36 research outputs found

    Reduced Receivers for Faster-than-Nyquist Signaling and General Linear Channels

    Get PDF
    Fast and reliable data transmission together with high bandwidth efficiency are important design aspects in a modern digital communication system. Many different approaches exist but in this thesis bandwidth efficiency is obtained by increasing the data transmission rate with the faster-than-Nyquist (FTN) framework while keeping a fixed power spectral density (PSD). In FTN consecutive information carrying symbols can overlap in time and in that way introduce a controlled amount of intentional intersymbol interference (ISI). This technique was introduced already in 1975 by Mazo and has since then been extended in many directions. Since the ISI stemming from practical FTN signaling can be of significant duration, optimum detection with traditional methods is often prohibitively complex, and alternative equalization methods with acceptable complexity-performance tradeoffs are needed. The key objective of this thesis is therefore to design reduced-complexity receivers for FTN and general linear channels that achieve optimal or near-optimal performance. Although the performance of a detector can be measured by several means, this thesis is restricted to bit error rate (BER) and mutual information results. FTN signaling is applied in two ways: As a separate uncoded narrowband communication system or in a coded scenario consisting of a convolutional encoder, interleaver and the inner ISI mechanism in serial concatenation. Turbo equalization where soft information in the form of log likelihood ratios (LLRs) is exchanged between the equalizer and the decoder is a commonly used decoding technique for coded FTN signals. The first part of the thesis considers receivers and arising stability problems when working within the white noise constraint. New M-BCJR algorithms for turbo equalization are proposed and compared to reduced-trellis VA and BCJR benchmarks based on an offset label idea. By adding a third low-complexity M-BCJR recursion, LLR quality is improved for practical values of M. M here measures the reduced number of BCJR computations for each data symbol. An improvement of the minimum phase conversion that sharpens the focus of the ISI model energy is proposed. When combined with a delayed and slightly mismatched receiver, the decoding allows a smaller M without significant loss in BER. The second part analyzes the effect of the internal metric calculations on the performance of Forney- and Ungerboeck-based reduced-complexity equalizers of the M-algorithm type for both ISI and multiple-input multiple-output (MIMO) channels. Even though the final output of a full-complexity equalizer is identical for both models, the internal metric calculations are in general different. Hence, suboptimum methods need not produce the same final output. Additionally, new models working in between the two extremes are proposed and evaluated. Note that the choice of observation model does not impact the detection complexity as the underlying algorithm is unaltered. The last part of the thesis is devoted to a different complexity reducing approach. Optimal channel shortening detectors for linear channels are optimized from an information theoretical perspective. The achievable information rates of the shortened models as well as closed form expressions for all components of the optimal detector of the class are derived. The framework used in this thesis is more general than what has been previously used within the area

    Application of wavelets and artificial neural network for indoor optical wireless communication systems

    Get PDF
    Abstract This study investigates the use of error control code, discrete wavelet transform (DWT) and artificial neural network (ANN) to improve the link performance of an indoor optical wireless communication in a physical channel. The key constraints that barricade the realization of unlimited bandwidth in optical wavelengths are the eye-safety issue, the ambient light interference and the multipath induced intersymbol interference (ISI). Eye-safety limits the maximum average transmitted optical power. The rational solution is to use power efficient modulation techniques. Further reduction in transmitted power can be achieved using error control coding. A mathematical analysis of retransmission scheme is investigated for variable length modulation techniques and verified using computer simulations. Though the retransmission scheme is simple to implement, the shortfall in terms of reduced throughput will limit higher code gain. Due to practical limitation, the block code cannot be applied to the variable length modulation techniques and hence the convolutional code is the only possible option. The upper bound for slot error probability of the convolutional coded dual header pulse interval modulation (DH-PIM) and digital pulse interval modulation (DPIM) schemes are calculated and verified using simulations. The power penalty due to fluorescent light interference (FL I) is very high in indoor optical channel making the optical link practically infeasible. A denoising method based on a DWT to remove the FLI from the received signal is devised. The received signal is first decomposed into different DWT levels; the FLI is then removed from the signal before reconstructing the signal. A significant reduction in the power penalty is observed using DWT. Comparative study of DWT based denoising scheme with that of the high pass filter (HPF) show that DWT not only can match the best performance obtain using a HPF, but also offers a reduced complexity and design simplicity. The high power penalty due to multipath induced ISI makes a diffuse optical link practically infeasible at higher data rates. An ANN based linear and DF architectures are investigated to compensation the ISI. Unlike the unequalized cases, the equalized schemes don‘t show infinite power penalty and a significant performance improvement is observed for all modulation schemes. The comparative studies substantiate that ANN based equalizers match the performance of the traditional equalizers for all channel conditions with a reduced training data sequence. The study of the combined effect of the FLI and ISI shows that DWT-ANN based receiver perform equally well in the present of both interference. Adaptive decoding of error control code can offer flexibility of selecting the best possible encoder in a given environment. A suboptimal ?soft‘ sliding block convolutional decoder based on the ANN and a 1/2 rate convolutional code with a constraint length is investigated. Results show that the ANN decoder can match the performance of optimal Viterbi decoder for hard decision decoding but with slightly inferior performance compared to soft decision decoding. This provides a foundation for further investigation of the ANN decoder for convolutional code with higher constraint length values. Finally, the proposed DWT-ANN receiver is practically realized in digital signal processing (DSP) board. The output from the DSP board is compared with the computer simulations and found that the difference is marginal. However, the difference in results doesn‘t affect the overall error probability and identical error probability is obtained for DSP output and computer simulations

    Application of wavelets and artificial neural network for indoor optical wireless communication systems

    Get PDF
    This study investigates the use of error control code, discrete wavelet transform (DWT) and artificial neural network (ANN) to improve the link performance of an indoor optical wireless communication in a physical channel. The key constraints that barricade the realization of unlimited bandwidth in optical wavelengths are the eye-safety issue, the ambient light interference and the multipath induced intersymbol interference (ISI). Eye-safety limits the maximum average transmitted optical power. The rational solution is to use power efficient modulation techniques. Further reduction in transmitted power can be achieved using error control coding. A mathematical analysis of retransmission scheme is investigated for variable length modulation techniques and verified using computer simulations. Though the retransmission scheme is simple to implement, the shortfall in terms of reduced throughput will limit higher code gain. Due to practical limitation, the block code cannot be applied to the variable length modulation techniques and hence the convolutional code is the only possible option. The upper bound for slot error probability of the convolutional coded dual header pulse interval modulation (DH-PIM) and digital pulse interval modulation (DPIM) schemes are calculated and verified using simulations. The power penalty due to fluorescent light interference (FL I) is very high in indoor optical channel making the optical link practically infeasible. A denoising method based on a DWT to remove the FLI from the received signal is devised. The received signal is first decomposed into different DWT levels; the FLI is then removed from the signal before reconstructing the signal. A significant reduction in the power penalty is observed using DWT. Comparative study of DWT based denoising scheme with that of the high pass filter (HPF) show that DWT not only can match the best performance obtain using a HPF, but also offers a reduced complexity and design simplicity. The high power penalty due to multipath induced ISI makes a diffuse optical link practically infeasible at higher data rates. An ANN based linear and DF architectures are investigated to compensation the ISI. Unlike the unequalized cases, the equalized schemes don‘t show infinite power penalty and a significant performance improvement is observed for all modulation schemes. The comparative studies substantiate that ANN based equalizers match the performance of the traditional equalizers for all channel conditions with a reduced training data sequence. The study of the combined effect of the FLI and ISI shows that DWT-ANN based receiver perform equally well in the present of both interference. Adaptive decoding of error control code can offer flexibility of selecting the best possible encoder in a given environment. A suboptimal 'soft' sliding block convolutional decoder based on the ANN and a 1/2 rate convolutional code with a constraint length is investigated. Results show that the ANN decoder can match the performance of optimal Viterbi decoder for hard decision decoding but with slightly inferior performance compared to soft decision decoding. This provides a foundation for further investigation of the ANN decoder for convolutional code with higher constraint length values. Finally, the proposed DWT-ANN receiver is practically realized in digital signal processing (DSP) board. The output from the DSP board is compared with the computer simulations and found that the difference is marginal. However, the difference in results doesn‘t affect the overall error probability and identical error probability is obtained for DSP output and computer simulations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Algorithms for propagation-aware underwater ranging and localization

    Get PDF
    MenciĂłn Internacional en el tĂ­tulo de doctorWhile oceans occupy most of our planet, their exploration and conservation are one of the crucial research problems of modern time. Underwater localization stands among the key issues on the way to the proper inspection and monitoring of this significant part of our world. In this thesis, we investigate and tackle different challenges related to underwater ranging and localization. In particular, we focus on algorithms that consider underwater acoustic channel properties. This group of algorithms utilizes additional information about the environment and its impact on acoustic signal propagation, in order to improve the accuracy of location estimates, or to achieve a reduced complexity, or a reduced amount of resources (e.g., anchor nodes) compared to traditional algorithms. First, we tackle the problem of passive range estimation using the differences in the times of arrival of multipath replicas of a transmitted acoustic signal. This is a costand energy- effective algorithm that can be used for the localization of autonomous underwater vehicles (AUVs), and utilizes information about signal propagation. We study the accuracy of this method in the simplified case of constant sound speed profile (SSP) and compare it to a more realistic case with various non-constant SSP. We also propose an auxiliary quantity called effective sound speed. This quantity, when modeling acoustic propagation via ray models, takes into account the difference between rectilinear and non-rectilinear sound ray paths. According to our evaluation, this offers improved range estimation results with respect to standard algorithms that consider the actual value of the speed of sound. We then propose an algorithm suitable for the non-invasive tracking of AUVs or vocalizing marine animals, using only a single receiver. This algorithm evaluates the underwater acoustic channel impulse response differences induced by a diverse sea bottom profile, and proposes a computationally- and energy-efficient solution for passive localization. Finally, we propose another algorithm to solve the issue of 3D acoustic localization and tracking of marine fauna. To reach the expected degree of accuracy, more sensors are often required than are available in typical commercial off-the-shelf (COTS) phased arrays found, e.g., in ultra short baseline (USBL) systems. Direct combination of multiple COTS arrays may be constrained by array body elements, and lead to breaking the optimal array element spacing, or the desired array layout. Thus, the application of state-of-the-art direction of arrival (DoA) estimation algorithms may not be possible. We propose a solution for passive 3D localization and tracking using a wideband acoustic array of arbitrary shape, and validate the algorithm in multiple experiments, involving both active and passive targets.Part of the research in this thesis has been supported by the EU H2020 program under project SYMBIOSIS (G.A. no. 773753).This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en IngenierĂ­a TelemĂĄtica por la Universidad Carlos III de MadridPresidente: Paul Daniel Mitchell.- Secretario: Antonio FernĂĄndez Anta.- Vocal: Santiago Zazo Bell

    Speech and neural network dynamics

    Get PDF

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    Journal of Telecommunications and Information Technology, 2006, nr 1

    Get PDF
    kwartalni

    Resilient Peer-to-Peer Ranging using Narrowband High-Performance Software-Defined Radios for Mission-Critical Applications

    Get PDF
    There has been a growing need for resilient positioning for numerous applications of the military and emergency services that routinely conduct operations that require an uninterrupted positioning service. However, the level of resilience required for these applications is difficult to achieve using the popular navigation and positioning systems available at the time of this writing. Most of these systems are dependent on existing infrastructure to function or have certain vulnerabilities that can be too easily exploited by hostile forces. Mobile ad-hoc networks can bypass some of these prevalent issues making them an auspicious topic for positioning and navigation research and development. Such networks consist of portable devices that collaborate to form wireless communication links with one another and collectively carry out vital network functions independent of any fixed centralized infrastructure. The purpose of the research presented in this thesis is to adapt the protocols of an existing narrowband mobile ad-hoc communications system provided by Terrafix to enable range measuring for positioning. This is done by extracting transmission and reception timestamps of signals exchanged between neighbouring radios in the network with the highest precision possible. However, many aspects of the radios forming this network are generally not conducive to precise ranging, so the ranging protocols implemented need to either maneuver around these shortcomings or compensate for loss of precision caused. In particular, the narrow bandwidth of the signals that drastically reduces the resolution of symbol timing. The objective is to determine what level of accuracy and precision is possible using this radio network and whether one can justify investment for further development. Early experiments have provided a simple ranging demonstration in a benign environment, using the existing synchronization protocols, by extracting time data. The experiments have then advanced to the radio’s signal processing to adjust the synchronization protocols for maximize symbol timing precision and correct for clock drift. By implementing innovative synchronization techniques to the radio network, ranging data collected under benign conditions can exhibit a standard deviation of less than 3m. The lowest standard deviation achieved using only the existing methods of synchronization was over two orders of magnitude greater. All this is achieved in spite of the very narrow 10−20kHz bandwidth of the radio signals, which makes producing range estimates with an error less than 10−100m much more challenging compared to wider bandwidth systems. However, this figure is beholden to the relative motion of neighbouring radios in the network and how frequently range estimates need to be made. This thesis demonstrates how such a precision may be obtained and how this figure is likely to hold up when applied in conditions that are not ideal

    Ein analytisches Framework zur Bewertung der ZuverlÀssigkeit und Security von fortschrittlichen Netzwerk Systemen

    Get PDF
    Today, anonymous networks such as The Onion Routing (Tor) have been designed to ensure anonymity, privacy and censorship prevention, which have become major concerns in modern society. Although the Tor network provides layered encryption and traffic tunneling against eavesdropping attacks, the jamming attacks and their impact on the network and network services can not be efficiently handled today. Moreover, to defy modern censorship, it is not enough just to use the Tor network to hide the client's identity and the message content as the censorship has become a type of jamming attack, which prevents users from connecting to the censored network nodes by blocking or jamming (Tor) traffic. In network security, the main tools to protect privacy and anonymity as well as integrity and service reliability against eavesdropping and jamming, respectively, are diversity, randomness, coding or encryption and over-provisioning, all less exploit in traditional networks. This thesis provides radical new network concepts to address the needs of traditional networks for privacy, anonymity, integrity, and reliability; and designs \emph{advanced network systems} based on parallel transmission, random routing, erasure coding and redundant configurations as tools to offer diversity, randomness, coding and over-provisioning. Since the network systems designed in this thesis can not be evaluated with existing analytical models due to their rather complex configurations, the main focus of this work is a development of novel analytical approaches for evaluation of network performance, reliability and security of these systems and to show their practicality. The provided analysis is based on combinatorics, probability and information theory. In contrast to current reliability models, the analysis in this thesis takes into account the sharing of network components, heterogeneity of software and hardware, and interdependence between failed components. The significant property of the new security analysis proposed is the ability to assess the level of privacy, anonymity, integrity and censorship success when multiple jamming and eavesdropping adversaries reside in the network.Derzeit werden anonyme Internet Kommunikationssysteme, wie The Onion Routing (Tor), verwendet, um die AnonymitĂ€t, die PrivatsphĂ€re und die Zensurfreiheit der Internetnutzer zu schĂŒtzen. Obwohl das Tor-Netzwerk einen Schutz vor Lauschangriffe (Eavesdropping) bietet, kann ein beabsichtigtes Stören (Jamming) der Übertragung und den daraus resultierenden Auswirkungen auf die Netzwerkfunktionen derzeit nicht effektiv abgewehrt werden. Auch das moderne Zensurverfahren im Internet stellt eine Art des Jammings dar. Deswegen kann das Tor Netzwerk zwar die IdentitĂ€t der Tor-Nutzer und die Inhalte ihrer Nachrichten geheim halten, die Internetzensur kann dadurch nicht verhindert werden. Um die Netzwerksicherheit und insbesondere AnonymitĂ€t, PrivatsphĂ€re und IntegritĂ€t zusammen mit der VerfĂŒgbar.- und ZuverlĂ€ssigkeit von Netzwerkservices zu gewĂ€hrleisten, sind DiversitĂ€t, Zufallsprinzip, Codierung (auch VerschlĂŒsselung) und eine Überversorgung, die in den konventionellen Netzwerksystemen eher sparsam angewendet werden, die wichtigsten Mittel gegen Security-Angriffe. Diese Arbeit befasst sich mit grundlegend neuen Konzepten fĂŒr Kommunikationsnetze, die einen Schutz der AnonymitĂ€t und der PrivatsphĂ€re im Internet bei gleichzeitiger Sicherstellung von IntegritĂ€t, VerfĂŒgbarkeit und ZuverlĂ€ssigkeit ermöglichen. Die dabei verwendeten Konzepte sind die parallele DatenĂŒbertragung, das Random Routing, das Erasure Coding und redundante Systemkonfigurationen. Damit sollen DiversitĂ€t, Zufallsprinzip, Codierung und eine Überversorgung gewĂ€hrleistet werden. Da die entwickelten Übertragungssysteme komplexe Strukturen und Konfigurationen aufweisen, können existierende analytische Modelle nicht fĂŒr eine fundierte Bewertung angewendet werden. Daher ist der Schwerpunkt dieser Arbeit neue analytische Verfahren fĂŒr eine Bewertung von unterschiedlichen Netzwerkleistungsparametern, ZuverlĂ€ssigkeit und Security zu entwickeln und die Praxistauglichkeit der in der Arbeit aufgefĂŒhrten neuen Übertragungskonzepte zu beurteilen. Im Gegensatz zu existierenden ZuverlĂ€ssigkeitsmodellen berĂŒcksichtigt der analytische Ansatz dieser Arbeit die Vielfalt von beteiligten Netzwerkkomponenten, deren komplexe ZusammenhĂ€nge und AbhĂ€ngigkeiten im Fall eines Ausfalls
    corecore