6,314 research outputs found

    Security and Privacy Issues of Big Data

    Get PDF
    This chapter revises the most important aspects in how computing infrastructures should be configured and intelligently managed to fulfill the most notably security aspects required by Big Data applications. One of them is privacy. It is a pertinent aspect to be addressed because users share more and more personal data and content through their devices and computers to social networks and public clouds. So, a secure framework to social networks is a very hot topic research. This last topic is addressed in one of the two sections of the current chapter with case studies. In addition, the traditional mechanisms to support security such as firewalls and demilitarized zones are not suitable to be applied in computing systems to support Big Data. SDN is an emergent management solution that could become a convenient mechanism to implement security in Big Data systems, as we show through a second case study at the end of the chapter. This also discusses current relevant work and identifies open issues.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    Building an Emulation Environment for Cyber Security Analyses of Complex Networked Systems

    Full text link
    Computer networks are undergoing a phenomenal growth, driven by the rapidly increasing number of nodes constituting the networks. At the same time, the number of security threats on Internet and intranet networks is constantly growing, and the testing and experimentation of cyber defense solutions requires the availability of separate, test environments that best emulate the complexity of a real system. Such environments support the deployment and monitoring of complex mission-driven network scenarios, thus enabling the study of cyber defense strategies under real and controllable traffic and attack scenarios. In this paper, we propose a methodology that makes use of a combination of techniques of network and security assessment, and the use of cloud technologies to build an emulation environment with adjustable degree of affinity with respect to actual reference networks or planned systems. As a byproduct, starting from a specific study case, we collected a dataset consisting of complete network traces comprising benign and malicious traffic, which is feature-rich and publicly available

    Attack Modeling and Mitigation Strategies for Risk-Based Analysis of Networked Medical Devices

    Get PDF
    The escalating integration of network-enabled medical devices raises concerns for both practitioners and academics in terms of introducing new vulnerabilities and attack vectors. This prompts the idea that combining medical device data, security vulnerability enumerations, and attack-modeling data into a single database could enable security analysts to proactively identify potential security weaknesses in medical devices and formulate appropriate mitigation and remediation plans. This study introduces a novel extension to a relational database risk assessment framework by using the open-source tool OVAL to capture device states and compare them to security advisories that warn of threats and vulnerabilities, and where threats and vulnerabilities exist provide mitigation recommendations. The contribution of this research is a proof of concept evaluation that demonstrates the integration of OVAL and CAPEC attack patterns for analysis using a database-driven risk assessment framework

    Efficient Passive ICS Device Discovery and Identification by MAC Address Correlation

    Full text link
    Owing to a growing number of attacks, the assessment of Industrial Control Systems (ICSs) has gained in importance. An integral part of an assessment is the creation of a detailed inventory of all connected devices, enabling vulnerability evaluations. For this purpose, scans of networks are crucial. Active scanning, which generates irregular traffic, is a method to get an overview of connected and active devices. Since such additional traffic may lead to an unexpected behavior of devices, active scanning methods should be avoided in critical infrastructure networks. In such cases, passive network monitoring offers an alternative, which is often used in conjunction with complex deep-packet inspection techniques. There are very few publications on lightweight passive scanning methodologies for industrial networks. In this paper, we propose a lightweight passive network monitoring technique using an efficient Media Access Control (MAC) address-based identification of industrial devices. Based on an incomplete set of known MAC address to device associations, the presented method can guess correct device and vendor information. Proving the feasibility of the method, an implementation is also introduced and evaluated regarding its efficiency. The feasibility of predicting a specific device/vendor combination is demonstrated by having similar devices in the database. In our ICS testbed, we reached a host discovery rate of 100% at an identification rate of more than 66%, outperforming the results of existing tools.Comment: http://dx.doi.org/10.14236/ewic/ICS2018.

    Connecting the Dots: An Assessment of Cyber-risks in Networked Building and Municipal Infrastructure Systems

    Get PDF
    The buildings and city streets we walk down are changing. Driven by various data-driven use cases, there is increased interest in networking and integrating lighting and other building systems (e.g., heating, ventilation, and air conditioning (HVAC), security, scheduling) that were previously not internet-facing, and equipping them with sensors that collect information about their environment and the people that inhabit it. These data-enabled systems can potentially deliver improved occupant and resident experiences and help meet the U.S. Department of Energy (DOE) national energy and carbon reduction goals. Deploying connected devices new to being networked, however, is not without its challenges. This paper explores tools available to system designers and integrators that facilitate a cybersecurity landscape assessment – or more specifically the identification of threats, vulnerabilities, and adversarial behaviors that could be used against these networked systems. These assessments can help stakeholders shift security prioritization proactively toward the beginning of the development process

    Design of risk assessment methodology for IT/OT systems : Employment of online security catalogues in the risk assessment process

    Get PDF
    The revolution brought about with the transition from Industry 1.0 to 4.0 has expanded the cyber threats from Information Technology (IT) to Operational Technology (OT) systems. However, unlike IT systems, identifying the relevant threats in OT is more complex as penetration testing applications highly restrict OT availability. The complexity is enhanced by the significant amount of information available in online security catalogues, like Common Weakness Enumeration, Common Vulnerabilities and Exposures and Common Attack Pattern Enumeration and Classification, and the incomplete organisation of their relationships. These issues hinder the identification of relevant threats during risk assessment of OT systems. In this thesis, a methodology is proposed to reduce the aforementioned complexities and improve relationships among online security catalogues to identify the cybersecurity risk of IT/OT systems. The weaknesses, vulnerabilities and attack patterns stored in the online catalogues are extracted and categorised by mapping their potential mitigations to their security requirements, which are introduced on security standards that the system should comply with, like the ISA/IEC 62443. The system's assets are connected to the potential threats through the security requirements, which, combined with the relationships established among the catalogues, offer the basis for graphical representation of the results by employing tree-shaped graphical models. The methodology is tested on the components of an Information and Communication Technology system, whose results verify the simplification of the threat identification process but highlight the need for an in-depth understanding of the system. Hence, the methodology offers a significant basis on which further work can be applied to standardise the risk assessment process of IT/OT systems

    PROPOSED MIDDLEWARE SOLUTION FOR RESOURCE-CONSTRAINED DISTRIBUTED EMBEDDED NETWORKS

    Get PDF
    The explosion in processing power of embedded systems has enabled distributed embedded networks to perform more complicated tasks. Middleware are sets of encapsulations of common and network/operating system-specific functionality into generic, reusable frameworks to manage such distributed networks. This thesis will survey and categorize popular middleware implementations into three adapted layers: host-infrastructure, distribution, and common services. This thesis will then apply a quantitative approach to grading and proposing a single middleware solution from all layers for two target platforms: CubeSats and autonomous unmanned aerial vehicles (UAVs). CubeSats are 10x10x10cm nanosatellites that are popular university-level space missions, and impose power and volume constraints. Autonomous UAVs are similarly-popular hobbyist-level vehicles that exhibit similar power and volume constraints. The MAVLink middleware from the host-infrastructure layer is proposed as the middleware to manage the distributed embedded networks powering these platforms in future projects. Finally, this thesis presents a performance analysis on MAVLink managing the ARM Cortex-M 32-bit processors that power the target platforms
    corecore