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Abstract 

This thesis is concerned with two principal issues. Firstly the radial basis 
functions (RBF) network is introduced and its properties related to other 
statistical and neural network classifiers. Results from a series of speech 
recognition experiments, using this network architecture, are reported. 
These experiments included a continuous speech recognition task with a 
571 word lexicon. Secondly, a study of the dynamics of a simple recurrent 
network model is presented. This study was performed numerically, via 
a survey of network power spectra and a detailed investigation of the 
dynamics displayed by a particular network. 

Word and sentence recognition errors are reported for a continuous 
speech recognition system using RBF network phoneme modelling with 
Viterbi smoothing, using either a restricted grammar or no grammar 
whatsoever. In a cytopathology task domain the best RBF/Viterbi sys-
tem produced first choice word errors of 6% and sentence errors of 14%, 
using a grammar of perplexity 6. This compares with word errors of 4% 
and sentence errors of 8% using the best CSTR hidden Markov model 
configuration. RBF networks were also used for a static vowel labelling 
task using hand-segmented vowels excised from continuous speech. Re-
sults were not worse than those obtained using statistical classifiers. 

The second part of this thesis is a computational study of the dy-
namics of a recurrent neural network model. Two investigations were 
undertaken. Firstly, a survey of network power spectra was used to map 
out the temporal activity of this network model (within a four dimen-
sional parameter space) via summary statistics of the network power 
spectra. Secondly, the dynamics of a particular network were investi-
gated. The dynamics were analysed using bifurcation diagrams, power 
spectra, the computation of Liapunov exponents and fractal dimensions 
and the plotting of 2-dimensional attractor projections. Complex dy-
namical behaviour was observed including Hopf bifurcations, the Ruelle-
Takens-Newhouse route to chaos with mode-locking at rational winding 
numbers, the period-doubling route to chaos and the presence of multiple 
coexisting attractors. 
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INTRODUCTION 

The original motivation for the study of neural networks was to develop 

models of biological neural systems that displayed similar behaviour to 

that observed in neurophysiological and psychological experiments (e.g., 

see papers collected in [1841). A principal goal of this research programme 

was to develop models of memory, learning and adaptation. Many of the 

neural network models that have been developed bear only the scanti-

est resemblance to biological systems. However they have proved to be 

extremely interesting systems in their own right. The study of these sys-

tems has focussed on their intrinsic physical properties (dynamics and 

statistical mechanics) and on their ability to learn from examples and 

to generalise to new data. These two threads of research are closely 

intertwined: the development of learning algorithms and the design of 

networks that generalise adequately is considerably facilitated by an un-

derstanding of the physical properties of the neural network system under 

investigation. 

The neural network models studied in this thesis consist of networks of 

simple processing units (nodes) coupled by weighted connections. Each 

node receives an input vector, processes it using some predefined trans-

fer function and produces a scalar output. Depending on the form of the 

weight matrix, a network model may be classed as static or dynamic. 

Static networks may be defined as those which are bound to converge to 

a fixed point attractor. That is, after a period of transient dynamical be-

haviour, the outputs of the network reach an equilibrium point, with the 
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outputs of each node in the network assuming a stable value. Transitions 

between fixed point attractors may be achieved by external inputs to the 

network. Dynamic networks, however, are not guaranteed to converge 

to a fixed point attractor: they may converge to a fixed point, limit cy-

cle or chaotic attractor, depending on the exact values of each weighted 

connection, the initial states of each node and any external input. 

Examples of static network models include all feed-forward networks 

(there can be no dynamical activity without feedback), and those recur -

rent networks for which a Liapunov function' may be defined. Examples 

of static, recurrent network models include asynchronously updated sym-

metric networks, with sum and threshold units [79] or similar networks 

with analog nodes (where a sigmoid or soft threshold function replaces 

the hard threshold) [35]. 

Static networks are more amenable to theoretical analysis compared 

with their dynamic counterparts; however dynamic networks are com-

putationally more powerful. This computational power is useless unless 

learning algorithms are available to train a network to perform a particu-

lar computation. Such algorithms have been devised for static networks 

(e.g. [175, 1, 95]); learning algorithms for dynamic networks are at a 

more primitive state. 

1.1 Learning 
Neural network models may be programmed to perform some computa-

tion (input-output mapping) by setting the elements of the weight ma-

trix to appropriate values. For small simple tasks (such as implementing 

simple Boolean functions) the weights may be easily set by hand. How-

ever, this is not a means by which neural networks may be generally 

engineered to perform the task at hand. Representations of the prob-

lem are distributed through the whole network and the particular values 

1 A Liapunov function is a monotonically decreasing function which equals 0 at the fixed 

point of a dynamical system and is greater than 0 at all other points. 
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required by each weight may not be obvious. In this case the network 

weights should be set by some automatic learning procedure (see [78] for 

a good review of learning in neural network models). 

In static network models in which the desired output values for each 

node of the network are known, then it is relatively easy to devise an 

algorithm to set the values of each weight. Such algorithms include the 

perceptron convergence procedure for single layer feed-forward networks 

(perceptrons) [173] and Hopfield's non-iterative prescription for storing 

vectors in binary threshold symmetric networks [79]. However, these 

networks lack the computational power to tackle many problems [131]. 

More recently, learning procedures have been introduced for networks 

with hidden nodes - i.e. nodes for which there is no desired state. The 

principal problem of designing learning algorithms for such networks is 

that of credit (or blame) assignment. That is, given that the network 

produces an incorrect output for particular input data, which weights 

should be adjusted to improve its behaviour. In the case of multiple layer 

feed-forward networks in which the input vector is propagated through 

one or more layers of hidden units before reaching the output layer (multi-

layer perceptrons), a solution to the credit assignment problem has been 

the back-propagation algorithm [208, 145, 175]. This algorithm assigns 

errors to each weight in the network by back-propagating the overall error 

from the output layer to the input layer via the hidden layers using the 

chain rule for differentiation. 

So far, we have considered the case in which there is an external 

"teacher" which is able to offer the correct network output, given a par-

ticular input. Such supervised learning is not the only type of neural 

network learning procedure. In reinforcement learning there is also feed-

back from the environment; however, this is not corrective feedback, but 

merely a signal indicating the cost or benefit of a particular output given 

the input. Learning may also occur in the absence of environmental feed-

back. Unsupervised learning procedures are used to enable networks to 

learn the structure and regularities of the input data. In these processes, 
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the network learns to self-organise in accordance with some general or-

ganising principle. 

It seems likely that such procedures of learning from examples are 

necessary to solve ill-posed problems for which no general specification 

exists: all that is available are examples of correct (and incorrect) be-

haviours. Examples of such problems include speech recognition and 

vision. Although some prior knowledge of the problem may be avail-

able, it is not known how to construct an algorithm from this knowledge 

to solve the problem at hand or whether this knowledge is sufficient to 

solve the problem. The method of learning from examples is not specific 

to neural network approachs; learning from examples has been used in 

control engineering [29], adaptive signal processing [209], computational 

geometry [45] and geophysical modelling [76]. Many of the algorithms ap-

plied in these disciplines have been rediscovered as "new" neural network 

learning algorithms. 

However, the application of such algorithms to neural network systems 

has been performed with the explicit realisation that these are learn-

ing algorithms, and this has acted as a unifying factor between various 

disciplines (as diverse as neurobiology, control engineering and physics). 

This realisation has enabled existing algorithms to be viewed from a new 

perspective. It has also acted as an incentive to obtain a deeper un-

derstanding of neural network learning algorithms. For example, neural 

networks have been applied to speech recognition problems for some time. 

This approach was originally motivated by the idea that neural networks 

model the brain, the only known general continuous speech recogniser. 

Subsequently, neural network learning for speech recognition has moved 

from a vague and naïve biologically-inspired methodology (see Minsky 

and Papert for a detailed criticism [131]) to a sophisticated mathemati-

cal framework (e.g. [103, 109, 26]). 

Neural network learning has been applied to many prediction, iden-

tification and classification problems. These problems may be classified 

as static or dynamic, depending on whether they possess an intrinsic 
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time-dependency. Problems such as image restoration and biochemical 

structure determination are static problems, requiring only spatial mod-

elling. However many problems have an explicit temporal component 

which must be modelled. Such problems include speech recognition and 

production, motor control and stock market prediction. 

1.2 Speech recognition 
The recognition of continuous speech by a computer is an important, but 

difficult problem. Current state of the art systems are capable of good 

performance in a limited domain, but unconstrained speaker-independent 

continuous speech recognition has not yet been approached. Most state 

of the art systems use sophisticated stochastic models of speech dynam-

ics; these models utilise simplistic assumptions, but their performance in 

limited domains does indicate that they capture some of the essence of 

speech dynamics. Their principal advantage over most current (static) 

neural network systems is that they are able to model the time-dependent 

nature of speech. Stochastic models too are trained from examples and 

can generalise to new data. 

However, many speech recognition researchers have become interested 

in using neural network models for speech recognition. There are two 

principal reasons for this interest: 

. static neural network models offer a natural way to discriminatively 

train a speech recognition system; 

• dynamic neural network models offer the promise of modelling speech 

dynamics in a more sophisticated way than current methods allow. 

Discriminatively training a speech recogniser means that in addition 

to increasing the likelihood estimate of the correct class (word, phoneme, 

etc.) on presentation of a training example, the likelihood estimates 

of the incorrect classes are lowered. This is in contrast to maximum 

likelihood training methods in which each item of training data is used 
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to refine the model of its assigned class. Thus discriminative training of 

a speech recogniser is designed to encourage the correct choice between 

competing classes, whereas maximum likelihood training is designed to 

build the best possible model of each class from the data. If the search 

space includes the true model for each class (e.g. if each class is Gaussian, 

and the search space is the space of Gaussians), then maximum likelihood 

training is an optimal strategy. If it is not (which is the case for most real 

world problems such as speech recognition) then discriminative training 

is preferable. 

There have been many experimental systems that have applied neural 

network models to speech recognition. Most of these models have been 

static models that have regarded the speech signal as a series of (over-

lapping) static segments. Extensions have been added to these models 

to provide a crude model of speech dynamics. These extensions have 

included the use of time-delays (thus offering a limited memory of previ-

ous events) and of time-dependent post-processing of the outputs of the 

static network. 

1.3 Dynamic networks 
Dynamic networks are those for which convergence to a fixed point at- 

tractor is not guaranteed. There are several motivations for their study: 

• dynamic networks seem more appropriate than static networks to model 

dynamic processes such as speech; 

• dynamic networks are computationally more powerful than their static 

counterparts; 

• neurobiological experiments indicate that biological neural systems 

have non-trivial dynamic behaviour (e.g. [58, 47, 69]); 

• dynamic networks are interesting physical systems. 
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Figure 1-1: A simple "neural" implementation of a flip-flop, requiring a re-
current connection. The node is a weighted summer with a sigmoid transfer 
function (the model is defined in (5.4)). The weights of the connections and 
unit bias are shown. 

However, research in dynamic networks is still at an early phase. The 

problem of credit assignment in learning is more difficult for dynamic net-

works compared with their static counterparts. Unlike static networks, 

each timestep may not be considered in isolation, as the activity of a 

network propagates forward through time. The state of a network at a 

given time is dependent on its state at previous timesteps. For example, 

if a dynamic network is trained using the back-propagation algorithm, 

the back-propagation of error must be applied through time as well as 

through the network [175]. Indeed, there is still considerable ignorance 

about the dynamical behaviour that may be expected from the simplest 

dynamic networks. 

Dynamic networks offer more computational power than static net-

works. For example, simply implementing a flip-flop in a neural network 

requires a recurrent connection (figure 1-1). Recurrent connections, pro-

ducing dynamic behaviour, impart a memory into a network, allowing 

a notion of internal state. This allows a network to respond to distant 

temporal events, for instance. An example of this is given in figure 1-2. 
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Figure 1-2: A three node network (using the same neural network model as 
figure 1-1) that can respond to temporally distant input. The input node is 
clamped to the value of some external signal. The first firing (1) of the input 
node acts as a priming signal, by setting the hidden node to "on". A second 
signal will cause the output node to fire. An arbitrary amount of time may 
pass between the first and second firings of the input node. 

In this work, the principal motivation for studying dynamic networks 

(apart from their intrinsic interest) is the hope of developing a better 

model of speech dynamics. Presently, the most powerful models of speech 

are based on hidden Markov modelling. These are very simplistic mod-

els, with the units of speech being represented as piecewise stationary 

systems. Their advantage is that they are well understood algorithms, 

with a powerful associated learning algorithm. However, hidden Markov 

model (HMM) systems suffer fundamental limits, since an arbitrary fi-

nite state machine cannot be built ou?a first order HMM; HMMs do 

not have a memory, thus they cannot be trained to learn long-distance 

temporal dependencies. Additionally the piecewise stationarity of HMMs 

limits their accuracy as models of speech dynamics. By developing dy- 
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namic networks and associated learning algorithms, it is hoped that more 

accurate models of speech dynamics may be developed. 

1.4 Overview of thesis 
This thesis has two major parts. Firstly a particular feed-forward net-

work was studied and applied to various problems in speech recognition. 

Various additions were made, such as the incorporation of delays and a 

dynamic programming post-processing of the network's output, to enable 

the system to be used to perform single-speaker continuous speech recog-

nition in a limited domain. Secondly, a network model with feedback was 

studied, with the aim of understanding more about the temporal com-

plexity that this model might exhibit. This computational investigation 

was extensive involving a large survey of network power spectra and a 

detailed study of the dynamics exhibited by a particular network. 

In chapter 2 the radial basis functions network is defined and a learning 

algorithm is described. This network is developed from work in functional 

interpolation and its operation is defined in these terms. The radial basis 

functions network is shown to be a general model for pattern recognition 

and its close relation to several statistical methods and neural network 

models is examined. 

Chapter 3 contains a review of neural network models used for speech 

recognition. Starting with work performed using static networks for static 

speech pattern classification problems, this chapter describes the various 

means which have been employed to make neural networks better models 

of speech dynamics. The later sections of the chapter demonstrate that 

neural network models and stochastic models are not distinct approaches 

to speech recognition, by discussing hybrid approaches and "neural" im-

plementations of stochastic models. Indeed, HMMs may be regarded as 

a subset of neural network models. 

The results of some speaker-dependent speech recognition experiments 

carried out using a system based on a radial basis functions network are 
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reported in chapter 4. The first experiments were static pattern clas-

sification experiments, in which vowels excised from continuous speech 

were classified using feed-forward networks. This work was then ex-

tended to another static pattern classification experiment in which 5 ms 

frames of speech were classified according to their phonetic labels. A 

post-processor assuming a first order Markov model was then applied to 

the output of this second set of networks, in an attempt to crudely model 

the speech dynamics. The output of passing a speech signal through 

this phoneme modelling system was a lattice of probabilistically scored 

phoneme hypotheses, which was further processed by the CSTR language 

modelling system, to produce word and sentence hypotheses. All these 

experiments were compared to the results obtained using "traditional" 

statistical methods. 

Chapter 5 considers dynamic networks. After a review of previous 

studies of network dynamics, a dynamic neural network model is defined 

and its dynamics (in a four-dimensional phase space defined by the sym-

metry of the weight matrix, the gain of the nodal transfer function, the 

network size and the discretisation constant used to digitally simulate 

the continuous equation of motion) investigated. This study took the 

form of a survey of network power spectra, where a network power spec-

trum (the power spectrum of the time history of outputs of a node in the 

network) was taken to be informative about the temporal behaviour of 

the network. By summarising these power spectra into a few statistics a 

map of the dynamical behaviour of this network model's behaviour (in 

the given phase space) was constructed. 

The study of this model is continued in chapter 6. Here the dynamics 

of a particular network were investigated relative to this phase space. 

The methods used here were those that have been developed to charac-

terise nonlinear dynamical systems, and it was found that this network 

exhibited complex behaviour, including chaos, that could be described 

with few dimensions. 

Finally the work is summarised and concluded in chapter 7. 



RADIAL BASIS FUNCTIONS 

2.1 Learning from examples 
2.1.1 Functional interpolation 

The basic problem of learning an input-output mapping from examples 

has been formulated in several different ways. In control theory the prob-

lem is that of system identification and estimation; in statistical pattern 

recognition the problem may be approached parametrically where forms 

for the probability distributions are assumed or non-parametrically where 

assumptions about the input probability distributions are not required; 

in neural network modelling the problem of learning from examples has 

been framed as the construction of an associative memory which retrieves 

an appropriate output when presented with an input. 

It is apparent from a consideration of these methodologies that a cru-

cial concept applying to learning from examples is generalisation1 . Here, 

we shall find it convenient to express notions of generalisation in terms 

of functional interpolation; learning an input-output mapping from ex-

amples may be understood as a process of curve-fitting, in which a high-

dimensional surface is constructed from the input data. Generalisation 

1 A notion of generalisation was formalised by Vapnik and Chervonenkis [201] and Valiant 
[199] in what is commonly called the PAC (Probably Approximately Correct) learning 
model. In PAC learning the aim is to construct a function which will produce incorrect 
outputs from future unseen inputs at most e of the time with a probability > 1 - & In 
this model the training input and all future examples are assumed to be drawn from 
the same, arbitrary probability distribution (thus excluding any information about the 

prior distribution). 
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is then an interpolation between known points on this surface [27, 102]. 

It is easy to see how this notion of learning and generalisation is in-

stantiated by a feed-forward neural network. In a feed-forward network 

an it-dimensional input space is mapped to an rn-dimensional output 

space; that is the network executes a function .T: R - R. Consider 

a feed-forward network with a single hidden layer. If the input vector is 

given by x, then 

= .F(x) = Wf(Ax) 	 (2.1) 

where f is the vector of non-linear transfer functions of the hidden nodes, 

V is the output vector, A is the first layer weight matrix and "iV is the 

second layer weight matrix. The surface that is fitted to the data is con-

strained to be a linear combination of the non-linear hidden unit transfer 

functions. Clearly additional hidden layers (or more hidden units in 

a single layer) allow more complex surfaces to be produced. A fitting 

procedure or learning algorithm is used to choose the weights parame-

tensing the network (W and A). The operation of such an algorithm 

may be viewed as the reduction of the volume of accessible weight space 

[62, 197] given the training examples. There are two criteria that should 

be considered: the volume of accessible weight space  (which measures 

the flexibility of the set of functions that can implement the input-output 

relations presented in training); and the ability of the learning algorithm 

to meet the constraints and generate a set of weights within the accessi-

ble weight space. If the volume of accessible weight space is small, then 

good generalisation is likely as the weight sets in this volume are likely 

to be of low complexity, corresponding to smooth interpolation surfaces. 

However, the problem of searching for a weight set in this volume (ad-

dressed by the learning algorithm) may be difficult and an acceptable 

weight set may not be found in a reasonable time. If the volume of ac- 

2 An issue here is the appropriate measure to use to quantify the volume of accessible 
weight space. For example, one may not place the same importance on volumes at 

I WI -* oo as volumes at ,W -+ 0, as it is generally desirable to have weight matrices of 

low magnitude. 
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cessible weight space is larger, then the learning algorithm may quickly 

converge to a weight set in this volume, but generalisation is likely to be 

poorer as the set of accessible functions available to the network is larger. 

This increase in flexibility means that the resultant solutions are more 

likely to have modelled fluctuations in the training data. Achieving good 

generalisation in reasonable time necessitates a trade-off between these 

two criteria of flexibility and ease of learning. In terms of a feed-forward 

network the decision is made when deciding on the network architec-

ture (i.e. the number of free weights) [16]; in engineering applications 

problem-dependent knowledge is crucial in designing minimal networks 

capable of representing the desired function [104]. 

2.1.2 Radial basis functions 
The method of radial basis functions (RBF5) [153, 1511 is a powerful and 

general method of constructing surfaces to solve the problem of high-

dimensional interpolation. In this section an outline of the method and 

important associated theoretical results will be presented. 

The multi-dimensional interpolation problem being studied may be 

stated as follows: Consider an it-dimensional input space R and a scalar 

output space R. Given P different points X, in R together with their 

corresponding outputs Y in R, the problem is to construct a function I 
such that: 

p=1,2,...,P. 	 (2.2) 

The method of radial basis functions chooses .F to be a linear combination 

of radially symmetric functions centred on the input points X ',. The 

functions used are the so-called "radial basis functions", ''(IIX—XII), so 

I becomes: 

1(X) = 	w(IIX—XpI) 	 (2.3) 

R-3R 
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where R+  denotes the non-negative real numbers. This system of equa-

tions will have a unique solution provided the matrix 

Yp q  = ( JIX - Xq ) 

is non-singular, where p and q range over the input data points. Micchelli 

[130] proved that this is indeed so (provided the data points are non-

degenerate) for a large choice of including: 

= T (2.4) 

(r) 	= 	(r 2  + c2) 	0 < 13  < 1 (2.5) 

= 	r2 lnr (2.6) 

= 	exp 
(r2) 

(2.7) 

The radial basis functions method is closely related to surface spline 

methods of interpolation [99]. The method of thin plate splines derived 

by Duchon [45] is derived from a variational approach to interpolation. 

The solution to this problem is given by: 

Pk 

= 	
w(X - XJ) +vp(X) 	(2.8) 

where the p(X) are additional polynomial basis functions and c'(i. ) = 

r2 lnr (2.6). 

The multiquadratic interpolation method [76] is a particular case of a 

general RBF method given by (2.3). Here 1(r) = / i2  + c2  (2.5); this 

method has been used extensively in surface (2-dimensional) interpola-

tion. 

2.2 Network implementation 
2.2.1 Approximated radial basis functions 

Broomhead and Lowe [27] demonstrated that the method of radial ba- 

sis functions may be regarded as a feed-forward network with a single 

hidden layer (figure 2-1). Regarding RBFs as hidden units with radi- 
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Output Layer 

Hidden Layer (Gaussian transfer function) 

Input Layer 

Figure 2-1: Sketch of a radial basis functions network (not all connections are 
shown). This is a 2 layer feed-forward network, with the hidden units having 
Gaussian transfer functions. The input-to-hidden weights may be regarded 
as centres in input space; the hidden units also have a width associated with 
them. 

ally symmetric fields is a compelling analogy, particularly in the case of 

Gaussian RBFs. These functions are centred on a particular input point 

and exponentially decay to zero; additionally they may be factored into a 

product of two-dimensional Gaussians, which lends some neurobiological 

plausibility [151]. The output units are simply linear summers with no 

nonlinearity. An RBF network may be viewed alternatively as a linear 

network with an input preprocessor. In this interpretation the RBFs are 

used to transform the input data into a different space, usually of higher 

dimension. 

The above discussion concentrated on the strict interpolation problem: 

a set of basis functions was constructed, with each member of the set of 

data points acting as the centre for a basis function. When there is a 

very large set of training examples it is clearly infeasible to attempt a 

strict interpolation. For example, a continuous speech recognition frame 

labelling problem reported later (chapter 4) involved 140,000 frames of 

training data. The inversion of a 140,000 x 140,000 matrix would be 

computationally massive (requiring centuries of computation on a Sun 4 

computer); additionally the probability of a matrix being ill-conditioned 
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grows with size of the matrix [43]. Broomhead and Lowe [27], in their 

presentation of the radial basis functions method as a feed-forward net-

work, relax this constraint, allowing the number of RBFs R to differ from 

the number of training examples P (Poggio and Girosi refer to this as an 

approximated RBF method [151]). Other extensions included extending 

the output space from a scalar quantity to a vector (so F: R - R) and 

adding a bias (wo) to the linear network (thus allowing hyperplanes to 

be constructed away from the origin). F is then a vector-valued function 

given by: 

	

(X) = wto + T wt(lIX - Cr11) 	i = 1,2,... ,m 	(2.9) 

where CT  is an RBF centre (or "knot") in the input space and w i, are the 

weights of the linear network. 

This is an over-constrained system and the matrix of RBF outputs ij 1, 1  

is now a P x R matrix with the optimal solution, in the least squares 

sense, being given by the Moore-Penrose pse, doinverse (see [95] for a 

good discussion). The pseudoinverse of j, , is given by 3 : 

	

1iJ+ = (i'iii' 	 (2.10) 

provided LJ'lJ  is non-singular, where ij' denotes the transpose of Y. 

Poggio and Girosi [151] extended Micchelli's theorems guaranteeing 

non-singularity to this situation, given that the centres chosen are a sub-

set of the set of data points. This method has been used by several 

researchers, e.g. [27, 30, 139, 207]. In summary, a system with a greater 

number of centres than data points is guaranteed to be singular; Micchelli 

showed (for many forms of ) that a strict interpolation system with 

the same number of centres as data points is guaranteed non-singular; 

Poggio and Girosi made a simple extension to Micchelli's result to the 

over-constrained situation (fewer centres than data points), guaranteeing 

non-singularity to the same class of functions, '. 

3 The pseudoinverse may also bb found using a direct pseudoinverse routine such as 

singular value decomposition or by applying Greville's theorem [95]. 
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2.2.2 An alternative training method 
In the work reported here, an alternative (but equivalent) training method 

was used [169]. Consider a linear network with a single layer of weights, 

whose input layer corresponds to the outputs of a set of radial basis func- 

tions. For each training example p, a real number 	is output by each rp 
RBF T. The "activation" or "potential" 1gT on each target node i will be 

computed using the (as yet undetermined) weights w: 

1rp = 	 (2.11) 

Let the desired activation value for exemplar p on target node i be called 

Y. The optimal weights are defined as those for which the error measure: 

E  — 	( 	

T
)  

_yt2 
- 	tp 	t1, 	 (2.12) 

ip 

or 

(2.13) 
ip 	1 	

tpj 

is smallest. This minimum may be found by a pseudoinverse method (see 

above) or by finding where the derivatives 

= LWkr 	 - 	 (2.14) 
aWkl 	T 	 p 	 ) 	p 

vanish. Let M be the correlation matrix of radial basis function outputs, 

summed over training examples: 

H  

	

M1 = 	1irpYip 	 (2.15) 
P 

and let M' be the matrix inverse of M. Then the optimal weight matrix 
Viv* lies where the gradient vanishes: 

W* 
	(LY;1J) M 	 (2.16) 

Thus the problem may be exactly solved by inverting a square R x R 

matrix, where there are R radial basis functions. 
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It may be demonstrated that this method is indeed equivalent to the 

direct pseudoinverse method. In that method the optimal weights are 

given by: 

w*=YT+. 	 (2.17) 

If identity (2.10) is applied to (2.17) then 

= yTHH1H')+ 	 (2.18) 

which is just (2.16) in matrix form. Formula (2.18) is obtained in [207], 

but it is explicitly stated that (2.17) is used in computer simulations. 

Rough calculations [169] show that exact methods such as this require 

the same amount of computation as a small number of gradient evalua-

tions of F; hence this is preferable to iterative schemes of minimisation. 

An advantage of iterative minimisation methods (such as the LMS algo-

rithm [209]) is that they allow online training 4. Although the training 

method described here involves a matrix inversion, the dimensions of the 

matrix to be inverted are only dependent on the number of RBFs and 

not the number of training examples; a typical application may require 

100 RBFs, requiring the inversion of a 100 x 100 matrix - this takes 6 

seconds to compute on a Sun 4. This training method may then be de-

scribed as a "semi-online" method, as the matrices M and (yTHI)  may 

be computed in an online fashion. This is not true of the direct pseu-

doinverse method: the dimension of the matrix to be pseudoinverted is 

dependent on the number of training patterns, hence the bulk of the 

computation is performed after all the training data has been presented. 

Additionally the direct pseudoinverse method is computationally more 

expensive, if P >> R. The computation time required to solve (2.17) di-

rectly is approximately 0(P 312 ), whereas solving the form given in (2.18) 

is approximately 0(P). Genuine online problems (such as the adaptive 

4 Training a network may be classified as online or batch. In online training the weights of 
a network are adjusted after each training pattern has been presented; in batch training 
the weights are not adjusted until after the presentation of the entire set of training 

patterns. 
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improvement of a channel equaliser) cannot be solved using these non-

iterative methods, so an adaptive algorithm (e.g. the LMS algorithm) 

must be used. 

2.3 Related statistical methods 
The generality of the radial basis functions formalism becomes apparent 

by demonstrating that various statistical pattern recognition methods 

may be regarded as RBF methods. In particular, density estimation 

using Parzen windows [146], the method of potential functions [2] and 

Bayesian learning using Gaussian (or mixture Gaussian) density functions 

may all be described using the RBF formalism. In the case of Gaussian 

classifiers and Parzen windows the RBFs are used to construct probability 

density functions (PDFs); each RBF is committed to a particular class. In 

statistical pattern recognition, methods of probability density estimation 

using basis functions centred at points in the input space are termed 

kernel methods 5 . In the method of potential functions, the RBFs are 

not probabilistically interpreted, and are used as interpolating functions. 

A good text covering these statistical pattern recognition methods is the 

one by Duda and Hart [46]. 

2.3.1 Gaussian classifiers 
The application of Bayes' rule is a fundamental of statistical pattern 

recognition. In a classification problem, a classification into class c 

given input data x is required. This may be achieved by maximising 

the posterior probability p(cIx). Clearly this conditional probability is 

5 Poggio and Girosi [151] made a connection between radial basis functions and the kernel 
functions of mathematical physics. Specifically, they treated the problem of functional 
approximation using the methods of regularisation theory. The solution to this regu-
larisation problem has a kernel given by a Green's function of a constraint differential 
operator. (This operator expresses prior constraints on the form of the approximat-
ing functions and also any prior knowledge of the problem.) It was shown that if the 
Green's function is radial, then the regularisation theory solution is an expansion into 

radial basis functions. 
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not directly available; however we may apply Bayes' rule: 

p(cIx)
p(xJc1)P(c)  

(2.19) 

	

- 	p(x) 

The probabilities p(xIc)  may be estimated from the data, e.g. by compil-

ing a histogram. The prior probabilities P(c) denote the probability of 

each class occurring without referring to the input data and reflect prior 

knowledge of the problem. Training then becomes equivalent to learning 

the conditional probability density functions (PDF) p(xIc). 

Here we shall assume that the PDFs for each class take on the form of 

the d-dimensional normal density: 

p(xIc) = 	
1 

 
(27t)d/2ItI1/2 

exp (_(x - t)'J1(x - tt)) 	(2.20) 

where 	is the mean of class c i  and Ei the corresponding covariance 

matrix. Learning corresponds to estimating values for these parameters. 

This is the most popular PDF to have been investigated: not only is it 

analytically tractable, but it also models the situation where the input 

vectors corresponding to a given class are noisy versions of a single typical 

vector. 

This classifier may be expressed as an RBF network (figure 2-2). In 

such a network the number of hidden units (RBFs) is specified by the 

number of classes in the problem. there is one hidden unit for each 

class, representing a PDF (2.20). Each hidden unit has just one output 

connection, leading to its corresponding output unit, its weight wii being 

the prior probability of class c. 

This may be contrasted with a general RBF network which features 

a fully connected hidden-to-output weight matrix. This gives a clear 

illustration of the different methods of training such a network. The 

Gaussian classifier is trained by a maximum likelihood method: a model 

is built for each class and optimised to maximise the likelihood of the data 

given the class. This is in contrast to the discriminative least-squares 

type of training usually applied to REF networks, when in addition to 

maximising the output of the desired class, the output of the other classes 
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SCajfA Posterior Probabilities 

(Output Layer) 

W 	: Prior Probabilities 

Gaussian class distributions 

Input Layer 

Figure 2-2: Sketch of a Gaussian classifier expressed as an RBF network. 
There is one hidden unit for each class, with each RBF centre corresponding 
to the estimated class mean and the covariance of an RBF corresponding 
to the estimated class covariance. The (diagonal) hidden-to-output weight 
matrix depends on the prior probabilities of each class. 

is minimised. Choosing maximum likelihood or discriminative training 

(or a mixture of the two) is a design decision and is discussed in greater 

detail in chapter 4. 

An alternative means of adding discrimination to a Gaussian classifier 

has recently been suggested by Yau and Manry [212]. In this work, the 

prior probabilities were neglected (i.e. assumed to be uniform), and a 

neural network was designed that implemented the Gaussian conditional 

probabilities, p(xIc). This network was a sigma-pi network 6, obtained by 

taking logs of the Gaussians. The weights of the network were obtained 

6 A sigma-pi network features second-order connections; the output of a particular unit 
is given by: 

= fio  

(W 

+ W1 + T WRIld k 

U 
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Posterior Probabilities 

(Output Layer) 

w 	:prior probabilities 

Linear summers 

a : mixture parameters 
Ii 

Gaussian class distributions 

Input Layer 

Figure 2-3: Sketch of a mixture of Gaussians expressed as a RBF network. 
The prior probabilities and mixture coefficients are shown as two separate 
sets of weights (leading out of and into a linear summer) for extra clarity; it 
is trivial to collapse the priors and mixture coefficients into a single weight 
set. 

from the means and covariances of the Gaussian classifier. In Yau and 

Manry's system, the Gaussian network was initialised using the sample 

means and covariances. The classifier was further improved by discrimi-

native training using the back-propagation algorithm. In experimenting 

with this system, it was found that the discriminatively trained classi-

fier, performed better than the maximum likelihood Gaussian classifier 

(to which the former was initialised) on problems in which the means and 

covariances were not known accurately (as in most real world problems). 

Multivariate Gaussian PDFs are limited to representing unimodal dis-

tributions. Presuming that one wishes to retain the advantages of a 

parametric method, a more general form of PDI 1' is required. A suitable 
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function to choose is a mixture of Gaussians: 

	

p(xI®,c) = 	 (2.21) 

>Jaj = 1. 

Here a class c 1  is described by a parameter vector O, which is a vector 

of the means and covariances of the individual Gaussians making up 

the mixture. The mixture parameters aj  define how the Gaussians are 

linearly combined to produce the final mixture density. These parameters 

are obtained via a maximum likelihood optimisation performed using the 

EM algorithm [44, 158]. Again this method may be represented as an 

RBF network (figure 2-3). 

2.3.2 Parzen windows 
The Parzen windows approach to non-parametric estimation of probabil-

ity densities [146] is probably the most frequently used kernel method of 

density estimation. The basis of the method involves fixing a set of vol-

umes in input space (centred at the data points) and counting the number 

of example points in each volume. This hypercube or hypersphere win-

dow function may be extended to a more general class of functions - 

Gaussians are typically used. In this case the basic equation for Parzen 

windowing is similar to (2.3), where 4> is the Parzen window function. 

The sum in (2.3) is then normalised by the number of data points to give 

an average of the probability densities centred at the samples. A further 

parameter used in this method is referred to as the smoothing parameter 

(K). This is used to specify the width or variance of each window and is 

normally constant over all windows. 

This method is a non-parametric method and may be contrasted with 

a Gaussian classifier. In a Gaussian classifier, a particular, Gaussian, 

form is chosen for each output PDF. Each training data point serves to 

"tune" the parameters (means and variances) of its corresponding PDF. 

In the Parzen windows method, however, the addition of a new training 
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data point alters the function space from which the resultant PDF is 

selected; a new training point introduces a new window (and thus more 

parameters). Additional training points do not merely refine an existing 

set of parameters, and the final functional form of the estimated PDF is 

dependent upon the training data. 

If the estimated density function for a class c i  is written: 

1 	N 	(

IIx_xII\ h )' (2.22) 

where there are N j  examples of class c, then a discriminant function 

separating two classes ci and c, may be written: 

	

(k=1

NL 	(IlxxI1
N 	

( IIx_4D (x ) 	

11 (2.23) 

	

=(NN)KL 	K 
/ 	k=1 	

ii. 

This approach to pattern recognition is sometimes termed kernel discrim-

inant analysis [75]. 

A good deal of theoretical work has been undertaken to determine op-

timal forms for the kernel function (RBI") ' and the smoothing param-

eter 1,. used to scale the influence of each window away from its central 

point [75]. In the case of Parzen windows the most popular choice of 

kernel function has been the Gaussian normal density, and various ad 

hoc methods for choosing K have been employed. Again, a choice must 

be made whether to optimise parameters using a maximum likelihood 

process ("goodness of fit") or discriminative training process ("minimal 

misclassification"). 

2.3.3 Potential functions 
Rather than interpolating between data points to construct a density 

function, the method of potential functions performs an interpolation to 

estimate a discriminant function in input space. Consider a two class 

problem: if each training example is regarded as being a charged point in 

input space, whose charge is unit positive or negative, depending on its 

class, then the resulting surface of zero potential serves as a discriminant 
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function. If the charge at a point x in input space due to point charge x 

is denoted by K(x,x), then the potential at x due to n point charges is: 

	

4,  (X) = 	cK(x,x.) 	 (2.24) 

In classical physics the potential varies inversely with (11x—xI), but as 

Aizerman et al. [2] discuss, a wide range of forms for K(x,x) are suitable. 

Functions that have been used include: 

K(x,x) = 
a2+IIx—xII2 	

(2.25) 

K(x,x 1 ) = exp (_.IIx - xII2) . 	( 2.26) 

Choices for K(x,x) have generally tended to possess a maximum when 

x = xi  and to monotonically decrease to  as jx — x tends to oo. In the 

case when K is a radial function, i.e. K(x,x) = 4(IIx - x i  11) (as in (2.25) 

and (2.26)), it may be identified with the RBF cf  in (2.3). 

Potential functions research has tended to concentrate on iterative al-

gorithms (especially perceptron training) to choose the weights c, which 

is in contrast to work on radial basis functions, which have used effi-

cient non-iterative means of solving the output linear network. A typical 

iterative rule used to optimise %P(x) is: 

c(t + 1) = c(t) + V(Y(t), W(x(t)) K(x(t),x 1 ), 	 (2.27) 

where V is a function of the error dependent on the target output Y(t) 

and the actual output 'I'(x(t)). 

2.3.4 Vector quantisation 
Vector quantisation (VQ) is a process in which the input space is par-

tioned into a set of disjoint regions. A real valued input vector may 

thus be transformed into a symbol corresponding to the region in which 

it is located. This process may be regarded as an RBF method using 

hard-limiting hyperspherical basis functions in (2.3): 

	

4(x) = 1 	if lix - Xill < d 	 (2.28) 

	

(x) = 0 	otherwise 
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is a hypersphere of radius d centred at x. However, most vector 

quantisers have more complicated forms of 4' than this, generally hard-

limited polygons. 4'(x) for each RBF is determined relative to the other 

RBFs present, using a nearest neighbour metric. The RBF for each centre 

defines the region of input space which is closer to that centre than any 

other centre. This partioning of the input space is often referred to as a 

Voronoi tessellation. 

Several algorithms have been proposed for computing the centres (or 

codewords) of a VQ codebook [122]. A commonly used algorithm is the 

iterative k-means clustering algorithm [121]. After initialising (e.g. at 

random data points) a Voronoi tessellation is computed and each code-

word is repositioned at the centroid of the set of data points within its 

partition. This process is iterated until convergence. 

The advantage of VQ is that it allows computation to proceed using a 

finite number of discrete probability distributions, rather than comput-

ing the continuous PDFs (e.g. Gaussian mixture densities). However a 

drawback is that the VQ operation will undoubtedly distort the input 

data, owing to the hard partioning of the input space. The RBF formal-

ism suggests a compromise solution that may mix the advantages of both 

discrete and continuous modelling. By using continuous valued RBFs for 

the VQ, the VQ codebook may be modelled as a mixture of continu-

ous functions which are overlapped rather than disjoint. This method 

was suggested by Huang [82] in the context of hidden Markov modelling, 

(semi-continuous hidden Markov modelling) (see section 4.5.3.2). 

2.4 Related neural network models 
The RBF framework is quite general, with several other neural network 

architectures having close relationships to it. RBF networks clearly have 

a close relationship to multi-layer perceptrons [175], since both are lay-

ered, feed-forward networks. Additionally, there is a large group of neu-

ral network architectures that are based upon a preprocessing of the 
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input into a higher dimensional space. These include localised receptive 

fields [133], the modified Kanerva model [155], the random cells model 

of Gallant and Smith [61], Kanerva's memory model [89], the restricted 

Coulomb energy network of Reilly et al. [159], Boolean networks based on 

rt-tuple sampling [4], Kohonen's feature maps [95] and the memory-based 

reasoning system of Stanfill and Waltz [191]. 

2.4.1 Multi-layer perceptrons 
A radial basis functions network may be developed from a standard multi-

layer perceptron (MLP) in a natural way. Consider a MLP with a single 

layer of hidden units; the input units are clamped to external input values 

(Xk) and the output units (yt)  are linear. The output of such a network 

is given by: 

MN 

	

ljj = 	w;f 	 Wjkxi 	 (2.29) 
j=0 	I 

	

f(x) = 	
1 	

(for example), 
1 + exp(—x) 

where w 13  represents a connection weight and wo the bias. The argument 

to the sigmoid nonlinearity f defines a hyperplane: 

L WikXk = -Wi0. 	 (2.30) 

The desired class boundaries are modelled by the hyperplanes defined by 

the hidden nodes. Too many hidden nodes cause the boundaries to be 

significantly influenced by the sample distribution; too few hidden nodes 

lead to an inadequate modelling of the class boundaries. 

MLPs may be trained using the back-propagation of error algorithm 

[175]. This algorithm adjusts the weights, wi j  of the network according 

to the supervised output error, E: 

Wij cx 	
aE 	

(2.31) 
awii 

aE 	E 1Jt 
awij 

= 	
Ji öW j 	

(2.32) 
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The gradient of the error with respect to the (supervised) output units 

may be simply obtained, provided the error function is differentiable. 

To compute this gradient for the hidden units the error must be back-

propagated from the output units, via a linear network, with the required 

gradients being computed by the chain rule of differentiation. 

A feed-forward network to be trained by back-propagation need not 

feature weighted-sum nodes with a sigmoid nonlinearity. As long as the 

gradient of the error with respect to the weights can be computed, the 

back propagation algorithm may be performed. Consider altering the 

transfer function of the hidden nodes from a sigmoid to a Gaussian: 

H 	 Nj 
iii 

=- c 3 )2  
exp (_: \ 

2a 	) 	
(2.33) 

Here the hidden units are computing hyperellipses with centre coordi-

nates c ij  and covariances U,j7  . The required gradients for the back-

propagation algorithm may be computed for a network of this type: 

IJ 	= 	 - Ctk) 	
(2.34) 

aCik 0 k  

aljr - 	 - Ctk)2 	
(2.35) 

- 

where the centres and covariances of the Gaussians correspond to the 

adaptive weights. Such a network may be considered as a type of RBF 

network. An important difference is that the centres and covariances 

are adaptive; the expansion into radial basis functions space may not 

be regarded as a preprocessor prior to learning in this case. Robinson 

and Niranjan [166, 139] have experimented with networks of this type. 

Poggio and Girosi [151] have developed a solid theoretical foundation 

for networks of adaptive radial basis functions using approximation and 

regularisation theory, a foundation that they claim is not yet shared by 

MLPs. 
7 Lapedes and Farber [102] have suggested that MLPs with 2 layers of sigmoid hidden 

units compute "bumps" in input space. These may be more easily modelled using a 
single layer of hyperellipses. Of course, MLPs may form more complex classification 

boundaries than bumps. 
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Non-adaptive RBF networks have several advantages relative to MLPs. 

The non-adaptivity leads to (much) faster training times, because only a 

solution to a linear network is required. A unique solution may be found 

(the least squares optimum); hence there are no problems with local min-

ima. Furthermore, RBF networks are closely related to well understood 

interpolation and statistical pattern recognition methods, thus offering a 

clear insight into their functioning. 

2.4.2 Input dimensionality expansion methods 
A characteristic of RBF networks shared with several neural network 

models is the notion of expanding a vector into a high-dimensional space. 

These methods take advantage of a theorem by Cover J381 which states 

that a classification problem cast into a high-dimensional space is, in a 

specific sense, more likely to be linearly separable than would be the 

case in a lower dimensional space. Cover considered the partioning of a 

d-dimensional space by a hyperplane. If there are it sample points (in 

general position 8)  then there are a maximum 2 1  possible dichotomies9 . 

The probability that a random dichotomy is linearly separated, P(rt, a), 
is given by: 

P(n,d) = 1 	 ifn.<d+1 

2 1- 
 (n— 

	 (2.36) 
P(m,d) = 	;;; 	k ) 	

ifm>d+1. 

(All dichotomies of d or fewer points are linearly separated.) Plotting 

P(rt, d) vs. 	for various values of d (figure 2-4), it is apparent there is 

a limiting value of 	= 2, below which the probability that a random 

dichotomy is linearly separated is 1, above which it is 0. Cover described 

this value as the capacity of a hyperplane. This theorem implies that lin- 

8 A set of points in a d-dimensional space are said to be in general position if no subset 

of d + 1 points lies in a (d - 1)-dimensional subspace. 

9 A dichotomy is a partition of a set of points into two subsets. 
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Figure 2-4: Graph of P(n, d) vs. 	- using (2.36). P(m, d) is the probability 
that a random dichotomy of ii. d-dimensional points in general position is 
linearly separable. As d -+ 00, so P(n, d) -* 1 if ii. < 2(d + 1), otherwise 
P(m, d) - 0. 

ear separability becomes more probable in a higher dimensional space 10 . 

The process of expanding a vector into a higher dimensional space 

usually supposes that the units in this space correspond to local vol- 

umes of the input space; this is the case for hyperelliptic RBF networks. 

Other systems using this idea of locality include the modified Kanerva 

model [155], networks of locally tuned processing units [133] and the 

SPAN network of Kawahara [91]. These methods may be interpreted as 

10 Beware! Cover's work applies to random input samples and in pattern recognition the 

input data is generally correlated. 
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RBF methods, although these authors go to some pains to differentiate 

themselves from the method of RBFs. 

The locally tuned processing units method of Moody and Darken [133] 

has a number of basis functions (Gaussians) placed in the input space; the 

centres are chosen using k-means clustering [121] and the widths (a single 

width for each Gaussian is assumed rather than a full covariance matrix) 

chosen using a nearest-neighbour heuristic. Since they were interested in 

time-series prediction and required on-line learning, the LMS algorithm 

[209] was used to assign the weights in the linear network. Moody and 

Darken compared this work to the method of RBFs (for strict interpola-

tion). Their criticisms of RBFs were: (i) that RBFs are global since they 

do not approach 0 exponentially fast; (ii) that a separate basis function is 

required for each point; (iii) computation time scales as P 3  for a P point 

data set. These do not apply to the more general RBF formalism outlined 

here since: (i) Gaussians are frequently used as basis functions (rather 

than the multiquadratics or thin-plate splines that they evidently had in 

mind); (ii) the RBF formalism here goes beyond strict interpolation; (iii) 

computation time is dependent on the number of training examples but 

(see above) is distributed to allow quasi-on-line processing 11 . 

Kawahara and Irino [91] introduced the saturated projection algorithm 

(SPAN) as a general framework for regarding learning in neural networks 

as functional interpolation, with an additional emphasis regarding the in-

corporation of prior information. However in practise it is little different 

to RBF methods (as they acknowledge) with the idea of incorporating 

prior information about the problem being reduced to the choice of func-

tion centres. 

The modified Kanerva model [155] took its inspiration from Kan-

erva's sparse distributed memory (see below), although the important 

features of the Kanerva model (relating to the properties of high (2b 000 ) 

11 The computation time of the locally-tuned processing units method is also dependent 
on the number of data points, particularly as it is stated that the number of basis 

functions is th the number of data points. 
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dimensional binary spaces) are lost in the feasible implementations of 

this scheme. In practise this is a radial basis functions model. Prager 

has examined the computational properties of several error metrics (di 

(Manhattan), d2 (Euclidean) and d) in conjunction with hard threshold 

hyperspheres as basis functions. An important computational result was 

reported using the d metric [154]. Only a small fraction of basis func-

tions are required to be active at any time. In the d metric a basis 

function is only active if all its coordinates lie within the corresponding 

activation radius. The combination of these two conditions results in a 

sparse weight matrix: each basis function only depends on the state of 

a very few input coordinates (assuming binary inputs) and these coordi-

nates may be determined at compile time. This results in large savings 

in memory and computation (2. orders of magnitude in both areas for a 

real-time speech recognition experiment). 

The method of random cells [61] involves placing random hyperplanes 

in the input space as method of input dimensionality expansion, be-

fore solving with a linear network. Although not an RBF method, this 

method clearly bears a close relationship and similar motivation to such 

methods. 

2.4.3 The Karierva memory model 
Kanerva's sparse distributed memory (SDM) [89] is an associative mem-

ory model, that is based upon the properties of high-dimensional (2N,  N 

is typically 1000) binary spaces. It is obviously impossible to model all 2N  

possible memory locations of such a memory, so a small, random subset 

of locations (of the order of 220)  is chosen, to give a sparse coverage of the 

overall space. This model relies upon the particular properties of high-

dimensional binary spaces: for instance in a 21000  space with 220  actual 

locations an average of 98% of the locations will fall within a distance of 

411-430 bits of a random location, with only an expected 0.01% of the 

points being a Hamming distance of less than 400 bits away. Kanerva's 
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storage scheme defines a hypersphere around each location: an input 

datum will cause activity in all locations in whose hypersphere it falls. 

Storing a pattern typically corresponds to incrementing and decrement-

ing a set of counters, each corresponding to an input coordinate. For each 

coordinate of the datum that is "on", the corresponding counter is in-

cremented, and a counter is decremented if its corresponding coordinate 

is "off". Reading from the memory is a similar process with the out-

put being a reconstruction of the input obtained by applying a majority 

rule to each coordinate, using the locations in whose hyperspheres the 

input falls. This process may be iterated until a fixed point is reached, 

representing the reconstructed memory. 

Keeler [92] showed how this may be implemented asob layer network 

trained using the Hebb rule. The sparsely distributed location units 

may be regarded as the REFs, defining a hypersphere using a Hamming 

distance metric. The Kanerva model, then, has a similar form of REF to 

vector quantisation. However, it differs from vector quantisation in that 

recall involves an interpolation (described above) rather than a simple 

winner-take-all. Keeler demonstrated that the hidden-to-output weights 

are in fact determined via a Hebb rule: 

Wij = P!Jr. 	 (2.37) 

2.4.4 Restricted Coulomb energies 
The restricted Coulomb energy (RCE) model [159] is another input di-

mensionality expansion method. Essentially, this is a method of mod-

elling classes by mixture densities; the network architecture is similar to 

that of figure 2-3, except that the functions making up the mixtures are 

not constrained to be radial. Most applications of the RCE model have 

used square well (2.38) or triangular (2.39) potential functions: 

= 0 	if  < U 

= —b 	if 	> 0 
	 (2.38) 
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= 0 	if  < 9 

= i — b 	if 	> 9 
	 (2.39) 

The potential well is restricted by the bias of the potential function 

(RBF), 9. Additionally the mixture parameters are set to unity, as are 

the priors. (Thus, neither of these sets of parameters meets the "sum to 

one" constraint; they should be considered as scaled uniform probabili-

ties.) 

This method differs from the method of potential functions in that 

a density function is constructed for each class; the hidden-to-output 

weight matrix does not specify a discriminative classifier. However, the 

training procedure is a discriminative, supervised learning method, with 

the position of the RBF centres being modified in the case of (i) no output 

class being activated; or (ii) a confusion between classes. In case (i) a 

new RBF is recruited to the set of RBFs corresponding to the class in 

question with it's centre being a scaled-up version of the input vector (i.e. 

Ci  = Ax). In case (ii) the RBFs corresponding to the incorrectly activated 

classes are scaled down (i.e. A is reduced) until they are at the threshold 

and the incorrect class is no longer active. Hence this heuristic procedure 

adjusts the RBFs of all classes involved in a confusion; this discriminative 

training procedure differs from the maximum likelihood approach (EM 

algorithm) used to compute the weights for mixture densities. 

2.4.5 Other related techniques 
The method of rt-tuple recognition (or Boolean networks) [4] is another 

input expansion method. Each class has associated with it a set of m-bit 

random access memories (RAMs), each with 2" locations. Each RAM is 

associated with an n-tuple drawn from the data; the set of m-tuples is 

usually selected randomly. The location in the appropriate RAM pointed 

to by the m-tuple is set to one. Training consists of simply repeating 

this procedure for all examples of all classes. Reading from the m-tuple 

recogniser is equally simple. The input datum, of unknown class, has 



2 RADIAL BASIS FUNCTIONS 
	

99 

its set of ii-tuples extracted and a logical AND is performed with the 

contents of the addressed location in that RAM of each class. The results 

of the AND are summed for each class, and classification is performed by 

a maximisation operator. This is not a discriminative pattern recognition 

system, as there is no interaction between classes. There is no obvious 

likelihood function (or similar) that is being maximised. 

The self-organising feature maps of Kohonen [95] are dimensionality 

reduction methods: a high-dimensional input vector is mapped onto a 

low (usually two) dimensional space. This algorithm, based on work by 

Wilishaw and von der Malsburg [211], uses a notion of conservation of 

topology: that is, input vectors that are somehow close in the input space 

will be close in the 2-space that they are mapped onto. 

This method is somewhat similar to RBF methods: both rely on hidden 

units that correspond to a point in input space. The Kohonen method 

uses hyperspherical hidden units, coupled together to form a "winner-

take-all" network, i.e. only a single unit is activated for each input point. 

However, the topology conserving aspects of this map complicate the 

issue as the units are regarded as being laterally connected, via an on-

centre off-surround function. Hence the activation for each unit consists 

of the activation received from the input space, plus activation received 

from other units in the feature map 12 . In the case of no lateral connec-

tions, the Kohonen algorithm reduces to k-means clustering. As training 

progresses, the distance that locally excitatory connections extend is re-

duced. This leads to the initial discovery of coarse topological features, 

with the map being successively refined. 

The memory-based reasoning (MBR) system [191] is essentially an 

RBF method. This is basically a very large table lookup system (with 

an entry for each data point), using various weighted error metrics for 

12 In practice the lateral connections are not explicitly computed but approximated within 
the training algorithm by computing the winner from the input data alone (no lateral 
feedback) and updating only a set of feature map units within a certain radius of the 

winning unit. This radius is decreased as the training algorithm progresses. 
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operation on symbolic learning problems. The relationship to RBF meth-

ods with a basis function at each point is clear. This method also has 

similarities to the k-nearest neighbour method. 

Omohundro [141] has suggested various computationally efficient al-

gorithms, based on hierarchical data structures used in computational 

geometry, that are considerably more efficient than most neural network 

algorithms such as back-propagation. Omohundro's central data struc-

ture is the k-d (k-dimensional) tree. The k-d tree, is a method of struc-

turing multi-dimensional data; at each branching of the tree, the data 

is partitioned at a certain point along a single co-ordinate. Hence, the 

leaves of the tree correspond to regions of the input space that have been 

partitioned according to the input data. This is implement ationally simi-

lar to a radial basis functions network with non-overlapping hard-limiting 

hyperspherical RBFs, but computationally more efficient. The use of k-d 

trees to approximate hyperspheres has also been used in a computation-

ally efficient way to compute the dimension of dynamical systems using 

ball-scaling methods [68] (see also chapter 6) (Omohundro, personal com-

munication). 

2.5 Summary 
The RBF formalism has been shown to be a general way of describing 

several statistical and neural network pattern classification methods. The 

basic principal of these classifiers has been to transform the input data 

into a new (usually higher dimensional) space defined by a set of radially 

symmetric functions centred at points in the input space. The classifiers 

discussed in this chapter are summarised in table 2-1. Various ways have 

been used to choose the centres of the basis functions for these classifiers, 

both adaptive and non-adaptive. These are summarised in table 2-2. A 

principal division between the classification methods discussed has been 

whether they are designed to construct the most accurate model of each 

class or to minimise the misclassification between classes. The former 
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RBF classifiers 

Classifier I 	4(r) 

Approximated RBFs 

Locally Tuned Processing Units 

SPAN 

exp () 

Thin Plate Splines r2 lnr 

Multiquadratics (r2  + c2 )"2  

Gaussian Classifier p(xIc1) = (2)a/2fD,Il/2 exp (—cx - 	tj)'E'(x - 

Parzen Windows exp ()  11  
Potential Functions 

Kanerva Model 1 if r < d 

0 otherwise 

Vector Quantisation Hard-limited polygon 

Restricted Coulomb Energies 
o 	ifr<d 

x - b 	otherwise 

Table 2-1: Table summarising various RBF classifiers discussed in this chap-
ter; the form of 4) given is a typical form in the case of Parzen windows, 
potential functions and restricted Coulomb energies. 

Centre positioning in RBFs 

Classifier Adaptation J 	Choice of Centres 

Approximated RBFs 

SPAN 

Potential Functions 

Parzen Windows 

No (Random) Data Points 

Locally Tuned Processing Units 

Vector Quantisation 

Yes K-Means Clustering 

Gaussian Classifier No Sample Means 

Restricted Coulomb Energies Yes Supervised Discriminative Training 

Mixture of Gaussians Yes EM algorithm 

Table 2-2: Adaptive and non-adaptive means of choosing centres for RBFs. 
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Hidden-output weight training methods 

Classifier I 	Training Method 

Approximated RBFs Pseudoinverse 

W* = yT.Ft+ 

Locally Tuned Processing Units LMS 

SPAN AW ij  = TIMT - -9 IDY 

Potential Functions 

Gaussian Classifier Prior Probabilities 

Restricted Coulomb Energies  

Mixture of Gaussians Priors and EM algorithm 

Parzen Windows Smoothing Parameter 

K 

Vector Quantisation Maximum 

w=1 	if'=max 3  

wj 	0 	otherwise 

Kanerva Model Hebb Rule 

wij = 

Table 2-3: A summary of the different training methods used to choose the 
hidden-output weights for various RBF classifiers. 

criterion is instantiated in maximum likelihood training processes, the 

latter in discriminative training processes. Table 2-3 compares the train-

ing methods used for setting the weights of the linear RBF-output weight 

matrix. The contrast between maximum likelihood and discriminative 

training will remain an important theme throughout this thesis. 



SPEECH RECOGNITION USING 

NEURAL NETWORKS 

3.1 Continuous speech recognition 
Whilst unconstrained speaker-independent continuous speech recognition 

is a task that people perform with apparent ease, it has proven to be diffi-

cult to program a computer to perform similarly. State of the art systems 

in continuous speech recognition [105, 34, 111 only perform well in artifi-

cially constrained tasks. Currently the best automatic speech recognisers 

are stochastic in nature, based upon hidden Markov models (HMMs). 

The best speaker independent system is probably Carnegie Mellon Uni-

versity's Sphinx [105] which has produced recognition errors of less than 

4% on a difficult task using a 998 word lexicon and a constrained gram-

mar (perplexity' 20). The IBM continuous speech recognition system 

[11], although not speaker independent (it used a set of 10 male speakers 

for both training and testing), featured a much less constrained statis-

tical language model (training and testing sentences chosen from office 

correspondence) and a 5000 word vocabulary, producing average word 

recognition errors of 11%. BYBLOS, the BBN continuous speech recog-

nition system [34] produced word errors of 1.5% in speaker dependent 

mode after training with 15 minutes of speech, using a 350 word lexicon 

1 The perplexity of a grammar is the average number of words allowed after any other 

word. 
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Signal 	 Phoneme 	 Language 

	

Processing_ ACOUSTIC 
1_Modelling 	PHONEME 	

Modelling 
SPEECH _________ 	 _________ 	 _________ 

WAVEFORM 1 	i PARAMETERS I 	I EATI10E 	 I TEXT 

Figure 3-1: Simplified outline of a continuous speech recognition system. 
Three principal stages are identified: however, in many systems phoneme 
modelling and language modelling are coalesced into one stage, often via 
embedded hidden Maikov models. In this case, a phoneme lattice is not 
explicitly computed; however, the relevant portion of the lattice must always 
be available to the language model. 

and grammars ranging in perplexity from 30 to 60. 

Figure 3-1 shows a basic outline of a continuous speech recognition 

system. Although most neural network approaches to speech recognition 

to date have concentrated on the area of phoneme modelling (and also 

isolated word recognition), it is by no means clear that this is the area 

in which neural networks have more to offer than other techniques. The 

article by Lippmann [114] reviews work in this field (performed up to 

and including 1988) comprehensively and Bourlard and Wellekens [23] 

provide a good overview of some initial work performed in relating time-

delayed and recurrent neural networks to hidden Markov modelling. 

3.1.1 Signal processing 
The signal processing module of most speech recognition systems is based 

around a linear process such as linear predictive analysis (LPA) or the 

discrete Fourier transform (DFT). Problems with these processes include 

an information loss caused by the linear modelling 2  and also the need for 

a fixed frame rate, which does not take into account the different time 

scales of the speech signal: for example the closure, release and aspiration 

of a stop consonant occurs on a faster timescale than the onset, centre 

and offset of a vowel. 

Most neural network methods for signal processing are based around 

2 Although the existence of expert spectrogram readers indicates that a DFT analy-
sis contains enough information to construct the spoken phoneme sequence with high 

accuracy. 
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models of the peripheral auditory system, derived from psychophysical 

experiments [182, 195, 147] or from what is known about the physiology of 

the inner ear [64, 1201. Comparisons between auditory model front ends 

and LPA or DFT front ends have given few indications that auditory 

modelling is superior to linear signal processing in noise-free conditions 

[161, 64, 19]; however there is strong evidence that auditory modelling is 

superior in noisy conditions [64]. 

An alternative approach to nonlinear signal processing is based upon 

nonlinear dynamics. Here, the speech signal is regarded as a time series 

produced by a nonlinear dynamical system. Consider the speech signal 

in terms of fluid dynamics, speech production being the modulation of 

airflow through the vocal tract. It is not unreasonable to assume that the 

output of this complex system will be of a high-dimensional character. 

However, although the vocal tract does not experience a laminar fluid 

flow, it is far from being turbulent. Recently, seemingly high-dimensional 

fluid systems close to turbulence have been studied using methods of 

nonlinear dynamics (e.g. [66, 113]). This research has indicated that 

such systems may in fact be accurately modelled using low-dimensional 

equations of motion with quasi-periodic or chaotic behaviour. Thus, 

we may hypothesise that the speech signal (or portions of it) may be 

modelled by some low-dimensional nonlinear system. 

Certainly, the traditional linear signal processing view of the speech 

signal as a linear system plus stochastic noise is inadequate. For exam-

ple, such a system is unable to generate the quasiperiodic waveforms that 

often make up vowels and other voiced parts of speech, whereas nonlin-

ear systems naturally model such motion [116]. There is a growing and 

fruitful interaction between research in neural networks and nonlinear 

dynamics; it seems natural to use neural network architectures and al-

gorithms in a dynamical systems approach to speech processing. Early 

attempts along these lines have recently been reported by Lowe and Webb 

[116] and Tishby [196]. 
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3.1.2 Language modelling 
Applying neural networks to language modelling in speech recognition 

is still at an early stage. Although some work has been performed in 

which neural networks were trained to learn elementary natural language 

tasks, e.g. simple grammars [49] and pronoun reference [5], it is not yet 

clear if these approaches will be useful for speech recognition. Recently, 

Jain and Waibel [86] presented a modular recurrent network architecture 

to perform on-line parsing of multiple clause sentences. This system 

however, does not deal with multiple word hypotheses and corrupted 

input, major issues in speech recognition. Lucke [119] has presented a 

scheme, based on a MLP, to perform lexical access, i.e. to learn a mapping 

from phonemes to words. Results on a small database were encouraging, 

however the system did not seem to scale well [51]. 

3.2 Phoneme modelling with neural networks 
In this thesis we shall be principally concerned with phoneme modelling. 

The major problem in this stage of a continuous speech recognition sys-

tem is the means by which the time-variability of the speech signal is 

represented. Neural network methods of phoneme modelling have been 

developed by increasing the sophistication of their temporal modelling of 

the speech signal. 

The earliest crude methods neglected the temporal component of the 

speech signal entirely, with the problem being transformed into a static 

pattern classification problem. In these systems, any time-dependence 

was expressed spatially, e.g. by performing recognition using complete 

spectrograms as input. Consequently, these methods were only able to 

recognise small segments of an utterance (e.g. pre-segmented phonemes) 

or isolated words. However these systems were easy to engineer, as they 

could be mapped directly onto a static network which could be trained 

easily. Most of these approaches used feed-forward networks, generally 

multi-layer perceptrons. These systems are reviewed in section 3.4. 
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Static speech pattern classification systems avoid the issue of temporal 

processing, since the availability of segmented data assumes that there 

has been some earlier time-dependent processing. The addition of de-

lay lines to these static systems imparted a limited amount of context-

dependence into them. The resultant networks were also static, feed-

forward networks (trained using identical algorithms) but the input layer 

was extended to cover several time frames of speech input. This allowed 

past (and future) context to influence the operation of the network. The 

use of delay lines was extended to hidden and output layers in the time-

delay neural network (TDNN). The TDNN is a static feed-forward net-

work; however, delay lines are added to each hidden and output unit, 

thus providing a memory of previous processing for the network. This 

has proven to be a successful architecture for speech recognition, allowing 

the network to learn time invariant features. Speech recognition systems 

implemented using delay-lined networks are discussed in section 3.5. 

A more natural and powerful way of incorporating memory into neural 

networks is by the addition of recurrent connections: however, most re-

current networks are dynamic and learning algorithms for static networks 

are not applicable to them without some modification. A simple form 

of recurrent network is based upon a feed-forward architecture, with the 

input line extended to receive copies of the hidden or output units of the 

previous timestep. To enable training by back-propagation, the recur-

sion is cut off after a single timestep in the backward error propagation 

network. Dynamic neural networks have also begun to be used for speech 

recognition by some researchers, using variants of the back-propagation 

algorithm. It seems likely that if speech recognition is to be tackled by 

the nonlinear modelling of speech dynamics, then the use of recurrent 

networks might be a powerful approach. However, current research is 

still at an early stage; phoneme modelling experiments using recurrent 

networks are reviewed in section 3.6. 

Although dynamic networks offer a powerful way of modelling speech 

dynamics, their properties and training are still very much an open re- 
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search topic. The only attempts to use dynamic networks for large scale 

speech recognition have involved the extensive use of large supercomput-

ers (e.g. [51]). Hence there is a motivation to employ static networks 

more effectively. Additionally, neural networks are usually discrimina-

tively trained, which is not the case for many statistical models used 

for speech recognition. The combination of these two factors has led to 

the development of systems integrating neural network and statistical 

models - principally multi-layer perceptrons integrated with dynamic 

programming and hidden Markov modelling (outlined in section 3.3). 

Static networks, even with delays, have been able to perform temporal 

modelling of the speech signal on a short timescale only - typically tens 

of milliseconds. It has proven difficult to engineer static networks which 

could model longer timescale aspects of speech, such as transforming 

continuous speech into a sequence of phonemes or words. To achieve 

this modelling, dynamic programming (or Viterbi) algorithms have been 

employed to post-process probabilistically interpreted network outputs 

(see section 3.7). 

Rather than using static feed-forward networks as classifiers, they may 

also be used to model speech dynamics as prediction networks 3. In this 

case the network is trained to predict the next frame of a time sequence. 

Section 3.8 reviews speech recognisers using such networks to model all 

or part of a speech unit and linked together using a Viterbi alignment 

procedure. 

Such an approach starts to have strong links with statistical mod-

elling techniques, particularly as prediction networks may be concate-

nated within a Markov chain. Recently, several workers have described 

how hidden Markov models (HMMs) may be implemented as recurrent 

neural networks and have described the relationships between the neural 

network cost functions and those used in HMMs (section 3.9). 

Perhaps the most successful neural network speech recognition system 

3 A feed-forward prediction network may be related to a recurrent network with the 
same weight matrix, plus an extra connection from the predicted output to the next 
timestep's input. This recurrent network is a generator, rather than a predictor. 
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is the speaker-adaptive isolated word recogniser developed at Helsinki 

University of Technology [96]. This system performs phoneme modelling 

as each isolated word is modelled as a sequence of phonemes, rather 

than as a whole. The phoneme modelling portion of the system uses 

a self-organising feature map architecture (section 2.4.5) with units on 

the 2-dimensional map corresponding to particular classes, phoneme hy -

potheses are obtained via the active regions of the map at a given time. 

Lexical access is performed using a statistical grammar, trained from 

examples, that maps lattices of phoneme hypotheses to words. This PC-

based system performs in real-time with errors of 2-4% when using a 

1000 word Finnish or Japanese vocabulary. 

3.3 Digression 
Most state of the art continuous speech recognition systems are based 

around the methods of dynamic programming and hidden Markov mod-

elling. Increasingly, these methods are being applied to produce better 

neural network speech recognisers. In this section the fundamentals of 

these techniques are briefly outlined. 

3.3.1 Dynamic programming 
The dynamic programming (DP) algorithm [20] is used to match an un-

known input with a set of templates. If the time frames of the input are 

denoted by i and those of template k by j, then a local distance mea-

sure may be defined, dk(t)(t,j(t)). The matching problem is finding a 

path through a sequence of grid points (t,j(t)) and templates k(i) that 

minimises the total distance. That is, the best match is given by the 

sequence that minimises: 

+ T(j(),j(t— 1))) 

where T(j(t), j(i- 1)) is a time distortion penalty. When the DP algorithm 

deals with probabilities rather than distance scores, it is often referred 
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to as the Viterbi algorithm. 

3.3.2 Hidden Markov modelling 
Hidden Markov modelling is a stochastic approach to speech recogni-

tion that attempts to model speech units (e.g. phonemes or words) by a 

Markov chain [110, 1521. Such a model consists of a set of N states, with 

state transition probabilities atj.  Associated with each state transition is 

an emission probability distribution 4 , b(x), where Xt is an observation 

vector at time t5 . A third set of parameters associated with a HMM are 

the initial state probabilities, ct.  In the case of a discrete HMM, the 

emission probability is a histogram over symbols corresponding to quan-

tised vectors. In continuous parameter HMMs the emission probability 

is defined by a distribution over parameter space (typically a Gaussian 

or mixture of Gaussians). The forward probabilities give the joint prob-

abilities for partial sequences in a HMM, w: 

	

= P(st,xIw), 	 (3.1) 

where x notates the sequence Xtl, . .. , Xt2 and St is the state of the model 

at time t. These may be efficiently computed using the recursion: 

x(0) = c 

cx(t) = 	(t - 1)a1b(x). 	 (3.2) 

The backward probabilities 13(t) give the probability of the rest of the 

sequence starting from state 1. at time t: 

	

I3(t) = P(x + I li, w). 	 (3.3) 

4 In some models the emission probabilities are associated with states rather than tran-
sitions. This is equivalent to tying all the emission probabilities corresponding to tran-

sitions from a particular state. 

S These probabilities should be properly represented as e.g. b(X = Xt), as x is an in-
stantiation of random variable X. However the random variables have been omitted for 
clarity. 
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These may also be computed recursively, this time backwards in time: 

(t) = Latjbtj(xt+i)13j(t+ 1 ) 	
(3.4) 

Pi(T) = 1. 

And the probability of taking a transition from state i. to state j at time 

t in a model w, given that the model generated the whole observation 

sequence is: 

y,(t) = 	- 	 (3.5) 

These probabilities are used to re-estimate the transition and emission 

probabilities in maximum likelihood training, using a particular formu-

lation of the EM algorithm. 

These equations for computing the forward and backward probabilities 

may be conveniently mapped onto a trellis, with each row of the trellis 

corresponding to a time frame. If we define: 

w 3 (t) = ab 3 (x), 	 (3.6) 

then the trellis computation of the forward probabilities may be mapped 

onto the forward propagation of a feed-forward linear network, with each 

layer corresponding to a time frame. This network differs from a back-

propagation through time network, since there is no tying of weights 

between layers. Likewise the computation of the backward probabilities 

also bears a resemblance to back-propagating down a feed-forward net-

work, except the weight changes are multiplicative rather than additive. 

Hidden Markov modelling has proven to be a powerful technique for 

speech recognition. Although it based on a false assumption (that speech 

is a first order Markov process) it is a tractable and theoretically solid 

probabilistic formalism. In speech recognition, embedded models are of-

ten used: for example, phoneme models may be concatenated to produce 

word models, which may be concatenated within a language model. An 

advantage of this technique is that, after initial bootstrapping to train the 

phoneme models, no transcribed (phonetically labelled and time-aligned) 
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data is required for further training, as alignments are automatically gen-

erated by the HMM training algorithm; all that is required is the word 

sequence. This is known as embedded training. 

3.4 Static speech pattern classification 
There have been many static speech pattern classification experiments re-

ported in the literature. In this section the discussion will be limited to 

experiments performed with phonetic segments, rather than with isolated 

words6. In these experiments, the neural networks were static: that is, 

there were no delays or recurrent connections to enable time-dependent 

processing. The time-dependent nature of the speech patterns was ex-

tended spatially, so, in the case of the DFT front end that many of these 

studies used, the input to the network was a spectrogram quantised into 

time and frequency bins. These experiments required an initial segmen-

tation of both training and testing data. This segmentation was gen-

erally carried out by a human phonetician. Many of these experiments 

used MLPs; other neural network architectures used include Kohonen's 

feature map, learning vector quantisation (LVQ) [95] and RBF networks. 

Elman and Zipser [50] trained a MLP with a single hidden layer (of 2-6 

nodes) to discriminate between 9 easily confused consonant-vowel (CV) 

pairs made up of the stops /b,d,g/ and the vowels /i,a,u/. The input 

spectrogram was quantised into 16 frequency bins (0-3.5 kHz) and 20 

time slices (totaling 67 ms of speech). This speaker dependent recogniser 

produced errors of 1.5% for vowels and 7.9% for consonants using unseen 

test data. 

Huang et al. [81] studied vowel classification using vowel formant data, 

consisting of the formant frequencies (Fl and F2)7  of the midpoints of 

10 vowels spoken in similar contexts (e.g. /hod/, /hud/) by men, women 

6 There have been many isolated word recognition experiments, particularly digit recog-

nition, e.g. [160, 149, 651. 

7 The two formant frequencies Fl and F2 are the two lowest resonances of the vocal tract 

(above the fundamental frequency). 
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and children. The set of training data had no overlapping speakers with 

the test data. These experiments were performed using a MLP with 100 

hidden units (19.8% error) and a feature map classifier (22.8% error), 

as well as various statistical classifiers, of which the k-nearest neighbour 

had the lowest error rate (18.0%). This work has been extended by Lee 

and Lippmann [106] and Ng and Lippmann (personal communication) 

using various other neural network classifiers (LVQ, RBFs and modified 

MLP training algorithms). This work has indicated LVQ to be the best 

performing neural network classifier, with an error rate slightly above 

that of the k-nearest neighbour classifier. The recent work by Lippmann 

and coworkers is also notable owing to its detailed comparisons between 

classifiers using such criteria as training time, memory usage and program 

complexity. 

Leung and Zue [107, 108] and Cosi et al. [37] have used MLPs to per-

form speaker-independent vowel recognition; both sets of experimenters 

used an auditory model front end, based on that proposed by Seneff [182]. 

Cosi et al. used vowels (spoken by 13 speakers) that were excised from 

monosyllables. The input to the network consisted of 10 frames collected 

every 5 ms, with 40 coefficients per frame. A single hidden layer of 20 

nodes was used. After testing on 7 new speakers, error rates of 5% were 

reported over 350 test cases. Leung and Zue [107] tackled a more difficult 

problem, classifying some 2,000 vowel tokens excised from 225 sentences 

of continuous speech spoken by 45 speakers (after training on 8,000 vow-

els spoken by 155 speakers). Using an input coding similar to that in 

section 4.1, the input consisted of 99 units, 33 coefficients representing 

auditory model output for the onset, centre and offset of each vowel. Er-

ror rates of 46% were reported in this 16 vowel classification problem; 

however when contextual information was added (in the form of extra 

units representing the phoneme label to the left and right) the error rate 

was reduced to 33%. This work has been extended [108] to cover all 

phonemes (a set of 39 were used) with error rates of 30%. More elabo-

rate training methodologies and input representations were employed in 
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this work, and the vowel error rates were correspondingly reduced. 

Niranjan and Failside [138] compared RBF networks to a MLP, the 

modified Kanerva model and a k-nearest neighbour classification problem 

on speaker-independent vowel classification problem using the TIMIT 

database. 250 occurrences of each of 8 vowels were extracted from this 

continuous speech database, with 100 of each class used for training and 

150 used for testing. The RBF network gave an error rate of 29.8%, 

lower than a MLP (35.4%) and the modified Kanerva model (33.9%), 

but higher than a nearest neighbour classifier (27.7%). 

3.5 Introducing time delays 
A static modelling of the speech signal is not a feasible way to attempt 

continuous speech recognition. The above techniques all assume a pre-

segmentation and may be regarded as labelling a predetermined portion 

of a spectrogram. For continuous speech recognition a framewise process-

ing of the speech signal is necessary. Such a modelling of speech dynamics 

requires some form of memory to be incorporated into the neural network 

model. 

The simplest way of extending a feed-forward architecture to do this 

is via a time-delayed input buffer. This scheme, first introduced in the 

grapheme-to-phoneme system, NETtalk [181], is shown in figure 3-2. Here 

some context is provided to the input vector to be classified by extending 

the input to consist of several groups of units, each group representing the 

acoustic parameter vector for a particular time frame. This architecture 

has been used for labelling frames of continuous speech by several workers 

[24, 101, 203, 57, 127, 155, 51]; however all these workers used other 

techniques to increase the power of the temporal modelling. 

Lang et al. [101, 1001 extended the idea of delay-lines beyond the input 

layer. The time-delay neural network (TDNN) is a MLP incorporating 

delay-lined hidden and output layers. A schematic of such a network 

is shown in figure 3-3. A set of 1-i hidden units time-delayed over I 
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x(t-2) 	x(t-1) 	x(t) 	x(t+1) 	x(t+2) 

Figure 3-2: Sketch of the NETtalk architecture for a feed-forward network. 
The input layer is extended to include several frames of data, thus providing 
some contextual information. In this case the central frame x(t) has 2 frames 
of context to both the left and right. 

timesteps, may be spatially unfolded, to give an equivalent network with 

HT hidden units, but with each set of T units having tied (constrained 

to be equal) weights. Alternatively, the network may be viewed in terms 

of delayed weights, in which each input unit is connected to each hid-

den unit with weights delayed by 1 , 2,... , T timesteps, with each set of 

time-delayed weights into a hidden unit being tied together. Hence, this 

network not only succeeds in modelling time in a more sophisticated way, 

it also lowers the number of free parameters in the network by weight 

tying. This is extremely important when there is limited training data, 

which is nearly always the case in speech recognition experiments. 

This weight-tying leads to a translation invariance in the TDNN. A 

particular hidden unit has T sets of tied weights. This weight set may be 

regarded as being sensitive to a particular set of features (as determined 
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>1  
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Figure 3-3: Schematic of a time-delay neural network (TDNN). In this feed-
forward architecture the idea of using time-delays is extended from the input 
layer to the hidden and output layers. (More than one layer of time-delayed 
hidden units may be used.) In this diagram, the TDNN is unfolded in time. 
There are 60 free weights between the input and hidden layer (3 x 5 inputs 
into 4 hidden units) but 300 connections (the hidden layer is delayed over 
4 additional timesteps). The final output is often retrieved by integrating 
over the output units; alternatively each set of delayed output units may be 
regarded as the output for a time t. 
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by the training). Since it is tied across several timesteps, the hidden unit 

will be sensitive to the same features over several timesteps. Thus the 

network may be trained to recognise a particular event, irrespective of 

the exact time it occurs in the input. 

Lang [100] investigated the "E-set" problem, originally used by Brown 

[28], involving the discrimination between four letters of the alphabet 

"bee", "dee", "ee" and "vee". Each input token consisted of a 216ms 

piece of speech, containing the CV transition. This transition was not 

time aligned between tokens, so the translation invariance property of the 

network was crucial in the recognition. A 9.1% error rate was recorded 

on this task using a TDNN, which compared well with the discrimi-

native continuous parameter HMM studied by Brown (11% error) and 

TANGORA, the IBM isolated word recognition system (maximum likeli-

hood trained discrete HMM) which produced a 20% error rate on this 

task. 

The TDNN has been extensively investigated by Waibel and coworkers 

[203, 204, 74] for various phoneme recognition tasks. These multispeaker 

experiments have used a Japanese speech database containing 6 speakers. 

Early experiments [203] reported error rates of 1.5% on a discrimination 

task between the phonemes /b,d,g/. This improved on the 6.3% error 

achieved by a discrete HMM on the same task. The TDNN architecture 

did not scale well to larger recognition problems with more output classes. 

The problem was tackled by training several subnets to perform discrim-

ination between similar consonants (e.g. voiced stops, nasals) and other 

subnets to perform broad class recognition. These subnets were then 

"glued" together [204] to give a single network capable of discriminat-

ing between all phoneme classes occurring in the subnets (after further 

training). A network trained to recognise Japanese consonants in this 

way achieved an error rate of 4.1%, superior to the 7.3% error achieved 

using a HMM-based system. Hampshire [74] has extended the TDNN 

model to perform speaker adaptation. The basis of this extension is the 

"meta-pi" network which is a gated superstructure that is used to arbi- 
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trate between several TDNNs trained on the same discrimination task 

using different speakers. This has proved successful in decreasing the six 

speaker recognition error on the /b,d,g/ classification problem from 4.1% 

to 1.6%, which is the same performance as the speaker dependent task. 

Another delay-lined network architecture was used by Franzini et al. 

[571 in a continuous speech recognition experiment using strings of digits 

from the TI/NB S database. Here 7 frames of input context were used and 

the hidden unit outputs were passed down a tapped delay line covering 10 

timesteps. A second, undelayed, layer of hidden units was used and the 

46 output units represented both phonemes and the current word. This 

large network architecture was trained incrementally, in order to make 

the training problem more tractable. Further temporal modelling was 

achieved by using the outputs of the network as the input to a dynamic 

programming system to transform framewise hypotheses into word and 

sentence hypotheses (see section 3.7). 

McDermott and Katagiri [127] used the ideas of the TDNN in designing 

a time-delayed version of Kohonen's LVQ network: the input, hidden (VQ 

codebook) and output layers were all time-delayed in a similar fashion 

to the above work. Using a mel-scaled filter bank input with a test 

problem involving the discrimination between all 23 Japanese consonants 

resulted in an error rate of 2.3% - an improvement on the TDNN results 

mentioned above. 

Prager has used a delay-lined input to the modified Kanerva model 

(section 2.4.2) in various continuous speech recognition tasks [155, 511. 

This network had a very long input delay line covering is of speech 

(50 frames of 20 coefficients with a frame shift of 20ms). The output 

representation in this work was morph (small word) based rather than 

phoneme-based, with the input being mapped to the 1-from-it output 

every 20ms. On the small Cambridge "Hotel" database (with a lexicon 

of 133 words) errors of around 5% were reported on a multispeaker task 

using a network with 9600 location units (RBFs) [154]. This representa-

tion scaled up poorly to the larger TIMIT task, with a lexicon of around 
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1800 words. On a speaker independent task using 85 training sentences 

and 45 test sentences containing 118 different morphs a word recognition 

error of 33.8% was reported [51]. 

Prior to the work on TDNNs, Hopfield and Tank [193] presented an 

analog neural network architecture of similar structure. This time con-

centration network uses tapped delay lines and tuned filters to combine 

information over several time scales. Although there have been no sub-

stantial speech recognition results reported in the literature using this 

architecture, this is an interesting system since it has been implemented 

in analog electronic hardware using operational amplifiers, rather than 

simply being simulated on a digital computer. 

3.6 Recurrent networks 
Most recurrent network approaches to phoneme recognition have used 

modified MLPs; additionally most of these architectures featured some 

kind of delay line. 

Rumeihart et al. [175] demonstrated that an arbitrary recurrent net-

work may be unfolded in time, to produce a multi-layered feed-forward 

network, where each layer corresponds to a single timestep. In train-

ing, errors must be propagated back through time, with the usual back-

propagation algorithm, the changes for each weight being averaged over 

time. This seems an infeasible way to train long time series (since the 

magnitudes of the gradients decrease as more layers are back-propagated 

through, thus making learning long distance temporal dependencies un-

likely), but Robinson and Fallside [165] have used this network in a single-

speaker continuous speech recognition problem, using a perceptually-

scaled filter bank as a front end and having recurrent output-to-input 

connections. After training on 2 utterances of each of 31 sentences by 

a single speaker, test results on 2 further utterances of the sentences' 

by the same speaker resulted in a framewise error rate of 21.9%, after 

smoothing using dynamic programming, The error rate using a k-nearest 
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Figure 3-4: Schematic diagram of the recurrent network proposed by Jordan. 
The output units are fed back to an extended input layer (state units). 

neighbour classifier was 51.9% on this task. On a similar problem, but 

training and testing on 6 male speakers, the error was 29.2%. These ex-

periments used a subset of 27 phonemes. More recently, Robinson and 

Failside [167] have applied this network to the TIMIT database; this was 

a speaker-independent continuous speech recognition task. Using a sim-

ilar front-end and dynamic programming back end to perform segmen-

tation, segmental error rates (over 61 phonemes) of 25.1% substitution, 

6.3% deletion and 6.1% insertion were reported. This compares well to 

the best HMM results on the TIMIT database using phoneme modelling 

[105]. However, much superior HMM results (at a word and sentence 

level) have been achieved using techniques such as generalised triphone 

modelling and embedded training methods. 

Simple recurrent MLPs were introduced by Jordan [88] and Elman 

[49]. Jordan introduced simple recurrent connections from the output 

units to a set of additional units ("state units") (figure 3-4). This re-

currence enables a discrimination to be made at a given timestep using 

information about discriminations at previous timesteps, something that 

is not possible with non-recurrent networks. Elman proposed a similar 

scheme, with the hidden units recurrently connected to the state units 

(figure 3-5). Both these networks may be trained by back-propagation, 

with the assumption that the recursion in the backward network, is ended 

after a single iteration. The derivatives (-) computed by the backward 
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State Units 

Output Units 

Hidden Units 

Input Units 

Figure 3-5: Schematic diagram of the recurrent network proposed by Elman. 
In this network, the hidden units are fed back to an extended input layer 
(state units). 

network will thus be only an approximation to the true derivatives. 

Anderson et al. [6] applied Jordan's network architecture to a speaker 

independent problem, in which the stop consonants /b,d,g,p,t,k/ where 

discriminated in a similar vowel environment. The inputs were percep-

tually scaled power spectra with each CV syllable being represented by 

25 frames, using a 5 ms frame shift. Several network architectures, with 

1 or 2 hidden layers and varying numbers of units in each layer, were 

experimented with and the best results produced an error of 13% after 

training on 10 speakers and testing on another 10 speakers. 

Franzini et al. [56] extended the delayed model of the previous section 

to incorporate the hidden-to-input recursion suggested by Elman. In this 

network the input layer (a sliding window of 7 frames of acoustic param-

eters) was extended to include the hidden unit outputs for the previous 

10 timesteps. As in Elman's formulation the hidden-to-input recursion 

is cut off after a single timestep to allow training by back-propagation. 

Here the training of the MLP was embedded in a Viterbi algorithm and 

the mapping was from input acoustic data to HMM emission probabilities 

(see section 3.7). 

Watrous [206] has performed many experiments using a recurrent ar-

chitecture he terms the "temporal flow model". In this network, each 

hidden unit has a self-recurrent connection, thus imparting some mem- 
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ory of previous events into the network. Since the only recursion in the 

network is from each hidden unit to itself, there are no multi-unit loops in 

the network; it may be shown that the usual back-propagation algorithm 

may be used with only a trivial modification. Watrous's experiments 

incorporated a good deal of speech-specific knowledge, and concentrated 

on learning phonetic discriminants such as place, manner and voicing. 

These single speaker experiments produced very low error rates, of the 

order of 0.5%. It is not clear how Watrous's techniques will scale to larger 

speech recognition problems. 

The temporal flow model was used by Aktas et al. [3] in a speaker-

dependent continuous speech recognition experiment in which each frame 

was classified into one of 7 broad classes. The German speech database 

SPICOS was analysed, producing 16 cepstral coefficients per 20ms frame, 

using a frame shift of lOms. The temporal flow model produced a frame-

wise error rate of 14.8%, somewhat better than a maximum likelihood 

histogram classifier (25.0% error) and context-independent discrete HMM 

(17.0% error), but poorer than a context dependent discrete HMM (11.0% 

error). 

Robinson [164] noted that back-propagation of error through time was 

a linear process and could be compressed into a single operation. The 

relevant gradient may be written as: 

a-yi(t + 1) = '(L 	( 	
w..ti 	+ kI(t)). 	(3.7) 

aWkt 	 wij  

However this algorithm is extremely expensive (memory usage is 0(W 2), 

where there are W independent weights in the network), hence it was 

not used in speech recognition experiments. This algorithm was inde-

pendently proposed by Kuhn et al. [97]8  who have applied it to the same 

"E-set" problem as attempted by Lang using TDNNs (section 3.5). Their 

initial results are somewhat poorer than those achieved by Lang (and also 

8 This algorithm has been rediscovered independently many times recently; other authors 
who have independently proposed the algorithm include Williams and Zipser [210], 

Gherrity [63] and Gori et al. [67]. 
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Brown's HMM results) with an error of 15.4%. 

3.7 Modelling time by dynamic programming 
Training recurrent networks is still an open research problem, and it 

seems unlikely that delayed networks alone will be powerful enough for 

continuous speech recognition, so several workers have studied systems 

in which discriminative neural networks are integrated with a dynamic 

programming algorithm [24, 176, 57, 56, 21]. Additionally, Lippmann and 

Gold have shown [65] that the Viterbi decoder used in hidden Markov 

modelling may be implemented as a neural network. 

Early work by Bourlard and Wellekens [24] used a MLP with a delay 

line input of 7 frames to produce framewise phoneme scores. A sparse 

input was used, the result of a vector quantisation procedure, with each 

frame being represented by 132 binary units, only one of which was active. 

In this connected word recognition problem, each item of the vocabulary 

was described by a concatenation of phoneme models. Word recognition 

was performed using the DP algorithm to compute a matching score with 

each word model. Using the single speaker German database SPICOS, a 

word error rate of 37% on a 918 word lexicon was achieved. This com-

pares well with the results achieved using a (somewhat unsophisticated) 

HMM, which produced a 48% error rate on the same task. More re-

cently Bourlard and Wellekens [22] have demonstrated that the outputs 

of a MLP may be regarded as good estimates of the Bayesian posterior 

probabilities; these may be used to train a HMM discriminatively (see 

section 3.9). Bourlard and Morgan [21] extended this DP approach by 

modelling each phoneme as a PDF repeated D/2 times, where D was a 

prior estimate of the average duration for that phoneme. This was a left 

to right Markov chain with only sequential or self-recurrent transitions 

allowed. The output probabilities of the MLP (when scaled by estimates 

of the phoneme prior probabilities) were used as emission probabilities 

in this discrete HMM. In this work the best results were achieved using 
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a 9 frame delayed input and no hidden units, giving a 34.4% error rate. 

A similar approach was adopted by Franzini et al. [57, 56]. Using the 

partially recurrent Elman network, described in section 3.6, the outputs 

produced by the neural network were interpreted as probabilities. In this 

network architecture there were 46 outputs, 12 corresponding to words 

(11 digits ± silence) and 34 corresponding to phonemes. The network 

outputs were used to determine the probabilities in a HMM consisting 

of word models made up of concatenated phone models and a sentence 

model made up of seven (the maximum number of words in a sentence) 

concatenated word models. The emission probabilities were obtained by 

linearly combining the relevant phoneme and word outputs produced by 

the network. Duration was modelled using transition probabilities. The 

models were left to right models, with no self-recurrences until the state 

previous to the final state. Thus all transition probabilities except those 

for the only self-recurrence and the transition to the final state set to 

unity. On the TI/NBS digit recognition task this system produced 3% 

word errors and 9% sentence errors. 

This approach was extended by integrating the DP and neural net-

work aspects of the system to be used within a HMM. In this approach, 

"connectionist Viterbi training" (CVT), phoneme models were initialised 

using maximum likelihood HMM training with vector quantised input 

[105]. The vector quantisation step was then discarded, to be replaced 

by the neural network. The emission probabilities for each transition, 

previously obtained using a histogram (with each bin corresponding to 

the probability of a VQ codeword being generated by that transition), 

were computed by a network with one output for each emission probabil-

ity. Each output was regarded as the emission probability of a particular 

transition given the acoustic input. By doing this it was hoped to lower 

distortion errors caused by the vector quantisation; this is a somewhat 

similar approach to semi-continuous hidden Markov modelling [82] (see 

section 4.5.3.2). After training the network to map from acoustic input 

to emission probabilities, the training data was Viterbi aligned with the 
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new HMMs. The network was then retrained on the new acoustic pa-

rameter to output probability mappings, and the transition probabilities 

were re-estimated using the new alignment. This process was iterated. 

The stopping criterion depended on a third set of data (in addition to 

the training and testing sets) which was used as a cross-validation set; 

training was completed when there was no improvement in this set. On 

the TI/NBS digits task the word error rate was improved to 1.5% and 

the sentence error rate to 3.0% using this model. These results do not 

surpass the best HMM efforts on this problem, but this is clearly a com-

petitive technique. It also seems likely that this basic technique should 

be extensible to larger vocabulary recognition. 

Miyatake et al. [132] also applied dynamic programming to the output 

of a feed-forward network. The network used in this work was a large 

TDNN with 4 hidden layers and 24 outputs corresponding to the 24 

Japanese phonemes. The first 2 hidden layers were effectively 9 separate 

modules, corresponding to 9 broad classes of phonemes. The output of 

this network was interpreted probabilistically and processed using a DP 

algorithm before passing the resultant phoneme lattice to a predictive 

LR parser9  that was trained to perform lexical access. This system was 

tested using a lexicon of 5240 Japanese words, spoken individually, giving 

a speaker-dependent word error of 8%. 

Sakoe et al. [176] introduced a "dynamic programming neural network" 

(DNN). In this system each word model is represented by an individual 

feed-forward network. Here the DP alignment is applied to the network 

input rather than the output; the maximisation problem that is solved 

by the DP alignment is then to maximise the output of the network, 

given a particular input. Two training methods were suggested. In the 

fixed alignment procedure the network is trained by back-propagation af-

ter the time-alignment has been performed. In adaptive time alignment, 

patterns that do not correspond to the word model (desired output of 0) 

9 An LR parser is a deterministic, bottom-up parser used to parse context-free grammars. 
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are realigned each time they appear; since alignment is a maximisation 

procedure, this has the effect of transforming these patterns into their 

most "non-separable" alignment, thus increasing the efficiency of learn-

ing. This network was applied to a speaker-independent Japanese digit 

recognition problem giving error rates as low as 0.7%. 

Lippmann and Gold [65] described how a Viterbi decoder may be im-

plemented as a neural network. The Viterbi net is basically a "neural" 

implementation of a left-to-right HMM (with self-recurrences) with each 

state modelled by a single Gaussian. Each state of the HMM consists 

of a summing node that implements the quadratic decision surface and 

a delay node that also performs a thresholding operation. Additionally, 

there are small subnets that compute the maximum of the output of 

the previous state and the output of the current state. A sequence of 

vectors is presented to the net and activity proceeds from left to right 

across the "HMM state nodes". The final output is the probability of 

the most likely state sequence. This neural Viterbi decoder differs from 

the usual Viterbi algorithm; however experiments using a HMM isolated 

word recogniser have indicated that its performance is almost identical. 

This network is most interesting because it demonstrates a way in which 

this algorithm might be implemented in analog VLSI. 

3.8 Prediction 
In the work discussed so far in this chapter, a major motivation for using 

neural networks has been their discriminative power, which seems likely 

to produce better classifiers than the maximum likelihood methods often 

used to train hidden Markov models. Feed-forward networks may also 

be regarded as functional interpolators (see chapter 2) and have proven 

to be successful predictors of chaotic time series [30, 102, 133]; it seems 

reasonable to use them as predictors of a speech signal. This would be 

a potentially powerful approach to speech recognition, similar to hidden 

Markov modelling. For example, a set of prediction networks could be 



3 SPEECH RECOGNITION USING NEURAL NETWORKS 63 

trained for each word model, with a DP match being used to choose the 

word hypothesis. It is easy to see how such a system could be extended 

to continuous speech recognition using phoneme models and an embed-

ded training method. The advantage of using feed-forward networks as 

predictors is that each network is engineered to learn the dynamics of 

a particular unit of speech. Additionally, predictive networks may be 

treated as HMMs or states of HMMs, thus allowing the well-understood 

methods used for HMM training and recognition to be applied. 

Such systems have been recently proposed by Levin [109], Iso and 

Watanabe [85] and Tebelskis and Waibel [194]. The former two papers 

concentrate on isolated word recognition, but it is easy to extend them 

to perform continuous speech recognition. 

Levin's hidden control neural architecture [109] consists of a predictive 

MLP, with the acoustic input x(t) augmented by a control signal c(t). 

The network is trained to predict x(t+ 1), with c(t) acting as a modulator. 

The control signal is hidden: it is produced by a second network, in this 

case a left to right finite state machine. To train the system, a joint min-

imisation of the prediction network weights and the hidden control state 

sequence is required. The former is performed using back-propagation, 

the latter using the Viterbi algorithm. This system has been applied to 

multi-speaker connected digit recognition (using a portion of the TIMIT 

digits database) giving errors of 0.7%, which is competitive with the best 

HMM results. 

Iso and Watanabe have proposed a somewhat similar system [85]. Here, 

a word model is a left to right Markov chain, with self-recurrence, with 

each state corresponding to a MLP predictor. Training is somewhat simi-

lar to the connectionist Viterbi training of Franzini et al. [56] (see section 

3.7). After initialisation of the MLP weights the prediction residual is 

computed using a DP match, and the weights for each MLP along the op-

timal trajectory are re-estimated using back-propagation. This procedure 

is iterated over all the training data. On the same speaker-independent 

digit recognition problem as used by Sakoe et al. [176] (see section 3.7), 
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the error rate was decreased from 0.7% to 0.2%. 

Tebelskis and Waibel [194] independently developed an almost iden-

tical scheme to Iso's neural prediction model. This system was applied 

to phoneme modelling, rather than word modelling, with each phoneme 

represented by a left to right sequence of 3 predictive networks. Word 

models were constructed by concatenating phoneme models. On a simple 

speaker-dependent test using short words and a subset of 13 phonemes, 

a 10% error rate was reported on a 924 word vocabulary, with 6% on a 

234 word vocabulary. 

3.9 Connections with stochastic modelling 
The above approaches make some links between hidden Markov models 

and neural networks, but they do not provide a clear insight into the 

exact relationship between HMMs and neural networks. Recently some 

researchers [84, 93, 22, 26, 25, 213, 137] have demonstrated how a HMM 

may be implemented as a recurrent neural network, trained using some 

variant of back-propagation. 

Two early approaches demonstrate how a HMM trained using ML1E 

may be implemented as a recurrent back-propagation network. Hwang et 

al. [84], who were primarily interested in systolic array implementations, 

observed that the trellis formulation for computing the forward and back-

ward probabilities in a HMM may be simply mapped onto a recurrent 

network. Using the back-propagation through time training method [175] 

they demonstrated that the forward and backward passes correspond to 

the forward- and back-propagations in such a network (in which each 

layer corresponds to a single timestep). As pointed out in section 3.3.2 

the backward propagation in the forward-backward algorithm for HMMs 

is similar to a multiplicative gradient descent. Additionally, it also meets 

the constraints that probabilities must be non-negative and sum to 1. Ke-

hagias [93] also demonstrated how the Baum-Welch algorithm could be 

implemented by a feed-forward network, trained using back-propagation 
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through time. Kehagias employed the usual additive gradient descent in 

the back-propagation and implemented the constraints by a change of 

variables. Consider the constraint c = 1; then auxiliary variables, 

s, were defined such that ct -s-L-, Kehagias also offered a common 

theoretical basis for the Baum-Welch algorithm and back-propagation, 

by placing both in an optimal control framework. 

A principal reason for the interest of speech recognition researchers 

in neural network models is that they are naturally discriminative. A 

feed-forward network (when used for classification) is trained to discrim-

inate between several classes. This contrasts with maximum likelihood 

estimation (MLE) methods (often used to train HMMs) which are not 

discriminative; a model of a particular class is trained only on data known 

to be from that class and is kept isolated from data from other classes. 

Consider training a HMM given a set of acoustic evidence xJ. In MLE, 

the probability, P('c.j) that the model w has produced the acoustic data 

is maximised. This may be accomplished using Bayes' Rule: 

p(wIxi) - P(xJIw)P(w) 
- 	P(xJ) 	

(3.8) 

P(xJ) is constant for all models and P(w) is given by the language model. 

ThuskP(lw  I ) is is maximised. 

MLE is the correct procedure to adopt if it is known that the correct 

model exists in the space of models under investigation. However, this 

is not the case for hidden Markov modelling of speech. In this case, the 

function that should be maximised is the mutual information between 

the acoustic evidence x and the word sequence w [12, 28]; maximising 

this function allows the system to obtain as much information as possible 

about the word sequence from the acoustic evidence. (Maximum mutual 

information estimation (MMIE) is equivalent to MLE when the space of 

models includes the correct model.) The mutual information is given by: 

(P(xJ,w) \ 
I(xI,w) = P(x,w)log 

P(w)P(xj)) . 
	 (3.9) 
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Since P(xJ,w) is not known, the function that is usually maximised is: 

(_P(xJ,w) 
f(xJ,w) = log p(W)p(XT)) 

= log(P(xJ w)) - log(XT) (3.10) 

= log(P(xJw)) - log 	P(xJIw')P(w'). 

The first term on the right of this expression is what is maximised when 

MLE is used. The second term may be regarded as the discriminative 

term. 

MMIE is usually maximised by gradient ascent, since no provably con-

vergent training method (such as the EM algorithm for MLE) is known. 

When the partial derivatives of (3.10) are taken with respect to the pa-

rameters of the models, the resultant expression has two terms [28]. The 

first term is in the direction of the derivative of the MLE cost function 

with respect to the parameters (notated Q(w, 8)). The second term, 

summed over all models other than the correct one, acts to subtract a 

component in the direction of Q(w', 8) for all incorrect word sequences 

W, . 

Bourlard and Wellekens [22] defined a particular discriminant HMM, 

using discriminant emission and transition probabilities trained using a 

Viterbi method. It was demonstrated that the local (combined transition 

and emission) probabilities in this model were equivalent to the proba-

bilities computed by a MLP with output-to-input feedback (a network 

proposed by Jordan [88] and discussed above). 

Tighter links between HMMs and neural networks have been made 

more recently by defining networks with cost functions whose minimisa-

tion is equivalent to MMI training of discriminant HMMs. As an alter-

native to using a least mean square cost function, a cost function based 

on the Kullback-Liebler divergence between two distributions P and Q 

may be used: 

G(QIP) = - 	P(wx) log P(wk) (3.11) Q(x) 
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P is the true distribution and Q is the output of the network. An error 

metric based on this was proposed by Solla et al. [188] and termed the 

cross-entropy. Bridle [26] simplified this metric for the case of a 1-from-n 

output coding: 

	

= - 
	log Q(x), 	 (3.12) 

where wt  is the correct word class for input t. J is the negative log 

probability of the network choosing the correct output class. It was 

demonstrated that minimising this criterion is equivalent to maximising 

the mutual information. In a companion paper [25], Bridle defined a 

recurrent network, similar to those defined above, that implemented the 

propagation of forward probabilities in a HMM. The requisite partial 

derivatives required to train such an "aiphanet" by back-propagation 

using the cost function defined above were derived 10. In this method the 

parameters of the true model are always re-estimated J r ecEir) 

oP the Baum-Welch method; however parameters of the other models 

are also re-estimated in a different direction to their Baum-Welch re-

estimates for that utterance. 

Similar work has also been presented by Niles and Silverman [137] and 

Young [213]. The principal innovation offered by Niles and Silverman is 

the relaxing of the non-negativity constraint for the transition and emis-

sion probabilities. Whilst this weakens any probabilistic interpretation 

of the model, it does correspond to a neural network with inhibitory 

interactions". Young studied a single composite HMM, capable of recog-

nising all phonemes. That is, all the phoneme models were connected 

10 A "softmax" transformation was used to define auxiliary variables which may be min-
imised in an unconstrained fashion: 

	

Ci 	
exp(st) 

= 	exp(s) 

This is similar to the transformation used by Kehagias (above). 
11 Niles and Silverman draw analogies with quantum mechanics to support the use of neg-

ative (and complex-valued) probabilities. They argue that inhibition in neural networks 

is similar to interference in quantum mechanics 
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together to form a network of models. Since this was a composite model, 

maximising the probability of occupation of one state implied minimis-

ing the occupancy of all other states. Hence discriminative, or compet-

itive, training is natural in this system. Here the forward computation 

was represented as a linear neural network going forward through time. 

The back-propagation training involved the maximisation of the posterior 

probability of state occupation, which is equal to the normalised forward 

probability. This network was tested on a speaker-dependent continuous 

speech experiment, using 23 combined 3 state phoneme models (plus an 

entry- and exit state) resulting in a 71 state composite model. The error 

rate decreased from 47% when using a MLE criterion in training to 41% 

when using competitive training. 

3.10 Summary 
In this chapter we have reviewed the development of phoneme modelling 

neural networks from static networks classifying presegmented speech 

units, through delayed networks performing a limited amount of tem-

poral processing to recognise individual speech units to techniques inte-

grating neural networks and statistical methods. Additionally methods 

of more adequately modelling speech dynamics using recurrent networks 

and static prediction networks have been reviewed. 

Whilst dynamic networks remain a promising way of better modelling 

speech dynamics, there have been few demonstrations of their efficacy in 

a speech recognition system, as yet. This is due to a twofold ignorance: 

an ignorance of the behaviour of even simple dynamic network models; 

an ignorance of powerful learning algorithms for dynamic networks. 

Chapters 5 and 6 go some way toward extending our knowledge of the dy- 

namical behaviour of a simple recurrent network model. An alternative 

way of modelling speech dynamics, motivated by the successes of using 
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feed-forward networks to predict nonlinear dynamical systems, was re-

viewed in section 3.8. Here neural networks were used to predict, rather 

than classify, a speech signal. 

Additionally, it was shown how both prediction and classification net-

works can be profitably post-processed using a Viterbi algorithm and 

a first-order Markov assumption. The systems of linked prediction net-

works, in particular, demonstrated a close affinity to HMM systems, with 

a single prediction network being analogous to a state of a HMM. The con-

nections between HMMs and neural network models were more strongly 

made in section 3.9. where work was reviewed which demonstrated that 

HMMs could be implemented as neural network models. This is more 

than trivial isomorphism: describing HMMs as neural networks may en-

able the development of better discriminative training algorithms as well 

as encouraging a more rigorous, probabilistic understanding of neural 

networks. 



SPEECH RECOGNITION 

EXPERIMENTS USING 

RADIAL BASIS FUNCTIONS 

In this chapter the results of applying RBF networks to various speech 

recognition problems are reported. Two classes of problem were investi-

gated: 

labelling phoneme segments pre-segmented from continuous speech; 

• constructing phoneme models for continuous speech using RBF net-

works. 

All the work in this chapter used data recorded from a single male 

speaker. 

The first problem was reduced to a static pattern classification prob-

lem, and so was far removed from the principal difficulties of automatic 

speech recognition. To perform continuous speech recognition, the tem-

porality of the speech signal must be modelled. This is not naturally 

achieved by the simple RBF network. Some interim approaches to this 

problem were used here, involving modifications to the RBF model and 

a separate post-processing stage. 

S 
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4.1 Classifying vowels 
The task reported here was to label vowel tokens, hand-segmented from 

continuous speech. Since each vowel was represented as a "snapshot" of 

speech, an intrinsically dynamic problem was transformed into a static 

pattern classification problem. 

4.1.1 Speech data and signal processing 
The vowel tokens were segmented by a trained phonetician from a phone-

mically dense speech database of 98 sentences [83]1.  This set of sentences 

was uttered twice by a male RP 2  speaker, once for training and once for 

testing. Each set consisted of approximately 750 vowel tokens. The vow-

els were divided into 20 classes - 12 monophthongs and 8 diphthongs. 

After digitisation at 16kHz and pre-emphasis using a filter  with a trans-

form function of 1 - 0.98z 1 , one of two analyses was carried out on 

the speech data (in each case the analysis was performed using a 20 ms 

Hanning window4  with a frame shift of 5 ms): 

• a 20th order linear predictive analysis [126], from which 20 cepstral 

coefficients describing the linear predictive filter were produced 5 ; 

• a discrete Fourier transform producing a power spectrum that was for-

mant tracked (using the method of global optimisation of generalised 

spectral centroids [39]), producing frequency, bandwidth and ampli-

tude information for each of the first three formants. 

1 Examples of the sentences in this database include "Our lawyer will allow your rule" 

and "Patty picked up a potato cake.". 
2 RP stands for Received Pronunciation, which a standard British English dialect ("BBC 

English"). 

3 This is a high pass filter to model radiation of non-nasalised sounds at the lip 

boundary[126]. 

4 The Hanning window is obtained as a weighted sum of the rectangular window and 

shifted versions of the rectangular window (see [163], chapter 6). 
5 The cepstral coefficients are the Fourier coefficients of the logarithm of the transfer 

function of the filter. They may be computed by a convenient recursion from the 

predictor coefficients [126]. 
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4.1.2 Data representation 
Each vowel token was regarded as a static pattern. In an attempt to 

impart some of the dynamical properties of a vowel into this representa-

tion a convenient approximation was made following Dalby et al. [42]6. 

A vowel was considered as being split into three parts of equal duration, 

corresponding to the onset, centre (steady state) and offset. In this rep-

resentation, the centre was regarded as containing the typical formant 

pattern for a vowel, whilst the onset and offset both provided a limited 

amount of contextual information. Whilst this was an acceptable ap-

proximation for monophthongs (which often achieve a steady state), it 

was inadequate for diphthongs which are characterised as a trajectory 

between two articulatory positions 7 . 

For the cepstral analysis a feature vector was constructed consisting 

of the 20 cepstral coefficients averaged over each third of the token, plus 

the duration, which was coarse coded over 12 real numbers valued from 

0-1, giving a 72 element feature vector. When the formant analysis was 

employed a 15 element feature vector was constructed consisting of 9 

median formant frequencies (the median frequency of each of the first 

3 formants in each third of the utterance), the median bandwidths of 

each of the 3 formants in the centre portion of the utterance, 2 am-

plitude ratios from the central third (median(A2)/median(A1) and me-

dian(A3)/median(A2)) and the overall duration of the utterance. The 

formant frequencies were expressed using both a linear frequency scale 

and the nonlinear Bark frequency scale". 

6 This representation was also employed by Leung and Zue [107] 
7 Vowels may be classed as monophthongs or diphthongs. A monophthong is a vowel for 

which there is no appreciable change in quality during the segment, e.g. /e/ in "bed". 
A diphthong is a vowel in which there is a change in quality (i.e. the tongue moves) 

during a segment, e.g. /ai/ in "fly". 
8 The Bark scaling of frequencies is a nonlinear transformation designed to model the 

response of the ear to incoming sounds [214]. Derived from experimental data, the 
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Figure 4-1: An example of coarse coding a real number onto 12 units (centred 
at real numbers m 0  to m u ) with output values, y, ranging from 0-1. In this 
case the number being coarse coded lies between ut5 and ITt6. 

4.1.2.1 Coarse coding 

Feed-forward networks are sensitive to inputs with a large dynamic range: 

in the case of MLPs, inputs much beyond the bounds of the transfer 

function can cause the development of very large (or very small) weights 

leading to instability in learning. Additionally feed-forward networks are 

known to be poor at performing analog-to-digital conversion [177]. A 

solution to this would be a method in which an arbitrary real number 

could be coded over a group of units taking scalar values bounded by 

the bounds of the transfer function (in this case 0 and 1). In this work a 

Gaussian coarse coding method was used (figure 4-1). To determine the 

clamped input values when coarse coding x E R onto N input units 

following curve gives a good fit to the experimental curve [182]: 

0.01f 	 0 	< f < 500 

B(f) = 	0.007f+ 1.5 	500 	< f < 1220 

6lnf-32.6 	1220 < f 

where f is the frequency in Hz and B is the frequency. in Bark. 
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the distribution 

(—(x - 
i. 

2ff2 	) 	
=0,1,..,N-1 	(4.1) 

was used, where m i  was the predetermined mean value corresponding to 

input unit t and a2  was the variance which was constant over all N input 

units. In the work here, m4  increased in a linear, monotonic fashion with 

I., between the parameter-dependent upper and lower bounds. 

This coarse coding technique was used to code the duration over 12 

units in the RBF network with cepstral input data. When training multi-

layer perceptrons using the formant data (which has a large dynamic 

range) the 15 element feature vector was coarse coded onto 218 units, with 

a heuristic choice of centres. Each bark-scaled frequency was encoded 

onto 16 units (m - m_ = 1 Bark), each bandwidth was encoded onto 

10 units (m -Tfl_i = 50 Hz), each amplitude ratio was encoded onto 

13 units (m - = 75) and the duration was encoded onto 18 units 

(liLt - mt_i = 20 ms). 

4.1.3 Network architecture 
The RBF networks used for these vowel classification experiments con-

sisted of an input layer of 15 or 72 input units, a hidden layer with a 

varying number of RBF units and an output layer of 20 units, allowing 

a 1-from-it type coding for each of the 20 vowel classes. The radial basis 

functions, ', were chosen to be Gaussians: 

	

- CtIl) = exp (- 
	

2a 	
(4.2) 

) 

where the means C1  were points in the input space and ajj was the covari-

ance matrix, which was assumed to be diagonal. Degenerate (or nearly 

degenerate) function centres were avoided as this would cause the corre-

lation matrix M (equation 2.15) to become (nearly) singular. 

In the case of the cepstral coefficient input data a Euclidean dis- 

tance metric was used. This was a reasonable metric to use: Gray and 
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Markel [70] have demonstrated that the Euclidean distance metric in N-

dimensional cepstral coefficient space following an Mth order LP analysis 

has a correlation of greater than 0.98 with rms log spectral distance if 

N = M. (Additionally, Gray and Markel showed that as N - 00 so the 

Euclidean distance converges to the rms log spectral distance.) This met-

ric is complicated somewhat for the cepstral data by the duration; this is 

coarse coded onto a set of units valued between 0 and 1, so the approxi-

mation being made is that the appending of durational data (which is of 

similar magnitude to the cepstral coefficients) does not entirely corrupt 

the usefulness of the Euclidean distance as a meaningful speech process-

ing distance metric 9 . When using this metric, the widths are assumed to 

be fixed for each RBF and equal in all directions. 

The situation was more complicated for the formant data: here there 

was a feature vector with a much greater dynamic range. Frequency val-

ues varied from 150-3500Hz (or 1-16 Bark), amplitude ratios varied from 

50-1000, etc. Clearly a Euclidean distance metric was not suitable; the 

obvious metric to use was the Mahalonobis distance, which is a covariance 

weighted Euclidean distance. 

The data used in these experiments was very unbalanced: some classes 

had fewer than 5 examples, while there were nearly 200 examples of 

the schwa (/©/) class in the training set. Unbalanced data can bias the 

minimum of the error function to be a point in weight space that classifies 

better populated classes well, whilst neglecting more sparsely populated 

classes that contribute little to the overall error function. An attempt 

to ameliorate this effect was made by modifying the error function to 

incorporate a factor inversely proportional to the number of training 

examples in a class. That is, (2.12) was replaced by: 

E = 	 - Y)2m 	 (4.3) 
tp 

9 In some vector-quantised hidden Markov modelling systems such as Sphinx [105]  or 
BYB LOS [34] the problem of defining a distance metric over a mixed input space is 

partially addressed by using multiple codebooks. 
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mint  P 
= 	D 	pc 

I- c 

where there are P C  examples from desired class c in the training set. In 

practice, in was given a lower bound of 0.2. 

4.1.3.1 Choice of centres and widths 

The means by which the centres and widths of the RBFs are chosen is an 

important algorithm design decision. A fundamental choice is whether 

these parameters are to be chosen using a supervised or unsupervised 

method. If the RBFs are to undergo supervised training then the back-

propagation algorithm may be employed using the gradients given in 

(2.34) and (2.35). In this case we have a training situation analogous to 

the multi-layer perceptron. The situation is a little different as the input-

to-hidden weights may be regarded as varying on a slower timescale com-

pared with the hidden-to-output weights [207]. In such a case, the linear 

hidden-to-output network can be exactly optimised by a pseudoinverse-

type method each iteration of the training algorithm. 

Unsupervised RBFs may be adaptive or non-adaptive. In either case 

the choice of RBF centres and widths may be regarded as being performed 

by a pre-processor, prior to the optimisation of the linear network. Adap-

tation may be performed by algorithms such as k-means clustering [133] 

or the EM algorithm [158, 140]. Alternatively the centres may just be a 

subset of (non-degenerate) data points 10. A principled way of choosing 

the covariances might also be via the EM algorithm. 

In this work the centres were randomly chosen from the training data. 

The widths were chosen heuristically. The width of an RBF was defined 

to be the distance to the nearest neighbouring RBF. This heuristic results 

in more remote RBFs having larger widths and helps to encourage the 

RBFs to provide a good covering of the regions of input space where the 

data lies. In the case of the Mahalonobis distance this width value acts 

10 Chen et al. [31] have recently used the method of orthogonal least squares to choose a 

subset of data points as RBF centres. 
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Formant Input 

Method Recognition (% error) 

RBF 34.3 

MLP 31.7 

Gaussian 33.7 

HMM 28.2 

Table 4-1: Recognition results after training on formant-based feature vectors 
(+ duration). The classifiers used perceptually scaled formant frequencies (see 
text). 

Cepstral Input 

Method Recognition (% error) 

RBF 26.7 

MLP 27.0 

HMM 30.6 

Table 4-2: Recognition results after training on L,PC cepstral coefficients (+ 
duration) 

as multiplier to the diagonal covariance matrix computed from the data. 

4.1.4 Results 
Results were collected using the data described above, with three different 

front ends: cepstral, formant (frequencies in Hz) and formant (frequencies 

in Bark). Classification was performed using RBF networks, multi-layer 

perceptrons (MLP) (both with varying numbers of hidden units), a mul-

tivariate Gaussian classifier [42] and a discrete HMM [8]. Tables 4-1 and 

4-2 compare the results obtained using the optimal setup of the different 

classifiers on this task. 

Extensive simulations were carried out using MLPs for this task. Fully-

connected models were used with a single hidden layer containing 2-52 

hidden units. Results in detail are given in figure 4-2 when cepstral 

input was used. Five simulations were performed for each size of network 
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Figure 4-2: Classification results for MLPs when cepstral input was used. 
The error is plotted against the number of hidden units. The graph points 
correspond to means, the error bars to standard deviations computed from 
5 initial random weight matrices for each network size with N(hid) hidden 
units. 

(with different random initial weight matrices) and means and standard 

deviations of the classification performance on the training and test sets 

were computed. In the case of the formant data a 28 hidden node network 

architecture was used and statistics were computed over 10 simulations 

with different random initial weight matrices. The results in tables 4-1 

and 4-2 are mean errors not minimal errors. 

A discrete HMM was employed in the 1988 CSTR configuration [8], 

with each phoneme modelled by a three-state, left-to-right model, with 

explicit duration modelling at each state - a hidden semi-Markov model. 
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The VQ codebook was of size 256, with the codewords found by the k-

means clustering algorithm (for the formant data, the VQ process used 

a diagonal covariance Mahalonobis distance metric). This model was 

applied to exactly the same problem, with the same training data (speech 

parameters + duration). Of course, the HMM is able to model time more 

explicitly, so the three-part vowel assumption was not required. 

The Gaussian classifier modelled each vowel class as a multivariate 

Gaussian distribution". Since there were not enough tokens to estimate 

separate covariance matrices for each class, a single covariance matrix was 

estimated from the entire data and was used for each distribution. This 

gave poor results; better results (cited here) were obtained by computing 

two covariance matrices: one for the ill-defined /0/ class and a second 

for the remaining classes [42]. Prior probabilities were estimated using 

the training data. This classifier was only applied to the formant data. 

When classifying the formant data, the MLPs, REP networks and 

the Gaussian classifier used bark-scaled frequency values and the hid-

den Markov model used mel-scaled 12  frequency values. The MLP used a 

coarse coded input with a 218 element feature vector, whereas the RBF 

networks used a real-valued, unbounded 15 element feature vector and 

a diagonal covariance Mahalonobis distance metric. The results for the 

MLP and RBF networks are mean results (over different random initial 

conditions) for the best size of network, found empirically - 28 hidden 

units for the MLP' 3  or 256 RBFs. 

The results for formant input data (table 4-1) indicate that the HMM 

11 This classifier may be viewed as a RBF network. See section 2.3.1. 
12 The mel-scale is another nonlinear frequency scale derived from auditory psychophysics. 

It is approximated by: 

M(f)= 11000  In / —( 1 + 
n2 	\. 	1000 

where f is frequency in Hz and M is frequency in Mel. It results in a similar transfor-

mation to the Bark scale (logarithmic compression of high frequencies). 

13 28 hidden units was the smallest number above which the MLP showed no significant 

improvement on the test set. 
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Figure 4-3: Classification results for the radial basis functions network, 
trained on 759 tokens from 20 vowel classes (12 monophthongs and 8 diph-
thongs) represented using cepstral data, formant data and bark-scaled for-
mant data. The error is plotted against the number of RBFs. Graph points 
correspond to means, error bars to standard deviations computed using 12 
sets of randomly chosen centres. 

considerably out-performs the static classifiers. The RBF network per-

forms worst of all. An advantage of the MLP over the RBF network in this 

situation was that the MLP was operating on a more redundant coarse 

coded input set; indeed, this may be regarded as being pre-processed by 

218 one-dimensional radial basis functions. Additionally the MLP did 

not need the explicitly defined distance metric required by the RBF net-

work (this was dealt with by the dimension-specific coarse coding). The 

Gaussian classifier did require a distance metric: however (as discussed 
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above), the Mahalonobis distance calculation used 2 full covariance matri-

ces in the Gaussian classifier, whereas a single diagonal covariance matrix 

was used in the RBF network. 

The results were different for the cepstral input data: the RBF network 

and the MLP both produced higher recognition scores, whereas the HMM 

produced poorer scores compared with the formant data 14 . In the case of 

the RBF network the improvement was 7.5%: this may be rationalised 

by considering the higher-dimensional (and hence more redundant) input 

coding used (72 inputs opposed to 15) and the fact that the Euclidean 

distance metric used for the cepstral data has a more natural interpreta-

tion in terms of speech processing (see section 4.1.3 above). 

Figure 4-3 demonstrates the effect of varying the number of RBFs for 

both cepstral and formant data. This graph was compiled by training 

each network size 12 times on each of the three input representations, 

with a different choice of random centres. Although the error curves for 

training data were similar for all 3 front ends, the test error curve for 

the cepstral input was significantly lower than for the two formant-based 

front ends. There isrend for the standard deviation of the classification 

performance to increase with the number of RBFs. A possible explana-

tion for this is that the correlation matrix M (equation 2.15) was more 

likely to become nearly degenerate as the number of RBFs increases and 

hence more likely to become ill-conditioned with respect to matrix in-

version. In large networks (> 150 RBFs) the matrix would sometimes 

become extremely ill-conditioned (although not singular), resulting in the 

"optimal" weight values being extremely large. This effect was reduced 

by replacing the matrix inversion method (LU decomposition was used 

here) by a pseudoinverse method, such as singular value decomposition 

(which requires more computation"). 

14 The HMM error rate for (linearly scaled) cepstral data is lower than that obtained using 
linearly scaled formant data (31.1%). (The earlier results were with perceptually scaled 

formant data.) 

15 Simulations (using Numerical Recipes code [156]) indicate that singular value decom- 

position increases compute time by a factor of 3 compared with LU decomposition. 
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I 	Error per class (%)    	j 
ii (68) i (96) e (38) a (44) aa (15) 00 (32) 0 (21) u (10) uu (47) uh (33) 

13.2 40.6 86.8 40.9 40.0 18.7 33.3 90.0 17.0 45.5 

r i9l) ©@ (5) ei (43) au (8) ai (56) oi (2) ou (38) i 	(6) e© (3) u 	(3) 

9.4 80.0 4.7 75.0 5.4 0.0 39.5 26.7 66.7 33.3 

Table 4-3: Detailed results of vowel recognition for a network with 196 radial 
basis functions trained using LPC cepstral data. The overall error rate was 
36.6% over a total of 759 tokens. ()indicates number of tokens of that class. 
Phonemes are represented in MRPA notation [77]. 

More detailed results for a network with 196 RBFs trained on cep-

stral data are given in tables 4-3 and 4-4. It is clear that the RBF 

network had a low error rate in classifying /0/16 - over 90% of /0/ 

tokens were correctly labelled. A priori this might not be expected, 

since this token is not a distinct acoustic-phonetic category and is not 

clustered in a single region of parameter space. Indeed this class was 

problematic for the HMM (24.6% error for /0/) and the Gaussian clas-

sifier (34.6% error for /0/). The MLP and RBF networks performed 

better on this large, diffuse class since they were trained using a dis-

criminative method rather than a maximum likelihood method (used for 

the Gaussian classifier and the HMM). Discriminatively trained networks 

model well-populated classes better than sparsely populated ones, since 

class boundary positioning is a data-driven process. The number of free 

parameters used to model each class in these discriminatively trained 

networks is dependent on the class population. This is most explicit for 

RBF networks, since the centres were randomly chosen data points. In 

maximum likelihood training, each class is modelled individually, with a 

fixed number of free parameters per model. 

The confusion matrix (table 4-4) indicates the most common classifica-

tion errors made by the RBF network. The two major types of confusion 

concerned diphthongs and short vowels. Diphthongs were generally clas-

sified poorly, being confused with each other and /0/. This was expected 

16 The MLP also has low a error rate for /©/. 
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EIIIIUIII 
DIll IIII 1111111 
DIII 
11111 IDDt 
11=1111 
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• 111111 IIIIIt 
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11111 Dl 11111111 
UUDIIUIDII 

111111111 
11111 11111 

Table 4-4: Confusion matrix corresponding to table 4-3. Note that columns 
correspond to classes output by the network, rows correspond to desired 
classes. 
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since the "onset-centre-offset" assumption made in the data representa-

tion clearly breaks down for diphthongs, which are usually more dynamic 

in feature space then monophthongs. Short vowels (such as /i/, /e/ and 

/a/) were classified poorly since their acoustic properties are extremely 

context dependent. There is no time for them to achieve a steady state; 

the assumption that vowels may be modelled using the onset-centre-offset 

representation was again shown to be naïve. Unsurprisingly, /0/ (the 

largest class and most diffuse in feature space) was the most common 

confuser. A particularly common misclassification was classifying /i/ as 

/0/ or as the longer vowel /ii/. 

A major advantage of using radial basis functions networks is the speed 

of training - the experiments reported here required a little over 3 min-

utes training time for a network with 196 RBFs running on a Sun 4; 

this corresponds to around 3 hours to train a 28 hidden node MLP 17  on 

the same task. Although the hidden Markov model can be trained in a 

similar time, recognition is slower than for a neural network as a Viterbi 

algorithm must be applied at run-time to choose between the models. 

4.2 Frame labelling continuous speech 
Following the promising results reported in the previous section, a second 

set of experiments was performed to judge the feasibility of using an RBF 

network for phoneme modelling in continuous speech. This is a much 

more difficult problem, as the temporal nature of the speech signal may 

not be avoided. Instead of assigning labels to presegmented portions of 

continuous speech, the task here was to assign labels on a frame-by-frame 

basis. 

17 It is quite possible that MLP training could be speeded by using one of the various 
minimisation algorithms proposed for faster training (e.g. as used in [56]), but it is 

unlikely that a speed up of over 2 orders of magnitude could be obtained. 
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4.2.1 Speech database and signal processing 
A different speech database was used for these experiments. This con-

sisted of 200 phonetically rich sentences spoken by a male RP British 

English speaker. The set of sentences was designed to cover every tn-

phone in British English. Half of this set (the even numbered sentences) 

was designated as training data, the remainder was used as a test set. 

The speech was digitised at 20kHz and later downsampled to 10kHz 

and pre-emphasised with a filter of 1 - 0.98z 1 . A 14th order linear 

predictive analysis was then performed, using a Hanning window with 

a width of 20ms and frame shift of 5ms. 14 cepstral coefficients plus 

the spectral energy were extracted for each frame, giving a 15 element 

acoustic feature vector to be used as input to the network. The energy 

value had a much larger dynamic range than the cepstral coefficients. To 

compensate for this the mean value of the spectral energy was computed 

over the training set. Incoming patterns had this mean subtracted from 

their spectral energy, which was then passed through a squashing function 

bounded by ±1; tanh(.) in this case. 

4.2.2 Network architecture and training 
The network was trained to perform a mapping from an input acoustic 

parameter vector to a phonetic label. The training data consisted of the 

acoustic information together with a time-aligned phonetic transcription 

prepared by an expert phonetician. A set of 44 phonemes was used 

together with an additional symbol representing silence. 

A delay-lined input layer was used, in an attempt to provide some 

contextual information to the RBF interpolator. Thus the input layer 

contained 15D units, where D was the width of the delay line. In practice 

delay-lines of widths ranging from 1 to 15 timesteps were used. The label 

to be associated with the input vector corresponded to the time of the 

central set of input parameters in the input. That is, the input layer 

may be regarded as giving equal right and left context information to 
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a particular frame. End effects were handled by duplicating the first or 

last frame where appropriate. 

A 1-from-N output coding was used so there were 45 output units 

representing the set of phonemes. Target values of 1 and 0 were used 

for these linear output units. The usual least squares error function 

was used, together with the training method described in section 2.2.2. 

Matrix inversion was performed using an LU decomposition. 

Varying numbers of RBFs (hidden units) were used (50-384). The 

transfer function of these RBFs was again a Gaussian. The centres were 

randomly chosen input vectors and the widths were computed by the 

nearest neighbour heuristic used previously. 

4.2.3 Results 
The results of the frame-labelling experiments are summarised in figure 

4-4. Two clear trends are apparent: the recognition rate increased with 

N(Tbf) and with D. These increases in network size had the effect of 

increasing the number of free parameters - meaning that more training 

data was necessary to achieve a valid generalisation - and of increasing 

the training time. A principal reason for not investigating larger values 

of D or N(rbf) was the large amount of computer time that these ex-

periments would have demanded. The tradeoff between the number of 

free parameters and amount of training data may be seen by examin-

ing training and test errors as N(ibf) is increased. There was a definite 

trend for the training error to be lowered at a greater rate than the test 

score; this suggests that as the number of free parameters increased so the 

probability of learning an optimal input-output mapping (i.e. one that 

generalises well) decreased, given a constant amount of training data. 

A similar trend was not observed as D was increased, suggesting that 

the increase in free parameters was offset by the additional contextual 

information offered by a longer delay line. 

Table 4-5 gives detailed test results for a N(rbf) = 256 network, with 
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Figure 4-4: Framewise errors from frame labelling 100 sentences of contin-
uous speech spoken by a single male speaker after training on a separate 
100 sentences. RBF networks with N(rbf) hidden units, a Gaussian classifier 
(maximum likelihood training) and a "discriminative Gaussian" classifier (see 
section 4.3) were used, with a sliding window covering D frames. There were 
68,029 frames in the training set and 71,251 frames in the test set. There 
were 45 output classes corresponding to 44 phonemes + silence. 

input sliding windows of size D = 7 and D = 1. In this case the overall 

framewise error rate is reduced by 3% on using a delay-lined input. As 

might be expected, the classes that mainly contribute to this decrease are 

those phonemes that may not be characterised by a single frame: diph-

thongs (/ai, ei, ©O/) and stop consonants (/p, t, b, k/). These phonemes 

do not reach a steady state, but are characterised by a sequence of events. 

Diphthongs consist of a trajectory from a starting vowel location to a fi-

nal vowel location (in addition to the onset and offset); stops consist of 
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Frame Labelling - scores by phoneme 

Total 

0=7 

Correct 	Error (%) 

0=1 

Correct 	Error (%) 

o 4460 2643 40.74 2630 41.03 

3038 1039 85.80 1059 65.14 

o 3216 2513 21.86 2456 23.63 

2097 1159 44.73 1360 35.15 

ii 2550 1724 32.39 1668 34.59 

4034 2277 43.55 1555 61.45 

m 1412 561 60.27 642 54.53 

1539 1273 17.28 1215 21.05 

a 1384 271 80.42 277 79.99 

al 2166 720 66.76 629 70.96 

W 1223 787 35.65 669 45.30 

y 287 12 95.82 6 97.91 

p 2136 259 87.87 85 96.02 

a 1307 796 39.10 866 33.74 

ci 1593 702 55.93 571 64.16 

no 1032 625 39.44 584 43.41 

a 1929 938 51.48 906 53.03 

b 1786 738 58.68 535 70.04 

on 1637 467 71.47 494 69.82 

e 1818 443 75.61 630 65.31 

k 2513 1215 51.85 829 67.02 

oh 1175 1 99.91 12 98.98 

4684 3720 20.58 3463 26.07 

00 1685 1012 39.22 966 41.98 

ng 476 78 83.61 74 84.45 

ch 872 112 87.16 104 88.07 

jh 750 115 84.87 218 70.93 

g 683 77 88.39 121 81.75 

dh 1117 180 83.89 70 93.73 

v 735 122 83.40 148 79.86 

o 1041 216 79.25 226 78.29 

1682 1208 28.18 1160 31.03 

Lb 707 0 100.00 1 99.88 

sh 782 492 37.08 553 29.28 

h 489 65 86.71 89 81.80 

sh 224 0 100.00 9 95.98 

aa 1779 628 84.70 553 68.92 

U 256 0 100.00 0 100.00 

an 1097 145 86.78 4 99.64 

10 378 34 91.01 11 97.09 

00 798 304 81.90 203 74.56 

no 70 0 100.00 0 100.00 

01 247 0 100.00 0 100.00 

.0 599 29 95.18 2 99.67 

## 5810 5510 5.16 5441 1 	8.35 

TOTAL. 71251 35208 50.59 	11  33094 1 	53.55 

Table 4-5: Frame labelling errors by phoneme for a network with 256 RBFs 
and sliding windows of size 1 (no context) and 7 (3 frames of both left and 
right context). Phonemes here and elsewhere are labelled using MRPA nota-
tion [77]. 
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a closure, a release and (not always) an aspiration. These 7 phonemes 

accounted for 85% of the decrease in error from D = 1 to D = 7. 

The overall difference would be above average except certain classes 

(notably /1, m, e, jh, sh/) showed an increased error on employing the 

delay-lined input. These increased test set errors were also reflected in 

the training set. However the discrepancy between training and testing 

errors was larger for D = 7 compared with D = 1 and was larger for 

these particular classes. Thus it may be hypothesised that the degrada-

tion in performance for these classes using a D = 7 network is due to 

the greater number of free parameters causing poorer generalisation. So 

there is a balance between poorer generalisation and increased context 

on increasing D; the dominant effect was dependent on the class. 

An overall trend, irrespective of D, is that the better populated classes 

returned lower error rates. For example, /0/ and /s/, the most common 

phonemes, had low recognition errors. However, /0/ is an ill-defined 

vowel and is generally regarded as being difficult to recognise. Since there 

were many examples of /0/, the error function was biased towards a lower 

class error for /0/. Conversely, several of the less common phonemes, 

e.g. /oi, u©, u, th/, had a 100% error rate; this was an artifact of the least 

squares minimisation. The minimum of the cost function was achieved 

by minimising the error rate on the well populated classes at the expense 

of the less populated ones. 

The results here are given by frame and consider only the top placed 

phoneme per frame. Bourlard and Wellekens [22] have shown that the 

output of feed-forward networks trained using a least squares criterion 

may be interpreted probabilistically. Hence a great deal of information, 

that would assist in the segmentation, is lost if top scores only are con-

sidered each frame. This problem is addressed in section 4.4. 
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4.3 Discrimination and maximum likelihood 
As discussed in section 2.3.1, a Gaussian classifier may be implemented as 

a REF network. Such a classifier was applied to the same frame-labelling 

problem as above. In this case the REF network contained 45 hidden 

nodes (RBFs) and 45 output nodes, one for each class. Each RBF had 

a greater number of free parameters than in the previous section, as a 

full covariance matrix was specified, rather than a scalar width. This 

covariance matrix was estimated from the data for each class. The input 

dimensionality was 15 and there was a mean of 1580 frames per class 

(with the smallest class, /u©/, having 70 example frames) so reason-

able approximations to the true covariances were made for each class 18 . 

The hidden-to-output weight matrix is diagonal in a maximum likelihood 

trained Gaussian classifier, compared to the fully-specified matrix found 

in the usual RBF network. ma Gaussian classifier the diagonal elements 

correspond to the prior probabilities, here estimated using the training 

data. 

A delay lined input was not used for a Gaussian classifier; this was 

because using delay lines causes degeneracies between successive training 

patterns. These degeneracies cause the covariance matrix to be singular 

(or nearly so), and thus incompatible with a Gaussian classifier. 

The unimodal Gaussian classifier is trained using a Bayesian maximum 

likelihood process. This is optimal if each class is known to be a Gaussian 

and the training sample is sufficiently large. However, it is unlikely that 

each class is described by a Gaussian distribution, so a Gaussian classi-

fier is not optimal. Using an RBF representation it is trivial to impart 

discriminative power into what was a (non-discriminative) Gaussian clas-

sifier. This may be achieved by replacing the diagonal hidden-to-output 

weight matrix (containing the prior probabilities) by a full matrix, that 

can be trained using the usual pseudoinverse approach. A Gaussian clas-

sifier in which the prior probability diagonal matrix has been substituted 

18 Of course, this does not mean that sample covariance is a good statistic for the problem. 
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Frame labelling - scores by phoneme 

Total 

maximum likelihood 

Correct 	Error (%) 

discriminative 

Correct 	Error (%) 

O 4460 1857 58.36 1835 58.86 

3038 863 71.59 824 72.88 

o 3216 2374 26.18 2299 28.51 

2097 1351 35.57 1328 36.67 

ii 2550 1655 35.10 1566 38.59 

4034 1162 71.19 1235 89.39 

m 1412 774 45.18 789 44.12 

r 1539 1215 21.05 1207 21.57 

d 1384 285 79.41 324 76.59 

ai 2166 376 82.64 561 74.10 

W 1223 770 37.04 761 37.78 

y 52 287 81.88 60 79.09 

p 2136 331 84.50 207 90.31 

a 1307 766 41.39 730 44.15 

ei 1593 564 64.80 571 64.16 

no 1032 587 43.12 582 43.60 

• 1929 946 50.96 931 51.74 

b 1788 689 61.42 851 63.55 

ou 1837 350 78.62 353 78.44 

e 1816 415 77.15 439 75.83 

k 2513 852 66.10 888 64.74 

uh 1175 95 91.91 120 89.79 

4684 3520 24.85 3389 28.07 

00 1665 1084 34.89 1030 38.14 

ng 476 192 59.66 213 55.25 

ch 872 158 81.88 186 78.67 

jh 750 254 66.13 250 68.67 

g 663 189 71.49 204 69.23 

dh 1117 208 81.56 185 83.44 

v 735 183 75.10 239 67.48 

o 1041 350 66.38 407 60.90 

1882 1194 29.01 1207 28.24 

th 707 35 95.05 45 93.64 

eh 782 586 25.06 586 25.06 

h 489 233 52.35 241 50.72 

sh 224 44 80.38 66 70.54 

aa 1779 957 46.21 742 58.29 

U 256 34 86.72 11 95.70 

au 1097 115 89.52 163 85.14 

10 378 108 71.43 104 72.49 

00 798 426 46.62 381 52.26 

no 70 0 100.00 2 97.14 

01 247 24 90.28 35 85.83 

ea 

599 91 84.81 100 83.31 

## 5810 5135 11.62 4997 13.99 

TOTAL 71251 33447 53.08 33022 53.65 

Table 4-6: Frame labelling errors by phoneme for a Gaussian classifier trained 
using maximum likelihood (ML) and using a discriminative least squares 
method. The overall training scores for these classifiers were 47.87% for the 
ML classifier and 47.80% for the discriminatively trained classifier. 
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by a fully-specified least-squares optimal matrix shall be termed a "dis-

criminative Gaussian classifier". 

Both forms of Gaussian classifier were applied to the same speech prob-

lem as above. The overall and per phoneme errors are given in table 

4-6. An examination of table 4-6 indicates that there were no major 

differences between the first choice frame classifications of the maximum 

likelihood and discriminative classifiers. However there were significant 

differences between the within class scores of the Gaussian classifiers and 

the RBF network (with D = 1 (table 4-5) which received similar inputs). 

The principal difference is that the Gaussian classifiers were not as sen-

sitive to the class sample size, compared with the RBF network. The 

prime examples of this may be seen with the less frequent vowels such as 

/e©, 00, iO/. These all produced 100% error rates for the RBF network, 

whereas the Gaussian classifier produced error rates of between 50% and 

85% for these classes. Conversely, some of the more frequent classes such 

as /0, a, i/, had much lower error rates with the RBF network. 

These differences may be explained by the way the hidden layer of 

RBFs was constructed. In the standard RBF network, the RBF centres 

were drawn randomly from the input data; hence the representation in 

REF space was strongly dependent on the input data. This was not so 

for the Gaussian classifiers; there was one centre per class, corresponding 

to the class mean. A larger number of training examples for a particular 

class simply improved the estimate for mean and covariance. 

4.4 Modelling time 
It is unlikely that modelling time using delay lines alone is adequate for 

continuous speech recognition. Rather than an extended use of delay 

lines (a time-delayed RBF network) or the addition of recurrences, the 

temporal modelling used here is a post-processing operation: Viterbi 

smoothing. 
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4.4.1 Viterbi smoothing 
Lowe and Webb [118] have proved that the outputs of a network whose 

final layer weights are normalised using a pseudoinverse process (i.e. lin-

ear output units) satisfy a particular linear constraint dependent on the 

target vectors used for training. In particular, a 1-from-it output rep-

resentation constrains the outputs to sum to 1. These outputs are not 

probabilities, however, not least because they are not constrained to be 

non-negative. In this work, it is hypothesised that these outputs may 

approximate probabilities, after some transformation. Here negative out-

puts were set to zero and this new set of outputs was normalised to sum 

to unity. It was then assumed that these transformed outputs were good 

approximations to the posterior probabilities. 

Thus for each frame i there is a set of probabilities Pt;  denoting the 

probability of symbol (label) j in that frame. A sequence of symbols is 

required, where s i  is the symbol corresponding to the ith frame. This 

can be trivially achieved by choosing the maximal Pij  for each frame, as 

this maximises 

ri Pis, 
	 (4.4) 

the probability of a sequence of symbols. This is not acceptable as the 

resultant sequence will change classification with great frequency. To 

obtain a suitable segmentation, a notion of segment duration is required, 

to penalise frequent changes in symbols. 

A simple way of achieving this is by regarding the symbol sequence s 

as the output of a first order Markov process that is parameterised by an 

initial vector of probabilities b t  and a transition matrix a; (both of which 

may be estimated from the training data). By assuming that speech is 

a first order Markov process, information about frame labelling from the 

training data (the fact that frame labels clump together in segments, 

average segment duration, etc.) may be used to make better estimates 

of the prior probabilities. 

In (4.4), the prior probability of a sequence S0SiS2 . . . SN_i was uni- 



4 SPEECH RECOGNITION EXPERIMENTS 
	

94 

form and equal to C_N,  if there were C classes. Using the estimates of 

priors produced using the Markov model, the prior probability of that 

sequence is given by b 0 a5051 a 12  . . 	 Denoting the sequence 

SOSi .. . SN_i by 	we have the prior probability 

p(s 1 ) = b0 	 (4.5) 

Hence the new expression for the posterior probability that should be 

maximised to give the optimal sequence is: 

po 0 b 0  JJpi s as _ is . 	 (4.6) 

The optimal sequence may be computed using the Viterbi algorithm. 

The array qj is defined as the likelihood of the most likely sequence s 

ending at frame i with class j: 

qtj = mxqt_i,kaktptj 	1 5 <N 	
(7) 

qoj = bp0  

To derive the optimal class sequence, a note must be kept of the k used 

in the maximisation of (4.7) at each frame. If tjj  is the value of k used 

to compute qtj  then the optimal label sequence may be computed using 

the backwards recursion: 

SN_i = argmaxq N _ i , 
(4.8) 

Si = tj+i,sL+l 

4.4.2 Phoneme lattices 
The Viterbi smoothing may be regarded as a segmentation process, in 

which each segment is associated with its most likely label. However, a 

set of phoneme hypotheses, with associated probabilities, is required for 

each segment to avoid discarding most of the information output by the 

RBF network. If a segment lasts from frame in. to frame it, then: 

Sm = Sm+1 = ... = Sn_i = S. 	 (4.9) 
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The Viterbi algorithm produces the probability of s consisting of the 

most likely class. One way of computing the probability of segment s 

being labelled by symbol j is: 

p(s = jm) =Y  pm- j,ja j  flpkjajj. 	 (4.10) 

However a problem with this expression is that the computed proba-

bilities for the previous segment are being propagated forward; this is 

desirable if these probabilities are known to be correct (or nearly so), 

otherwise this would just have the effect of propagating errors. So the 

expression may be amended to treat each segment in isolation: 

p(s = jfl_) = flpkjajj. 	 (4.11) 

The above expressions have the effect of penalising long segments, since 

the overall probability of a segment being labelled by a particular symbol 

is the product of framewise probabilities. This is undesirable as it may 

result in the lexical access portion of a system deleting long segments 

in preference to short segments. To counter this, a geometric mean was 

taken of the probabilities in each segment, as a form of time normalisa-

tion: 

p(s = j m) = ([Jpkj)ajj 	 (4.12) 

This equation was used to extend a string of phoneme labels into a lattice 

of time-aligned phoneme probabilities. 

4.4.3 Evaluation of phoneme lattices 
Evaluation of a complete speech recognition system is comparatively 

straightforward: the quantity of interest is usually the utterance recog-

nition error. However, it is often desirable to evaluate a phoneme lattice 

produced by a front end without using language modelling - i.e. the 

evaluation of a portion of a speech recognition system. The most usual 

means of doing this is by comparing the optimal string of phonemes pro-

duced by the front end and computing the percentage of correct segment 
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labels together with the percentage of errors, after comparison with the 

correct phonetic transcription (which need not be time-aligned). Errors 

may be divided into 3 categories: substitutions, insertions and deletions. 

If a single figure is required then the overall error, E, may be computed: 

E= 100—(s+t+d), (4.13) 

where s, i. and d are the percentages of substitutions, insertions and 

deletions. 

This evaluation metric is only partially satisfactory, as it takes no ac-

count of multiple label hypotheses for each segment, which would be an 

integral part of any higher level language modelling processes. McInnes 

et al. [128] have suggested using an entropy measure to evaluate phoneme 

lattices. The basis of this measure involves aligning a phoneme lattice 

with the correct transcription and finding the path through the lattice 

with the maximal probability for correct recognition. Clearly this in-

volves assigning insertion and deletion probabilities as well using the 

label probabilities from the lattice. The entropy measure quantifies the 

uncertainty (per phoneme) of a phoneme lattice and it may be estimated 

using 

H— (1 
 
092 

	
414 

- - og2 L11 paths P(path) 
where there are N phonemes in the utterance. The insertion and deletion 

probabilities needed to estimate P(path) may computed iteratively using 

a forced Viterbi alignment. A forced Viterbi alignment is an iterative 

procedure that searches for the most likely path through a phoneme 

lattice that matches a given string of phonemes. To enable the match to 

be made, phoneme segments may be deleted or inserted. An initial set 

of deletion and insertion probabilities is specified; these are re-estimated 

after each iteration, using frequency information. 

4.4.4 Language modelling 
The language modelling was performed by a lexical access routine, which 

transformed an input phoneme lattice into a list of scored sentence hy- 
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potheses. The CSTR lexical access program, LexAx, was used, in the July 

1989 configuration [129]. LexAx uses a Viterbi algorithm (with beam 

searching), implemented using finite state transducers within a chart 

parsing framework. The phoneme-phoneme confusion costs, needed for 

the Viterbi alignment were generated by designating half the phoneme 

lattices as a training set and performing a forced Viterbi alignment to 

the correct transcriptions; the costs were computed by counting confu-

sions. This process may be iterated, but in practise one iteration was 

sufficient: further iterations led to "overtraining" due to limited training 

data. LexAx used a tree structured finite-state lexicon to map phoneme 

strings to word hypotheses and higher level language modelling was pro-

vided by a deterministic finite state grammar compiled from a phrase 

structure grammar. 

4.5 Continuous speech recognition experiments 
The techniques described in the previous section were used in a set of sin-

gle speaker continuous speech recognition experiments, in which an input 

speech time waveform was processed to produce an output sentence. 

4.5.1 Procedure 
Previously, a 200 sentence phonemically rich database was split into train-

ing and test sets of 100 sentences each when performing frame labelling 

experiments. This was necessary as time-aligned transcriptions were re-

quired to evaluate the frame labelling. Time-aligned transcriptions are 

not required to evaluate a continuous speech recognition experiment, as 

the evaluation is carried out on a phoneme segment, word or sentence 

level. In this work, the transcribed database of 200 sentences (11-12 min-

utes of speech) was used as training data and the test set was a database 

of 170 sentences (9-10 minutes of speech), from a particular task-specific 

domain - cytopathology reports. Although the test set was spoken by 

the same speaker as the training set, there was some variation as the 
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test set was recorded over a year later. There was only a small overlap 

between the training lexicon and the test lexicon - the training data 

was produced with the aim of covering the acoustic space, whereas the 

test data corresponded to a particular language model. 

Time-aligned transcriptions were not available for the test set. How-

ever, non-time-aligned transcriptions (i.e. a string of phonemes for each 

sentence) were available. These were used for evaluation of the phoneme 

lattices and in estimating insertion, deletion and substitution probabil-

ities for phoneme lattice evaluation and for LexAx. In this case the test 

set was split in two, half of which was used for probability estimation 

using the transcriptions, the other half used for testing. 

The same set of networks (with the same random number seeds where 

applicable 19) were used in the frame-labelling experiments. After hav-

ing trained and run over the test set, a set of approximated phoneme 

probabilities for each frame of each utterance was generated. These were 

input to the Viterbi smoothing routine described above. The phoneme-

phoneme transition probabilities (a t,) for the Viterbi smoothing were 

computed from the test data using frequency information, on a frame-

wise basis (a small offset was added to prevent zero probabilities arising 

as an artifact of limited sample size). These probabilities also acted as a 

duration model for each phoneme as they included self-self probabilities. 

The initial state in the Viterbi smoothing was constrained to be a silence: 

every utterance in the database was known to start (and finish) with a 

silence. 

The output of the Viterbi smoothing was a phoneme lattice for each 

utterance: a typical phoneme lattice is shown in figure 4-5. This was 

produced as described above, using a single segmentation with a list of 

45 phoneme probabilities for each segment. The lattices were evaluated 

by computing the per phoneme entropy and by word and sentence recog- 

19 The same random number seed was used for different networks, so the first 100 RBF 
centres of a N(rbf) = 256, D = 1 network would be the centre frames of the RBF 

centres in a N(rbf) = 100, D = 7 network. 
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Lexical access - % errors 

Free 

Parameters Entropy 

Top 1 

Word 	Sentence 

Top 2 

Word 	Sentence 

Top 10 

Word 	Sentence 

150/1 9195 3.59 17 	25 15 	19 14 	16 

150/7 22695 3.52 14 	24 12 	18 12 	14 

200/1 12245 3.61 16 	22 15 	16 14 	14 

200/7 30245 3.46 12 	20 9 	12 9 	10 

256/1 15661 3.57 6 	14 4 	6 4 	4 

256/7 1 	38701 3.41 13 	25 10 	13 10 	8 

G(ML) 10845 3.72 9 	15 8 	11 8 	8 

G(D) 12870 3.54 14 	21 11 	12 10 	9 

HMM 34830 
[ 	 - 

4 	8 - 	 - 3 	4 

Table 4-7: Word and sentence errors after lexical access on phoneme lattices 
using a restricted (perplexity = 6) grammar with 571 word lexicon. "256/7" 
refers to an REF network with N(rbf) = 256 and D = 7; G(ML) is a maxi-
mum likelihood trained Gaussian classifier, G(D) is a discriminative Gaussian 
classifier. The errors produced using the CSTR HMM front end in its best 
configuration for this problem are also given. 

nition scores after passing through LexAx (using either a constrained low 

perplexity grammar or no grammar whatsoever). 

Half of the test utterances were reserved for computing entropy and lex-

ical access scores; the other half were used for a forced Viterbi alignment 

needed for both the entropy calculation and the lexical access. In the 

entropy calculation, a training set was required to iteratively compute 

the phoneme insertion and deletion probabilities; in the lexical access 

phoneme-phoneme transition costs were computed as well as insertion 

and deletion probabilities. Hence evaluation was performed on 85 utter-

ances (4-5 minutes of speech). 

4.5.2 Results 
The results of this continuous speech recognition experiment are sum- 

marised in tables 4-7 and 4-8. The best performing network using the 
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Lexical access - % errors 

Free 

Parameters Entropy 

Top 1 

Word 	Sentence 

Top 2 

Word 	Sentence 

Top 10 

Word 	Sentence 

150/1 9195 3.59 58 	95 55 	92 50 	87 

150/7 22695 3.52 61 	96 57 	93 54 	92 

200/1 12245 3.61 57 	93 54 	91 50 	89 

200/7 30245 3.46 58 	91 54 	89 51 	86 

256/1 15661 3.57 53 	92 50 	92 46 	87 

256/7 38701 3.41 57 	93 52 	91 48 	87 

G(ML) 10845 3.72 42 	91 40 	89 38 	88 

G(D) 12870 3.54 52 	93 50 	92 47 	85 

HMM 34830 
- II 	53 	95 - 	 - - 	 - 

Table 4-8: Lexical access errors (%) using no grammar (perplexity = lexicon 

size) and 571 word lexicon. Notation as in table 4-7. 

perplexity 6 grammar contained 256 RBFs with a single frame input (no-

tated a 256/1 network): 6% of the first choice words were erroneous. This 

compares well with the best configuration of the CSTR hidden Markov 

model front end 20  which produced a 4% word error using the same data. 

The maximum likelihood Gaussian classifier performed better than any 

of the other RBF networks, producing a 9% first choice word error. Re-

sults without using a grammar were much inferior (as would be expected 

with the perplexity increasing from 6 to 571). However, the maximum 

likelihood Gaussian classifier used here was markedly superior, with a 

10% lower word error than any of the other configurations. 

If scores on the top two and top ten choices are considered in table 

4-7, then the 256/1 network may be seen to be significantly superior 

to the Gaussian classifier, especially in terms of sentence accuracy. For 

example, the 256/1 network achieved a sentence error rate of 6% when 

considering the top two hypotheses, compared to 11% for the Gaussian 

20 This was a discrete hidden Markov model with a size 256 codebook, and 45 phoneme 
models. Each phoneme model was a 3 state left-to-right model with self-recurrences 

and explicit state duration modelling. 
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classifier. There is a large increase in sentence error for the 256/1 net-

work when considering the top hypothesis compared with considering the 

top two, owing to confusions between small function words. The most 

common confusions were "but" being confused with "with" and "and" 

being confused with "or". Examination of the hypotheses output by 

LexAx indicated that there was only a small difference in sentence prob-

ability between these confusible pairs. The problem of confusing these 

function words is well-known; in the Sphinx system, for example, it was 

tackled by the construction of specific function word models, rather than 

constructing them out of phoneme models [105]. 

The results of the maximum likelihood Gaussian classifier (Gaussian 

(ML)) on the grammar-free task are surprisingly good; there is no ready 

explanation to account for the fact that this network configuration has a 

10% lower error than any of the other networks or the HMM front end. 

Since this task has fewer constraints, the accuracy of front-end phoneme 

modelling is likely to be more important than in the restricted grammar 

case. As the discriminatively trained Gaussian classifier (Gaussian (D)) 

also outperformed the other RBF networks, it may be hypothesised that 

the full covariance modelling used in these classifiers (and none of the 

others) was important. 

There is no significant correlation between the per phoneme entropy 

and the word (or sentence) errors. In the case of the restricted grammar, 

the entropy scores and word recognition errors over the top 10 choices 

are almost entirely uncorrelated with a correlation coefficient of -0.01. 

For example, the Gaussian (ML) classifier produced low error rates on 

, both lexical access tasks, yet had the highest per phoneme entropy of 

any of the classifiers investigated; conversely the 256/7 RBF network 

had the lowest per phoneme entropy, yet produced mediocre word and 

sentence recognition results. An explanation for the particularly high per 

phoneme entropy returned by the Gaussian (ML) classifier, may lie in the 

maximum likelihood training procedure. Since this is non-discriminative, 

there was no term in the cost function that was optimised to reduce the 
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probabilities for competing classes: the only impetus was to maximise 

the probability of the correct class. In recognition this led to a "clump-

ing" of probabilities for each segment, whereby the chosen class did not 

have a probability vastly greater than the competing classes. This tends 

not to be the case for discriminative classifiers. This clumping was evi-

denced by the time taken to train LexAx using the output of the Gaussian 

(ML) configuration. This time was approximately lOx that of the other 

networks, indicating that the beam search employed by LexAx was not ef-

fective: the probabilities were sufficiently tightly clumped that the beam 

included most hypotheses, thus barely reducing the search space. 

This lack of correlation between the entropy measure of front-end per-

formance and final utterance recognition need not be seen as a reflection 

on the validity of entropy as a measure of front-end performance. Indeed, 

the entropy measure is an information theoretically correct measure to 

apply. However, the computed entropy is only the correct entropy given 

that the correct prior probabilities are used. These prior probabilities 

are largely determined by the grammar and lexicon used for the recog-

nition. However, the per phoneme entropy is a purely front end measure 

of accuracy of phoneme modelling and is not influenced by the language 

model. These results simply indicate that the priors estimated in the 

entropy calculation are considerably different to the true priors taking 

into account the language model. 

Finally it must be emphasised that the final lexical access test set con-

sisted of 85 sentences, containing a total of 525 words, corresponding 

to less than 5 minutes of speech. This set is too small to make a good 

evaluation of various speech recognition configurations. A more thor-

ough examination would require a larger database for both training and 

testing. 
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4.5.3 Discussion 
4.5.3.1 Viterbi training 

A frequently cited advantage of HMMs over neural network systems (e.g. 

[105]) is that time-aligned phonetic transcriptions are necessary for neural 

network training in contrast to training hidden Markov models (once the 

phoneme models have been bootstrapped). This is not so: neural net-

works require neither more or less transcribed training data compared 

with HMMs. If a Viterbi training procedure is used, then a neural net-

work model - be it a TDNN, a set of predictor networks or the type 

of network used in the previous section - may be trained using a non-

time-aligned sequence of phonemes. Such a string of phonemes may be 

obtained from a sequence of words if there is a phonetically structured 

lexicon, which is usually the case. The Viterbi training method can also 

train networks in the usual situation of alternative pronunciations, when 

there may be many phoneme strings corresponding to a single word. 

Consider the network of the previous section, with one output for each 

phoneme. Initially the network must be bootstrapped using a time-

aligned phonetic transcription - this is easily accomplished using a 

readily available speech databases, such as the TIMIT database. This 

database may also used to initialise the transition probabilities for the 

Viterbi algorithm. Training may now proceed using speech data consist-

ing of a set of acoustic vectors for each utterance, together with a string 

of phonemes corresponding to that utterance. The training schedule is 

as follows: 

Run the network using the acoustic input data, to produce a sequence 

of frame labels. 

Perform a forced Viterbi alignment, matching the output frame labels 

with the target sequence of frame labels. Re-estimate the substitution, 

insertion and deletion probabilities. 

Re-estimate the phoneme-phoneme transition probabilities by counting 
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transitions in the new alignment. 

4. The output of the forced Viterbi alignment is now used as time-aligned 

target data for the feed-forward network. Retrain the network to map 

the input data to this target data. 

This sequence may be iterated until some convergence criterion is met. 

4.5.3.2 Semi-continuous hidden Markov models 

The above method of training is similar in spirit to the Connectionist 

Viterbi Training (CVT) introduced by Franzini et al [56] and described 

in section 3.7. In CVT a feed-forward network was used to map input 

acoustic data to outputs corresponding to HMM emission probabilities. 

Consider using a RBF network for this task. The network performs a 

mapping from the input acoustic data x to the output emission probabil-

ities of the HMM b+1(x).  (For clarity b+(x)  is sometimes written 

as b(x), with the transition from St to St+1  being notated as transition 

1.) The equation of this network is: 

N 

b +1 (x) = b(x) = LwtjcIj(x), 	 (4.15) 
j=1 

where St is the state of the HMM at time t, 4 j  is the jth RBF (all RBFs 

are Gaussians in this example) and wij are the weights from the jth RBF 

to the ith emission probability. 

The structure of this network is isomorphic to that of the semi-continuous 

hidden Markov model (SCHMM) introduced by Huang [82]. This model 

may be considered to be a form of continuous hidden Markov model with 

all emission probabilities sharing a Gaussian mixture probability density 

function. Alternatively, it may be intuitively regarded as a discrete hid-

den Markov model with an interpolating, overlapping codebook. In the 

SCHMM, the expression for the emission probability (b +1  (x)) may be 

written in terms of the discrete emission probabilities using a VQ code- 
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book: 

b +1  (x) = p(xlst,st+i) 

Y= 	( IO )P(OI) 

N 	 (4.16) 
L pxOjb 	0j) = 	(1)ss + 1(  

j=1 
N 

b(x) =  

Here 	 is the discrete emission probability: that is the prob- 

ability of symbol (or VQ codeword) O j  being emitted when there is a 

transition from state St to St+1.  The PDF p(xIO) specifies the probabil-

ity the acoustic data will be x when VQ codeword 5 is activated. If the 

RBFs are identified with the VQ PDFs p(xIO),  and the weights w; 

with the discrete emission probabilities b(03 ), then we see that SCHMM 

equation (4.16) is implemented by RBF network (4.15). 

A SCHMM is trained by a maximum likelihood procedure, using the 

EM algorithm. In this procedure the means (t.Lj)  and covariances () 

defining the Gaussian PDFs p(xIO,)  are also re-estimated, in addition to 

the HMM parameters ar,, b1 (0,) and ct.  The reestimation equations for 

the R j  and Z, (given in [821) are simply an extended case of the usual EM 

algorithm for Gaussian mixture densities [158]. However, they include 

feedback from the HMM, and are thus dependent on the forward and 

backward probabilities computed in the Baum-Welch algorithm. Thus 

the VQ codebook is optimised by a HMM maximum likelihood process, 

rather than the usual unsupervised distortion minimisation process, such 

as the k-means clustering algorithm. Using the framework discussed in 

chapter 3, SCHMM training involves a multiplicative back-propagation 

through time in the HMM, summed over time and all state transitions. 

4.6 Summary 
The results of a progression of single speaker speech recognition exper- 

iments using radial basis function networks have been reported in this 
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chapter. The first experiment was a static vowel classification; the RBF 

network demonstrated that it was a powerful classifier for this task, pro-

ducing results not worse than a MLP, a discrete HMM and a Gaussian 

classifier. However this experiment was limited by the relatively small 

amount of (unbalanced) training data that was available when it was 

performed. 

The following experiments all attempted to model, in some way, con-

tinuous speech, with the aim of producing a continuous speech recog-

niser. The first attempt was the production of a frame labelling system 

in which a sliding window of acoustic input vectors were mapped onto 

their correct frame labels. Various RBF networks were applied to this 

task, including Gaussian classifiers trained both discriminatively and us-

ing a maximum likelihood method. However, these frame labellers had 

no longer timescale model of speech dynamics, and were thus unable to 

produce a suitable segmentation. This problem was solved by assuming 

the sequence of phonemes was produced by a first order Markov model: 

the transition probabilities for this model were estimated using the train-

ing data. This crude model was then applied as a post-processor to the 

output of the RBF networks, using a Viterbi smoothing process. The 

output of this process was a segmentation and corresponding phoneme 

lattice for each utterance. Evaluation of these phoneme lattices was per -

formed by estimating the per phoneme entropy. Finally, these phoneme 

lattices were passed to the CSTR language model, LexAx, which per -

formed a lexical access process using the Viterbi algorithm (with a beam 

search for efficiency), with a tree-structured phonetic lexicon and a low -

perplexity phrase structure grammar. Using this constricting grammar, 

recognition errors of 6% (word) and 14% (sentence) were obtained, which 

compared well with the best CSTR HMM errors of 4% (word) and 8% 

(sentence). 

Additionally Viterbi training methods for neural networks were dis-

cussed and it was demonstrated that an RBF network trained using Con-

nectionist Viterbi Training (CVT) and a semi-continuous hidden Markov 
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model were isomorphic models using the same form of PDF to estimate 

the HMM emission probabilities. 

There is much scope for future work. The RBF networks may be 

extended by using covariance or diagonal covariance matrices instead 

of the scalar widths used in this work. To avoid a massive increase in 

the number of free parameters, these covariances could be tied between 

several RBFs. Presently, the means for the RBF networks are chosen 

randomly from the training data; this might be improved by using some 

form of competitive training to choose them. Indeed, the EM algorithm 

could be employed to estimate both means and covariances for the RBFs. 

There have been conflicting results on the usefulness of adaptive RBFs 

[140, 117]. 

Perhaps the most promising area for immediate future work is in the 

links between HMMs, feed-forward networks and Viterbi training. Speech 

recognition experiments using RBF networks in a Viterbi training frame-

work would be most interesting, particularly when compared with the 

results obtained using the similar semi-continuous hidden Markov mod-

els. 



NETWORKS WITH FEEDBACK 

5.1 Dynamical neural network models 
5.1.1 Motivation 

The principal problem addressed in this thesis has been speech recog-

nition. Although this is a dynamic process, the models employed were 

static, layered models (albeit, with delay lines and time-dependent post-

processing); hence fixed point dynamics were guaranteed (this is, of 

course, a trivial statement for a layered network). This approach has 

several drawbacks: the network has no memory of previous states (as 

there are no feedback connections) so all context has to be specified by 

a sliding window or delay line'. 

For a more complex signal the approach of fixed time delays is prob-

lematic. Varying parts of the speech signal (and indeed higher level 

processes such as syntax) require varying amounts of context for optimal 

prediction; a fixed length context is wasteful and probably inadequate 

because some parts of the signal will require a greater degree of context 

than others. So the signal will be imperfectly modelled and the num-

ber of degrees of freedom used in the interpolation will be greater than 

necessary. A method to address this problem in a statistical framework 

has been offered by Rohwer [170], who described an algorithm for the 

1 Dynamical systems may be predicted by learning functions that map from n previous 
outputs of the system to the current output [192, 143, 54]. An example of such functions 

are feed-forward networks with a delay-lined input. 
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construction of a variable-order Markov model. 

The approach then, is to construct a dynamical system to emulate the 

system under investigation. In hidden Markov modelling a piecewise sta-

tionary, probabilistic dynamics is used to model each speech unit. This 

has been a successful approach, due mainly to the power and generality 

of the EM algorithm. However, this is a poor model of speech dynam-

ics. A more natural method might be to use a recurrent neural network 

for dynamical modelling. Recurrent networks allow computation with 

non-fixed point attractors, with which it seems natural to model com-

plex time-dependent processes such as speech production and recogni-

tion, motor control and higher level cognitive processes. However, work 

on developing learning algorithms for recurrent networks is still at an 

early stage. Here, I shall be concerned with characterising the dynamical 

behaviour of a particular network model. 

Complementing the impetus from engineering described above, neuro-

biologists have produced experimental results and physiological models 

indicating the importance of complex dynamical behaviour in the brain. 

Over the past 20 years, Freeman and co-worker [58, 186, 13] have stressed 

this and have offered experimental evidence for chaotic behaviour in the 

olfactory bulb [186]. Models taking into account this (and other) physi-

ological evidence have been proposed by Baird [13] and Li and Hopfield 

[112]. Both these models regard stored memories as oscillations rather 

than fixed points. Guevara et al. [71] have discussed experimental results 

and mathematical models of individual neural oscillators and networks 

modelled by time-delay equations which suggest that chaotic dynamics is 

an important feature of neurobiology. Babloyantz and Destexhe [10] have 

also produced evidence for chaotic activity in the brain, using well-known 

methods from dynamical systems to analyse time series obtained from 

EEGs. They have produced values for the fractal dimension of chaotic 

attractors resulting from normal brain activity and epileptic seizure; they 

suggested that epileptic seizure may correspond to bifurcation to a low- 
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dimensional chaotic attractor 2 . Recent results in visual cortex, obtained 

independently by two groups [69, 471, have offered further evidence for 

the importance of dynamical behaviour in understanding brain function. 

These results are especially interesting as they have provided evidence of 

spatial phase locking, which may provide a mechanism for establishing 

relations between different areas of the visual field. 

5.1.2 Dynamical studies of neural network models 
Recently, several researchers have reported complex dynamics 3  in neural 

network models, arising from both theoretical analysis and simulation. 

Early work in neural network modelling laid stress on the notion of os-

cillations as memory states: simulations at Lincoln Laboratory [52] and 

IBM [168] produced sustained complex dynamical behaviour in random 

networks of -binary threshold neurons ("diffuse reverberations" was the 

term used at IBM). Such behaviour was later theoretically investigated 

(in terms of graph theory) by Sloane [187] who showed that certain net-

work architectures executed limit cycles whose periods increase exponen-

tially with network size. 

However, it was not until the mid-1980s that investigations into net-

work dynamics using methods from dynamical systems theory began to 

be published. Choi and Huberman [33] studied the Little network model 

[115] (a network of binary units with synchronous update and no enforced 

symmetry, a precursor to the Hopfield model) in terms of a master equa-

tion giving the time-dependent probabilities of the network being in a 

given state. They demonstrated that a third order approximation to this 

system could display deterministic chaotic behaviour. Riedel et al. [162] 

investigated the sequential memory suggested by Sompolinsky and Kan-

ter [190]. This is essentially a Hopfield model with two sets of weights: 

2 It is by no means certain that the time series analysed result from attractor dynamics, 

rather than transient behaviour. 

3 For a good introduction to nonlinear dynamics and deterministic chaos see the book by 

Schuster [179] and the review article by Eckmann and Ruelle [48] 
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the usual symmetric set and an asymmetric set to induce transitions 

between patterns. The latter is stabilised by a delay term. They discov -

ered that in the case of exponential delay, an increase in the transition 

amplitude resulted in chaotic motion. However, this transition was not 

characterised in terms of any of the well-known routes to chaos. Som-

polinsky et al. [189] studied a continuous time network of N nodes with 

a random weight matrix. Using mean field theory they predicted that 

there would be a transition from a fixed point (at the origin) to chaotic 

motion as the gain of the network was increased. This theory is exact as 

N - oo. In simulations of several hundred nodes they observed chaotic 

motion. However, there was no direct transition from the zero fixed point 

to chaos; there was an intermediate phase where the system displayed 

non-zero fixed points and limit cycle oscillations. In accordance with the 

theory, this intermediate region shrunk as N was increased. Additionally 

an analytic expression for the maximal Liapunov exponent was derived. 

Several groups have also characterised deterministic chaotic motion 

through simulation of neural network models. This has been found in 

computer and electronic simulation of the network dynamics [98, 15, 

9, 124], the memory retrieval dynamics [198, 60, 134] and the learning 

dynamics of the back-propagation and Hebbian algorithms applied to 

layered networks 4  [200]. 

5.2A survey of network dynamics 
5.2.1 The model 

Following previous workers (e.g. [7, 202, 180, 35, 80, 150]) an N node 

network was studied, governed by the dynamical law: 

/ N 

at - - +f 	 + Ii  

4 In this work the control parameter was the step-size in the gradient descent and the 
observable was the sum of the absolute values of the weights. The investigators observed 

period doubling to chaos. 
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Figure 5-1: Graph of the sigmoid nonlinearity, f(x) = 
l+exp(—rx)' 

for different 
values of r. 

f(x) = 
	1 	

(5.2) 
1 + exp(—x) 

where wtj  is an N x N weight matrix, r is the magnitude of the weight 

matrix, corresponding to the slope (gain) of the sigmoid nonlinearity f 

(figure 5-1), yj is the output of node j and I t  is the external bias. In 

computer simulation a discretised version of this equation was iterated: 

N 

W(t + t) = (1 -At)(t) + tf ( 	w(t) + ii). 	(5.3) 

When it = 1 and there is no external input, this is a discrete-time neural 

network model: 

j(t+ 1) = f 
(N ) 	

(5.4) 
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The studies reported in this chapter and the next used fixed random 

weight matrices with specified symmetries and magnitudes. An initial 

random weight matrix v jj  was randomly generated so as to produce an 

RMS activation of 1.0 for each node's input by initialising each weight 

uniformly in the range ± ç,. This matrix was then decomposed into 

symmetric S ij  and antisymmetric Aij components: 

s ti  =Vij + vjt 	
(5.5) 

Aij = v - v i  

and w; was generated using a symmetry parameter e: 

wij  = aS 1  + ocAij  

	

cT+ oc = 1 	 (5.6) 
oc 

C = -. 
0 

Four control parameters were used: N (the number of nodes in the net-

work), At used to discretely simulate the equations of motion (equation 

5.3), i (the gain of the sigmoid nonlinearity) and a, the weight matrix 

symmetry parameter, which may be obtained from e: 

1 - 
(5.7) 

1 + c2  

So a = —1 corresponds to an antisymmetric matrix, a = 1 a symmetric 

matrix and a = 0 a random matrix with uncorrelated elements. 

Two investigations were performed in an attempt to elucidate the dy -

namics accessible to this model. In this chapter, a method of cataloging 

the richness of dynamics offered by this neural network model is de-

scribed. Networks with from 2-25 nodes and random weight matrices and 

initial states were investigated via power spectra of their time-dependent 

output. In the next chapter the results of a detailed study and charac-

terisation of the dynamics of a particular network are reported. 

5.2.2 Network power spectra 
To examine the dynamical behaviour of an N-node network a power 

spectrum was computed for the time-dependent output of each node in 
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the network. After 100 timesteps to run out transients 5  the network was 

run for a further 1024 timesteps, following which a Fourier transform 

was computed (using a 1024 point (T = 1024) FFT), giving a maximum 

detectable period of 512 

2 T-1 	 f-27rtkt\I 

	

T 	) 	
k=0,1,...,. 	(5.8) 

The peaks of the power spectrum were interpreted as specific periods 

T(k) or frequencies w(k) 

W(k) = 	 k=0,l,...,i 

(5.9) 

T(k) = 
	2=T 	

k=0,1,...,'. 

Each power spectrum was summarised into 2 statistics: 

pLj  mean (over frequency) power 

T/2 

(5.10) 
k=1 

• Si  "spectral entropy", computed from the normalised power spectrum 

P(k) 

T/2 

Si  = —P(k)lnP(k)  

Note that these statistics discard the DC component of the spectrum. 

The spectral entropy will be maximal for a uniform power spectrum and 

will be 0 for a spectrum with a single peak. In practice a noise threshold 

is defined in computing S i , and the entropy of a fixed point system (with 

all the power in the DC component) is defined to be 0. 

These statistics pertain to nodes; to summarise the activity of the 

network as a whole they were averaged over all nodes in the network 

5 Transients lasting considerably more than 100 iterations may be observed; see later. 
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to give two mean values L and 9. The mean power statistic gives an 

indication of the overall amplitude of the oscillations in the network. 

This will be large when the network is oscillating between saturated 

regions of the transfer function - e.g. at large values of r when the 

nonlinearity approximates a step function. The spectral entropy, which 

increases with the broadness of the power spectrum, gives an indication 

of the temporal complexity of the network. Larger values of S indicate 

peaks at several frequencies, suggesting complex periodic motion (with 

two or more incommensurate frequencies and the consequent harmonics 

and linear combinations) or chaotic motion (which is characterised by a 

broadband power spectrum). 

In the experiments reported below, one hundred simulations were per-

formed for each network size and for each value of the (i, a) parameter 

pair; this corresponded to 10 random weight matrices (v) and 10 ran-

dom initial states for each network. For each set of simulations at a 

particular (i, a) value, means and standard deviations (over simulations) 

of IL  and S were computed giving 4 numbers characterising a particular 

(r, a) parameter region. Initially a value of At = 1 (discrete time system) 

was investigated; the dependence on varying it was investigated with 

respect to r and a, but N was held constant (N = 8, in all experiments 

when Lt< 4 

5.2.3 Dynamics of the discrete time system 
In this section an investigation of the dynamics of networks specified by 

the discrete time system (5.4) is reported. Network sizes of 2-25 nodes 

were studied. The results are shown graphically for a network of size 

N = 8 (figure 5-2). Figure 5-3 shows the spectral entropy with respect 

to (r, a) for networks with 10 and 20 nodes. 

A most striking feature of these results is the qualitative invariance 

with respect to N of the dynamics of this network model; for N > 4 the 

(r, a) phase space in power and entropy may be divided into characteristic 
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Figure 5-3: Means and standard deviations (over simulations) of average 
entropy for networks with (a) N = 10 and (b) N = 20. 
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regions. At low values of r the transfer function is virtually linear and the 

weight matrix has low magnitude; hence, the eigenvalues will usually fall 

inside the unit circle and the network will display fixed point behaviour. 

When r is large, the transfer functions approximates a step function; for 

a symmetric network (a = 1) this is the symmetric Little model and it 

can be shown analytically that the system will display fixed point or limit 

cycle period 2 dynamics 6[59]. For an antisymmetric weight matrix (a = 

—1) it may be shown that fixed point or limit cycle period 4 dynamics 

will emerge [72]. 

Away from these extremes, more complex dynamics with longer tempo-

ral correlations may be observed. In figure 5-3 these areas are indicated 

by large values of the mean and standard deviation of the entropy. A 

high region of activity may be located at approximately 4 < r < 32 (i.e. 

"intermediate" values of the transfer function, away from the linear and 

step function limiting behaviours) and at approximately —0.8 < a < 0.0 

(i.e. uncorrelated networks or networks with a greater antisymmetric 

component). 

When temporal activity first occurs in the network (as r is increased) 

high spectral entropies are recorded, but with very low power values. 

It seems likely that this low power activity is not due to attractor mo-

tion, but to long-lived transients (transients were assumed to die out 

in 100 iterations, which in some cases appears to be an optimistic as-

sumption). This is understandable as it may correspond to an initial 

bifurcation away from fixed-point behaviour. As the system approaches 

the bifurcation point, so the maximal Liapunov exponent will approach 

0. Qualitatively this means that the rate of convergence to the final at-

tractor becomes slower as the bifurcation point is approached, leading to 

long-lived transients. Numerical noise arising from the accuracy of the 

floating point processor  may be discounted, as the power levels are too 

6 Marcus and Westervelt [125] have provided a stability criterion for the gain that will 

guarantee only fixed point attractors in this case 
7 The simulations in this chapter were performed using 32 bit floating point arithmetic. 
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Figure 5-4: Graph of maximum (over (a, r)) mean and standard deviation of 
entropy (max(S) and max a(S)) against N. The maximum value of < 5> is 
In(!) = 1.og(512) = 6.23. 

high. 

Although the qualitative features of the dynamics phase space appear 

to be independent of N (provided N > 4), there is a trend of increas-

ing dynamical complexity as N increases. This is evidenced by plotting 

the maximum (over a and i) mean (over simulations) spectral entropy, 

max < 9 >, against N (figure 5-4). 

In the next chapter 64 bit floating point arithmetic was used. 
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The diagram uses the same representation as figure 5-3. 
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Figure 5-6: Plot of maximum (over (a, r)) mean and standard deviation of 
power (max(jI) and max a( -9)) against At. 

5.2.4 Discrete and continuous modelling 
The above section does not investigate the effect of the resolution of the 

discretisation (i.e. the value of At in equation 5.3) on the dynamics of the 

network. To study this effect, the dynamics of an 8 node network s  were 

surveyed at various values of At (figure 5-5). As At was reduced (i.e. 

the system better approximated the continuous time limit) so the areas 

of fixed point dynamics in (T, a) parameter space increased. Specifically, 

when At = 1 and r > 2.0 most networks displayed non-fixed point be-

haviour for all values of the symmetry, a. (For positive a, limit cycles of 

8 Owing to the extensive computer time required to investigate the dependence on At, 

this survey was only carried out for a single value of N. 



S 
2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
C 

5 NETWORKS WITH FEEDBACK 
	

123 

At 

Figure 5-7: Plot of maximum (over (a, r)) mean and standard deviation of 
entropy (max(i) and max a(S)) against At. 

period 2 were the most common attractor types.) However, as At was 

reduced, larger areas of (T, a) space displayed fixed point dynamics, par-

ticularly in regions where a was positive. This stabilisation effect is to be 

expected, as decreasing it will have a damping effect on the dynamics, 

arising from the first term on the right hand side of (5.1). Additionally, as 

At is decreased the power of any oscillatory motion is also decreased, as 

may be observed by plotting the maximum (over r and a) mean and stan-

dard deviations of power against it (figure 5-6). Although the power 

of the oscillations is decreased with A t, the maximum spectral entropy 

does not; if anything it increases. Furthermore, the region of maximal 

entropy drifts to larger r and more negative a values as At is decreased 
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(figure 5-7). 

The stabilising effect of reducing At is to be expected [32] and is in line 

with results reported by other researchers. Pineda [150] has suggested 

that values of At marginally below 1 impart stability into the network 

(he typically used At = 0.99 or At = 0.90 in simulations of (5.1) when 

fixed point behaviour was required). Simard et al. [185] reported that 

after numerical simulating (5.1) only 2 out of 500 100-node networks with 

weights randomly initialised uniformly in the range ±1 (corresponding 

to r = 3.33) did not display fixed point behaviour 9. Additionally they 

reported that all networks of 50 or fewer nodes simulated displayed fixed 

pbint behaviour (with a gain corresponding to r = 2.36). These results 

are in regions of low r; however, complex dynamical activity has been 

reported by other workers investigating the behaviour of (5.1). Kürten 

and Clark [98] have reported chaotic behaviour in such a system with 

greater than 25 nodes and a limited fan-in of 8 connections inputting 

to each node. Pearlmutter [148] has trained small networks governed by 

dynamical law (5.1) to display complex limit cycles. 

9 Simard et al. do not give the value of it they used for the discretisation of (5.1). 



6 
CHAOS IN NEURAL NETWORKS 

The survey of network dynamics reported in the previous chapter gave 

some indication of the dynamics displayed by this neural network model. 

However, the survey threw little light on the detailed structure of thEse. 

dynamics. In an attempt to rectify this situation, the dynamics of a par-

ticular network were investigated in some detail. The control parameters 

were again the gain (r), symmetry (a), network size (N) and discretisa-

tion (At). A random network was simulated, using N = 8 and At = 1; 

hence this was an 8 node discrete-time model given by (5•4)1•  Thus, the 

two variable control parameters used were i and a. 

6.1 Methodology 
The first tools used to investigate the dynamics of a network were bifur-

cation diagrams plotted for each node. Each bifurcation diagram showed 

the output of that node with respect to a single control parameter (r or 

a). More quantitatively, the dependence of the dynamics on the control 

parameter was investigated using Liapunov diagrams, a plot of the Lia-

punov exponents of the attractor against the control parameter. Other 

methods used to characterise attractors included power spectra of the 

node outputs, computations of fractal dimension and 2-dimensional at-

tractor sections obtained by plotting the output of one node against that 

1 Jan Scheurich [178] has performed some similar computational studies of networks sim-

ulated with higher resolution discretisation, At = 0.75 and At = 0.25. 
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of another. 

Characterising fixed points and periodic motion is trivially achieved 

using power spectra: the peaks in a power spectrum correspond to the 

frequency of motion (or its harmonics). A power spectrum is not enough 

to characterise chaotic motion: whilst deterministic chaotic motion is 

distinguishable from purely periodic motion by virtue of its broadband 

power spectrum, it is not distinguishable from noisy periodic or ran-

dom motion. However, deterministic chaos is very different from random 

noise: chaos is characterised by a deterministic dynamics, in which ini-

tially adjacent points become exponentially separated as the dynamics 

evolve. In random motion, initially adjacent points are distributed with 

equal probability over the entire region of accessible space. This ex-

ponential divergence may be measured, on average, for an attractor by 

computation of the Liapunov exponents. 

A second way to distinguish chaotic motion from random motion is 

by the fractal dimension. Whereas random motion in a d-dimensional 

space will tend to fill that space, chaotic motion will remain bounded 

in a certain region of space. The structure of this region to which the 

attractor is confined may be described by the fractal dimension. 

6.1.1 Liapunov exponents 
Consider the motion of 2 adjacent points under the influence of a 1-

dimensional discrete dynamical system, X+1 = F(x). If the system is 

chaotic, then the 2 points will become exponentially separated (figure 6-

1). This separation may be measured by the Liapunov exponent (A(x o )), 

which is defined as: 

A(X0) = lim (6.1) 
N—too €—O N 

= lim i  log I 1 (0) .  
N-ooN 	I dxo I 

This may be generalised to a d-dimensional system. Such a system pos- 

sesses d Liapunov exponents, one for each spatial dimension, generally 
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Figure 6-1: The Liapunov exponent (A) measures the exponential separation 
of two points acted on by a chaotic dynamical system. 

ordered largest first: 

I (A0,A1 ,... ,A) = urn 	log(magnitude of the eigenvalues of fl J(x)) 
N—oo N 

Tt 1 
(6.2) 

where J(x) is the Jacobian matrix of the map x 1  = 

J3(x) =
aFi 	

(6.3) 

Liapunov exponents are invariant under phase space coordinate transfor -

mations. 

Intuitively, the Liapunov exponents give an indication of the stretching 

and compressing in the attractor. Negative Liapunov exponents indicate 

that the system is contracting - adjacent points will be drawn together, 

onto the attractor. Chaotic motion is characterised by at least one posi-

tive Liapunov exponent; a positive Liapunov exponent indicates that the 

system is divergent in that direction. This divergence is manifested as 

a sensitive dependence on initial conditions, meaning that information 

about the initial conditions is lost under the evolution of the dynam-

ics. This information loss may be measured by the Kolmogorov entropy 

which is simply the sum of the positive Liapunov exponents [53]. 
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Computation of the Liapunov exponents for a multi-dimensional sys-

tem cannot generally be achieved by a trivial substitution into formula 

(6.2). Computing the Jacobian in this formula would involve N nested 

matrix products, where N is typically of the order of 10 1  or 10'. This 

has the effect of causing a single direction (corresponding to the largest 

eigenvector) to dominate, causing the other basis vectors to collapse and 

become indistinguishable. Additionally each vector will converge to 0 

or diverge to 00 in magnitude. Both these problems may be overcome 

by following a method originally proposed by Benettin and co-workers 

[17, 181 that is based around a repeated Gram-Schmidt Orthogonalisa-

tion. This procedure is repeated each timestep: as well as normalising 

the basis vectors, it subtracts the components of 'higher' (larger eigen-

value) basis vectors from lower ones. This technique enabled the accurate 

calculation of 7 Liapunov exponents for the 8-dimensional system under 

consideration here. 

6.1.2 Fractal dimension 
The Liapunov exponents give information about the local "stretching" in 

the attractor, but give no information about the global "folding". There 

have been several definitions of attractor dimension, that attempt to give 

static topological information about the attractor. Three of the most 

common dimensions are the fractal or Hausdorif dimension [123], the in-

formation dimension [53] and the correlation dimension [68]. The fractal 

dimension is a purely geometric quantity, independent of the frequency 

with which various parts of the attractor are visited, and is computed by 

considering the number of d-dimensional boxes of side length 1 needed to 

cover the attractor, considering the limit 1. —i 0. The information dimen-

sion takes account of non-homogeneity in the attractor by considering 

the probability that a point on the attractor will fall in a given box of 

size 1d  The correlation dimension (used in this work) is computed via a 

ball-scaling method, by considering the spatial correlations between pairs 
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of points on the attractor via the correlation integral C(t), the fraction 

of pairs of points less than a distance 1. apart: 

C(1) = lim 	> e(Ix — 	— 1) 	 (6.4) 
N—+oo N 2  

tj 

where 0 is the Heaviside step function. Grassberger and Procaccia estab-

lished a scaling law for C(l): 

C(l) OC  tD2 	 (6.5) 

when L is small. D2 is the correlation dimension. 

A relationship between the various definitions of dimension was estab-

lished by Halsey et al. [73] with the notion of generalised dimension, D q , 

— oo<qoo: 

D q  = —urn 1 Ilog__'log 	 (6.6) 
i—o q —1 	 t 

where p i  is the probability that the attractor visits box i. of side length 1. 

Schuster [179] gives a lucid exposition of how this is related to the ball-

scaling method of Grassberger and Procaccia, and demonstrates that the 

fractal dimension is D 0  (by definition, the maximal D q ), the information 

dimension is D 1  and the correlation dimension D2. 

6.2 Gain dependence 
To investigate the effect of gain on the dynamics of an individual network 

(N = 8) the symmetry parameter was held constant (a = 0) giving the 

weight matrix equal symmetric and antisymmetric parts. The dynamics 

were investigated by varying i -  from 0 to 31.1: in effect from a linear 

transfer function to an approximated step transfer function. 

The dynamics may be viewed using bifurcation diagrams for the out-

puts of each node. These were constructed by running the system for 

20,000 iterations at each parameter value and recording the last 10,000 

states of the network, which were presumed to be on the attractor. Fig- 

ure 6-2 shows a bifurcation diagram for one node of the network for 
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Figure 6-2: Bifurcation diagram for one node of an 8 node network (a = 0.0) 
with respect to varying r (0.0 < r < 31.0). One column of the diagram 
represents 10,000 iterations of the network (after 10,000 iterations to run out 
transients) at a particular value of r. The tj axis represents the output of an 
individual node of the network. 

0.0 < r < 31.0, with r increasing in steps of 0.05. At low values of r 

the system is close to linear, and thus displays fixed point behaviour. 

When r 5.3 the system bifurcates to oscillatory behaviour; non-trivial 

oscillatory behaviour continues until r > 20, when a limit cycle (period 

4) attractor dominates, the activity of all nodes in the network moving 

toward the saturated regions of the sigmoid nonlinearity, thus producing 

large amplitude oscillations. 

The region around the initial Hopf bifurcation (when T = 5.2822) is 

shown in greater detail in figure 6-3(a). As r increases toward the bi-

furcation point the (negative) maximal Liapunov exponent A increases 

toward zero (figure 6-3(b)). For fixed point dynamics, A1 gives a qualita-

tive measure of the rate of convergence of points in the basin of attraction 
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Figure 6-3: (a) Bifurcation diagram for one node of an 8 node network, 
together with (b) corresponding Liapunov diagram for 5.0 < V < 8.0, when 
a = 0.0. The regions of mode-locking at winding numbers, and may 
be observed. 
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to the fixed point: as A 1  becomes less negative, so this rate decreases and 

initial points take longer to converge to the fixed point. This was ob-

served in the transient behaviour of the dynamics as i - 5.2822: long 

lived transients of up to 10,000 iterations were observed. 

A second bifurcation from 1 frequency to 2 frequency motion occurs at 

= 5.2840: this is not visible in the bifurcation diagram, but is observ-

able in the power spectra (figures 6-4(a,b)). A 2-dimensional section of 

the resultant attractor (taken when i = 6.0; the oscillations are of greater 

amplitude, but are qualitatively similar to the motion immediately after 

the bifurcation) shows a circular geometry (figure 6-5(a)); this may be 

reparameterised in terms of the angle (9) of each point on the circle 

with respect to the centroid of the circle. The angular return map (or 

"0-map"), with the angles taken mod 1 in a circle of 27t, has a correspond-

ingly linear form (figure 6-5(b)). This system has similar dynamics to 

the sine-map studied by Jensen et al. [87]: 

0i =0+cl----sin(27t0) mod 1. 	 (6.7) 
27t 

The motion of this system may be characterised by the winding num-

ber, 

W = urn (_-_8O 
	

(6.8) 
n_00

) 

which measures the average rotation per iteration: here 0 is not taken 

mod 1. The value of the winding number may also be obtained from the 

dominant peak of the power spectrum (figure 6-4(c)). If W is plotted 

against i (figure 6-6), then a characteristic devils staircase structure is 

obtained. Each step of the self-similar staircase corresponds to a rational 

winding number at which the system is mode-locked. This structure 

may be generated by the Farey tree of rational numbers, with stronger 

mode-locking occurring with simpler (closer to the root of the Farey 

tree) rational numbers. Mode-locking is a common physical phenomenon, 

first observed by Huygens, when two resonators oscillating at different 

frequencies shifted frequency when coupled so as to oscillate at a simpler 
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Figure 6-4: Power spectrum of the output of one node of an 8 node network 
taken at (a) r = 5.2822, (b) r = 5.2840 and (c) r = 6.0 with a = 0.0. In (a) 
there is single frequency motion; there is a bifurcation to 2 frequency motion 
resulting in a second peak in the power spectrum (b). This can be seen more 
clearly in (c), where various harmonics and linear combinations of the two 
frequencies are apparent in the power spectrum. 
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Figure 6-5: (a) Attractor section ij vs. y3 and (b) corresponding 0-map 
when r = 6.0 and a = 0.0. Note the linearity of the 0-map. 

IUT 

Ii 

Figure 6-6: Graph of winding number W vs. r when a = 0.0. Mode-locking 
is apparent in the self similar devils staircase structure: note that .j  is the 
Farey child of .  and . The breakup of the staircase indicates a transition 
to chaos. 



6 CHAOS IN NEURAL NETWORKS 
	

135 

ratio of frequencies. The sine map (6.7) is perhaps the simplest system 

to display this phenomenon. 

Mode-locking may also be observed in the Liapunov diagram (figure 

6-3(b)). In non-mode-locked regions, the winding number is irrationa1 2  

and these regions are characterised by a zero A 1 . Mode-locked regions 

have a negative A. This may be understood by recalling the definition 

of Liapunov exponents. The Liapunov exponents are calculated by con-

sidering the behaviour of an infinitesimal ball centred about a point on 

the attractor. If there is a finite number of points on the attractor (which 

is the case for mode-locked motion) then the largest Liapunov exponent 

must be negative, since an infinitesimal ball will evolve to a single point 

under the dynamical law. However, an irrational winding number cor-

responds to an attractor which visits an infinite number of points on a 

torus; in this case the ball will not collapse to a point under the dynam-

ical law and the largest Liapunov exponent will be zero, corresponding 

to an eigenvector directed along the flow. 

The correlation dimension of the attractor was computed after gener-

ating 32,000 points assumed to be on the attractor (having discarded a 

previous 10,000 points assumed to be transients) using the method out-

lined in section 6.1.2. This computation was not accurate as the graph 

of C(1) vs. log(1) was not linear (figure 6-7). Estimating the gradient 

of the part that most approximated a linear section (by eye) yielded a 

value of D2 1.6. However, the previously presented evidence of the Li-

apunov exponents and the power spectra indicate that this was a (multi-

frequency) periodic system, that would be expected to have an integer 

dimension: in fact it is to be expected that D2 = 2 if this is two-frequency 

motion on a torus. The inaccuracy of this dimension computation is not 

unexpected: Ramsey and Yuan [1571 have indicated that the cited er- 

2 This is an approximation since: (1) there may be mode-locking at a rational number 
deep in the Farey tree, which at a given resolution is indistinguishable from an irra-
tional number; and (2) all floating point numbers represented on a digital computer are 

rational anyway. 
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C(I) 

Figure 6-7: Graph of the correlation integral C(l) plotted against log(l) for 
r = 6.0 and a = 0.0. The slope of the linear region of this graph should equal 
the correlation dimension, D 2 . 

rors for many empirically determined data sets are under-estimates by a 

factor of ten or more. 

When r = 6.9 another bifurcation occurs and a third incommensurate 

frequency is introduced (figure 6-8). However, the system cannot sus-

tain three-frequency motion: the toroidal form of the attractor breaks 

up and a transition to chaos occurs. This behaviour is characteristic of 

the Ruelle-Takens-Newhouse route to chaos [135]. The destruction of the 

torus is indicated by backfolding in an attractor section (figure 6-9(a)) 

and the corresponding 0-map (figure 6-9(b)) which contains a cubic point 

of inflection. As i is further increased, more backfolding occurs and the 

system becomes more turbulent. The breakup of the toroidal attractor 

may also be observed from the behaviour of the winding number (figure 

6-6), with the devils staircase breaking up when the system becomes 

chaotic. Chaotic motion may be evidenced from the Liapunov diagram 

(figure 6-3(b)) - the largest Liapunov exponent fluctuates around 0, 

sometimes becoming positive, and from the low-power broadband activ-

ity in the power spectrum (figure 6-10). Figure 6-11 shows a section of a 

more turbulent attractor, at a greater value of r. The Liapunov diagram 
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Figure 6-8: Power spectrum when r = 6.9 and a = 0.0. This occurs after a 
third bifurcation has imparted a new frequency into the system. The system 
is not stable enough to sustain three frequency motion, and chaos ensues - 
as evidenced by the broadband noise. 
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Figure 6-9: (a) Attractor section and (b) 8-map at r = 7.07, a = 0.0. The 
destruction of the torus may be seen, by the back-folding in the attractor 
section and the cubic point of inflection in the 8-map. 
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Figure 6-10; Power spectrum of a single node at r = 7.07 and a = 0.0. 
Chaotic motion is indicated by the broadband noise in the spectrum. 
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Figure 6-11: Section of the chaotic attractor at r = 10.69 and a = 0.0. No 
real structure is visible in this 2-dimensional projection of the attractor. 
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r 

Figure 6-12: Liapunov exponents for the region 8.0 < r < 11.1, when a = 0.0. 
The generally positive maximum Liapunov exponent exponent indicates that 
the system is undergoing chaotic motion. Regions where the largest Liapunov 
exponent is negative correspond to periodic windows. 

in this region (figure 6-12) indicates chaotic behaviour: regions where the 

largest Liapunov exponent is positive correspond to chaos, a negative Xi 

corresponding to a periodic window. The full structure cannot be seen 

in this 2-dimensional projection, at least 3 dimensions being needed to 

display the full structure and complexity of this attractor. The correla-

tion dimension (D2) was computed using 32,000 points assumed to be 

on the attractor, having run the system for 10,000 timesteps to discard 

transients. The computed dimension was D2 2.05. Although a larger 

region of this graph was linear, this must be regarded as an unreliable 

figure. This chaotic region also features large periodic windows. When 

r> 10.69, the system executes period 10 motion; the chaotic region is not 

revisited as r increases. When r = 11.19 there is a shift to a coexisting 

attractor, executing a period 5 limit cycle (figure 6-13). This is a discon-

tinuous change in the dynamics, corresponding to the initial conditions 
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Figure 6-13: Bifurcation diagram for 11.0 < r < 14.1 when a = 0.0. Period 
doubling to chaos occurs around r = 12. 

moving from the basin of one attractor to another. The system becomes 

neutrally stable (ie A1 = 0) at this change. This is an initial conditions 

effect (figure 6-14): when a point on the period-5 attractor (T = 11.20) 

is used as an initial condition for the dynamics when i = 11.19, the same 

period-5 attractor results, rather than the previously seen period-10 at-

tractor. The converse is also true. 

As r is further increased, the dynamics display period-doubling to 

chaos; this is may be observed in the bifurcation diagram (figure 6-15(a)) 

and in the Liapunov diagram (figure 6-15(b)). The period doubling may 

also be tracked using power spectra, with the corresponding new low fre-

quency peak appearing at each period doubling (figure 6-16(a—e)). At 

the accumulation point of the period doubling the system bifurcates to 

chaotic behaviour and the power spectrum becomes broadband (figure 

6-16(f)). 
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Figure 6-14: Time series at r = 11.19 (a, c) and r = 11.20 (b, d) at a = 0.0. 
These time series are taken at either side of a discontinuous change in the 
dynamics from period 10 motion to period 5 motion. (a) and (b) are time 
series taken using the same (random) initialisation as used elsewhere. (d) is 
initialised using a point on the attractor that is represented in (a) and (c) is 
initialised by a similar point from (b). (d) has similar period 10 dynamics to 
(a) and (c) has similar period 5 dynamics to (b). This indicates that phase 
change is caused by the movement of the attractor basin boundaries as r is 
increased. That is the original random starting point was initially in the basin 
of a period 10 attractor; however as r was increased, this point migrated into 
the basin of a period 5 attractor. 
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Figure 6-15: (a) Bifurcation diagram and (b) corresponding Liapunov dia-
gram for the region of period doubling to chaos when 11.9 < r < 12.2 and 
a= 0.0. 
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Figure 6-16: Power spectra taken with (a) r = 11.9, (b) r = 12.0, (c) r = 
12.075, (d) r = 12.093, (e) r = 12.096 and (f) r = 12.1. The progression of 
period doublings may be clearly seen as there first period 5 motion (a) , then 
period 10 (b), then 20 (c), then 40 (d), then 80 (e). At r = 12.1 the system 
is chaotic; however a strong period 5 (or higher doubling) driving frequency 
is visible above the noise in the spectrum (f). 



6 CHAOS IN NEURAL NETWORKS 
	

144 

At the point of period doubling from period it to period Zn., the fixed 

point of the map f(x) becomes unstable. This is evidenced by the max-

imal Liapunov exponent becoming zero-valued as the system shifts from 

one limit cycle to another. 

This classical route to chaos [55] is characterised by Feigenbaum's con-

stant, : 

r=r—k 	n.>> 1, 	 (6.9) 

where r is the accumulation point of the period doublings and T, is the 

value of r at the nth period doubling. Within the floating point accuracy 

of the computer used to simulate this system, values of r were determined 

for the first 6 period doublings giving 5 = 4.67 ± 0.04, which is in good 

agreement with the accepted value of 5 = 4.6692... 

This route to chaos, and the value of the constant & indicates that 

this system may be reduced to a 1-dimensional system with a quadratic 

maximum in this region of parameter space. Power spectra of the chaotic 

time series at r = 12.15 and r = 12.18 are shown in figure 6-17 and two-

dimensional projections of the corresponding chaotic attractors are also 

plotted (figure 6-18). 

The correlation dimension was again estimated from 32,000 points after 

discarding 10,000 as transients. The graphs of C(t) vs. log(t) are shown in 

figures 6-19(a,b). The attractor sections, power spectra and bifurcation 

diagrams have all indicated that these are somewhat different attractors. 

The Grassberger-Procaccia computation gives D2 2.03 when r = 12.15; 

when r = 12.18 1  D2 2.50 - although there the linear portion of the 

graph is much smaller in this instance. 
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Figure 6-17: Power spectra for chaotic motion at (a) r = 12.15 and (b) 
r = 12.18 (a = 0.0). As r is increased so the broad band chaos increases in 
power. The periodic frequency is still visible in (a); however a "phase change" 
occurs (visible in the bifurcation diagram after a wide periodic window), and 
power spectrum (b) is completely broad band. 
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Figure 6-18: Two-dimensional projections of chaotic attractors at (a) r = 
12.15 and (b) r = 12.18, when a = 0.0. 
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(a) 
	

(b) 

Figure 6-19: Graph of the correlation integral C(1.) plotted against log(l) for 
(a)r = 12.15 and (b)r = 12.18 when a = 0.0. The slope of the linear region of 
this graph should equal the correlation dimension, D 2 . (Note log(l) is scaled 
differently on the two graphs.) 

6.3 Symmetry dependence 
The dependence of the dynamics on the symmetry of the weight matrix 

was investigated by holding the gain constant (T= 6.0) and varying the 

symmetry parameter a. Fixed point behaviour resulted for a symmet-

ric weight matrix (a = 1.0) and limit cycle period 4 for antisymrnetric 

weight matrix (a = —1.0). The dynamics were more complex for values 

of a closer to zero (figure 6-20). Whilst fixed point behaviour dominates 

most of the symmetric region (a > 0), there are transitions between dif-

ferent fixed points. For the initial conditions used here, these transitions 

occurred at a = 0.42 and a = 0.77 (figure 6-21). 

In both these transitions, the maximum Liapunov exponent vanished, 

indicating a neutrally stable state, at the boundary of 2 basins of attrac-

tion. This behaviour indicates that the dynamics of this network were 

considerably influenced by initial conditions, which were barely investi-

gated here. 

A Hopf bifurcation away from fixed point behaviour occurs at a = 
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Figure 6-20: Bifurcation diagram for —0.8 < a < 0.4 and r = 6.0. 

0.0153 (figure 6-22(a)) and this is almost immediately followed by a sec-

ond Hopf bifurcation to two frequency behaviour. This can be seen by 

looking at power spectra taken in the region (figure 6-23). The system 

executes circle map dynamics and mode locking at rational winding num-

bers occurs (figure 6-24). The Hopf bifurcation and mode-locked regions 

are visible in the Liapunov diagram of this area (figure 6-22(b)). It is no-

table that W is not monotonic, displaying a maximum at a = —0.0555. 

At a = —0.06 there is an abrupt bifurcation back to fixed point be-

haviour; this transition is characterised by A2 vanishing. This change 

may be explained by the system moving from the basin of one attractor 

(a 2-torus) to another (a fixed point), with a neutrally stable state char -

acterising the boundary. The importance of initial conditions is again 

emphasised here, but a fuller exposition of the dynamics of this system 

would require a much greater investigation of the coexisting attractors 

available to the system at any (a,r) setting. 
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Figure 6-21: (a) Bifurcation diagram and (b) Liapunov diagram for 0.2 < a < 
0.8 when r = 6.0. This region is notable for transitions between coexisting 
fixed point attractors. The transitions are visible as their maximal Liapunov 
exponents vanish. These shifts between fixed points may be regarded as initial 
condition effects. 
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Figure 6-22: (a) Bifurcation diagram and (b) Liapunov diagram for —0.25 < 
a < 0.05, r = 6.0. A negative maximal Liapunov exponent signifies either 
fixed point or simple oscillatory behaviour. 
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Power/dB 
	

Power/dB 

(a) 	 IS 

Figure 6-23: Power spectra taken at (a) a = 0.0153 and (b) a = 0.01 525, when 
r = 6.0. In (b) a second frequency is visible, indicating a Hopf bifurcation 
from single frequency to two frequency behaviour. 

W 

Figure 6-24: Graph of winding number W vs. a when r = 6.0. Note that 
the devil's staircase structure is not monotonically increasing and that it is 
interrupted by a region of fixed point behaviour - this is another example 
of behaviour governed by initial conditions. 
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Figure 6-25: Magnified view of the bifurcation diagram —0.12 < a < —0.06 
when r = 6.0 showing the abrupt transition from quasi-periodic to fixed point 
behaviour then back to fixed point behaviour. Chaotic motion ensues, via 
the Ruelle-Takens-Newhouse route, with the chaotic region showing periodic 
windows, period doublings and coexisting attractors. 

The system resumed single frequency behaviour at a = —0.0675 and 

a second Hopf bifurcation to two frequency quasiperiodicity occurred at 

a = —0.0685. The system follows the Ruelle- Takens- Newhouse route to 

chaos, with the transition to chaos occurring at a = —0.088 (figure 6-

25). This sequence may be followed by examining the Liapunov diagram 

(figure 6-22(b)). 

The "circle map" behaviour exhibited here is again similar to that 

shown by systems such as (6.7). This system also uses two control param-

eters (K, 2) which when plotted against each other give a phase diagram 

showing interlocked periodic and non-periodic behaviour. The areas of 

periodic behaviour appear as Arnol'd tongues. It seems that certain 

regions of (a,T) space display qualitatively similar dynamics to (6.7) and 
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Figure 6-26: Section of chaotic attractor at a = —0.088, r = 6.0. Note the 
thin structure and cusps, corresponding to a low dimensionality (D 2  1.54). 

Y(3) 

Figure 6-27: Time series of one node of the network at a = —0.088 and r = 
6.0. Although this is a chaotic time series, there is an underlying periodicity. 

that K and 0 may be regarded as nonlinear functions of (r, a). 

A section of the resultant attractor (y7  vs. y3)  is shown in figure 6-26. 

The correlation dimension of this attractor was computed, giving a value 

of D2 1.54 at a = —0.088 (using 32000 points assumed to be on the 

attractor after 10000 iterations to run out transients). 

This chaotic region continues until a = —0.5 and is somewhat com-

plex, as evidenced by the bifurcation diagrams (figures 6-20 and 6-25). 

There are several large periodic windows and the chaotic regions (regions 

with positive A1) also show an underlying periodicity (figure 6-27). This 
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underlying periodicity is also visible in the bifurcation diagram. 

6.4 Discussion 
The results reported here are not surprising: a nonlinear system with a 

large number of degrees of freedom would be expected to display com-

plex dynamical behaviour. However, an important facet of deterministic 

chaos is that high dimensional systems display behaviour that may be 

quantitatively described by a low dimensional equation of motion. For 

instance, the period doubling to chaos reported above is essentially one 

dimensional behaviour. This may be important if one wishes to engineer 

the dynamics of such networks, as problems of a seemingly intractably 

large dimension may in fact be reduced to a more managable lower di-

mension. 

However, from an engineering perspective, dynamical neural networks 

will not be useful until powerful, general learning algorithms are devel-

oped to produce the desired attractors to perform a particular task: this 

is the temporal training problem. Several algorithms have been proposed 

for this task (e.g. [89, 94, 36, 14, 172, 210, 171, 148]), but there is (as yet) 

no algorithm to design a network to emulate a given dynamical process. 

Baird [14] has offered an algorithm that allows the storage of N/2 

periodic attractors, with specified Fourier components, in an N node 

network. This is a novel approach since it essentially inverts a set of 

analytical dynamical systems techniques to produce a method for con-

structing desired dynamical systems. Recently Baird has proposed a 

means of storing chaotic attractors in a neural network model (Baird, 

personal communication). 

Shastri and Ajjanagadde [183] and Wang et al. [205] have both used 

phase relationships between stored periodic attractors in neural network 

models. Shastri and Ajjanagadde have devised a connectionist model 

to dynamically represent variable bindings via phase relationships. This 

system allows a natural means of performing inference using the dynamics 
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of the network. Wang et al. also employ the notion of encoding syntactical 

bindings as phase relationships between attractors, and demonstrate how 

a simple system may be devised to perform segmentation of patterns from 

a composite input. These models using phase relationships have an added 

biological plausibility following the recent results from the laboratories of 

Singer [69] and Eckhorn [47] that seem to suggest that phase-locking may 

be a means of establishing bindings between spatially separated areas of 

the visual field. 

Neural networks displaying chaotic dynamics may be computationally 

useful. Rosenblatt [174] suggested a perceptron with sequential memory: 

this extension to perceptron theory utilised a set of feedback units that 

acted as a system clock. Rosenblatt's specification for these units was 

that they should display "non-repetitive and deterministic" dynamics - 

i.e. chaotic dynamics. 

A strange attractor might be suitable for encoding a "don't know" or 

"waiting" situation [186, 1441 in associative memory. In the absence of a 

recognised stimulus the system follows a strange attractor, allowing it to 

traverse state space in a non-repetitive fashion. Upon receipt of a known 

stimulus, the system may bifurcate to an attractor (typically a limit cycle) 

corresponding to a previously stored memory. A novel stimulus would 

cause the system to bifurcate to a new attractor corresponding to the 

new memory. A scheme for such a learning dynamics has been proposed 

by Lewenstein and Nowak [111], although they use random noise rather 

than deterministic chaos. 

Gardner et al. [62] analytically calculated the storage capacity (where 

a stored pattern corresponded to a fixed point attractor) of a fully con-

nected recurrent network (where each binary node possessed a step trans-

fer function) with respect to the symmetry (a) and a stability parameter 

(K) that indicated the size of the basin of attraction around fixed points. 

The theoretical curve they derived indicated that the region of maximal 

storage corresponded to weight matrices with larger symmetric compo- 

nents (a = 0.3 when K = 0, a -+ 1.0 as K -p  oo). If these regions are 
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related to the results presented in the previous chapter, then the regions 

of maximal storage correspond to regions of simple dynamics (i.e. high 

power and low spectral entropy). This is not surprising, as regions with 

• high density of stable fixed points are unlikely to occur in regions with 

• high density of complex periodic or strange attractors. 

The mode-locking behaviour indicates that the network may be re-

garded in terms of coupled oscillators. This may come about through 

(nonlinear) combinations of subnets, with frequencies determined by 

(T, a). A possible use for this phenomenon might be as a form of lo-

cal system timing which could be useful for operations such as speech 

production and motor control. More trivially, mode-locking also has im-

plications for fault-tolerance and learning: when a system moves into the 

appropriate region of parameter space, it will lock into a particular fre-

quency ratio. Additionally mode-locked neural networks, could be used 

in the implementation of phase-locking schemes (discussed above) such 

as the one proposed by Shastri [183]. 

Attractors displaying intermittently chaotic behaviour might also be 

useful in associative memory. The characteristic motion of intermittency 

consists of long, regular periods together with bursts of irregular motion. 

In the context of a time-dependent associative memory, this might pro-

vide a mechanism for leaving a memory sometime after recall, needing 

no external stimulus. In effect, this could be regarded as a self-priming 

or reset operation arising naturally from the dynamics. 

Chaotic attractors act as information generators in some directions 

(corresponding to positive Liapunov exponents) and information com-

pressors in others (corresponding to negative Liapunov exponents). By 

partioning the phase space into labelled boxes, dynamical systems may 

be used to generate strings of symbols. Nicolis et al [136] show how 

the Rössler attractor may produce a symbol sequence that is closely ap-

proximated by a fifth-order Markov process. Such considerations may 

be important when applying dynamical systems to high level cognitive 

and linguistic problems. Crutchfield and Young [41] have presented a po- 
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tentially important technique for reconstructing minimal computational 

models (via a variable order Markov chain) from the structure of symbolic 

dynamic sequences. 

Long-lived transients are often observed in the dynamical system stud-

ied here; for example in the initial Hopf bifurcation away from fixed 

point behaviour, the maximum Liapunov exponent tends toward zero 

and transient motion may last many thousands of timesteps. Kantz and 

Grassberger [90] and Crutchfield [40] have both argued that transient mo-

tion may be more significant than the underlying attractor. Crutchfield 

studied a simple one-dimensional lattice dynamical system He demon-

strated (by curve-fitting to experimental data) that transient length was 

hyperexponential3  with respect to lattice size. This relationship suggests 

that an experimentalist could not expect to see attractor motion on lat-

tices of more than 0(102)  sites, owing to extremely long transient lengths. 

Kantz and Grassberger have suggested that chaotic transients are more 

robust against noise than the true attractors, and may be regarded as be-

ing "more typical" of the dynamical system. Additionally, both Crutch-

field and Kantz and Grassberger also demonstrate that chaotic transients 

may have convergent statistics and give no sign of convergence to an at-

tractor. In particular, Crutchfield defines type I transients which do not 

have convergent statistics and show clear time-dependence and type II 

transients, which have convergent statistics and may be indistinguishable 

from an attractor. 

These observations suggest that it might be more profitable to study 

the transients of neural network dynamical systems, rather then the un-

derlying attractors: Crutchfield's work suggests that a large, spatially 

extended dynamical system (such as a neural network) is likely to have 

extremely long transients, growing exponentially (or hyperexponentially) 

with network size. However, whilst dynamical systems theory has reached 

a good understanding of attractor dynamics, the study of transients is 

3 i.e. Of the form exp(x). 
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still ill-developed. Indeed, most theoretical papers ignore the issue of 

transients entirely. 

Transient motion is likely to be important for modelling various phys-

iological and perceptual signals. Consider speech production. Here, the 

articulatory system may be regarded as moving from one target to an-

other, corresponding to the production of basic sounds (phones). Whilst 

long vowel sounds (for instance) may be regarded as attractor motion, in 

many instances the articulatory system does not reach its target state, 

before moving to a new target corresponding to the next phone. In this 

case, speech production might be regarded as a concatenation of tran-

sients, rather than as an attractor 4 . Hence, a better way to model speech 

production might be by engineering the transients of a dynamical system, 

rather then the attractors 5 . 

The observation that chaotic transients are more robust than the Un-

derlying attractors [90] may be important for schemes in which the learn-

ing dynamics are concurrent with the network dynamics. (Here, we as-

sume that the attractors are being engineered.) A systems could exist on 

a robust, long-lived transient, according to the network dynamics, while 

the learning dynamics makes changes to the parameters of the dynam-

ical system (and hence changes the underlying attractor). Exploitation 

of these properties would allow the system to explore parameter space to 

find a suitable attractor, whilst existing on a robust transient. A scheme 

similar to this has been proposed by Ott, Grebogi and Yorke [142] who 

use the observation that a chaotic attractor maonverted to any one of a 

large number of stable periodic motions, by making only small parameter 

perturbations. 

4 Of course, the sequence of phones may be produced by some sort of attractor dynamics. 
5 Engineering the transients is essentially engineering the attractor basins. However, the 

emphasis is somewhat different. 



CONCLUSIONS 

This thesis has made two principal contributions. Firstly, the radial ba-

sis functions (REF) network was introduced and its properties related 

to other classifiers. This network architecture was then used in various 

speech recognition problems, culminating in a continuous speech recog-

nition task with a 571 word lexicon. Secondly, a study was made of the 

dynamics of a simple recurrent network architecture. This study was con-

ducted via a numerical survey of network power spectra and through a 

detailed investigation of the dynamics exhibited by a particular network. 

Complex dynamical behaviour, including chaos, was observed. 

Word and sentence recognition errors were reported for a continuous 

speech recognition task using phoneme modelling based on an RBF net-

work and a Viterbi smoothing algorithm, and the CSTR language model. 

In the CSTR cytopathology task domain the best REF/Viterbi system 

returned first choice word errors of 6% and sentence errors of 14% when 

using a restricted grammar with a perplexity of 6. This compares well 

with the best results returned using the CSTR HMM system for phoneme 

modelling (word errors of 4%, sentence errors of 8%). In a system using 

no grammar (perplexity 571) the best RBF system (in a Gaussian clas-

sifier configuration) returned a word error rate of 42% (the best CSTR 

HMM system returned a word error of 53%). 

Previous to the continuous speech experiments, the RBF networks were 

used for a static speech pattern classification task, vowel labelling. The 

hand-segmented vowels were excised from continuous speech; 20 vowel 



7 CONCLUSIONS 
	

159 

classes were defined. The best REF network resulted in a 26.9% classifi-

cation error. Various MLP configurations, a pooled covariance Gaussian 

classifier and a discrete HMM were also tested on this task: all produced 

poorer error rates than the best RBF network. Statistics (taken over 

initial conditions) were also computed for the MLPs and RBF networks, 

in an attempt to see how robust these classification methods were as a 

function of the number of hidden units. 

Great emphasis was placed on relating the REF neural network model 

to other pattern recognition methodologies, both statistical and neural 

network. The estimation of probability density functions using Parzen 

windows and the determination of discrimination functions using the 

method of potential functions were both shown to be very similar to 

the method of RBFs. Additionally it was demonstrated how Bayesian 

classifiers using Gaussians or mixtures of Gaussians could be imple-

mented as an RBF network. This manner of implementation of these 

classifiers highlighted the usual maximum likelihood training procedure 

and enabled the introduction of some discriminative training methods. 

RBF networks were also related to vector quantisation; a layer of RBF 

functions was regarded as a VQ codebook with overlapping continuous 

functions, rather than disjoint codewords. Using this relation, an iso-

morphism between semi-continuous hidden Markov models and Viterbi 

trained RBF networks was identified. The close relations between RBF 

networks and various other neural network models were discussed. Many 

proposed feed-forward networks featuring input dimensionality expansion 

were shown to be special cases of the the RBF network model. 

The second part of this thesis was a study of the dynamics of a simple 

recurrent network model. This study was motivated by a desire to model 

the dynamics of the speech signal and a realisation that feed-forward net-

works (or hybrids of these with HMMs) might not be sufficient to model 

speech dynamics. Rather than attempt to develop another temporal 

training algorithm for recurrent networks, or apply currently proposed 

ones (which either lack power or are computationally infeasible for con- 
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tinuous speech recognition) it was decided to attempt to reach a greater 

understanding of the realm of dynamics accessible to this model. 

The approach to this problem was computational. To reduce the num-

ber of free parameters in a set of networks, two control parameters repre-

senting the gain of the transfer function and the symmetry of the weight 

matrix were defined. Two additional parameters were network size and 

the timestep used in discretisation of the network's continuous equation 

of motion. A large number of networks were simulated and their dy-

namical properties were collected by computing summary statistics of 

network power spectra. This gave an indication of the temporal activity 

of the network with respect to parameter space. The results of this sur-

vey indicated that although the amount of temporal activity increased 

with network size, the regions of maximal temporal activity remained 

approximately invariant. This area corresponded to random or slightly 

antisymmetric weight matrices and high gain (although if the gain was 

increased too much, high frequency oscillations would result). Reduc-

ing the time step (at) used in discretisation resulted in less temporal 

activity, as was expected. 

The detailed behaviour of a specific 8 node network was also stud-

ied, using bifurcation diagrams, the computation of Liapunov exponents, 

power spectra, attractor sections and the calculation of fractal dimen-

sions. Complex dynamical behaviour was observed with Hopf bifurca-

tions, the Ruelle-Takens-Newhouse route to chaos with mode-locking at 

rational winding numbers, the period-doubling route to chaos and the 

presence of multiple coexisting attractors. The existence of deterministic 

chaotic motion in a high dimensional neural network indicates that seem-

ingly high dimensional motion may in fact be essentially low dimensional. 

This may be important for training large networks. 

The underlying theme of this thesis has been constructing models of 

speech dynamics, however crude, in an attempt to perform speech recog-

nition. Firstly a feed-forward network and a first order Markov process 

was used for a continuous speech recognition task. Surprisingly good re- 
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suits were obtained using this system. It was hypothesised that networks 

with feedback capable of executing complex dynamical motion might be 

able to model speech dynamics more faithfully. An investigation into 

the dynamics of these networks indicated which regions of parameter 

space favoured more complex dynamics and characterised the dynamics 

displayed by a small recurrent network. Future work may tie these ar-

eas together more strongly by researching algorithms to train recurrent 

networks to model speech dynamics. 
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