3,062 research outputs found

    Localisation and tracking of people using distributed UWB sensors

    Get PDF
    In vielen Überwachungs- und Rettungsszenarien ist die Lokalisierung und Verfolgung von Personen in InnenrĂ€umen auf nichtkooperative Weise erforderlich. FĂŒr die Erkennung von Objekten durch WĂ€nde in kurzer bis mittlerer Entfernung, ist die Ultrabreitband (UWB) Radartechnologie aufgrund ihrer hohen zeitlichen Auflösung und DurchdringungsfĂ€higkeit Erfolg versprechend. In dieser Arbeit wird ein Prozess vorgestellt, mit dem Personen in InnenrĂ€umen mittels UWB-Sensoren lokalisiert werden können. Er umfasst neben der Erfassung von Messdaten, AbstandschĂ€tzungen und dem Erkennen von Mehrfachzielen auch deren Ortung und Verfolgung. Aufgrund der schwachen Reflektion von Personen im Vergleich zum Rest der Umgebung, wird zur Personenerkennung zuerst eine Hintergrundsubtraktionsmethode verwendet. Danach wird eine konstante Falschalarmrate Methode zur Detektion und AbstandschĂ€tzung von Personen angewendet. FĂŒr Mehrfachziellokalisierung mit einem UWB-Sensor wird eine Assoziationsmethode entwickelt, um die SchĂ€tzungen des Zielabstandes den richtigen Zielen zuzuordnen. In Szenarien mit mehreren Zielen kann es vorkommen, dass ein nĂ€her zum Sensor positioniertes Ziel ein anderes abschattet. Ein Konzept fĂŒr ein verteiltes UWB-Sensornetzwerk wird vorgestellt, in dem sich das Sichtfeld des Systems durch die Verwendung mehrerer Sensoren mit unterschiedlichen Blickfeldern erweitert lĂ€sst. Hierbei wurde ein Prototyp entwickelt, der durch Fusion von Sensordaten die Verfolgung von Mehrfachzielen in Echtzeit ermöglicht. Dabei spielen insbesondere auch Synchronisierungs- und Kooperationsaspekte eine entscheidende Rolle. Sensordaten können durch Zeitversatz und systematische Fehler gestört sein. Falschmessungen und Rauschen in den Messungen beeinflussen die Genauigkeit der SchĂ€tzergebnisse. Weitere Erkenntnisse ĂŒber die ZielzustĂ€nde können durch die Nutzung zeitlicher Informationen gewonnen werden. Ein Mehrfachzielverfolgungssystem wird auf der Grundlage des Wahrscheinlichkeitshypothesenfilters (Probability Hypothesis Density Filter) entwickelt, und die Unterschiede in der Systemleistung werden bezĂŒglich der von den Sensoren ausgegebene Informationen, d.h. die Fusion von Ortungsinformationen und die Fusion von Abstandsinformationen, untersucht. Die Information, dass ein Ziel detektiert werden sollte, wenn es aufgrund von Abschattungen durch andere Ziele im Szenario nicht erkannt wurde, wird als dynamische Überdeckungswahrscheinlichkeit beschrieben. Die dynamische Überdeckungswahrscheinlichkeit wird in das Verfolgungssystem integriert, wodurch weniger Sensoren verwendet werden können, wĂ€hrend gleichzeitig die Performanz des SchĂ€tzers in diesem Szenario verbessert wird. Bei der Methodenauswahl und -entwicklung wurde die Anforderung einer Echtzeitanwendung bei unbekannten Szenarien berĂŒcksichtigt. Jeder untersuchte Aspekt der Mehrpersonenlokalisierung wurde im Rahmen dieser Arbeit mit Hilfe von Simulationen und Messungen in einer realistischen Umgebung mit UWB Sensoren verifiziert.Indoor localisation and tracking of people in non-cooperative manner is important in many surveillance and rescue applications. Ultra wideband (UWB) radar technology is promising for through-wall detection of objects in short to medium distances due to its high temporal resolution and penetration capability. This thesis tackles the problem of localisation of people in indoor scenarios using UWB sensors. It follows the process from measurement acquisition, multiple target detection and range estimation to multiple target localisation and tracking. Due to the weak reflection of people compared to the rest of the environment, a background subtraction method is initially used for the detection of people. Subsequently, a constant false alarm rate method is applied for detection and range estimation of multiple persons. For multiple target localisation using a single UWB sensor, an association method is developed to assign target range estimates to the correct targets. In the presence of multiple targets it can happen that targets closer to the sensor induce shadowing over the environment hindering the detection of other targets. A concept for a distributed UWB sensor network is presented aiming at extending the field of view of the system by using several sensors with different fields of view. A real-time operational prototype has been developed taking into consideration sensor cooperation and synchronisation aspects, as well as fusion of the information provided by all sensors. Sensor data may be erroneous due to sensor bias and time offset. Incorrect measurements and measurement noise influence the accuracy of the estimation results. Additional insight of the targets states can be gained by exploiting temporal information. A multiple person tracking framework is developed based on the probability hypothesis density filter, and the differences in system performance are highlighted with respect to the information provided by the sensors i.e. location information fusion vs range information fusion. The information that a target should have been detected when it is not due to shadowing induced by other targets is described as dynamic occlusion probability. The dynamic occlusion probability is incorporated into the tracking framework, allowing fewer sensors to be used while improving the tracker performance in the scenario. The method selection and development has taken into consideration real-time application requirements for unknown scenarios at every step. Each investigated aspect of multiple person localization within the scope of this thesis has been verified using simulations and measurements in a realistic environment using M-sequence UWB sensors

    Multisensor-based human detection and tracking for mobile service robots

    Get PDF
    The one of fundamental issues for service robots is human-robot interaction. In order to perform such a task and provide the desired services, these robots need to detect and track people in the surroundings. In the present paper, we propose a solution for human tracking with a mobile robot that implements multisensor data fusion techniques. The system utilizes a new algorithm for laser-based legs detection using the on-board LRF. The approach is based on the recognition of typical leg patterns extracted from laser scans, which are shown to be very discriminative also in cluttered environments. These patterns can be used to localize both static and walking persons, even when the robot moves. Furthermore, faces are detected using the robot's camera and the information is fused to the legs position using a sequential implementation of Unscented Kalman Filter. The proposed solution is feasible for service robots with a similar device configuration and has been successfully implemented on two different mobile platforms. Several experiments illustrate the effectiveness of our approach, showing that robust human tracking can be performed within complex indoor environments

    State space reparametrization for approximating nonlinear models in Bayesian state estimation

    Get PDF
    Recursive Bayesian state estimation is a powerful methodology which is useful for the integration of data about a process of interest while considering all the sources of uncertainty which are present in the observations and in modeling inaccuracies. However, in its general form it is intractable and approximations need to be made in order to use it in real life applications. The most widely used algorithm to perform recursive state estimation is the Kalman ïŹlter, which assumes that the probability distributions that it propagates are Gaussian and that the measurement and dynamical processes are linear. If these assumptions are satisïŹed, the Kalman ïŹlter is optimal. In most applications, however, this proves to be an oversimpliïŹcation, due to which several techniques have arisen to handle model non-linearity and diïŹ€erent types of distributions. In this thesis, a novel method for the estimation of distributions with nonlinear dynamical and measurement models is presented, which uses a reparametrization of the state space of the distributions in order to exploit the linear properties of the Kalman ïŹlter. This involves the mapping of the distribution into a diïŹ€erent space, and a subsequent approximation as a Gaussian distribution. An analysis of the adequacy of this transformation is presented, which shows that it is a valid approach in a number of practically interesting ïŹltering problems. The proposed approach is applied to the estimation of the state of Earth-orbiting objects, as it is a challenging estimation scenario which can beneïŹt from the use of ïŹlter. Space situational awareness is increasingly important as near-Earth space becomes cluttered with satellites and debris. In this work, the sensors that are most commonly used to track objects in orbit, radars and telescopes, are modeled and a ïŹlter based on the previously discussed ideas is proposed. Finally, a multi-object estimation ïŹlter based on a recent estimation framework is presented which propagates high amounts of information while maintaining low computational complexity. This is important as there are many challenges to tracking large amounts of orbiting objects in a principled way using ground-based sensors, and naturally extends the single object ïŹlter described above to the multi-sensor, multi-object case

    Compressive Sensing in Visual Tracking

    Get PDF

    FISST Based Method for Multi-Target Tracking in the Image Plane of Optical Sensors

    Get PDF
    A finite set statistics (FISST)-based method is proposed for multi-target tracking in the image plane of optical sensors. The method involves using signal amplitude information in probability hypothesis density (PHD) filter which is derived from FISST to improve multi-target tracking performance. The amplitude of signals generated by the optical sensor is modeled first, from which the amplitude likelihood ratio between target and clutter is derived. An alternative approach is adopted for the situations where the signal noise ratio (SNR) of target is unknown. Then the PHD recursion equations incorporated with signal information are derived and the Gaussian mixture (GM) implementation of this filter is given. Simulation results demonstrate that the proposed method achieves significantly better performance than the generic PHD filter. Moreover, our method has much lower computational complexity in the scenario with high SNR and dense clutter

    PREDICTION OF RESPIRATORY MOTION

    Get PDF
    Radiation therapy is a cancer treatment method that employs high-energy radiation beams to destroy cancer cells by damaging the ability of these cells to reproduce. Thoracic and abdominal tumors may change their positions during respiration by as much as three centimeters during radiation treatment. The prediction of respiratory motion has become an important research area because respiratory motion severely affects precise radiation dose delivery. This study describes recent radiotherapy technologies including tools for measuring target position during radiotherapy and tracking-based delivery systems. In the first part of our study we review three prediction approaches of respiratory motion, i.e., model-based methods, model-free heuristic learning algorithms, and hybrid methods. In the second part of our work we propose respiratory motion estimation with hybrid implementation of extended Kalman filter. The proposed method uses the recurrent neural network as the role of the predictor and the extended Kalman filter as the role of the corrector. In the third part of our work we further extend our research work to present customized prediction of respiratory motion with clustering from multiple patient interactions. For the customized prediction we construct the clustering based on breathing patterns of multiple patients using the feature selection metrics that are composed of a variety of breathing features. In the fourth part of our work we retrospectively categorize breathing data into several classes and propose a new approach to detect irregular breathing patterns using neural networks. We have evaluated the proposed new algorithm by comparing the prediction overshoot and the tracking estimation value. The experimental results of 448 patients’ breathing patterns validated the proposed irregular breathing classifier
    • 

    corecore