165 research outputs found

    Transformation of graphical models to support knowledge transfer

    Get PDF
    Menschliche Experten verfügen über die Fähigkeit, ihr Entscheidungsverhalten flexibel auf die jeweilige Situation abzustimmen. Diese Fähigkeit zahlt sich insbesondere dann aus, wenn Entscheidungen unter beschränkten Ressourcen wie Zeitrestriktionen getroffen werden müssen. In solchen Situationen ist es besonders vorteilhaft, die Repräsentation des zugrunde liegenden Wissens anpassen und Entscheidungsmodelle auf unterschiedlichen Abstraktionsebenen verwenden zu können. Weiterhin zeichnen sich menschliche Experten durch die Fähigkeit aus, neben unsicheren Informationen auch unscharfe Wahrnehmungen in die Entscheidungsfindung einzubeziehen. Klassische entscheidungstheoretische Modelle basieren auf dem Konzept der Rationalität, wobei in jeder Situation die nutzenmaximale Entscheidung einer Entscheidungsfunktion zugeordnet wird. Neuere graphbasierte Modelle wie Bayes\u27sche Netze oder Entscheidungsnetze machen entscheidungstheoretische Methoden unter dem Aspekt der Modellbildung interessant. Als Hauptnachteil lässt sich die Komplexität nennen, wobei Inferenz in Entscheidungsnetzen NP-hart ist. Zielsetzung dieser Dissertation ist die Transformation entscheidungstheoretischer Modelle in Fuzzy-Regelbasen als Zielsprache. Fuzzy-Regelbasen lassen sich effizient auswerten, eignen sich zur Approximation nichtlinearer funktionaler Beziehungen und garantieren die Interpretierbarkeit des resultierenden Handlungsmodells. Die Übersetzung eines Entscheidungsmodells in eine Fuzzy-Regelbasis wird durch einen neuen Transformationsprozess unterstützt. Ein Agent kann zunächst ein Bayes\u27sches Netz durch Anwendung eines in dieser Arbeit neu vorgestellten parametrisierten Strukturlernalgorithmus generieren lassen. Anschließend lässt sich durch Anwendung von Präferenzlernverfahren und durch Präzisierung der Wahrscheinlichkeitsinformation ein entscheidungstheoretisches Modell erstellen. Ein Transformationsalgorithmus kompiliert daraus eine Regelbasis, wobei ein Approximationsmaß den erwarteten Nutzenverlust als Gütekriterium berechnet. Anhand eines Beispiels zur Zustandsüberwachung einer Rotationsspindel wird die Praxistauglichkeit des Konzeptes gezeigt.Human experts are able to flexible adjust their decision behaviour with regard to the respective situation. This capability pays in situations under limited resources like time restrictions. It is particularly advantageous to adapt the underlying knowledge representation and to make use of decision models at different levels of abstraction. Furthermore human experts have the ability to include uncertain information and vague perceptions in decision making. Classical decision-theoretic models are based directly on the concept of rationality, whereby the decision behaviour prescribed by the principle of maximum expected utility. For each observation some optimal decision function prescribes an action that maximizes expected utility. Modern graph-based methods like Bayesian networks or influence diagrams make use of modelling. One disadvantage of decision-theoretic methods concerns the issue of complexity. Finding an optimal decision might become very expensive. Inference in decision networks is known to be NP-hard. This dissertation aimed at combining the advantages of decision-theoretic models with rule-based systems by transforming a decision-theoretic model into a fuzzy rule-based system. Fuzzy rule bases are an efficient implementation from a computational point of view, they can approximate non-linear functional dependencies and they are also intelligible. There was a need for establishing a new transformation process to generate rule-based representations from decision models, which provide an efficient implementation architecture and represent knowledge in an explicit, intelligible way. At first, an agent can apply the new parameterized structure learning algorithm to identify the structure of the Bayesian network. The use of learning approaches to determine preferences and the specification of probability information subsequently enables to model decision and utility nodes and to generate a consolidated decision-theoretic model. Hence, a transformation process compiled a rule base by measuring the utility loss as approximation measure. The transformation process concept has been successfully applied to the problem of representing condition monitoring results for a rotation spindle

    Essentials of Business Analytics

    Get PDF

    Density-Aware Linear Algebra in a Column-Oriented In-Memory Database System

    Get PDF
    Linear algebra operations appear in nearly every application in advanced analytics, machine learning, and of various science domains. Until today, many data analysts and scientists tend to use statistics software packages or hand-crafted solutions for their analysis. In the era of data deluge, however, the external statistics packages and custom analysis programs that often run on single-workstations are incapable to keep up with the vast increase in data volume and size. In particular, there is an increasing demand of scientists for large scale data manipulation, orchestration, and advanced data management capabilities. These are among the key features of a mature relational database management system (DBMS). With the rise of main memory database systems, it now has become feasible to also consider applications that built up on linear algebra. This thesis presents a deep integration of linear algebra functionality into an in-memory column-oriented database system. In particular, this work shows that it has become feasible to execute linear algebra queries on large data sets directly in a DBMS-integrated engine (LAPEG), without the need of transferring data and being restricted by hard disc latencies. From various application examples that are cited in this work, we deduce a number of requirements that are relevant for a database system that includes linear algebra functionality. Beside the deep integration of matrices and numerical algorithms, these include optimization of expressions, transparent matrix handling, scalability and data-parallelism, and data manipulation capabilities. These requirements are addressed by our linear algebra engine. In particular, the core contributions of this thesis are: firstly, we show that the columnar storage layer of an in-memory DBMS yields an easy adoption of efficient sparse matrix data types and algorithms. Furthermore, we show that the execution of linear algebra expressions significantly benefits from different techniques that are inspired from database technology. In a novel way, we implemented several of these optimization strategies in LAPEG’s optimizer (SpMachO), which uses an advanced density estimation method (SpProdest) to predict the matrix density of intermediate results. Moreover, we present an adaptive matrix data type AT Matrix to obviate the need of scientists for selecting appropriate matrix representations. The tiled substructure of AT Matrix is exploited by our matrix multiplication to saturate the different sockets of a multicore main-memory platform, reaching up to a speed-up of 6x compared to alternative approaches. Finally, a major part of this thesis is devoted to the topic of data manipulation; where we propose a matrix manipulation API and present different mutable matrix types to enable fast insertions and deletes. We finally conclude that our linear algebra engine is well-suited to process dynamic, large matrix workloads in an optimized way. In particular, the DBMS-integrated LAPEG is filling the linear algebra gap, and makes columnar in-memory DBMS attractive as efficient, scalable ad-hoc analysis platform for scientists

    Volume II Acquisition Research Creating Synergy for Informed Change, Thursday 19th Annual Acquisition Research Proceedings

    Get PDF
    ProceedingsApproved for public release; distribution is unlimited

    Spatiotemporal enabled Content-based Image Retrieval

    Full text link
    • …
    corecore