of large
satellite images. Furthermore, MapReduce job scheduling and load balancing
mechanism is based on the expectation that all data partitions will be computed
equally fast, which is not practical when we have heterogeneous computing
nodes. Therefore either the computing nodes should have similar processing
power

Research question 3: What is the performance of the MapReduce processes
compared to sequential processes?

This question is addressed in section 5.4 and the performance results show that
MapReduce has improved task completions times reasonably well for most of
the algorithms despite the test environment was made of only 4 computing
nodes.

Research question 4: How do the different edge detection algorithms perform in
a distributed environment?

62

This question is addressed in section 5.3 and 5.4 the performance of the Sobel,
Laplacian, and Canny edge detection algorithms has been evaluated in two
ways. The first one is in terms of the output image quality and the qualitative
evaluation done demonstrates that no difference occurs in the quality of the
output images from the distributed environment compared to the sequential
implementation.

The second evaluation is performance in terms of execution time. There a
significant difference is observed between the different edge detection
algorithms with the Canny method performing well in terms of speedup and
improvement as a result of implementation on distributed environment. The
key conclusion that can be drawn from this observation is that the algorithms
perform well if they are data intensive with high demand for local processing.

Research question 5: Which data partitioning and communication scheme is
preferred in order to be executed concurrently?

This question is addressed in section 3.3 and 5.4. Data partitioning mechanisms
of image data is one of the core issues that needs careful designing based on the
algorithms are being implemented so that not to affect the quality of the final
output images also loss of pixels at the borders. This is particularly important if
the algorithms involve spatial transformations of the input image.

The other data partitioning consideration is with regard to processing in a
distributed environment using MapReduce. As MapReduce is best at processing
fewer and bigger data rather than many small sized images [White, 2009];
considerable care must be taken on the split size of the images in order to
achieve optimal performance.

6.2 Future Works

This study is a preliminary work in an effort to integrate remote sensing and GIS
applications and distributed computing using the MapReduce programming
paradigm. Therefore there a lot of issue that can be improved in this work and
also some future direction for distributed processing of spatial datasets using
MapReduce. The following are some of the identified issues for further research.

Further works can be done in this subject such as improving the scheduling
mechanism for better load balancing and data locality and other optimization
strategies such as intermediate values compression, serialization of the image
input formats, proportion the java virtual memory used etc. It can also be

63

investigated the impact of task granularity on the performance of the execution
time and also dynamic load balancing.

This study have shown that MapReduce distributed programming paradigm is
good for scaling the processing of large satellite images and has a substantial
potential to support more complex remote sensing and GIS problems.
Therefore, it is an interesting future direction to extend the MapReduce
framework implemented in this study to include more complex and data-
intensive algorithms and also remote sensing datasets from other sensor
instruments.

Another future direction is to migrate these applications to high-end computing
cluster and cloud platforms such as Amazon Elastic Compute Cloud (EC2) as
Hadoop has already been implemented there.

It was also observed that no substantial modification has been made to the
sequential algorithms for implementation in Hadoop MapReduce. Therefore it is
highly suitable to use the codes of existing open-source remote sensing
applications such as GRASS and QGIS. Hadoop can also be seamlessly integrated
to other existing server based geoprocessing functionalities through Java API
and Hadoop’s streaming features.

64

Appendices

Appendix 1: UML2 Class diagram of MapReduce based Remote Sensing Image Processing

65

References
Abbas, A. (2007), Grid Computing—A Practical Guide to Technology and
Applications, Design and Production Services, Inc.

Advanced Micro Devices (2009), OpenCL™ and the ATI Stream SDK v2.0., edited,
AMD.

Allan, B. A., et al. (2006), A component architecture for high-performance scientific
computing, Int J High Perform C, 20(2), 163-202.

Aloisio, G., and M. Cafaro (2003), A dynamic earth observation system, Parallel
Comput, 29(10), 1357-1362.

Basumallik, A., S.-J. Min, and R. Eigenmann (2007), Programming Distributed
Memory Sytems Using OpenMP, paper presented at International Parallel and
Distributed Processing Symposium, IEEE.

Behnke, J., T. H. Watts, B. Kobler, D. Lowe, S. Fox, and R. Meyer (2005), EOSDIS
Petabyte Archives: Tenth Anniversary, paper presented at 13th NASA Goddard
Conference on Mass Storage Systems and Technologies, IEEE.

Bräunl, T. (2001), Tutorial in Data Parallel Image Processing, Australian Journal of
Intelligent Information Processing Systems, 6(3), 164–174.

Canny, J. (1986), A computational approach to edge detection, IEEE Trans. Pattern
Anal. Mach. Intell., 8(6), 679-698.

Chiarabini, L., and J. Yen (1998), Complexity reduction on two-dimensional
convolutions for image processing, SPIE, San Jose, CA, USA.

Cossu, R., E. Schoepfer, P. Bally, and L. Fusco (2009), Near real-time SAR-based
processing to support flood monitoring, J Real-Time Image Pr, 4(3), 205-218.

Coulouris, G. F., J. Dollimore, and T. Kindberg (2005), Distributed systems : concepts
and design, 4th ed. ed., xiv, 927 p. pp., Addison-Wesley, Harlow.

Cristian, F. (1991), Understanding Fault-Tolerant Distributed Systems, Commun
Acm, 34(2), 56-78.

Dean, J., and S. Ghemawat (2008), Mapreduce: Simplified data processing on large
clusters, Commun Acm, 51(1), 107-113.

Dean, J., and S. Ghemawat (2010), MapReduce: A Flexible Data Processing Tool,
Commun Acm, 53(1), 72-77.

DeWitt, D. J., and J. Gray (1992), Parallel Database Systems: The Future of High
Performance Database Processing, Commun Acm, 36(6).

66

Drewniok, C. (1994), Multi-spectral edge detection. Some experiments on data from
Landsat-TM, Int J Remote Sens, 15(18), 3743-3765.

Eager, D. L., J. Zahorjan, and E. D. Lazowska (1989), Speedup versus efficiency in
parallel systems, Computers, IEEE Transactions on, 38(3), 408-423.

Fisher, R., S. Perkins, A. Walker, and E. Wolfart (1996), Hypermedia Image
Processing Reference, JOHN WILEY & SONS LTD, New York.

Foster, I., C. Kesselman, and S. Tuecke (2001), The anatomy of the grid: Enabling
scalable virtual organizations, Int J High Perform C, 15(3), 200.

Ghemawat, S., H. Gobioff, and S.-T. Leung (2003), The Google file system, paper
presented at 9th ACM symposium on Operating systems principles.

Gibara, T. (2009), Canny Edge Detector Implementation, edited.

Goller, A., I. Glendinning, D. Bachmann, and R. Kalliany (2001), Parallel and
Distributed Processing, in Digital Image Analysis, edited by W. Kropatsch and H.
Bischof, pp. 135-153, Springer New York.

Golpayegani, N., and M. Halem (2009), Cloud Computing for Satellite Data
Processing on High End Compute Clusters, in IEEE International Conference on
Cloud Computing, edited.

Goward, S. N., J. G. Masek, D. L. Williams, J. R. Irons, and R. J. Thompson (2001), The
Landsat 7 mission - Terrestrial research and applications for the 21st century,
Remote Sens Environ, 78(1-2), 3-12.

HARRIS, M. (2005), Mapping computational concepts to GPUs, paper presented at
GPU Gems 2, Addison-Wesley.

Hawick, K. A., P. D. Coddington, and J. H. A. (2003), Distributed frameworks and
parallel algorithms for processing large-scale geographic data, Parallel Comput,
29(10).

He, B., W. Fang, Q. Luo, N. Govindaraju, and T. Wang (2008), Mars: a MapReduce
framework on graphics processors, ACM.

Heath, M., S. Sarkar, T. Sanocki, and K. Bowyery (1998), Comparison of Edge
Detectors: A Methodology and Initial Study, Computer Vision and Image
Understanding.

Joseph, J., and C. Fellenstein (2004), Grid computing, Prentice Hall PTR.

Karavakis, E. (2010), A Distributed Analysis and Monitoring Framework for the
Compact Muon Solenoid Experiment and a Pedestrian Simulation, 216 pp, Brunel
University.

67

Kittler, J. (1983), On the accuracy of the Sobel edge detector, Image and Vision
Computing, 1(1), 37-42.

Kshemkalyani, A. D., and M. Singhal (2008), Distributed computing : principles,
algorithms, and systems, xvii, 736 p. pp., Cambridge University Press, Cambridge.

Lillesand, T. L., and R. W. Kiefer (2001), Remote Sensing and Image Interpretation, 4
ed., John Wiley & Sons, Inc., New York.

Lin, J., and C. Dyer (2010), Data-Intensive Text Processing with MapReduce,
Synthesis Lectures on Human Language Technologies, 3(1), 1-177.

Liu, H., and K. Jezek (2004), Automated extraction of coastline from satellite
imagery by integrating Canny edge detection and locally adaptive thresholding
methods, Int J Remote Sens, 25(5), 937-958.

Lv, Z., Y. Hu, H. Zhong, J. Wu, B. Li, and H. Zhao (2010), Parallel K-Means Clustering
of Remote Sensing Images Based on MapReduce, Springer-Verlag Berlin Heidelberg,
162–170.

Mann, K., and T. Jones (2008), Distributed computing with Linux and Hadoop,
edited, IBM Corporation.

Marr, D., and E. Hildreth (1980), Theory of Edge Detection, Royal Society of London
Proceedings Series B, 207, 187-217.

NASA (2007), Earth System Science Data Resources, National Aeronautics and Space
Administration.

NASA (2010), Landsat 7 Science Data User's Handbook.

Noll, M. G. (2004-2010), Running Hadoop On Ubuntu Linux (Single-Node Cluster),
edited, http://www.michael-noll.com/wiki/Running_Hadoop_On_Ubuntu_Linux.

NVIDIA (2010), CUDA (Compute Unified Device Architecture), edited.

OWENS, J. D., D. LUEBKE, N. GOVINDARAJU, M. HARRIS, J. KR¨UGER, A. E. LEFOHN,
and T. J. A. PURCELL (2007), Survey of general-purpose computation on graphics
hardware, in Computer Graphics Forum, edited.

Parkinson, C. L., A. Ward, and M. D. King (2006), Earth Science Reference Handbook:
A Guide to NASA’s Earth Science Program and Earth Observing Satellite Missions,
National Aeronautics and Space Administration, Washington D.C.

Pike, R., S. Dorward, R. Griesemer, and S. Quinlan (2005), Interpreting the data:
Parallel analysis with sawzall., Sci.Prog., 13(4).

Plaza, A. J., and C.-I. Chang (2008), High performance computing in remote sensing,
xxvi, 466 p. pp., Chapman & Hall/CRC, Boca Raton, Fla. ; London.

http://www.michael-noll.com/wiki/Running_Hadoop_On_Ubuntu_Linux�

68

Ranger, C., R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis (2007),
Evaluating MapReduce for multi-core and multiprocessor systems, paper presented
at 13th International Symposium on High-Performance Computer Architecture
(HPCA 2007), Phoenix, Arizona.

Richards, J. A., and X. Jia (2006), Remote sensing digital image analysis : an
introduction, 4th ed. ed., xxv, 439 p. pp., Springer, Berlin.

Schmidt, S. (2009), The Holumbus Framework: Distributed computing with
MapReduce in Haskell, 103 pp, FHWedel University of Applied Sciences, Schenefeld,
Germany.

Schowengerdt, R. (2007), Remote sensing: models and methods for image processing,
Academic Pr.

Shen, Z., J. Luo, G. Huang, D. Ming, W. Ma, and H. Sheng (2006), Distributed
computing model for processing remotely sensed images based on grid computing,
Elsevier Inc., 177, 504-518.

Silva, V. (2006), GRID COMPUTING FOR DEVELOPERS, Charles River Media, Inc.,
Hingham, Massachusetts.

Sterling, T., D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and C. V. Packer.
(1995), BEOWULF : A parallel workstation for scientific computation, paper
presented at In International Conference on Parallel Processing, CRC Press, Boca
Raton, USA.

Tanenbaum, A. S., and M. v. Steen (2007), Distributed systems : principles and
paradigms, 2nd ed. ed., xviii, 686 p. pp., Prentice Hall, Harlow.

Teo, Y. M. (2003), Distributed Geo-Rectification of Satellite Images Using Grid
Computing.

Tesfamariam, E. (2010), Efficient Satellite Image Filtering Algorithms on Graphics
Processors using OpenCL, in Geomundus Symposium, edited, Castellon de la plana,
Spain.

Torre, V., and T. A. Poggio (1986), On Edge Detection, Pattern Analysis and Machine
Intelligence, IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-
8(2), 147-163.

Valencia, D., P. Mart´inez, A. Plaza, and J. Plaza (2008), Parallel Wildland Fire
Monitoring and Tracking Using Remotely Sensed Data, in High Performance
Computing In Remote Sensing, edited, pp. 151-182, Chapman & Hall/CRC, Boca
Raton, Fla.; London.

Venner, J. (2009), Pro Hadoop, Apress, Bekerley, CA.

69

Votava, P., R. Nemani, K. Golden, D. Cooke, H. Hernandez, and C. Ma (2002), Parallel
distributed application framework for earth science data processing, paper
presented at International Geoscience and Remote Sensing Symposium (IGARSS),
IEEE, Toronto, Canada.

Votava, P., R. Nemani, C. Bowker, A. Michaelis, A. Neuschwander, and J. Coughlan
(2002), Distributed Application Framework for Earth Science Data Processing, Ieee
Commun Mag.

Wang, R. (2009), Sharpening and Edge Detection, edited,
http://fourier.eng.hmc.edu/e161/lectures/gradient/node9.html.

White, T. (2009), Hadoop : the definitive guide, xix, 501 p. pp., O'Reilly, Beijing.

Wiley, K., A. Connolly, J. Gardner, and S. Krughoff (2010), Astronomy in the Cloud:
Using MapReduce for Image Coaddition, University of Washington,
http://arxiv.org/abs/1010.1015v1.

Winslett, M., A. Cary, Z. Sun, V. Hristidis, and N. Rishe (2009), Experiences on
Processing Spatial Data with MapReduce, in Scientific and Statistical Database
Management, edited, pp. 302-319, Springer Berlin / Heidelberg.

Xu, X., J. J, and H.-P. Kriegel (1999), A Fast Parallel Clustering Algorithm for Large
Spatial Databases, Data Min. Knowl. Discov., 3(3), 263-290.

Yao, K.-T., R. F. Lucas, C. E. Ward, G. Wagenbreth, and T. D. Gottschalk (2009), Data
Analysis for Massively Distributed Simulations, in Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC), edited, pp. 1-7.

Ziou, D., and S. Tabbone (1993), A multi-scale edge detector, Pattern Recognition,
26(9), 1305-1314.

http://fourier.eng.hmc.edu/e161/lectures/gradient/node9.html�
http://arxiv.org/abs/1010.1015v1�

70

A case of Edge Detection
Ermias Beyene Tesfamariam DISTRIBUTED PROCESSING OF LARGE REMOTE SENSING IMAGES USING MAPREDUCE

2011

71

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	Background
	Distributed Computing Technologies
	Distributed Remote Sensing Image Processing

	Research Objectives
	Research Questions
	Thesis Structure

	Fundamentals
	Remote Sensing Data
	Remote Sensing Image Processing
	Convolution based image transformation
	Edge Detection
	Sobel edge detection
	Laplacian edge detection
	Canny edge detection

	Distributed Systems
	MapReduce Programming Model
	Basic concepts of MapReduce
	Parallelism in MapReduce
	Fault tolerance
	Comparison to other systems
	Grid Computing
	Shared-Memory parallel computing
	General Purpose Programming for Graphic Processor Units (GPGPU)

	Apache Hadoop
	Hadoop Distributed File System
	Hadoop Data Input and Output
	Hadoop Mapper and Reducer

	Design of MapReduce based Remote Sensing Image Processing
	Overview of Components
	Data Input and Output
	Data Splitting and Merging
	MapReduce functions
	Mapper
	Combiner
	Reducer

	MapReduce Driver

	Implementation
	Extending Hadoop API
	Edge Detection Algorithms
	Sobel edge detection
	Laplacian edge detection
	Canny edge detection

	MapReduce functions
	Mapper
	Combiner
	Reducer

	MapReduce Driver

	Evaluation
	Testing Environment
	Test Datasets
	Qualitative Evaluation
	Sobel method
	Laplacian method
	Canny edge detection method

	Performance Tests
	Dependency on number of nodes
	Dependency on size of the data
	Performance based on Neighborhood size
	Dependency on number of mappers and reducers

	Conclusions and Future Works
	Conclusions
	Future Works

	/Appendices
	References

