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Abstract 
 

Advances in sensor technology and their ever increasing repositories of the 
collected data are revolutionizing the mechanisms remotely sensed data are 
collected, stored and processed.  This exponential growth of data archives and 
the increasing user’s demand for real-and near-real time remote sensing data 
products has pressurized remote sensing service providers to deliver the 
required services. The remote sensing community has recognized the challenge 
in processing large and complex satellite datasets to derive customized 
products. To address this high demand in computational resources, several 
efforts have been made in the past few years towards incorporation of high-
performance computing models in remote sensing data collection, management 
and analysis. This study adds an impetus to these efforts by introducing the 
recent advancements in distributed computing technologies, MapReduce 
programming paradigm, to the area of remote sensing. 

The MapReduce model which is developed by Google Inc. encapsulates the 
efforts of distributed computing in a highly simplified single library. This simple 
but powerful programming model can provide us distributed environment 
without having deep knowledge of parallel programming. This thesis presents a 
MapReduce based processing of large satellite images a use case scenario of 
edge detection methods. Deriving from the conceptual massive remote sensing 
image processing applications, a prototype of edge detection methods was 
implemented on MapReduce framework using its open-source implementation, 
the Apache Hadoop environment. The experiences of the implementation of the 
MapReduce model of Sobel, Laplacian, and Canny edge detection methods are 
presented. This thesis also presents the results of the evaluation the effect of 
parallelization using MapReduce on the quality of the output and the execution 
time performance tests conducted based on various performance metrics. The 
MapReduce algorithms were executed on a test environment on heterogeneous 
cluster that supports the Apache Hadoop open-source software. The successful 
implementation of the MapReduce algorithms on a distributed environment 
demonstrates that MapReduce has a great potential for scaling large-scale 
remotely sensed images processing and perform more complex geospatial 
problems.  
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Chapter 1   Introduction 

The research carried out in this thesis covers the topic of high performance 
computing in the field of remote sensing to address the computational 
requirement for processing of large remote sensing images. This chapter 
discusses the background and rationale of the research in relation to previous 
research efforts. Based on the rationale and identified research problems the 
objectives and the research questions that is research addresses are presented. 
Finally, the last section gives an overview of the organization of the thesis. 

1.1 Background 

Nowadays, with the wide support for spatial data sharing, more and more 
remotely sensed images are becoming publicly available where users can 
download them freely. Analyzing of these remotely sensed images requires high 
speed network connection for downloading them and powerful storage and 
computing resources for local processing [Shen et al., 2006; Teo, 2003]. 
Therefore it might be more efficient to process satellite images remotely, 
preferably on a high-performance computer server that are close to the data 
servers [Hawick et al., 2003]. However, as satellite images continue to increase 
rapidly in size and complexity due to increase in spatial and temporal 
resolution, it becomes difficult to seamlessly access and process them using the 
state-of-the-art services where processing is done on a stand-alone, centralized 
processing server. 

In this context, infrastructures that employ distributed computing resources can 
be a potential to provide the required computational power for scaling data 
processing in remote sensing applications [Aloisio and Cafaro, 2003; P. Votava et 
al., 2002]. Distributed computing infrastructures are suitable to store large-
scale data like satellite images that have to be written only once and read 
frequently. The systems in distributed infrastructure can be and heterogeneous 
and do not need to be dedicated processing resources where their primary 
purpose can be other tasks and that makes it a low-cost supercomputing 
resource. 

Within the framework of the aforementioned technologies the emerging 
distributed computing paradigm, MapReduce programming model, provides a 
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potential for large-scale processing of satellite images on clusters of commodity 
computers. MapReduce is highly simplified distributed programming model for 
easy programming of applications that aim to process huge datasets in a parallel 
mode [Dean and Ghemawat, 2008]. MapReduce based large scale and high 
performance distributed services has gained a wide support from industrial 
sector through the Apache Hadoop open-source implementation and is recently 
gaining attention from the scientific community. The following two sections will 
briefly introduce the concept of Distributed computing technologies and 
satellite images processing, while the detail of parallel and distributed 
computing systems and MapReduce programming basics is covered in Chapter 
2. 

1.1.1   Distributed Computing Technologies 

Distributed computing is a type of computing that deals with applications that 
run simultaneously on distributed systems that communicate through computer 
network in order to solve massive computational problems. Tanenbaum and 
Steen have defined a distributed system as  “a collection of independent 
computers that appears to its users as a single coherent system” [Tanenbaum and 
Steen, 2007]. The main driving force for the development of distributed 
computing is the requirement for high-performance computing resources for 
solving massive scientific computational problems, which led to the idea of 
dividing the problems into smaller tasks to be processed in parallel across 
multiple computers [Allan et al., 2006]. The development of computing and 
high-speed network infrastructures in the past few years has also made it 
possible for distributed computing systems to provide a coordinated and 
reliable access to high performance computational resources. 

Distributed computing can be classified broadly into types. The first is high-
performance computing on parallel heavy-duty systems that provide access to 
large-scale computational resource and are common for computationally 
intensive applications[Silva, 2006]. These resources involve high investment 
cost and are usually limited at few institutions and research centers. Another 
distributed computing solution is that is becoming increasingly popular recently 
is to perform computations on clusters of low-cost commodity computers 
connected over high speed network. The advances in high-speed network 
communications and its inexpensive availability made this trend more practical 
over expensive parallel supercomputers.  

MapReduce programming model harnesses most of the requirements of 
distributed computing while hiding the intricate system-level details and 
providing highly-simplified abstractions [Ghemawat et al., 2003; Pike et al., 
2005]. MapReduce is designed to enable automatic parallelization and 



 

 

3 

distribution of large-scale data computations to achieve high-performance on 
clusters of low-cost commodity servers [Dean and Ghemawat, 2008; 2010]. This 
scale-out approach is perhaps the most notable feature of the MapReduce 
paradigm which makes it easy to develop highly scalable parallel applications 
[Lin and Dyer, 2010]. Several tests done by companies such as Google, Yahoo, 
New York Times etc demonstrated through their MapReduce implementation 
that the MapReduce programming model can achieve world record 
performance [White, 2009]. 

The MapReduce programming model is also a highly transparent framework as 
it effectively hides the details of fault-tolerance, data distribution, replication 
and load balancing while still able to handle failures and redundancy 
automatically [Dean and Ghemawat, 2008]. Since, many data-intensive 
computations do not require high processing power it is preferable for the 
computations to be done on the data side which saves transferring of massive 
datasets over the network. With this philosophy as its core principle, 
MapReduce is therefore creatively built on the top of a distributed file system, 
which takes advantage of data locality to perform the computation close to the 
data server [Dean and Ghemawat, 2010]. This is discussed in detail in section 
2.4. These qualities of the MapReduce programming model make it an excellent 
candidate for processing of massive datasets such as satellite images where 
both computation and memory requirement are often expensive. 

1.1.2   Distributed Remote Sensing Image Processing 

Remote sensing technologies especially satellite images have a wide range 
applications in many areas including meteorology, global change detection and 
monitoring, minerals and oil exploration, natural resources management, 
agriculture, environmental assessment and monitoring, disaster and relief, 
military surveillance etc [Schowengerdt, 2007]. Those satellite Images are 
exponentially growing in size and complexity as the spatial, spectral and 
temporal resolution of the satellite sensors continue to develop rapidly. For 
example NASA’s Earth Observing System Data and Information System 
(EOSDIS) ground stations currently receive in excess of 2 terabytes of satellite 
data transmitted daily from various satellite missions and an excess of 4 
petabytes of earth science data products are currently archived [Behnke et al., 
2005; NASA, 2007]. This growth in acquisition technology has a put very 
important impetus for the amount and quality of the satellite images that are 
available to the geosciences community.  

Along with this development comes the challenge of managing those massive 
satellite image databases for storage, access, processing and distribution in 
order to make it easily available to the users [Petr Votava et al., 2002]. The 
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computational resources needed for processing such large volume of satellite 
images often exceeds those available in stand-alone centralized servers and 
can’t satisfy today’s real- and near real-time requirement for image processing. 
This leads to the need for looking of other solutions such as grid or cluster 
computing.  

A great deal researches and projects exist concerning parallel and distributed 
processing of remote sensing data. A prominent example is the Beowulf Cluster 
of NASA’s Goddard Space Flight Center (GSFC) which uses commodity 
computers to build a cluster for remote sensing data processing calculations 
that exceeds a peak performance of 2457.6 GFLOPs [Plaza and Chang, 2008; 
Sterling et al., 1995]. Another project which involves distributed systems 
framework implementation is the Common Component Architecture (CCA) 
which is used as a plug-and-play environment for construction of climate, 
weather, and ocean applications. It is implemented through the Ccaffeine 
framework to support single program multiple data (SPMD) and multiple 
program multiple data (MPMD) programming models [Allan et al., 2006].  

Among the many projects that involve the use of grid computing technology for 
high performance satellite data processing is the European Space Agency’s 
Earth Observation Grid Processing on Demand (G-POD) that implements the 
layered approach based on the Grid-ENGINE which interfaces the application 
layer with different Grid middleware [Cossu et al., 2009]. SARA/Digital Puglia 
(Synthetic Aperture Radar Atlas), is also another remote sensing application 
that demonstrates the application of grid technologies and high performance 
computing to build dynamic earth observation systems for the management and 
processing of large amount of satellite data [Aloisio and Cafaro, 2003]. This grid 
implementation is based on Globus Toolkit grid middleware and enables users 
to browse the available satellite data in distributed repositories through 
sophisticated resource brokers and start on-demand parallel processing on 
remote computational grids. 

Votava et al (2002) have also demonstrated the development a flexible and 
extensible java based distributed framework, the Java Distributed Application 
Framework (JDAF), specifically designed for parallel and distributed processing 
of remote sensing data with flexibility and performance as its main goal. 
Reliability can also be included as part of this framework considering the 
reputable fault-tolerance capability of Java programming language. However, 
the authors do not believe that the Java programming language is matured 
enough for high performance computing of large amounts of remote sensing 
data. 
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The MapReduce programming model is a relatively new paradigm in the area of 
distributed computing which has only gained popularity in the area of academia 
recently and therefore only a handful of researches are available especially in 
the area of Geographic Information Systems and Remote Sensing. Rather much 
of the input has been from the industry sector. A noteworthy work has been 
done by Winslett et al. on parallel processing of spatial datasets using the 
MapReduce programming model [Winslett et al., 2009]. The research focused 
how the MapReduce framework can be applied for massive parallel processing 
of both vector and raster data representations and it achieved a reasonable 
performance using MapReduce and the its open-source implementation – the 
Hadoop framework. Another interesting work that has been done recently is the 
adoption of image coaddition algorithms to MapReduce for the purpose of 
astronomical images processing where they used Hadoop’s API to implement 
their algorithms [Wiley et al., 2010]. [Golpayegani and Halem, 2009; Lv et al., 
2010] have also made an effort to implement some satellite image processing 
algorithms Hadoop’s MapReduce model but they did not use the image files as a 
raw input to be processed by MapReduce, rather the satellite images were first 
converted into text format then to binary format before being processed in 
Hadoop environment. It is therefore obvious that the preparation of data will 
consume much of the computation time than the actual processing of the images 
especially with large multi dimensional images [Golpayegani and Halem, 2009]. 
In this study it is proposed to extend Hadoop’s file management API so that it 
can take images as an input and that might significantly reduce the execution 
time. 

1.2 Research Objectives  

The core aim of this study is to investigate how the processing of large satellite 
images can benefit from distributed computing environment through massive 
parallelization. The study evaluates different parallelization approaches of the 
processing algorithms for efficient and scalable computations with primary 
focus on massive data parallelization. In this study the MapReduce 
programming model is proposed as a framework for parallel processing of 
remote sensing images and its features such as fault-tolerance, scalability, 
replica management and distributed output checking that make this approach 
suitable are explored. The research addresses how the MapReduce 
programming model can be applied and tuned to process large satellite images. 
The research implements various spatial transformation algorithms for 
enhancement and detection of edges from multispectral Landsat satellite images 
as a prototype. The research also experimentally evaluates and quantifies the 
performance of the algorithms in their execution time, scalability, and quality of 
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output images for the different use-case scenarios on normal commodity 
hardware. The effort is mainly directed towards the minimization of the 
computation time of the algorithms and to describe and discover and describe 
the optimal data parallelization and communication scheme for heterogeneous 
network of computers. 

1.3 Research Questions  

The hypothesis presented in this master's thesis is that processing of large 
satellite images can benefit from distributed computing and the following are 
the main research questions of this study: 

1. Can performance of large satellite image processing be augmented 
through implementation on a distributed environment? 

2. What are the requirements to implement distributed processing of 
satellite images using the MapReduce programming model? 

3. What is the performance of the MapReduce processes compared to 
sequential processes? 

4. How do the different edge detection algorithms perform in a distributed 
environment? 

5. Which data partitioning and communication scheme is preferred in 
order to be executed concurrently? 

1.4 Thesis Structure 

A brief outline of the chapters that follow in this thesis is discussed below. These 
chapters are structured to cover the entire spectrum of the research (Figure 
1-1).  

Chapter2: Fundamentals 

This chapter reviews the state-of-art techniques of processing of remotely 
sensed images their mathematical properties and a prototype of edge detection 
methods is presented. Some main ideas are drawn from these concepts in order 
to develop an application that exploits the ease of the MapReduce without 
compromising the quality of the final product. This chapter also reviews the 
common distributed systems architecture and the current technology and trend 
of distributed systems. It also covers fundamentals of the MapReduce 
programming paradigm and the existing features of Apache Hadoop Framework 
and also the key factors for a successful distributed implementation using 
Hadoop environment. 
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Chapter 3: System Design 

This chapter discusses the design considerations and requirements for 
successful implementation of remote sensing image processing algorithms on 
distributed environment using MapReduce. This chapter harnesses the image 
processing component to the implementation component of this study by 
following standard application design frameworks in order to achieve the 
desired performance. 

Chapter 4: MapReduce Implementation of Satellite Image Processing 

In this chapter the actual implementation of the satellite image processing 
algorithms of the prototype of edge detection methods based on the framework 
designed in the previous chapter and the underlying implementation details are 
described. This includes the description of how the edge detection algorithms 
are adopted to the MapReduce model and the various optimization strategies 
used are explained. 

Chapter 5: Performance Evaluation 

This chapter starts with the description of the test environment setup and the 
physical configurations followed by the description of the dataset that is going 
to be used in this test. It then presents the various experiments conducted and 
evaluation results of the prototype algorithms on the distributed environment. 
The benchmarking with respect to the sequential methods and strengths and 
limits of MapReduce found during the experiments are described. The 
experiments also evaluate the performance of the algorithms in terms of 
dependency to size of datasets and data splitting mechanisms. 

Chapter 6: Conclusion and Future works 

This final chapter concludes the work by providing a summary and a short 
outlook of the chosen approach. It includes recommendations and further 
trends on the application of MapReduce for distributed processing of large 
remote sensing images. 
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Chapter 2   Fundamentals 

This chapter introduces the basic concepts of distributed remote sensing image 
processing which are essential for understanding this study and can roughly be 
grouped in to two main parts. The two sections give a general overview of 
remote sensing data characteristics and the state-of-art remote sensing image 
processing techniques respectively. A theoretical background of the edge 
detection methods which are going to be implemented as a prototype in this 
thesis are also presented in the second section. In the second part, the basic 
ideas of distributed systems and parallel computing is discussed in the third 
section followed by a discussion on the detailed overview of a special kind of 
distributed system framework, the MapReduce programming model, in the 
subsequent section. Finally the open-source MapReduce implementation, 
Apache Hadoop software, is presented in the last section. Some main ideas are 
drawn from these concepts in order to develop an application that exploits the 
ease of the MapReduce without compromising the quality of the output product. 

2.1 Remote Sensing Data 

Over the past few decades, remote sensing data especially acquired by satellite 
sensors, have been playing a major role in studying the earth’s surface 
efficiently and consistently for a wide range of applications. One of the chief 
advantages of these remote sensing data is its availability in digital format in the 
form of two-dimensional images which allow us to easily process and 
manipulate them on computers [Richards and Jia, 2006]. Cost effectiveness, 
repetitive coverage and wide-ranging applicability are also some of the other 
advantages of remote sensing data compared to other forms of data collected 
through methods such as ground-based acquisition methods. 

Remote sensing data are usually represented in raster format as discrete three 
dimensional data space with the two coordinates representing spatial extent 
and the third spectral wavelength recorded as Digital Number (DN). The 
characteristics of a remotely sensed data principally depend on the nature of the 
corresponding sensor that determines the image resolution which can mean the 
spectral resolution, spatial resolution, radiometric resolution or temporal 
resolution [Schowengerdt, 2007]. 
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The spatial resolution specifies the dimension on the earth’s surface that is 
covered by a single pixel in the acquired image and the higher spatial resolution 
of sensors the more detailed the acquired image and the smaller is the area 
covered by a single pixel [Lillesand and Kiefer, 2001]. The other significant 
characteristic of a remote sensing sensor is the spectral resolution used in the 
image acquisition process. A sensor’s spectral resolution specifies the number of 
bands that a particular sensor can acquire.  

Resolution can also mean the radiometric resolution of the sensor, usually 
expressed as bits per pixel, which indicates how the continuous data 
measurement is quantized into binary numbers. For example, sensors Thematic 
Mapper (TM) and SPOT have a radiometric resolution of 8 bits per pixel while 
Aqua MODIS and most hyperspectral sensors have 12 bits per pixel 
[Schowengerdt, 2007]. These three fundamental characteristics determine the 
amount of data that is generated by a sensor and understanding them is 
significant for the proper design of image processing algorithms.  

If we look for example at the U.S. Geological Survey’s (USGS) Earth Resources 
Observation and Science (EROS) data center where remote sensing data from 
various satellite sensors is preprocessed, archived and distributed as public 
domain. The Landsat data alone comprises more than 1 petabyte of archive 
composed of about 2.34 million scenes which is growing by 300 gigabytes daily 
[NASA, 2010]. The Landsat program began in 1971 with the launch of Landsat1 
and was followed by a series of more advanced satellites until Landsat 7 was 
launched in 1999. 

The Landsat7 satellite carries the Enhanced Thematic Mapper Plus (ETM+) 
instrument which comprises eight bands [Parkinson et al., 2006]. Bands 1 to 
band 7 have a spatial resolution of 30meters while the spatial resolution of the 
thermal band (band 6) has increased from 120meters of Landsat 4 and 5’s 
Thematic Mapper to 60meters. A visible panchromatic band of 15meters 
resolution was also introduced on ETM+ as an eights band (Table 2-1). The 
Landsat7 takes images of the Earth’s surface by dividing it into 28,892 path/row 
scenes each scene of 183km X 170km coverage on the ground, and repeats any 
given area of the planet once every 16 days [Goward et al., 2001]. The 
radiometric resolution all the bands of ETM+ is 8 pixels per bit and spatial 
resolution 30 meters except for the thermal band 6 and 8 where the resolution 
is 60 and 15meters respectively. From this information we can estimate the 
images generated by one scene of Landsat ETM+ have an uncompressed size of 
more than 280 Mbytes. 
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Table 2-1: Landsat Satellites band characteristics [NASA, 2010]. 

Satellite Sensor Bandwidths (µm) Bits per 
pixel 

Resolution 
(m) 

LANDSATs 4-5 MSS (4) 0.5 – 0.6 7 82 
  (5) 0.68 – 0.7 7 82 
  (6) 0.7 -0.8 7 82 
  (7) 0.8 – 1.1 6 82 

 TM (1) 0.45 – 0.52 8 30 
  (2) 0.52 – 0.60 8 30 
  (3) 0.63 – 0.69 8 30 
  (4) 0.76 - 0.90 8 30 
  (5) 1.55 - 1.75 8 30 
  (6) 10.4 – 12.5 8 120 
  (7) 2.08 – 2.35 8 30 

LANDSAT 7 ETM+ (1) 0.45 – 0.52 8 30 
  (2) 0.52 – 0.60 8 30 
  (3) 0.63 – 0.69 8 30 
  (4) 0.76 - 0.90 8 30 
  (5) 1.55 - 1.75 8 30 
  (6) 10.4 – 12.5 8 60 
  (7) 2.08 – 2.35 8 30 
  (8) PAN 0.50 to 0.90 8 15 

2.2 Remote Sensing Image Processing 

Remote sensing image processing is concerned with the extraction of 
measurements and information from images using various algorithms and 
usually involves mathematical treatment to analyze complex scenes. Image 
processing algorithms may be categorized into two kinds of transformations 
according to the space in which they operate: spectral transformation and 
spatial transformation [Schowengerdt, 2007]. Transformations based on the 
image data space (such as contrast enhancement and histogram equalization) 
that alter the spectral space of an image are called spectral transformations and 
these techniques are commonly applied in radiometric enhancements. These 
transformations are characterized by generating new pixel values based on 
mathematical operation on the existing pixel value and doesn’t depend on the 
neighboring pixels therefore they are sometimes referred as point or pixel-
specific operations [Richards and Jia, 2006]. While transforms purely on the 
image plane modify the spatial information of a pixel by computing the new 
pixel value based on the surrounding pixels. Some of these transforms are local 
in nature (e.g. Convolution) which use only local image information within a 
small neighborhood of a pixel, while other spatial transforms use global spatial 
information of the image (e.g. Fourier Transform) to compute the resultant 
images. There are also image transformations that use both the global and local 
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information of an image such as the Wavelet transform and the Gaussian and 
Laplacian pyramids [Schowengerdt, 2007]. 

2.2.1   Convolution based image transformation 

Convolution operation is one of the fundamental techniques in remote sensing 
image analysis and is most commonly used in image smoothing and blurring, 
edge detection and morphological processing [Richards and Jia, 2006]. 
Convolution operators use a single grey-scale image as an input and generate 
another grey-scale image as output. The convolution operator uses a moving 
kernel over the input image and it modifies the pixels that fall within that 
kernel. The kernel is usually positioned with its center at the pixel to be 
processed, and then this kernel is shifted one pixel along the row of the image to 
process the next pixel. Upon reaching the end of the row of the image the kernel 
moves down to the next row and the process is repeated (Figure 2-1). 
Mathematically the output g of a two dimensional discrete convolution 
operation of an impute image f can be represented as a weighted sum of pixels 
within a moving kernel w of size Nx × Ny [Schowengerdt, 2007]. 

𝑔𝑔𝑖𝑖𝑖𝑖 = � � 𝑓𝑓𝑚𝑚𝑚𝑚𝑤𝑤𝑖𝑖−𝑚𝑚,𝑗𝑗−𝑛𝑛

𝑁𝑁𝑦𝑦−1

𝑛𝑛=0

𝑁𝑁𝑥𝑥−1

𝑚𝑚=0
 

Equation 2-1 

Where m and n are the rows and columns of an input image respectively.  

 

Figure 2-1: A Convolution operation for image filtering [Schowengerdt, 2007]. 
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Generally, when in applying convolution operations using different sizes of 
kernels it is usually difficult to directly apply filtering on the border images 
because those pixels are the last rows and columns of the input image, they do 
not have neighborhood pixels on one of their sides. This is especially 
cumbersome when we try to apply parallel processing of images by splitting the 
input image into smaller chunks. There are several techniques described by 
[Schowengerdt, 2007] to compute those border pixel values to make the output 
image the same size as the input image which are discussed in detail in Ch. 4. 

The discrete convolution operation is usually computationally expensive as it 
consist a set of multiplications and additions for each pixel output. The 
calculation of a single pixel involves not just the input pixel only but also 
information from the neighboring pixels by calculating multiplying each entry 
pixel of the input pixel with the respective kernel [Chiarabini and Yen, 1998]. To 
calculate a single pixel, the number of multiplications needed is equal to the size 
of the kernel. For example, a convolution operation an image of 1024×1024 size 
by a kernel of 3×3 dimension will involve (3×1024)2 multiplications [Richards 
and Jia, 2006]. 

Many image enhancement and edge detection algorithms in digital image signal 
processing applications usually use convolution operations with wider kernels 
which usually depend on computationally expensive code sections involving 
repetition of sequences of operations [Bräunl, 2001]. These applications are 
generally are suitable for fully parallel implementation to improve the overall 
exaction time of the filter operations. 

2.2.2   Edge Detection 

The delineation and extraction of features from remote sensing image is an 
important task useful for a wide range of application fields such as object 
recognition, image segmentation, data compression, land-water border 
delineation etc. Edges in an image are signified by a significant image intensity 
change which represents important object features and boundaries between 
objects in an image. Edge detection therefore has an ubiquitous interest in the 
field of image processing and is a fundamental pre-processing stage of feature 
extraction from remote sensing images [Heath et al., 1998]. It is mostly done by 
applications that depend on local operators using convolution filters which can 
be a very slow process for several instances of processing large images. 

There are many ways to perform edge detection using the convolution 
operation. However, the majority of the different edge detection methods may 
be grouped into two categories, first-order derivatives and second- derivatives 
[Drewniok, 1994]. The first-order derivative, commonly called gradient method, 
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denotes methods that involve filters such as Roberts, Prewitt and Sobel 
operators and detects the edges by searching for the maximum and minimum 
values in the first derivative of the input image Fig 2. The second-order 
derivative, the Laplacian method, searches for zero crossings in the second 
derivative of the image to find edges [Marr and Hildreth, 1980]. If we consider 
an edge has one-dimensional slope of change in intensity and calculating the 
derivative of the original image can highlight the region of high intensity change 
(Figure 2-2). All these edge detection algorithms involve a single or multiple 
convolution filter kernels that can be of different sizes and the coefficients of 
these filter kernels always sum up to zero. 

        

 

Figure 2-2: 1st spatial derivative and 2nd order spatial derivative of 1-D signal. 

Sobel edge detection 

The Sobel operator applies a 2-D spatial gradient measurement on an image 
represented by the equation below [Kittler, 1983]. It is typically used to find the 
approximate absolute gradient magnitude at each point in an input grayscale 
image. The discrete representation of the Sobel operator can be approximated 
by a pair of 3x3 convolution kernels (Figure 2-3), one estimating the gradient in 
the x-direction (columns) and the other estimating the gradient in the y-
direction (rows). The GX kernel highlights the edges in the horizontal direction 
while the GY kernel highlights the edges in the vertical direction [Fisher et al., 
1996]. The magnitude |G| of both outputs detects edges in both directions which 
is the brightness value of the output image.  

𝐺𝐺𝑥𝑥 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

   𝐺𝐺𝑦𝑦 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

    

Equation 2-2 
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Figure 2-3: A horizontal and vertical Sobel filter kernels 

|𝐺𝐺| =  �𝐺𝐺𝑥𝑥2 +  𝐺𝐺𝑦𝑦2  

Equation 2-3 

Laplacian edge detection 

The Laplacian edge enhancement method is a second-order derivative of an 
image and it is applied by convolving the non-directional Laplacian filter. The 
second order derivative an edge will have a zero crossing in the region where 
there is the highest change in intensity [Wang, 2009]. Therefore the location of 
the edge can be obtained by detecting the zero-crossings of the second-order 
derivative of the image and this is known as Laplacian filter which is an effective 
detector for non-sharp edges where the pixel intensity level change over space 
slowly [Torre and Poggio, 1986]. A single filtering kernel of different sizes (e.g. 
3x3, 5x5, 7x7, etc.) that has low values (usually negative) in the middle of the 
kernel surrounded by positive values can be used as Laplacian edge 
enhancement (Figure 2-4). Because the Laplacian is an approximation of the 
second-order derivative of an image preserving the high frequency components, 
it is very sensitive to noise and therefore it is usually applied to an image that 
has first been smoothed using the Gaussian filter in order to suppress noises in 
the image [Fisher et al., 1996]. 

 
Figure 2-4: Commonly used Laplacian filters. 

Canny edge detection 

The Canny edge detection is considered as the optimal and standard edge 
detector [Drewniok, 1994]. This multi-step method which was developed by 
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[Canny, 1986] with the aim to develop an optimal algorithms that satisfies three 
main criteria. The first one is good edge detection by maximizing the signal-to-
noise ratio meaning the method should detect edges to the maximum possibility 
but with low probability of detecting edges falsely. The second criterion is that 
detected edges should be as close as possible to the real edges. The third 
criterion is to have minimal number of response and edges should not be 
detected more than once [Canny, 1986]. To satisfy these criteria, the algorithm 
can be performed in the following four separate steps. 

1. Smoothing: this step involves smoothing the image using a Gaussian filter to 
suppress the noise and the degree of smoothing is controlled by the standard 
deviation σ of the Gaussian filter. 

𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 𝐺𝐺𝜎𝜎(𝑥𝑥, 𝑦𝑦) ∗ 𝑓𝑓(𝑥𝑥,𝑦𝑦) 

Equation 2-4 

Where * denotes convolution and 

𝐺𝐺𝜎𝜎(𝑥𝑥,𝑦𝑦) =
1

2𝜋𝜋𝜎𝜎2 𝑒𝑒
[−𝑥𝑥

2+𝑦𝑦2

2𝜎𝜎2 ] 

Equation 2-5 

The two dimensional Gaussian kernel can be made first by independently 
convolving a one dimensional Gaussian kernels in the horizontal and vertical 
directions and then multiplying them which makes it more suitable for 
computation.  

𝐺𝐺𝜎𝜎(𝑥𝑥,𝑦𝑦) = 𝐺𝐺𝜎𝜎(𝑦𝑦) ∗  𝐺𝐺𝜎𝜎(𝑦𝑦) 

Equation 2-6 

2. Gradient magnitude and direction: the gradient magnitude of the image is 
computed using any of the gradient operators (e.g. Sobel, Roberts, Prewitt) by 
using Equation 2-3. And the direction of the gradient is calculated using the 
equation below and the angle is rounded to the closest 0, 45, 90 or 135 degree 
angle. 

𝜃𝜃(𝑥𝑥,𝑦𝑦) =  𝑡𝑡𝑡𝑡𝑡𝑡−1 𝐺𝐺𝑥𝑥
𝐺𝐺𝑦𝑦

 

Equation 2-7 

3. Non-maximum suppression: From the image gradient the local maxima are 
identified as edges based on its direction and the non-maximum image 
intensities are suppressed. 
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4. Thresholding by hysteresis: assuming that true edges are continuous, 
thresholding is done with hysteresis which requires upper and lower threshold. 
The upper threshold selects those edges that are strong. These edges are used 
then to trace the weak edges while applying the lower threshold to suppress 
those edges that weak and not connected to the strong edges. After completion 
of this process, the final image output becomes a binary format. 

There are two parameters in the Canny edge detection method that affect the 
effectiveness of the algorithm and also the computation time. The first one is the 
size of the Gaussian smoothing filter which set by the parameter standard 
deviation σ of the Gaussian function and the greater the filter size the 
computationally expensive the process and the stronger the smoothing effect on 
the image. The second parameter is the high and low thresholds used for 
hysteresis and these thresholds are a function of the smoothing filter 
parameters, properties of the first- or second-order derivatives filter and the 
edge characteristics [Ziou and Tabbone, 1993]. 

2.3 Distributed Systems 

The main motivation for distributed computing is low-cost resource sharing for 
speedup of large-scale computational problems and this is usually done through 
interconnection of autonomous and geographically distributed computing 
resources to provide a reliable access to high-end computation [Foster et al., 
2001; Joseph and Fellenstein, 2004]. Some of the main characteristics of these 
distributed systems are: scalability, fault-tolerance, reliability, transparency, 
concurrency etc [Coulouris et al., 2005; Kshemkalyani and Singhal, 2008]. The 
most common distributed computing systems are cluster computing and grid 
computing [Tanenbaum and Steen, 2007]. There distinction between is these 
two systems is fuzzy but generally cluster computing represents to computing 
systems with tightly coupled commodity computing nodes with the high-speed 
local area network configurations. While in grid computing the systems are 
usually heterogeneous  computers with different network configurations, 
administrative rights, operating systems etc [Tanenbaum and Steen, 2007].The 
main reason behind the popularity cluster computers is the high prices of 
supercomputers, the exponential growth of low cost processors, and the 
availability of high-speed network connections [Abbas, 2007]. Computer 
clusters are usually used for parallel programming for compute- or data-
intensive tasks. Here parallel computing means any computing resource that 
runs a given task in parallel therefore even involves multi-processor machines.  



 

 

18 

2.4 MapReduce Programming Model 

MapReduce is a parallel programming model for processing of large datasets on 
clusters of low-cost commodity computers [Dean and Ghemawat, 2008]. The 
model, originally introduced by Google, is developed on a well known principle 
of “divide-and conquer model” in parallel programming and has since then 
revolutionized the area of distributed computing. It is especially designed to 
process very large datasets on large cluster of low-cost commodity computers 
with unreliable communication and with the assumptions that storage is cheap 
and network communication is expensive. MapReduce is developed with a basic 
principles such as: the Scale-out (cluster of large number of desktops) rather 
than scaling up (few powerful supercomputers) solutions with a viewpoint of 
minimizing investment cost; moving computations to data to take advantage of 
data locality; fault-tolerance and reliability through data replication and 
distributed filing system; and hiding system-level details through clean 
abstractions and automatic parallelization and distribution [Lin and Dyer, 2010]. 
In MapReduce by default the codes for dividing the work, controlling the 
progress and merging the output is hidden from the application developer 
inside the framework. This abstraction comes at the expense of control over 
data flow and  other the processes compared to grid computing APIs such as 
MPI [White, 2009]. Therefore, not all applications can be easily implemented 
using MapReduce. MapReduce is suitable for algorithms do not require global 
synchronization as the map and reduce tasks run in isolation on the computing 
nodes. However, algorithms such as clustering, machine learning and neural-
network algorithms are challenging to implement in MapReduce as they depend 
on shared global state for intermediate communication during processing [Lin 
and Dyer, 2010]. This research explores how much applicable is MapReduce to 
remote sensing image processing algorithms and what are the bottlenecks to 
transform sequential image processing algorithms to parallel mode. 

2.4.1   Basic concepts of MapReduce 

The MapReduce model, inspired by functional programming languages, allows 
doing the computation of two distinct phases: the map and the reduce phase 
[Dean and Ghemawat, 2008]. The input data is split to be represented as a set 
key-value pairs which are processed in a parallel mode by the map phase to 
generate another intermediate key-value pairs (Listing 2-1). Those intermediate 
values are then processed produce the overall result. The map and reduce phase 
occur in an explicitly sequential mode where a reducer on an input can not start 
until the map phase finishes, but within these phases are executed in parallel 
within themselves. The application programmer specifies the map and reduces 
functions in the following representations: 
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The map function takes a list of values and a processing function as input. The 
processing function is applied to every list element and an intermediate list of 
processed results is returned as key-value pairs. These are intermediate results 
are pushed to the reducers which also receives them as key-value pairs and 
combines the values list to a final output result. One of the fundamental 
properties of MapReduce framework is locality, i.e., it tries to execute map tasks 
on the same machine as the physical location of the data. This property greatly 
reduces communication over the network. 

2.4.2   Parallelism in MapReduce 

The map functions run in parallel independent of each other and in isolation 
creating different intermediate values from different input data sets. These 
reduce functions also run in parallel, each working on a different output key of 
the intermediate values. The MapReduce framework takes care of supplying the 
mappers and reducers with the necessary input data and manages the exchange 
of intermediate results between the mappers and the reducers. But the reduce 
phase can’t start until a map phase of an input split completely finishes [White, 
2009]. 

2.4.3   Fault tolerance 

Fault tolerance is one of the fundamental requirements of distributed systems 
[Coulouris et al., 2005; Cristian, 1991; Tanenbaum and Steen, 2007], and a fault- 
tolerant system must be able to transparently handle failures without affecting 
the performance and quality of results as much as possible. Since, MapReduce is 
designed to work on commodity servers, it is designed with the expectation that 
failures occur frequently [Lin and Dyer, 2010]. In MapReduce framework of 
Hadoop for example the master server automatically detects failures in worker 
nodes and re-executes the task on completed map tasks or waiting reducers. It 
also efficiently manages failures caused by corrupted files by skipping them 
after they fail to execute several times[White, 2009]. The features enable 
MapReduce to provide fine-grained fault tolerance where partial failures in a 
job do not interrupt the overall progress of the job [Dean and Ghemawat, 2010]. 
This is particularly important if the input data are independent of each other 

map (in_key, in_value) ->  
  (out_key, intermediate_value) list 
 
reduce (out_key, intermediate_value list) -> 
  out_value list 

Listing 2-1: Definition of map and reduce functions. 
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and a specific job with multiple data inputs needs a lot of time to complete as we 
can achieve partial results even if the whole job did not complete successfully. 

2.4.4   Comparison to other systems 

MapReduce is not the first model to adopt the idea of data-intensive distributed 
processing; most of the issues raised now by MapReduce have been dealt to 
some extent efficiently by other models. But none of them enjoyed the 
performance and attention that MapReduce has achieved due to many reasons 
[Lin and Dyer, 2010]. This section provides a brief comparison of MapReduce to 
other parallel and distributed programming models that share some similarity 
with MapReduce. 

Grid Computing 

Similar to MapReduce, Grid computing technologies have been performing large 
scale data processing focusing on performing computations by distributing the 
work across several computers [White, 2009]. However, grid based platforms 
are often build servers that use a shared file system, which is practical for CPU-
intensive computations but have many limitations when it comes to data-
intensive computations as data sharing is by sending-receiving messages 
between the processes. This is the core difference between MapReduce and grid 
computing [Schmidt, 2009]. Message Passing Interface (MPI), which is 
considered as the lingua franca of distributed-memory applications, is 
extensively used in grid computing. In MPI programming the programmer need 
to implement mechanisms for work load partitioning, task mapping and failure 
handling explicitly compared to MapReduce where often only the map and 
reduce functions have to be implemented. [Lin and Dyer, 2010; White, 2009] has 
made some comparison between grid computing and MapReduce there it is 
stated that the main advantage of MapReduce over grid computing is data 
locality and simplicity. 

Shared-Memory parallel computing 

Shared-memory programming such as Pthreads and Open Multi-Processing 
(OpenMP) has been utilized both for scientific and industrial computing for 
many years and is being considered by many as the most extensive model 
compared to other parallel models [Karavakis, 2010]. OpenMP, which was 
introduced to provide a shared-memory parallelism in C, C++, python and 
FORTRAN, has become the platform of choice in shared-memory parallel 
programming since it [Basumallik et al., 2007; Karavakis, 2010]. If we compare 
it to MapReduce, it is much more generic and provides a variety of solutions and 
is also more portable across different operating systems, architectures and 
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compilers. However, OpenMP is primarily designed for shared-memory systems 
and its implementation for large-scale applications requires high investment 
cost as it follows the scale-up approach. Besides, there have been some 
successful attempts in implementing MapReduce on Shared-Memory 
multiprocessors which achieved a reasonable performance [Ranger et al., 2007]. 

General Purpose Programming for Graphic Processor Units (GPGPU) 

As graphic processing units have become more powerful with the primary 
intention of rendering images close to realism, it has also received a 
considerable attention from general purpose programmers to take advantage of 
its massively parallel architecture [HARRIS, 2005; OWENS et al., 2007]. NVidia 
and ATI have been the main GPU manufactures of GPUs with different rendering 
power and programmability [Advanced Micro Devices, 2009; NVIDIA, 2010]. 
Compute Unified Device Architecture (CUDA) has been used as a standard 
programming platform for many years with a wide array of applications and 
recently with recent release of OpenCL programming language based 
development platform by ATI for its GPU architectures the programmability of 
GPUs have become more approachable.  

An implementation the edge detection algorithms for large satellite images on 
ATI GPUs using OpenCL have showed that a computational performance of 
more than 20x can be achieved compared to a central processing unit (CPU) that 
have 5x more memory bandwidth [Tesfamariam, 2010]. The main constraint of 
GPU programming despite its high performance is that the applications 
programmed on GPU are hardware architecture and vendor specific. 
MapReduce have also been implemented on GPUs, in projects such as Mars [He 
et al., 2008] achieving good performance. This work reveals the wide range 
applicability of MapReduce programming model and computationally-intensive 
applications can be implemented on small-scale computers. 

2.5 Apache Hadoop 

This study has implemented the remote sensing image processing algorithms 
for distributed processing on commodity clusters using MapReduce model and 
its open-source implementation, the Apache Hadoop. Hadoop is an Apache 
Software Foundation project that includes various sub-projects in it including 
the MapReduce implementation and Hadoop Distributed File System (HDFS) 
which are similar to Google’s MapReduce and Google File System 
implementations  [Venner, 2009]. In this study, Hadoop indicates the 
MapReduce programming model and execution environment along with the 
distributed file system. HDFS is a highly fault-tolerant distributed file system 
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designed for storing very large files on clusters of commodity hardware nodes 
[Noll, 2004-2010; White, 2009]. MapReduce is build on the top of this file system 
but independently which consists of JobTracker and Tasktrackers which control 
the job execution process[Mann and Jones, 2008]. 

2.5.1   Hadoop Distributed File System 

HDFS is an open-source implementation of Google File System (GFS). Externally, 
HDFS appears as an ordinary file system and files stored there can be deleted, 
moved, renamed etc [Venner, 2009]. But actually it is stored distributed among 
the data nodes. HDFS adopts a master/slave architecture in which the master, in 
Hadoop’s case is the Namenode, provides the metadata service and access 
permissions and the slaves which are the Datanodes serve as storage blocks for 
HDFS. All the file operations of HDFS are controlled by the master server and 
the HDFS can only be accessed through Hadoop’s.  Large files stored in the 
distributed system are divided into blocks and replicated over multiple 
datanodes. The default block size of HDFS is 64MB but can be modified and files 
which are less than the block size are not divided [Mann and Jones, 2008]. This 
replication of files by HDFS is one of the core features of fault-tolerance and 
redundancy in Hadoop. And the map processes are usually performed on these 
data blocks on the data node which significantly reduces the amount of data that 
need to be transferred over the network [Yao et al., 2009]. The data transfer to 
and from HDFS which is done through Hadoop’s API does not pass through the 
NameNode only metadata and log information is stored at the NameNode. Since 
the NameNode is usually a single server, to avoid failures there is a 
SecondaryNamenode that replaces the NameNode in case of failures. HDFS is 
used to store files that are to be used as an input for the Map phase and the 
results from the reduce phase; it does not store the intermediate results from 
the map phase [Mann and Jones, 2008]. 

2.5.2   Hadoop Data Input and Output 

Hadoop have its own set of primitives for data input and output formats and 
simple model for processing of these data [White, 2009]. The InputFormat 
interface defines how and from where the map phase should read the input files. 
It also defines the InputSplits which splits the file into smaller chunks before 
being represented as key-value pairs. Hadoop can read and process a wide 
range of file formats such as text, binary, database etc formats through the base 
class FileInputformat which generalizes other file formats. The FileInputFormat 
contains methods to define which files are included as input and also an 
implementation for generating splits through the InputSplits. Hadoop also gives 
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us an option to override the splitting of input data in case we do not want to 
split the data [White, 2009]. 

It also has another class for data outputs, the OutputFormat, which act similar to 
the InputFormat. The FileOutputFormat base class of OutputFormat is used to 
provide a dedicated directory where the reduce phase writes the results of the 
reduce tasks. This class also generates the output results in to the desired file 
format after the reduce computation. 

Another important feature of Hadoop for managing data input and output is the 
RecordReader which provides data access mechanisms for the map phase by 
reading the data from its source based on the computed splits and converting it 
into key-value pairs. The RecordReader is an iterator over the record which is 
invoked repeatedly until the entire input splits are completely consumed by the 
mappers [Venner, 2009].  The default implementations of the above data I/O 
components can be replaced with customized implementations to process the 
desired input format, in our case image formats. 

2.5.3   Hadoop Mapper and Reducer 

As discussed in section 2.4.1, MapReduce is straightforward in its programming 
principles. The programmer has to specify a map function where one map job is 
performed in parallel on the file splits. Each input split generated by the 
RecordReader is assigned to each map task and after the map function has been 
applied to each input split the output is stored in local storage and the 
Tasktracker that is residing at the DataNode notifies the JobTracker of the job 
completion. After that the reducer pulls the groups of key-value pairs form the 
mapper and merges these values to produce a single key-value pair. This pulling 
principle is proposed by Google for more fault-tolerance and to avoid re-
execution of all map tasks if one task fails [Dean and Ghemawat, 2010]. 

Before the reducers start merging the results in parallel, the output key-value 
pairs with the same key have to be grouped together in order for the reduce 
merge them to the final output. In order this to be done shuffling of 
intermediate results over the network is needed. This process shuffling process 
may take a considerable time if there are a large number of unsorted 
intermediate results. To minimize this communication over the network 
Hadoop gives an option to use a function, Combiner function, that merges the 
with-in the map result [White, 2009]. The Combiner function is an optional 
optimization strategy which can be ignored if considered redundant.  
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Chapter 3   Design of MapReduce based Remote 
Sensing Image Processing 

The main focus of this study is to test the feasibility of distributed processing of 
large satellite images using the MapReduce model to solve the problem of data 
bulkiness. The approach is to apply parallelize the process of those large images 
by dividing the image into smaller images, process them by different processors 
in parallel and merge to yield the final output. The assumption is that we have a 
large amount of massive satellite images to perform computation in low-cost 
commodity hardware. The MapReduce programming is chosen achieve this goal 
because of its advantages over other distributed computing technologies 
discussed in section 2.4.4. One of the main rationales is that in other distributed 
computing services such as MPI, shared-memory models etc. the computing 
nodes often have a shared filesystem and data has to be moved to the nodes for 
computation each time a job is executed. While MapReduce built on a 
distributed filesystem and therefore as moving data over the network is 
expensive it is assumed that it is logical to process those large satellite images 
where they are stored. 

The MapReduce programming model have also provides a highly simplified 
interface to the application developer compared to the other models as only the 
map and reduce function are needed the whole distributed processing 
application besides the data input and output handling. But this restricts us in 
having control over issues such as where and when a mapper or reducer 
executes,   which input chunks are processed by a specific node or mapper and 
which intermediate data is processed by a specific reducer [Lin and Dyer, 2010; 
Venner, 2009; White, 2009]. This brings a challenge to on how to optimize our 
algorithms to perform well especially if the distributed computing resource is 
heterogeneous in nature. However, there are a number of mechanisms in 
manipulating the data flow by assembling intricate data structures as key-value 
pairs and shuffling mechanisms of intermediate results which are discussed in 
detail in section 3.4. 

Hadoop is chosen as testing platform because it is the main open-source 
implementation of the MapReduce programming model and its simplicity in 
setting up a Hadoop based system and run MapReduce based applications [Lin 
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and Dyer, 2010].  In this study, main issues to consider when implementing 
MapReduce based algorithms in Hadoop environment are the file input and 
output formats to be used for processing since Hadoop’s primary purpose was 
bulk unstructured text processing. The second concern is how to divide the 
raster datasets into smaller chunks so that they can be efficiently processed in 
parallel. The third issue is how to systematically design the image processing 
algorithms through the map and reduce functions. This chapter discusses the 
design concepts to address these concerns and what needs to be implemented 
for Hadoop to deal with the images for processing. 

3.1 Overview of Components 

As part of the design of MapReduce algorithms there are also other important 
design and implementation that must be considered such as inducing the key-
value structure on the remote sensing image datasets [Lin and Dyer, 2010]. The 
first thing to consider when designing an image processing algorithm in a 
Hadoop environment is how to familiarize it to read, process, and write images 
file formats. This should be done by extending the Hadoop API to allow images 
to be parsed into the BytesWritable wrapper of Hadoop which is a container for 
binary formats. The input image is read by from the underlying distributed file 
system of Hadoop by tiling into several splits and where the sub images are then 
processed by separate. The important issue here is how the pixel at the border 
of the sub-images are handled, since all the detection algorithms involve 
convolution operation the sub-images must have overlapping pixels at the 
borders based on the kernel size of the convolution to avoid gaps when the 
image is merged. Those tiled images are converted into key-value pair format so 
that the map task can understand it where the key is generated from the file 
name of the whole image and position of the tile in the original image and the 
value holds the actual image data. 

The mapper which contains our edge detection algorithms is applied to every 
input image represented in the key-value pair to generate an intermediate edge 
detected image is produced in another key-value pair representation. The 
reducer is applied to those intermediate values after the map task is finished 
after being sorted and shuffled among the worker nodes. In our 
implementations the task of a reducer is to get the computed image tiles and use 
the information associated with them (key) merge them to produce the final 
output image. 
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Figure 3-1 depicts the major components of the two-stage system processing 
structure where the Mappers are applied to all input key-value pairs, which 
generate processed sub-images of intermediate key-value pairs. Combiner 
gathers unit images of the same files together and Reducers are applied to 
merge all images associated with the same key. Between the map and reduce 
phases there is distributed data sorting. In this scenario the codes of the 
mappers and reducers along with file format definition are packaged by a driver 
together with some configuration parameters to produce one MapReduce 
program where it can be submitted to a master server to process images. There 
is no direct relationship between the input image files and the MapReduce 
program and to execute this job the HDFS file path of the image files have to be 
submitted along with the package to the master. All other aspects of the 
distributed processing of the images such as distributed execution, failure-
handling, job scheduling etc [Venner, 2009]. The following sections discuss in 
detail about the main components of the MapReduce program. 

 

Figure 3-1 Simplified view of the MapReduce process for image processing. 
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3.2 Data Input and Output 

The image input for our MapReduce job is typically large satellite image files 
stored in the Hadoop Distributed File System. Our design assumes that these 
images are stored in tiled TIFF format with augmented metadata where they 
can be readily read by tiling methods within the boundary of the whole image 
without restriction. Hadoop provides us with many input and output formats 
such as text format, binary format, database format etc through the InputFormat 
and OutputFormat interfaces [White, 2009]. These interfaces are extendable and 
therefore we designed our own file format on the top of Hadoop’s 
FileInputFormat class that reads image files. This customized FileInputFormat 
defines from where the input files are to be read by taking the file input path as 
an argument. It also defines how the input file should be tiled for processing 
using the IputSplit interface. 

The splits do not actually parse and get the tiled data, they are only a reference 
to the chunk data [White, 2009]. Their primary purpose is how and into how 
many will the data be sliced. But the actual loading and assigning of keys and 
values is performed by the RecordReader which is defined by our 
FileInputFormat and it is invoked iteratively on the input image until all the tiles 
are finished. The RecordReader class of Hadoop was extended in order to be able 
to load image data and converts it into Key-value objects that are suitable for 
reading by the Mappers. The UML class diagram illustrated in Figure 3-3 shows 
the extended RecordReader class with its necessary attributes and functions and 
we can observe here this class does the job of converting the image splits into 
key-value pairs by iterating using the next() method. We can then easily choose 
to use our own file format to apply to the input files when configuring the job 
and the mappers can use the information about the input split properties to 
process those splits. 



 

 

28 

 

Figure 3-2: RasterRecordReader that extends Hadoop's RecordReader interface. 

3.3 Data Splitting and Merging 

Two kinds of data partitioning mechanisms can be performed on a multispectral 
data: partition based on the image plane (the spatial domain) or on the spectral 
space. Partitioning on the spectral space refers to when the input image is 
portioned based on the spectral bands where the different bands of the same 
image are to be processed in parallel [Valencia et al., 2008]. While partitioning 
on the image plane splits the input image into smaller chunks on the spatial 
domain (in terms of width and height of the image). In this study since the edge 
detection algorithms are spatial filters that operate on the spatial domain and 
one band is going to be used independently to enhance edges of the image, we 
are going to be mainly concerned on how to apply partition of the satellite 
image on the spatial domain. The performance of parallel implementation of 
image processing algorithms is highly dependent on how the data is partitioned. 

One of the key concerns that arise with partitioning images for parallel 
processing in the spatial domain is the issue of accessing pixels outside the 
spatial domain of the image splits available in the computing node. This is 
usually managed by border handling strategy by replication of pixels at the 
processors to avoid border effects. For instance, if we take the example of Sobel 
operator which uses 3x3 filtering kernel as a convolution operation, the number 
of pixels that have to be replicated Pr in the processing of an image can be 
computed given by the equation below [Valencia et al., 2008]. 
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 Where N is the number of partitions, IR is the number of rows in the original 
image, and IC is the number of columns in the original image.  

 

Original Input Image       partitioned sub-images 

Figure 3-3: Input image splitting strategy to handle border pixels for a 3x3 filter. 

The sub-images are generated by splitting the image into regular chunks of the 
same dimension in horizontal and vertical direction until the end of the whole 
image. For the Sobel filter which the kernel size is 3x3 a two pixels wide gap 
forms in the middle of the output image and the outer border pixels are also 
lost. This is remediated by overlapping the sub-images by two pixels during the 
slicing of the input image (Figure 3-4). The same strategy must be applied for 
the 3x3 Laplacian filter. As for the 5x5 Laplacian filter a four pixel overlap was 
need to remove the pixel gap. 

The merging of the of the result images is straight forward as the edge detection 
algorithms will produce tiles that exactly match at their borders. As outside for 
the borders of the whole image, they can be ignored if the kernel size is small 
but for the Canny method where Gaussian smoothing is applied with large 
kernel sizes (up to 25 pixels width) some mechanism have to be devised to get 
values for these pixels. 

3.4 MapReduce functions 

After the image splits are generated and represented in key-value format by our 
RecordReader the map function is invoked for every key-value pair by 
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implementing the mapper class. The key-value pairs are the basic data structure 
and are the only arguments that the map function needs to start processing 
(Figure 3-4) [Lin and Dyer, 2010]. The key holds the image file name and the 
sub-image ID and the value is the sub-image itself. The map function produces 
an edge detected image as an intermediate value along with the new output 
keys. In this study the task of the map function is to do the complete edge 
processing task on the image tiles and give edge image outputs where they are 
merged by the reduce function. The following sections discuss in detail about 
the execution overview of the map, reduce, combiner functions and methods 
involved within these functions. 

 

Figure 3-4: Implements of Mapper and Reducer. 

3.4.1   Mapper 

It is clear that the map method is a pure function with a sole purpose to process 
the data splits represented as key-value pairs in parallel mode with no 
communication with among the other map processes. The map method also 
receives two more parameters beside the key and value. The first one is the 
OutputCollector which writes the output images in another key-value format to 
be forwarded to the reduce tasks. The second instance is the Reporter which 
reports information about the map task. The first thing our map function does is 
grab the key and then decompress and read the value associated with it using 
java image reader classes. After this image is read the image processing 
algorithm is performed on this image tile. In this study the edge detection 
algorithms which are explained in section 2.2 are implemented as a use case 
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scenario. The edge detection process is explicitly performed from start to end at 
this stage. The sequential implementation of the edge detection algorithms can 
be easily plugged into the map function with no or slight modifications. The 
processed images are then compressed into array of bytes where they are 
represented as key-value pairs and sent to the reducers. When a map task 
finishes, then the master forward these key-value pairs to the reduce workers. 
At this stage, in order to reduce the volume of the intermediate images to be 
transferred to the reduce workers over the network, grouping of the 
intermediate computed image tiles is made by the map worker nodes locally by 
the combiner function (similar to the reduce function) which we will discuss it 
in section 3.3.3. Since a MapReduce job have mappers and reducers running in 
parallel and sharing the distributed file system, special attention is taken in the 
file naming system of the intermediate files to avoid conflicts and 
synchronization between the mappers. The mappers run until all the key-value 
pairs are processed and after the finishing of all the mappers we can terminate 
the code and close the data output streaming. Figure 3-5 shows a Unified 
Modeling Language (UML2) sequence diagram depicting the main execution 
overview of the map phase. It also shows how the execution framework 
instantiates the map tasks. 

 

 

Figure 3-5: Sequence diagram for the map phase. 
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3.4.2   Combiner 

To minimize the communication over network during the sorting and shuffling 
process a combiner function is used to aggregate the image out puts from the 
mappers locally before being sent to the reduce workers. This combiner function 
does exactly the same process as the reduce function but only aggregates output 
image tiles if they are found next to each other in the whole image. This brought 
a slight challenge to the reduce function as some of the image tiles are now 
bigger in size but it greatly improves the performance of both the reduce and 
the shuffle processes. This combiner function is especially important for the 
canny method because the output tile is much smaller (more than 20% of the 
original image) than the input tile as it is in binary format.  

3.4.3   Reducer 

The task of our reducer is straightforward, only to merge the result images from 
the map tasks and to give the final image. The Hadoop API provides us with 
options for initialization and closing of the reduce task and these reduce tasks 
start as soon as each map task is finished. The first step is to set the destination 
where the final aggregated image is going to be put. Here we use the 
information from the original input image to create an output image with the 
same dimension as the original image. We can then grab the key-value pairs that 
have been produced by the mappers and sort them according their key id. From 
this information we can identify original location of the tiled image within the 
whole image and then the value can be read, decompressed and streamed to its 
identified location after checking its boundary conditions. The reduce tasks are 
run in parallel to write the images to the distributed file system until all image 
tiles are stacked to their respective location in the complete image. We can 
observe from the sequence diagram in Figure 3-6 that the major part of the 
reduce tasks is reading and writing image files. 
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Figure 3-6: Sequence diagram for the reduce phase. 

3.5 MapReduce Driver  

Having specified the MapReduce jobs and how the image data format is going to 
be read, final step is to design a driver program where we specify is how the job 
is run on a Hadoop environment and also which data input and output formats 
and from where to use data for processing. Hadoop API provides us a clear-cut 
mechanism to set the parameters and other configurations that are necessary to 
run a MapReduce job through the JobConf object [Venner, 2009; White, 2009]. By 
creating the job to be done through this driver, we can specify the input and 
output paths, input and output formats as well as our own parameters related to 
the map job. How many reducers must the MapReduce job run is also set in this 
driver. This class will be the main driver after the codes are packaged in JAR 
compression and it will be responsible for job submission, running, and 
progress reporting. 
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Chapter 4   Implementation 

The Apache Hadoop MapReduce framework is favored as a distributed platform 
for processing of large remote sensing images because of its simplicity in setup 
and deployment and its high-level java development tools. The edge diction 
algorithms are implemented using the apache Hadoop MapReduce framework 
for as a map and reduce functions. All the development of the algorithms and 
associated codes are developed in java. By extending the current API in the 
Hadoop library a system is built that allows for parallel implementation of the 
image processing algorithms. This chapter discusses the MapReduce 
implementation details of these algorithms on Apache Hadoop environment. 

4.1 Extending Hadoop API 

The Hadoop API allows for creation an extension of input formats, by 
implementing the FileInputFormat and RecordReader interfaces where it 
becomes possible to describe the way the input image is split and sent to the 
Mappers for processing. The BytesWritable container of Hadoop API was used 
in this implementation to allow images to be parsed by the FileInputFormat. 
The BytesWritable is a wrapper for an array of binary data and its serialized 
format is an integer field that specifies the number of bytes to follow, followed 
by the bytes themselves [White, 2009]. Therefore the input image tiles can be 
easily parsed and wrapped using this container. 

First, a class was created that extends the Hadoop RecordReader class to deliver 
the image file contents as the value of the record. The RecordReader is an 
important class that is used by the Map function to generate record key-value 
pairs. This RasterRecordReader inherited class created is also used to generate 
record key-value pairs for the image splits to be processed by the map function. 
Since the input images are too big to be read at once for splitting, the Java 
Advanced Imaging (JAI) API was used to read the image from the file system one 
image split at a time and convert it into key-value pair format. The ImageReader 
class of the API allows us to read rectangular tiles of the image in the horizontal 
and vertical direction by specifying the starting x and y direction and the width 
and length of the desired image tile. After decoding the image tile from the 
stream it is converted in to an array of bytes and distinctive filename 
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(tilePositionX+_tilePositionY+_tileWidth+_tileHeight) which is the key part in the 
key-value pair is given to it based on its location in the original image. The 
process continues to read the next tile until the whole image is tiled. This 
naming system is crucial for the reduce function which sorts and merge the 
image tiles together based on this information. 

This image splitting method is used inside our extended RasterRecordReader 
which is able to split the image convert it to key-value pairs in the form of an 
array of binary data and make it ready for the map function to process those 
image split. The main methods that are implemented in this class can be seen in 
Figure 3-3. It is also here where we define the number of pixel rows and 
columns that are going to be overlapped among the image tiles depending on 
which edge detection algorithm is being implemented. The pseudo code in 
Listing 4-1 shows the important sections of code the adopted image reading and 
splitting mechanism by the RasterRecordReader. Here, we can observe that the 
minimum dimension of an image in order to be split is 1024x1024, images 
below that size are directly converted to key-value pairs. 

A second class that is extended in this study is the FileInputFormat (Figure 3-2) 
which is the base class for any file-based input formats that provides a place to 
define which files are included as the input to a job and also an implementation 
for generating splits for the input files [White, 2009]. In our case, both are both 
these are implemented by the RasterRecordReader class, therefore the main 
purpose our extension of the FileInputFormat is to the instantiate the 
RasterRecordReader. Another important argument is also passed in this 
implementation: the FileInputFormat also by default splits data that are larger 
than the HDFS block size. Since we have implemented our own splitting 
mechanism in the within the RecordReader, any splitting by that might be done 
by default by FileInputFormat is disabled by overriding the isSplittable() 
method. 
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RecordReader<Text, BytesWritable> 
declare variables 
overlap; tile width; tile height; 
 
    // start the splitting and key-value generation process 
    initialize(FileSplit, Configuration); 
    getHDFSFilePath(); 
    getFileSystem(); 
    hdfs.open(); //opens HDFS 
    hdfs.mkdir(hdfs_path+"filename"+"output"); //create directory for tiles 
       
    // Split the image only if it is > 1024x1024pixels 
    if( width * height is less greater than 1024*1024 ){ 
        key(filename); &// URI format 
        value(wholeImage); 
    } 
    else{ 
        count=0; 
        for(i=0;i<horizontalNumberofTiles;i++) { 
            for(j=0;j<verticalNumberofTiles;j++) 

     { 
               // read the desired portion of the image 
                     Read using ImageReader (0, TileBox); 
                    BufferImage(tileWidth+overlap, tileHeight+overlap, pxlValue); 
 
       // create the key in the form of URI based on its original position 
                    key(filename+tilePostionX+tilePositionY); 
      // write image tile to byte array 
                    write to byte array (tiledImage, "jpg", byteOutputStream); 
  
       // set the value to the byte array with a starting offset and length 
                    image.set( byteTile, offset, byteTile.length ); 
                   } 

}  
    count++; 
 
    getProgress(); 
    closeInputStream(); 

Listing 4-1: Hadoop's RecordReader interface expanded to deal with images. 
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4.2 Edge Detection Algorithms 

All the edge detection processes are run by the map function. The sequential 
edge detection algorithms developed in java can be easily adopted to be plugged 
into map function with little or no modification. The main difference between 
the Sobel, Laplacian, and Canny algorithms in terms of coding and 
implementation is when considering the width of the overlap of the image tiles. 
Since the image splitting is done by the RasterRecordReader class, a separate 
record reader class was developed for each of the algorithms. Besides that class 
all the other codes can be used by the three algorithms without modification. 

4.2.1   Sobel edge detection 

The Sobel operator uses two 3x3 filter kernels in order to compute the 
magnitude and direction of edges. To compute the Sobel operator at the border 
pixels of the image tiles, the number of pixel rows and columns that must be 
overlapped is two which is set in the record format during splitting. Figure 4-1 
shows the main attributes and methods of the Sobel operator class. To further 
optimize the Sobel operator during the process the computationally expensive square 
root function that calculates the magnitude of the output as function of the horizontal 
and vertical detected edges was replaced by the summation absolute values of the 
horizontal and vertical edges. After processing the image with Sobel operator the 
resulting magnitude image is compressed into an array of bytes, ready to be 
processed by the reduce workers. 

 
 

Figure 4-1: Sobel operator class diagram. 

4.2.2   Laplacian edge detection 

Similar principle to the Sobel operator was adopted to implement the Laplacian 
edge detector Hadoop except by changing the values of the filtering kernels and 
also using only one filter kernel instead of two. Two separate Laplacian filters 
were implemented one with a kernel size of 3x3 and another one with 5x5. The 
same splitting mechanism was performed in order to process the tile images by 
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the 3x3 sized kernel while for the 5x5 kernel a different record reader was used 
to where the image is split with an overlap four pixel rows and columns. 

4.2.3   Canny edge detection 

The Canny edge detection method is a multi-step method where many 
operations that involve setting parameters are involved. The main methods in 
the code of the Canny algorithm was adopted from the sequential 
implementation in java by [Gibara, 2009] with some modifications in 
parameters setting and how to handle the border pixels.  One of the challenges 
that affect the border handling of the image tiles was setting the kernel width of 
the Gaussian smoothing filter. This kernel width is computed by Equation 2-5 
based on the given standard deviation σ parameter and therefore a separate 
RecordReader class was implemented to create overlapping of borders between 
the image tiles. The other parameters to be set are the low and high hysteresis 
thresholds which trace the edges based on the gradient and connectivity of the 
edges. Various statistical methods were attempted to automate the selection of 
the thresholds of the hysteresis based on the value of the image pixels such as 
using the 1st and 3rd quantiles of the pixel values. But this resulted some 
degeneration in the quality of the edges detects which is discussed in the next 
chapter. 

 

declare variables 
Gaussian Cutoff; Gaussian Standard deviation; 
lowThreshold; highThreshold; 
 
getSourceImage(); 
process(); 
// set hysteresis threshold 
setLowThreshold(threshold); 
setHighThreshold(threshold); 
//set the Gaussian kernel width  
getGaussianKernelWidth(); 
// Sets the strength of the Gaussian convolution kernel for smoothing 
setGaussianKernelRadius(gaussianSigma); 
gaussianSmooth( gaussianSigma, gaussiankernelWidth); 
sobelGradient(); 
 
supressNonMaxima(); 
performHysteresis(lowThreshold, highThreshold); 
writeEdges(); 

Listing 4-2: Canny edge detection method 
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4.3 MapReduce functions 

The MapReduce implementation consists of two separate classes for a mapper 
and reducer. Since the splitting of the image and converting into key-value pairs 
structure has already been done by the RasterRecordReader the task of the 
mapper is to take the key-value pair for processing by the edge detection 
algorithms. The reducer will collect those edge detected image tiles and merge 
them into one output image. In these functions the input key is particularly 
important as is also hold location information of the image tiles in the original 
image. In this context, there are a series of steps and methods have to be 
implemented with close coordination between the two functions. The detail 
implementation of the map and reduce functions is discussed below. 

4.3.1   Mapper 

As mentioned section 4.1 key-value pair represents the image splits in the form 
of an array of bytes wrapped by Hadoop’s ByteWritable class. Each map task 
processes a single image split that has been generated by our RecordReader. The 
map function basically have three major steps: at the start of the process the 
value is decoded using the java image reader and converted into a buffered 
image before being processed by the edge detection algorithms. Then the edge 
detection algorithm is called to process the decoded image and produce an edge 
detected image as shown in listing 4-3. Finally, this edge image is converted 
back to an array of bytes and represented as new key-value pair. The new 
assigned key to the edge image is the file name of the original image. 

 

 

map (key, value) // key: URI to image tile, value: image in byte array 
 // we decode the byte array to buffered image 
 read byte array (value); 
 
 // apply edge algorithms to detect edges 
 detect edges (get edge image); 
 
 //get the bytes of the buffered edge image 
 to byte array (edge image); 
 //generate output key 
 key (image filename); 
 
 // output key-value pair 
 output.create (key, image bytes); 

Listing 4-3: mapper for edge detection 
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4.3.2   Combiner 

The combiner phase simply collects the map output for each mapper and 
combines those key-value pairs that are from the same image before being 
pushed to the reducers. This class implements the reduce function using the 
Reducer interface the same as the reduce phase (Appendix 1) but collects values 
are only within one mapper node. Our implemented reduce function was used 
in the combiner phase since the objective is to merge neighboring image splits 
but the output of the combiner phase is in key-value pair since they are going to 
be further processed by the reduce phase. By implementing this class we are 
reducing the communications between the map and reduce phases and 
therefore reducing the network load. 

4.3.3   Reducer 

The reduce phase collects the edge detected image tiles from the intermediate 
map queue and combines them to the final image. The image subsets, sorted by 
key, are dynamically assigned to the reducers by the scheduler of the execution 
framework. Then the reducers merge those images to a final output image by 
recursively writing to the distributed file system based on the location 
information in the original image. Listing 4-4 depicts the main processes 
involved during the reduce phase. 
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4.4 MapReduce Driver 

The driver program handles the housekeeping of our MapReduce job so that it 
can be submitted to a Hadoop environment. First a job configuration was 
created using the JobConf object followed by the required parameters for the job 
such as the input and output formats that the data input and output format, 
directory where to look for data and the map and reduce classes. For the input 
format the customized RecordReader class is used which is used as an input for 
the map phase. The output format is set to TextOutputFormat but the reduce 
phase overrides this format and writes the output images directly to the 
distributed file system.  

The next step is to configure the map, reduce, and combiner phases the setting 
methods of the Job configuration. Here the number of reduce tasks that must 
run in this job can also be set by the setNumbReduceTask() which determines 

reduce (key, Iterator values): 
 // create a buffered output image at HDFS 
 bufferedImage(hdfsPath); 
 // go through the values and collect the images 
  while( values has next ()) 

{ 
  // get the image tiles       
  imageTile.getBytes();  
  //allocate image tile to original image box 
  setRGB (startX, startY, witdth, height, byteArray, offset); 
  
  //close the sub image 
  close(); 
  // collect the output 
  output.collect( key, list values); 
  } 
  // Create a data streaming to HDFS 
  FSDataOutputStream (hdfsPath ); 
  // write the image file at hdfs 
  DataOutputStream.write(byteArray, offset, array.length); 

output.collect (key, result); 
 
// close the streaming 

  close(); 

Listing 4-4: reducer for merging image tiles 
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how the final image is going to be merged. Finally we call the static runJob() 
which submits the job, reports the progress of the map and reduce phases. The 
Tool interface in this class also gives us to use some optimization options for 
passing arbitrary parameters from the command line interface such as setting 
the number of reducer, putting files to the distributed cache. 
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Chapter 5   Evaluation 

There are three primary objectives for evaluation conducted in this study. 
Firstly, to demonstrate if the reliability and performance of the remote sensing 
applications has been improved through the implementation on distributed 
environment as proposed in the previous chapters. Secondly, that the 
MapReduce programming framework is a feasible model for efficient processing 
of large satellite images. Finally, the quality of the end product is not affected by 
implementation of the remote sensing applications on a MapReduce framework. 
This chapter will start in the first section with the description hardware and 
software configurations of the testing environment where the prototype 
framework and applications are run. The following section discusses the 
characteristics of the test datasets that has been used in this study. The third 
section discusses the qualitative evaluation of the output images from the 
various algorithms tested. Finally, the last section illustrates the benchmarking 
results obtained from the performance tests done to evaluate the computational 
performance. 

5.1 Testing Environment 

All the experiments in this study are done on normal commodity PCs and 
notebooks. One of the main characteristics of the test environment is its 
heterogeneous configuration. The test bed is built on Linux operating system 
(Ubuntu 10.10) on 4 computers each of different hardware architecture and 
performance. Moreover, the two desktop PCs are connected through high-speed 
Gigabit network connections and these are connected to the master workstation 
(notebook 2) through wide area network (WAN). This heterogeneity in 
hardware and network connection can be seen be one of the parameters for 
evaluating Apache Hadoop’s transparency and fault-tolerance. But this type of 
infrastructure also brings latency and unpredictability to the computational 
performance. 
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Table 5-1: Test environment system hardware information 

 Notebook1 Notebook2 PC2 PC1 

OS Ubuntu 10.10 Ubuntu 10.10 Ubuntu 10.10 Ubuntu 10.10 

Processor Intel Core 2 Duo 
2.3Ghz 

Intel Core 2 Duo 
1.8Ghz 

AMD Dual Core, 
2.6 GHz 

Pentium 4, 
2.40Ghz 

Cache 3072KB 2048KB 512KB 512KB 

RAM 4GB 3GB 1.7GB 748.2MB 

The Hadoop framework used in this experiment is Cloudera’s Distribution of 
Hadoop 0.20.1 which is the settable version CDH2.  It is deployed on each node 
on the top of Java SE Runtime Environment version 1.6. Notebook 1 is used as 
both as a masternode and datanode with jobtracker and namenode on it that 
controls all MapReduce jobs and datanodes respectively Figure 5-1. The other 
machines act as worker nodes with datanode and tasktracker on them. Each 
node is set to be capable of running 2 Map jobs and 2 Reduce jobs concurrently 
except for the last node which runs 1 Map and 1 Reduce job at a given time since 
its processor is single-core. Therefore, in total if all the nodes are active in the 
system have a total of 14 task capacity. 

 

Figure 5-1: Test environment setup. 
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5.2 Test Datasets 

The satellite images used in this experiment 4 scenes of a 30meters resolution 
Landsat 7 Enhanced Thematic Mapper plus of Muenster area taken on the year 
1999 and were downloaded from United States Geological Survey’s (USGS) 
Earth Explorer portal (Figure 5-2). The Band 4 is used during the experiment as 
it does not need contrast enhancement compared to the other bands. The 
original data are Level-1 processed image, each scene with a dimension of 
8251x7591 in an uncompressed 8bits per pixel Geographic Tag Image Input 
Format (GeoTIFF) and a size of about 60MB. The image is fed to the HDFS along 
with its metadata file to be read by the MapReduce applications. It is worth 
noting that the transfer of the input file to the Hadoop Distributed system is not 
part of the performance test as we are assuming that the image database is 
stored using HDFS. 

 

 
Figure 5-2: Band 4 Landsat image (courtesy of the U.S.G.S.) 
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5.3 Qualitative Evaluation 

Assessment was made on the quality of images produced by the Sobel, Laplacian 
and Canny edge detection methods to evaluate if the parallel implementation of 
the algorithms using MapReduce affects the quality of the image and also to 
evaluate the performance between the three methods. The quality of output 
images are evaluated in according to three criteria set for visual interpretation 
[Canny, 1986]. Firstly one is good edge extraction in terms of the probability of 
detecting edges the maximum possible level with minimum falsely detected 
edges (noises). Secondly is to evaluate how well are the edges connected and 
look real. And finally, the detected edges must not be duplicated and their 
position should be as close as possible to the actual edges. 

It is known that quality of the detected edges is highly dependent on the image 
characteristics and also the characteristics of the object of interest which 
influences the parameters to be set for the edge detection algorithms [Canny, 
1986; Drewniok, 1994; Heath et al., 1998; Liu and Jezek, 2004]. This suggests 
that it difficult to generalize these parameters across all algorithms and all 
images. Therefore, the quality of the detected edges from the three detection 
methods is evaluated for a single image that has a fixed size and resolution and 
the most relevant parameters are identified and adaptively tuned for each 
detection method. 

5.3.1   Sobel method 

For the Sobel method, since a fixed 3x3 kernel size is used for convolution and 
the final pixel value is the gradient magnitude of the Sobel operator, there are 
no parameters to be set, therefore the output images can be visually compared 
and evaluated. Figure 5-3 the out image of the implementation of Sobel edge 
detector on MapReduce. It can be seen that the Sobel method does are 
reasonably good job in detecting most of the edges with minimal inclusion of 
false edges or noises. The edges are also well connected with few disconnected 
lines. But the method seem to enhance mostly those edge that have sharp 
contrast and this suggests that wider and non sharp edges are difficult to detect 
using the Sobel operator. The MapReduce implementation of the Sobel method 
provided the same results in terms of image output characteristics and quality 
as the corresponding sequential implementation. 
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Figure 5-3: Edges detected by Sobel method 

5.3.2   Laplacian method 

The Laplacian method was evaluated for different kernel sizes (Figure 2-4) and 
generally the Laplacian operators produce low contrast images where it is 
difficult to identify most edges. This is due to the low contrast of the grey-scale 
images of the Landsat bands and poor detection capability of the Laplacian 
operator for low contrast images. Therefore to remedy this, the Laplacian 
method was tuned to enhance the contrast of the output image until the most of 
the edges are clear enough for visual inspection. The result after the contrast 
enhancement shows that the Laplacian method recognizes many edges for all 
the kernel sizes but the quality of the edges is low compared to that of Sobel 
method. The detected edges are wider than the actual width of the edges 
resulting less fine grained detail and also a considerable amount noise is 
introduced by the operators. Many fragmented edges were also observed from 
the result especially for the images processed with a 3x3 dimensioned kernel 
Figure 5-4 (left). The edges from the image processed by the 5x5 kernel have 
also thinner width compared to image processed by 3x3 kernel. 
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Figure 5-4: Edges detected by Laplacian filter with 3x3 kernel (left) and 5x5 kernel 
(right) 

Similar to the Sobel method the MapReduce implementation of the Laplacian 
method provided exactly the same image output quality when compared the 
corresponding sequential implementation. 

5.3.3   Canny edge detection method 

For the Canny edge detection method there are three parameters that must be 
tuned in order to obtain optimal edge detection [Canny, 1986; Heath et al., 
1998]. The first one is the standard deviation σ of the Gaussian filter which 
controls the degree of smoothing and the kernel width. The second and third 
parameters are the values of the lower and upper hysteresis thresholds 
respectively. Various levels of smoothing were tested to identify the best 
smoothing Gaussian filter using filter kernels with σ levels of 1, 1.4, 2.0 and 2.5. 
The filtering kernels were computed using Equation 2-5 to generate kernels of 
different sizes and the Gaussian filter with σ = 2.0 which have kernel size of 9 
gave the best result of detected edges (Figure 5-5). 

The optimal hysteresis parameters values for the high and low thresholds were 
estimated from the gradient magnitudes by setting them to 1st and 3rd quintiles 
(25% and 75%) of the magnitude. This gave a good quality detection of edges 
when implemented on a sequential mode but when this algorithm was 
implemented on MapReduce, the result was poor quality edges of the output 
image with considerable amount of falsely detected edges and noises in some 
regions of the image (Figure 5-6 left). 
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   (a)        (b) 

   
(c)      (d) 

Figure 5-5: Edges detected by Canny method with Gausian filter of (a) σ=1, kernel 
size=3, (b) σ=1.4 kernel size=7, (c) σ=2.0 kernel size=9 (d), and σ=2.5 kernel size=16. 

 

This is because the sub-images are processed independent of each other and 
estimating the upper and lower thresholds using the quantiles will result false 
detection of edges especially in those sub-images that have few actual edges. 
Therefore for the MapReduce implementation fixed higher and lower thresholds 
were set after doing some tuning and the best value of the high threshold for 
hysteresis was found to be 0.8 where gradient magnitudes above this threshold 
are unambiguously considered as edges. The optimal best value of the low 
threshold was found to be 0.3 and magnitudes below this level are considered 
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as non-edges and set to zero. The magnitudes that have a value between 0.8 and 
0.3 are considered as edges only if they are connected the edges that has been 
selected by the high threshold otherwise they are considered as non-edges. 

 

  
Figure 5-6: Edges detected using Canny method by quantiles parameterization of 
thresholds (left) and by fixed Thigh=0.8, Tlow=0.3 thresholds (right). 

Generally the Canny method showed good edge detection, good localization but 
in some cases poor localizations were observed especially the edge corners and 
this is due to the use of Gaussian smoothing which blurs the borders of objects 
in an image. 

 

5.4 Performance Tests 

The performance evaluation generally addresses the following parameters:  the 
involved number of worker nodes, size of the satellite image, and the number of 
map and reduce jobs [Ranger et al., 2007; Winslett et al., 2009]. The principal 
metric for the evaluation of the computational performance is execution time of 
a job ordered by the master node. The performance in the job completion times 
were experimentally evaluated for the Sobel, Laplacian (with 5x5 kernel size) 
and the Canny detection methods using the above parameters.  

Hadoop provides an integrated multi-paged web user interface where 
information about the job progress, completion time, failed tasks, job history 
and other statistics of the job can be tracked (Figure 5-7). The job completion 
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time here means the total time consumed by the job for the worker nodes to 
process the input images and send the result to the master node. It must be 
noted that during the performance experiments the time of hour and day the job 
is executed have an impact on the computation time as the nodes are connected 
through WAN. Therefore, to minimize this effect of network latency and traffic, 
each job order was repeated more than 10 times and the average completion 
time is computed to capture the global performance of the algorithms. However, 
it is difficult to judge if the peak performance has been explored using this 
highly heterogeneous and few computing nodes but generally a good range of 
performance has been observed. 

First a sequential implementation of the Sobel, Laplacian and Canny algorithms 
was made using java to obtain a control case for the performance evaluation 
MapReduce implementations. In the following sections, the performance of 
1node denotes to the sequential implementation of the algorithms. To evaluate 
MapReduce programming model four performance metrics are used which are 
discussed in detail in the sections below [Ranger et al., 2007; Winslett et al., 
2009]:  

a. Number of nodes 
b. Size of data, 
c. Kernel sizes of the filtering. 
d. Number of mappers and reducers. 
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Figure 5-7: A screenshot of Jobtracker page at Hadoop web based interface. 
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5.4.1   Dependency on number of nodes 

To measure the performance of the MapReduce implementations with regard to 
computation time, the total image size was kept constant while increasing the 
number of nodes in the cluster [Xu et al., 1999]. We first evaluate the 
computation time on a single computer and then increase number of computers 
in the system until 4 computers. Figure 5-8 shows the computation time 
consumed to process the five image files each with a dimension of 8251x7591 
pixels using the Sobel method, Laplacian method with 5x5 kernel size, and the 
Canny method with Gaussian filter of 9x9 kernel size. Those images are 
processed in parallel as a single MapReduce job. From this figure it can be 
observed that the computation time of the MapReduce implementation 
significantly decreases with increasing number of computers for all the 
algorithms. The Canny method achieved better performance compared to the 
Sobel and Laplacian methods. This is because generally the Canny method is 
more data-intensive and needs more processing power than the others since its 
algorithm is a multi-step process involving more mathematical operations 
compared to the Sobel and Lapalcian methods.  

 

Figure 5-8: Computation performance for the Sobel, Laplacian, and Canny methods. 
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This observation can be clearly seen when we compute the speedup and 
efficiency from the above results. The speedup is measured as the ratio of the 
computation time of the sequential implementation on single computer to that 
of the distributed implementation on n computers while efficiency is the 
measure of the utilization of n computers in the system [Eager et al., 1989]. 

Speedup(𝑛𝑛) =
Time on single computer

Time on 𝑛𝑛 computers
       𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑛𝑛)
𝑛𝑛

 

  

The Speedup is described in terms of the number of computing nodes used in 
the distributed implementation and  

Figure 5-9 and Figure 5-10 show the graph of the speedup and efficiency versus 
the number of nodes for the three edge detection methods respectively and it 
can be observed that generally a good speed up is achieved especially by the 
Canny method. 

 

 
Figure 5-9: Speed up 

In ideal situation the speedup increases linearly with increase in number of 
computing processors but this is difficult to achieve since the cost of 
communication increases with increase in processors [DeWitt and Gray, 1992]. 
According to [Goller et al., 2001] processes with greater than 0.5 (50%) 
efficiency are considered to have achieved good performance. However, a 
significant deterioration of speed up and efficiency is observed when the third 
node was added. The reason for this deterioration is that the 2nd node connected 
to the 1st node (master server) through Local Area Network (LAN) dedicated to 
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both computers while the 3rd and 4th node are connected to the master through 
Wide Area Network which is of lower speed. And also although there 
communication cost is not that much great during the MapReduce processing, a 
considerable amount is consumed due to the shuffling process after the 
finishing of the map processes especially for larger datasets. The speedup 
increased again when the 4th node is added to the system though not at the 
previous rate. From this it can be deduced that better performance can be 
achieved if the number of computing nodes are increased or if there is a high-
speed network connection between the nodes. 

 

 

Figure 5-10: Efficiency 

5.4.2   Dependency on size of the data 

To investigate how the MapReduce programming model reacts to very large 
satellite images, the scaleup approach was evaluated where the computation 
time was measured while increasing the data size and number of nodes by the 
same fold. The concept of scaleup is to keep the amount of job on each 
computing node constant. By using the scaleup approach we can investigate the 
bottlenecks in the distributed system as the each computer node is processing 
the same amount of data and the effect load balancing problem and 
inefficiencies caused by the distributed method is avoided [DeWitt and Gray, 
1992; Goller et al., 2001]. This metric is a good way of evaluating the capability 
of the MapReduce implementation to cope with different sizes of data. Ideally 
the graph of scaleup will have a straight horizontal line where data size makes 
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no impact with the computation time staying constant[Goller et al., 2001]. In this 
experiment started with data size of 59.7 megabytes and increased the size by 
adding 59.7MB every time we add a computer node.  Figure 5-11 shows the 
performance results and all the Sobel, Laplacian, and Canny methods scale well 
until the second computing node but it increases when the third computer is 
added to the system indicating that the network connection bandwidth is the 
main bottleneck of the distributed system. We can infer from this that had the 
datanodes been connected through high speed network, they would have 
scaledup well and the graph would have looked more flat. 

 

Figure 5-11: Scaleup 

The sizeup approach was also explored for the Canny method where the 
number of computing nodes is held constant while the size of the data set is 
increased by some factor. We tested the computing performance for each group 
of nodes while increasing the dataset by doubling it starting from 59.7MB and 
increasing the size by 59.7 MB up to 358 MB. 

Table 2-1 shows the elapsed computation time for different sizes of data and it 
can be seen that for processing on a single computer the computation time 
increases steeply while for the parallel processing the slope of increase is 
considerably lower. This can be further observed when the sizeup metric is 
computed from Table 5-2 using by the ratio of increased data size to the original 
data size which is 59.7MB for each of the computing nodes [Xu et al., 1999]. 

Sizeup =
Time of increased data size
Time of original data size
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Table 5-2: performance of the Canny method with increasing data size. 

 
Computation time (sec) 

Data Size (MB) 1node 2node 3node 4node 

59.7 86.16515 47.49669 39.62422 33.95762 

119 174.5037 89.77618 85.88436 78.97992 

179 249.6478 154.4281 128.4724 114.3664 

239 351.1648 225.1332 214.3879 163.6579 

298 439.9121 295.8607 272.3931 210.0497 

358 537.3904 344.4746 338.3546 245.0497 

Figure 5-12 shows the graph of sizeup for the Canny edge detection method and 
it can be observed that the sizeup is reasonable for all the nodes for considered 
the increase in communication cost with increase in dataset. If we see the 
example for the 4nodes cluster to process image data size that is 6 times larger 
than the original data 8 times more computation time is needed. From this it can 
be deduced that increasing the dataset achieves better performance and this is 
due to the fact that the processing time at the workers compensates the 
overheads at the startup of the process and network communications during 
shuffling process. 

 

Figure 5-12: Sizeup for the Canny method. 
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5.4.3   Performance based on Neighborhood size 

One observation seen during the performance tests of the edge detection 
algorithms implemented using MapReduce was that the computation time 
varies significantly with varying size of neighborhood of the convolution filter 
operators especially for the Canny method since smoothing step uses Gaussian 
filters of large kernel size. Therefore, performance evaluation was made to test 
dependence of the computation time on the neighborhood size. For this test the 
Canny method with Gaussian filters of 5x5, 7x7, 9x9, and 16x16 kernel size were 
evaluated on the 4node cluster and the results can be seen in Figure 5-13. When 
the test was done for two images each with a dimension of 8251x7591pixels, 
there is no significant difference in computation time between the different 
kernel sizes. But when the number of images was increased to 4 images to have 
a total data size of about 239MB, as significant difference in the elapsed 
computation time was observed with varying kernel size. And the computation 
time generally increases with increase in kernel size mainly due to the reason 
that more multiplication operations are involved with bigger kernels but also 
the number of overlapping pixels at the borders of image partitions also 
significantly higher. 

 

Figure 5-13: Performance of Canny method with varying Gaussian filters kernel size. 
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number of image subsets. To test the computation performance the dataset is 
kept constant while the numbers of mappers are increased from 4 up to 36. 
Figure 5-14 shows the computation time breakdown for the Canny method and 
it can be clearly seen that much of the computation time is consumed during the 
map phase while the shuffle (sort) and reduce phases share less of the total 
time. This is logical as the task of the reducer is only to shuffle and merge the 
output images from the mapper. 

The important observation is this experiment is that the computation time 
greatly decreases with increase in the mappers up to 12 mappers but beyond 
that the performance deteriorates significantly. The reason for this is that, since 
we have four nodes each which is capable of running only 7 mappers in parallel, 
the mappers cannot be completed within on round and therefore an overhead 
occurs. It was expected that the performance will deteriorate as the number of 
mappers becomes greater than the number of nodes. But this decrease in 
performance did not occur instantly after the number of mappers surpassed the 
resources available, the deterioration occurred when the mappers are more 
than 12. This is mainly due the heterogeneous nature of the test environment 
where some nodes have significantly inferior computing power and Hadoop’s 
dynamic load balancing and rescheduling mechanism handles this issue 
reasonably well in distributing the work efficiently. But eventually the 
performance deteriorates with greater number of mappers. This is because we 
are running more mappers for the same data size meaning the size of sub-
images fed to each mapper are smaller. Hence, Hadoop is spending more time 
setting up the mappers than processing the input data. 

 

Figure 5-14: Computation time breakdown with increasing number of mappers for the 
Canny method. 
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Chapter 6   Conclusions and Future Works 

6.1 Conclusions 

The research undertaken is an effort to address one of the core issues in remote 
sensing studies –solving large-scale computational demanding problems in 
remote sensing image processing. Advances in sensor technology and their ever 
increasing repositories of the collected data are revolutionizing the mechanisms 
remotely sensed data are collected, stored and processed.  This exponential 
growth of data archives and the increasing user’s demand for real-and near-real 
time remote sensing data products has pressurized remote sensing service 
providers to deliver the required services. The remote sensing community has 
recognized the challenge in processing large and complex satellite datasets to 
derive customized products. To address this high demand in computational 
resources, several efforts have been made in the past few years towards 
incorporation of high-performance computing models in remote sensing data 
collection, management and analysis. This study adds an impetus to these 
efforts by introducing the recent advancements in distributed computing 
technologies, MapReduce programming paradigm, to the area of remote 
sensing. The general conclusions derived from this research and the arguments 
for the research questions raised in section 1.3 are discussed below. 

Research question 1: Can performance of large satellite image processing be 
augmented through implementation on a distributed environment? 

This question has been addressed in section 5.4 and based on the results of the 
performance evaluation conducted using standard metrics MapReduce 
programming paradigm has been proved to be a simple and efficient framework 
for large-scale processing of remote sensing images in low-cost distributed 
environments. 

In the experiments done the edge detection algorithms scaled well when the 
volume of data to be processed is significantly large. This establishes that 
MapReduce is suitable for processing large-scale archives of remote sensing 
images and also high resolution images are usually massive in size. However 
further optimization strategies have to be explored also to increase the 
computational performance on smaller datasets. 
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Research question 2: What are the requirements to implement distributed 
processing of satellite images using the MapReduce programming model? 

This question has been discussed in sections 2.4 and partially in chapter 3. 
Considering the complexity of distributed computing technologies, MapReduce 
have few prerequisites that must be satisfied in order to successfully implement 
image processing algorithms. The first one is to identify which algorithms to 
implement as not all computational problems related with remote sensing 
image processing can be solved through MapReduce especially those algorithms 
that need global communication between the distributed processors. It has been 
seen that the map tasks run concurrently in isolation with no communication 
between them. 

The other issue to consider is that MapReduce was primarily designed for large 
scale text batch processing. Therefore there need to be some tasks to familiarize 
image formats to a MapReduce environment. 

The third is that data must be large enough in order to achieve considerable 
performance improvement as have been observed in section 5.4.2. 

The final requirement is regarding hardware configurations. It has been 
observed that high speed network connection between the nodes is more 
important than high processing power in the computing nodes. Therefore, the 
scale out approach seems a feasible option for distributed computing of large 
satellite images. Furthermore, MapReduce job scheduling and load balancing 
mechanism is based on the expectation that all data partitions will be computed 
equally fast, which is not practical when we have heterogeneous computing 
nodes. Therefore either the computing nodes should have similar processing 
power 

Research question 3: What is the performance of the MapReduce processes 
compared to sequential processes? 

This question is addressed in section 5.4 and the performance results show that 
MapReduce has improved task completions times reasonably well for most of 
the algorithms despite the test environment was made of only 4 computing 
nodes. 

Research question 4: How do the different edge detection algorithms perform in 
a distributed environment? 
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This question is addressed in section 5.3 and 5.4 the performance of the Sobel, 
Laplacian, and Canny edge detection algorithms has been evaluated in two 
ways. The first one is in terms of the output image quality and the qualitative 
evaluation done demonstrates that no difference occurs in the quality of the 
output images from the distributed environment compared to the sequential 
implementation. 

The second evaluation is performance in terms of execution time. There a 
significant difference is observed between the different edge detection 
algorithms with the Canny method performing well in terms of speedup and 
improvement as a result of implementation on distributed environment. The 
key conclusion that can be drawn from this observation is that the algorithms 
perform well if they are data intensive with high demand for local processing. 

Research question 5: Which data partitioning and communication scheme is 
preferred in order to be executed concurrently? 

This question is addressed in section 3.3 and 5.4. Data partitioning mechanisms 
of image data is one of the core issues that needs careful designing based on the 
algorithms are being implemented so that not to affect the quality of the final 
output images also loss of pixels at the borders. This is particularly important if 
the algorithms involve spatial transformations of the input image. 

The other data partitioning consideration is with regard to processing in a 
distributed environment using MapReduce. As MapReduce is best at processing 
fewer and bigger data rather than many small sized images [White, 2009]; 
considerable care must be taken on the split size of the images in order to 
achieve optimal performance. 

6.2 Future Works 

This study is a preliminary work in an effort to integrate remote sensing and GIS 
applications and distributed computing using the MapReduce programming 
paradigm. Therefore there a lot of issue that can be improved in this work and 
also some future direction for distributed processing of spatial datasets using 
MapReduce. The following are some of the identified issues for further research. 

Further works can be done in this subject such as improving the scheduling 
mechanism for better load balancing and data locality and other optimization 
strategies such as intermediate values compression, serialization of the image 
input formats, proportion the java virtual memory used etc. It can also be 
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investigated the impact of task granularity on the performance of the execution 
time and also dynamic load balancing. 

This study have shown that MapReduce distributed programming paradigm is 
good for scaling the processing of large satellite images and  has a substantial 
potential to support more complex remote sensing and GIS problems. 
Therefore, it is an interesting future direction to extend the MapReduce 
framework implemented in this study to include more complex and data-
intensive algorithms and also remote sensing datasets from other sensor 
instruments. 

Another future direction is to migrate these applications to high-end computing 
cluster and cloud platforms such as Amazon Elastic Compute Cloud (EC2) as 
Hadoop has already been implemented there. 

It was also observed that no substantial modification has been made to the 
sequential algorithms for implementation in Hadoop MapReduce. Therefore it is 
highly suitable to use the codes of existing open-source remote sensing 
applications such as GRASS and QGIS. Hadoop can also be seamlessly integrated 
to other existing server based geoprocessing functionalities through Java API 
and Hadoop’s streaming features. 



 

 

64 

Appendices 
 

 

Appendix 1: UML2 Class diagram of MapReduce based Remote Sensing Image Processing 
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