1,875 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Multi-objective optimization of cognitive radio networks

    Get PDF
    New generation networks, based on Cognitive Radio technology, allow dynamic allocation of the spectrum, alleviating spectrum scarcity. These networks also have a resilient potential for dynamic operation for energy saving. In this paper, we present a novel wireless network optimization algorithm for cognitive radio networks based on a cloud sharing-decision mechanism. Three Key Performance Indicators (KPIs) were optimized: spectrum usage, power consumption, and exposure. For a realistic suburban scenario in Ghent city, Belgium, we determine the optimal trade-off between the KPIs. Compared to a traditional Cognitive Radio network design, our optimization algorithm for the cloud-based architecture reduced the network power consumption by 27.5%, the average global exposure by 34.3%, and spectrum usage by 34.5% at the same time. Even for the worst-case optimization (worst achieved result of a single KPI), our solution performs better than the traditional architecture by 4.8% in terms of network power consumption, 7.3% in terms of spectrum usage, and 4.3% in terms of global exposure

    Smarter grid through collective intelligence: user awareness for enhanced performance

    Get PDF
    This paper examines the scenario of a university campus, and the impact on energy consumption of the awareness of building managers and users (lecturers, students and administrative staff).Peer ReviewedPostprint (published version

    Interoperability and Quality Assurance for Multi-Vendor LTE Network

    Full text link
    The deployment of the LTE is picking up pace in many countries and these networks are deployed alongside the existing 2G/3G services. LTE/LTE-A networks offer higher data rates and reduced delay to the subscribers. Today's mobile networks consist of equipment from multiple vendors and they are called multiple vendor networks. Interoperability testing is important at initial network launch and during network expansion. This paper discusses a typical problem related to interoperability testing along with the test results and the issues faced during the testing. The test results discussed in the paper are obtained from three scenarios - before testing, during testing and after testing. The test results are used to study the impact on network performance. Apart from the interoperability testing, an outline of testing that focus on general network stability, the interworking capability of LTE with other technologies such as 2G and 3G and taxonomy for the generation of key performance indicators (KPIs) are also discussed

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ
    corecore