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I don’t know anything, but I do know that everything is
interesting if you go into it deeply enough.
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ABSTRACT

Indoor localisation and tracking of people in non-cooperative manner is
important in many surveillance and rescue applications. Ultra wideband
(UWB) radar technology is promising for through-wall detection of objects
in short to medium distances due to its high temporal resolution and
penetration capability. This thesis tackles the problem of localisation of
people in indoor scenarios using UWB sensors. It follows the process from
measurement acquisition, multiple target detection and range estimation to
multiple target localisation and tracking.

Due to the weak reflection of people compared to the rest of the environ-
ment, a background subtraction method is initially used for the detection
of people. Subsequently, a constant false alarm rate method is applied for
detection and range estimation of multiple persons. For multiple target
localisation using a single UWB sensor, an association method is developed
to assign target range estimates to the correct targets.

In the presence of multiple targets it can happen that targets closer to the
sensor induce shadowing over the environment hindering the detection of
other targets. A concept for a distributed UWB sensor network is presented
aiming at extending the field of view of the system by using several sensors
with different fields of view. A real-time operational prototype has been
developed taking into consideration sensor cooperation and synchronisation
aspects, as well as fusion of the information provided by all sensors.
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Sensor data may be erroneous due to sensor bias and time offset. Incor-
rect measurements and measurement noise influence the accuracy of the
estimation results. Additional insight of the targets states can be gained
by exploiting temporal information. A multiple person tracking framework
is developed based on the probability hypothesis density filter, and the
differences in system performance are highlighted with respect to the infor-
mation provided by the sensors i.e. location information fusion vs range
information fusion.

The information that a target should have been detected when it is not
due to shadowing induced by other targets is described as dynamic occlusion
probability. The dynamic occlusion probability is incorporated into the
tracking framework, allowing fewer sensors to be used while improving the
tracker performance in the scenario.

The method selection and development has taken into consideration real-
time application requirements for unknown scenarios at every step. Each
investigated aspect of multiple person localization within the scope of this
thesis has been verified using simulations and measurements in a realistic
environment using M-sequence UWB sensors.
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ZUSAMMENFASSUNG

In vielen Überwachungs- und Rettungsszenarien ist die Lokalisierung und
Verfolgung von Personen in Innenräumen auf nichtkooperative Weise er-
forderlich. Für die Erkennung von Objekten durch Wände in kurzer bis
mittlerer Entfernung, ist die Ultrabreitband (UWB) Radartechnologie auf-
grund ihrer hohen zeitlichen Auflösung und Durchdringungsfähigkeit Erfolg
versprechend. In dieser Arbeit wird ein Prozess vorgestellt, mit dem Perso-
nen in Innenräumen mittels UWB-Sensoren lokalisiert werden können. Er
umfasst neben der Erfassung von Messdaten, Abstandschätzungen und dem
Erkennen von Mehrfachzielen auch deren Ortung und Verfolgung.

Aufgrund der schwachen Reflektion von Personen im Vergleich zum Rest
der Umgebung, wird zur Personenerkennung zuerst eine Hintergrundsub-
traktionsmethode verwendet. Danach wird eine konstante Falschalarmrate
Methode zur Detektion und Abstandschätzung von Personen angewendet.
Für Mehrfachziellokalisierung mit einem UWB-Sensor wird eine Assoziati-
onsmethode entwickelt, um die Schätzungen des Zielabstandes den richtigen
Zielen zuzuordnen.

In Szenarien mit mehreren Zielen kann es vorkommen, dass ein näher
zum Sensor positioniertes Ziel ein anderes abschattet. Ein Konzept für ein
verteiltes UWB-Sensornetzwerk wird vorgestellt, in dem sich das Sichtfeld
des Systems durch die Verwendung mehrerer Sensoren mit unterschiedli-
chen Blickfeldern erweitert lässt. Hierbei wurde ein Prototyp entwickelt,
der durch Fusion von Sensordaten die Verfolgung von Mehrfachzielen in
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Echtzeit ermöglicht. Dabei spielen insbesondere auch Synchronisierungs-
und Kooperationsaspekte eine entscheidende Rolle.

Sensordaten können durch Zeitversatz und systematische Fehler gestört
sein. Falschmessungen und Rauschen in den Messungen beeinflussen die Ge-
nauigkeit der Schätzergebnisse. Weitere Erkenntnisse über die Zielzustände
können durch die Nutzung zeitlicher Informationen gewonnen werden. Ein
Mehrfachzielverfolgungssystem wird auf der Grundlage des Wahrscheinlich-
keitshypothesenfilters (Probability Hypothesis Density Filter) entwickelt,
und die Unterschiede in der Systemleistung werden bezuglich der von den
Sensoren ausgegebene Informationen, d.h. die Fusion von Ortungsinforma-
tionen und die Fusion von Abstandsinformationen, untersucht.

Die Information, dass ein Ziel detektiert werden sollte, wenn es aufgrund
von Abschattungen durch andere Ziele im Szenario nicht erkannt wurde, wird
als dynamische Verdeckungswahrscheinlichkeit beschrieben. Die dynamische
Verdeckungswahrscheinlichkeit wird in das Verfolgungssystem integriert,
wodurch weniger Sensoren verwendet werden können, während gleichzeitig
die Performanz des Schätzers in diesem Szenario verbessert wird.

Bei der Methodenauswahl und -entwicklung wurde die Anforderung einer
Echtzeitanwendung bei unbekannten Szenarien berücksichtigt. Jeder un-
tersuchte Aspekt der Mehrpersonenlokalisierung wurde im Rahmen dieser
Arbeit mit Hilfe von Simulationen und Messungen in einer realistischen
Umgebung mit UWB Sensoren verifiziert.
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CHAPTER 1

INTRODUCTION

Detection and localisation of people in indoor environments is of great
interest in many applications. From detection of first responders in a burning
or collapsing building, detection of users in a smart home environment for
improvement of the user experience to many security and surveillance
applications, people detection and localisation in known or unknown indoor
scenarios opens up the road for improvement of current and emergence of
new methodologies and applications.

When talking about indoor localisation, it is often meant localisation of
collaborative objects. This is often referred to as active localisation since
the object to be localised collaborates with the localisation system, for
example by carrying radio frequency (RF) identification chips. Localisation
and tracking of non-cooperative objects is often referred to as passive locali-
sation. Passive localisation also refers to localisation of objects using passive
systems such as cameras or RF systems in which the system itself does
not emit any signals. To make the distinction, passive localisation where
the objects to be localised do not cooperate with the localisation system
is also referred to as non-cooperative or device free localisation [1, 15–17].
A review of localisation schemes and systems is given in Appendix I.

Indoor localisation and tracking of people in passive manner has many
applications such as intruder detection, emergency response, surveillance
and security, elderly care, smart homes, etc [18–21]. Different techniques for
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1 INTRODUCTION

person detection and tracking are developed, such as vision-based systems,
Light Detection and Ranging (LIDAR), infra-red and radar. LIDAR and
vision systems fail when visibility conditions are poor as in smoky, foggy
or dusty environments, whereas radar is resilient to adverse environmental
influences such as visibility conditions. Narrow-band RF-based solutions
are presented in [22, 23], where the body influenced shadowing over the
transmission link is exploited. More recent works [24, 25] provide improve-
ment by partitioning the environment into cells. Narrow-band RF-based
solutions are low-cost and attractive for indoor localisation, however they
are susceptible to multipath fading, making it difficult to create models for
dense clutter environments. Ultra wideband (UWB) radar is applicable for
short to medium distance target detection and localisation due to its high
spatial and temporal resolution and inexpensive circuitry [26–28]. Com-
pared to visual sensors, UWB sensors can maintain their accuracy even in
bad visibility conditions. UWB is promising for indoor positioning due to
its high resolution ranging and obstacle penetration capabilities [29–32].

UWB signals have a very good time resolution due to the large bandwidth
and allow for centimetre accuracy in ranging. Thus they can detect objects
close to each other and even multiple echoes per object. The low frequencies
of the UWB spectrum can be used for penetration through objects, allowing
imaging, localisation and/or tracking of obstructed targets. UWB systems
preserve their advantages such as high resolution and robust operation
even in multipath rich environments [33]. Thus UWB systems can operate
regardless of the visibility conditions (dark or smoke-filled environments)
and through non-metal obstacles (e.g. through-wall) [34]. The UWB tech-
nology can be used in various applications in diverse fields, such as medical
technology [35], through-wall imaging [36], mining (for detection of hidden
or damaged structures) [37], civil engineering and building construction [38],
rescue of trapped people [39], detection of land-mines [40], autonomous
navigation in buildings [41] etc. Within this thesis detection and localisa-
tion of multiple people in indoor scenarios is considered. The envisaged
applications include security applications i.e. assistance to police by pro-
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viding information regarding the number and activity of people in a room
or building before entering (use of through-wall detection capability) and
assistance to fire fighters by proving them information on the whereabouts
of possibly injured people in smoke-filled areas. Other possible applications
of the system can be found in assisted living and intelligent homes, however
these applications have not been directly taken into consideration for the
work presented here.

Despite the high range resolution capabilities of the UWB radar, detection
and localisation performance can be significantly improved by cooperation
between spatially distributed nodes forming a sensor network. UWB sensors
have limited coverage due to the low power used as well as the interference
of coexisting systems. Shadowing induced by objects in the area of interest
introduces additional limitations to the sensor coverage area. Distributed
sensor nodes can also acquire comprehensive information for the structure of
an unknown environment and construct an electromagnetic image relative
to the sensor-to-sensor coordinate system. Distributed observation allows
robust detection and localisation of passive objects and identification of cer-
tain features of objects such as shape, dynamic parameters and time variant
behaviour. When using multiple distributed UWB sensors the coverage area
of the system is increased and the location estimates of detected persons are
refined by using multiple detections of the same person by multiple sensors.
Additionally, objects that can not be detected by one of the network sensors,
would be detected by another sensor. The distributed UWB sensor nodes can
function using different sensory properties, such as only transmitter or only
receiver or as an autonomous operating sensor containing a complete multi-
static UWB radar platform consisting of transmitter and receivers [26, 32].
The cooperation of the sensor nodes in the sensor network, as well as between
the sensors and the fusion platform needs to be taken into consideration.
Another aspect to be taken into consideration is how the information from
the multiple sensors can be fused to enhance the desired information. A
likelihood function denotes the information provided by the sensors and
provides a score based on the quality and consistency of this information.
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1 INTRODUCTION

By using distributed sensors the area of interest can be better observed
and shadowing influences are reduced by being able to observe an area of
the scenario shadowed to one sensor by another sensor. Another way to deal
with the shadowing problems is to analyse possible target missdetections
and if caused due to shadowing, use this additional information within the
detection and tracking system. When a sensor expects to detect a target
within its field of view, if this target is not detected, there are three possible
causes: sensor failure, target is out of range or target is occluded. If the
sensor is functioning and there is reasonable confidence that the target is
still in the sensor field of view, it can be concluded that a target is occluded.
This information can now be used within the system and add additional
insight for the presence and location of targets within the area of interest.
In this thesis negative information fusion is considered and a concept for
its incorporation within the existing framework is suggested.

If the available information regarding the location is insufficient or noisy,
tracking can be used to improve location estimates. Tracking as a method
for estimation of the current state of a system by using the information of
the immediate previous state of the same system and information of the
propagation of the changes in the system has been widely used for estimation
of target locations. In addition to the noisy observations, position estimates
based on the previous states of the detected people are used to improve
the current location estimates. The Kalman filter (KF) is the optimal
solution for single target Bayes filter in linear Gaussian systems [42, 43]. Its
variants Extended KF (EKF) and Unscented KF (UKF) are wide-spread
for non-linear problems [42, 44–47]. Extensions for multiple state tracking
include parallel KF banks, which require observation-to-track association
before tracking is performed (also known as Gaussian sums filters) [48].
For multiple target tracking different methods have been developed over
the years. Many require the number of targets to be known and use
measurement-to-track association before estimating the target states [49–
52]. These kinds of methods require large memory, have high computational
complexity and require data association which is a problem when targets
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are close to each other or when there is a large number of observations.

In unknown environments, one of the main requirements for a good
multiple target tracking approach is the possibility to estimate the unknown
varying number of targets as well as their states from noisy and incomplete
observations over time. Problems arise already with the need to jointly
estimate the number of targets present and their states. Other problems
include the random unknown multiple number of targets, observations
per target, the detection uncertainty of the system, multiple unknown
clutter detections, etc. A combinatorially and computationally less complex
solution that does not require explicit data association is the probability
hypothesis density (PHD) filter [53–55]. It works on the principle filter
before track. It treats all targets, or objects of interest, as a set valued
state and all available observations as a set valued observation. It is based
on finite set statistics [53]. It does not require the number of targets to be
known, since it jointly estimates both the number of targets and their state.
It has been shown that it can operate in environments with false alarms and
missed detections [53]. Since the PHD filter does not require data association
and is not keeping various hypothesis of possible measurement to track
assignments, its combinatorial and computational complexity, as well as
memory requirements, are lower compared to other multiple target tracking
methods, such as the multiple hypothesis tracking (MHT) algorithms.

In recent research works the derivation of PHD intensity filters based on
point processes has been presented as a generalisation to the derivation via
random finite sets (RFSs). Within the framework probability generating
functions (PGFs) and probability generating functionals (PGFLs) are used
to derive the filter equations. This framework is especially appropriate
for generalised multi-target multi-sensor problems [56]. Since the work
presented in this thesis focuses on the practical application of multiple
sensor multiple target tracking filters, the derivation of the filter equations
and their comparison is not discussed in detail. More on the derivations
can be found in [57]. In this thesis the PHD filter as implemented by Vo
et al. in [54] using Gaussian mixture (GM) approximation is used. Due to
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1 INTRODUCTION

the restrictions of the PHD filter in its derivation and assumptions taken,
extensions have been made to adapt it for the specific real world scenarios
used within this thesis, including multiple target detections per sensor.

Within this work an indoor localisation system for multiple targets is
developed using maximum length binary sequence (M-sequence) UWB sen-
sors. The main requirement set on this system is the possibility to detect
and localise multiple targets in real time in possibly unknown scenarios. At
first a simple single sensor solution is considered, followed by an extension
using a distributed sensor network constellation. System improvements are
provided by the use of the PHD filter for data fusion and tracking. Sensor
missdetections and dynamic shadowing models are exploited for improved
target tracking when the number of sensors is restricted. An overview of
the thesis contributions is given in the following section.

1.1 Thesis contributions and proposed solutions
UWB device-free localisation is able to overcome many of the drawbacks of
narrowband signals, however it still has a number of unresolved issues. In
this thesis indoor localisation and tracking of multiple people using UWB
sensors is considered. UWB sensors are used for people detection using
signals reflected off their bodies. In case of multiple targets, it can often
happen that targets further from a sensor are often not detected. The
intended application scenarios are unknown scenarios for which apriori data
can not be gathered and used for improvement of the target detection and
tracking methods.

The following contributions are presented in this thesis:

↪→ A comprehensive framework for real-time person detection and track-
ing using UWB sensors is presented. All methods needed for processing
received signals are presented with different alternatives which can
be used on scenario to scenario basis and detailed description of the
selected methods for multiple person detection and localisation in
real-time.
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1.1 THESIS CONTRIBUTIONS AND PROPOSED SOLUTIONS

↪→ Multiple person detection and range estimation approach for real-time
application is presented. To extract the target information, first the
signals impulse response function (IRF) is aligned to ’time zero’ using
the direct signal path from the transmitter to the receiver and their
physical distance. Then a background subtraction technique which
can work online and in unknown environments is applied to remove or
reduce the influences of all static objects in the environment and the
direct path contribution. Due to the extent of a person in the UWB
signal, a multiple target range estimation method which takes this into
consideration is used. The method used extends the constant false
alarm rate (CFAR) estimation using clustering techniques. Range
tracking has also been considered for clutter suppression.

↪→ A multiple target localisation approach is proposed where an asso-
ciation method is proposed to assign target range estimates to the
correct targets.

↪→ The work in this thesis is directed toward the practical application
of the presented methods. Thus practical challenges for multiple
target detection and localisation are discussed throughout this thesis.
The target missdetection problem in multiple target scenarios is ex-
plored for which two solutions are proposed: using multiple sensors
or incorporating negative information within the framework.

↪→ A concept for distributed UWB sensor network with real-time func-
tionality is presented. The intended scenario for application is an
unknown scenario where the sensor network can be quickly set up and
directly used. As a rule of thumb it is advised that the sensors are
placed around the room or building which should be inspected with as
much separation as possible, parallel to the walls (if the area of interest
is not encapsulated by walls, direct line of sight to possible targets
should be preferred to reduce multipath influences), and whenever
possible the sensors of the network should have cross view of the area
of interest, i.e. each sensor node should be looking at the scenario
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from a different angle. Two modes of sensor operation have been
explored: sequential transmitter operation which avoids interference
and parallel transmitter operation where each sensor is active at all
times. Due to hardware restrictions, and insignificant transmitter
interference, parallel operation is considered in the work presented in
this thesis and the experiments conducted. Sensor cooperation and
synchronisation are also taken into account, as well as fusion of the
information provided by all sensors.

↪→ Multiple target tracking framework based on the PHD filter for bistatic
range-only target observations is proposed. Both centralised and
distributed fusion approaches are explored as solutions for multiple
sensor fusion and tracking. For the first method, single sensor location
estimates from all detecting sensors are used as target observations
within the tracking framework. The second method considers each
transmitter-receiver pair in the sensor network as a separate sensor.
The range estimates are then directly used as observations in the
multiple target tracking framework based on the PHD filter with EKF
measurement equations.

↪→ Lastly, a framework for exploiting the missdetections of the targets by
the sensors is developed. By characterising the reason why a target
may not be detected, additional information on the target state may
be utilised. This methodology is also known as negative information
fusion. By characterising the occlusion regions a detected target may
have over the scenario, a conclusion may be drawn that if a target
is not detected, it is likely that it is currently in one of the occluded
regions of the scenario. In this thesis the probability that a target is
occluded by another target from the scenario is incorporated within
the target tracking framework.

All derived methods and frameworks have been experimentally verified
for real-time application on numerous online and offline demonstrations.
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1.2 OWN PUBLICATIONS

1.2 Own publications
In [2], an overall method starting from measurement set-up and signal ac-
quisition to multiple sensor multiple person tracking is defined. Each sensor
processes the received impulse responses and localises any detected people.
The location estimates from each sensor are then transmitted to a fusion
center where they are fused to represent the full view of the environment
and all moving objects within it. This method is also termed location
information fusion or distributed fusion approach within this thesis. [3] is
an elaborate chapter written in collaboration with many other researcher
describing cooperative localisation and object recognition in autonomous
UWB sensor networks. It includes a summary of the work presented in [2],
as well as active node localisation as discussed in [4, 5].

The centralised fusion approach is considered in [1]. Each sensor transmits
the range estimates of any detected target in each transmitter-receiver
channel. Multiple sensor likelihood function is derived by using all range
estimates. An experimental demonstration framework is defined for real-
time application and discussed in a scientific report in [6]. The advantages
of using multiple distributed sensors is demonstrated and discussed in [7].
The full multiple target detection and tracking framework and comparison
of the centralised and distributed method is presented in [8].

In [9, 10] dynamic shadowing induced by people in the scenario within
the localisation and tracking framework is considered. A model for the
dynamically shadowed region by a target is derived and the occlusion
likelihood function is integrated in the multiple target tracking framework.
By using the negative information the state of the area of interest and the
people within it can be observed by less sensors.

Other publications with my contribution which are not discussed in detail
in this thesis include [11] where a simple method for imaging based multiple
person localisation is presented, [4, 5] where active node localisation in
realistic indoor environments (multipath and non-line-of-sight (NLOS)) is
presented, [12] where stationary object detection in unknown environments
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is discussed and [13] which discusses detection and localisation of a single
target located behind a corner from the sensor by exploiting the multipath
components and reflections off the walls in the scenario. In [14] a concept
for heterogeneous multiple sensor fusion system is discussed, where radar,
cameras and RF direction finder are used for detection and localisation of
small commercial drones. This publication is also not covered in this thesis
since it is out of scope.

1.3 Thesis outline
The thesis is structured as follows:

↪→ Chapter 2 describes the target detection and localisation principle us-
ing an UWB system. It first describes the UWB sensing principle with
electromagnetic (EM) wave propagation in the scenario and definition
of an IRF. A bat-type UWB sensor node structure is described as
used in the experiments done for verification of the methods described
in this thesis. The person detection principle and methods used are
described in Section 2.5. Target echo separation techniques and range
estimation for multiple targets are described as applied in the system
framework. The person localisation procedure for single targets and a
derived extension for multiple targets based on the sensor geometry
is described in Section 2.6.

↪→ Chapter 3 describes the conceptual design and architecture of a UWB
sensor network. Details on the sensor network possibilities for oper-
ation and the sensor node and fusion center frameworks as used in
the network architecture are given. Distributed sensor fusion with its
challenges are also described in this chapter. Multiple sensor likelihood
function is derived and evaluated for both centralised and distributed
multiple sensor fusion approaches.

↪→ Chapter 4 starts by giving some background on Bayesian tracking
methodology for single and multiple targets. Typically used ap-
proaches are shortly described with more details given on applied
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methods (PHD filter). The two approaches, location tracking and
direct range-to-location tracking are described, compared and experi-
mentally evaluated in an office scenario.

↪→ Chapter 5 describes an extension to the multiple target tracking frame-
work, where in addition to the sensor observations, non-detections of
the targets by the sensors is also considered (also known as negative in-
formation fusion). The region in the scenario which is being occluded
by a moving target is first defined and then derived as an occlusion
likelihood function. The occlusion likelihood is integrated within the
framework and the information gain is evaluated in a simulation as
well as measurement scenario.

↪→ Chapter 6 summarises the presented work and gives some perspectives
for future research.
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CHAPTER 2

ULTRA WIDEBAND-BASED
LOCALIZATION

Person localization based on UWB can be described as a two step approach.
The first step is estimating parameters from the IRF, such as time delay
based parameters, Doppler, angle, signal strength, etc. The second step is
using the estimated parameters to derive the location of the person. Different
localization schemes based on the available parameters are presented in
Appendix I. Although two-step approaches are suboptimal, they have much
lower complexity compared to direct approaches where the position is
estimated directly from the signals travelling between the nodes and the
performance of the two approaches is close for sufficiently high signal-to-noise
ratio (SNR) and signal bandwidth [58, 59].

This chapter introduces the working principle of UWB sensing. It also
defines a UWB sensor node as an autonomous unit comprised of antennas,
RF components and digital signal processing (DSP) unit as used later in
this thesis. For verification of the methods described in this thesis UWB
sensors designed by Ilmsens GmbH (formerly part of TU Ilmenau) [60] are
used. The person detection principle and time of arrival (TOA) estimation
techniques are described in Section 2.5 of this chapter. The principle of
TOA based person localisation using a single UWB sensor node for single
and multiple targets is described in Section 2.6.
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2 ULTRA WIDEBAND-BASED LOCALIZATION

2.1 Introduction
UWB technology has been found useful in many industrial, medical, surveil-
lance, security, search and rescue applications among others. Whereas
high-power medium and long range radar systems are reserved for military
use, high resolution, short range and low power (<1 mW) devices are of
interest in civilian applications. The Federal Communications Commission
(FCC) defines UWB signals as signals with fractional bandwidth greater
than 20 % (if the center frequency is below 2.5 GHz) or absolute bandwidth
of at least 500 MHz (if the center frequency is above 2.5 GHz). The frac-
tional bandwidth is defined as Bfrac = B

fC
, where fC is the center frequency

i.e. fC = fU+fL
2 . The absolute bandwidth is calculated as the difference

between the upper, fU , and the lower, fL, frequency of the −10 dB emission
point, i.e. B = fU − fL. Due to the large bandwidth, UWB systems are
characterised by short duration waveforms. A good overview on UWB
technology, sensing, radar architecture, and some applications is given in
[61].

UWB signals are non-ionising (compared to X-rays) and require no con-
tact with subjects, thus are considered safe to humans [34, 35, 62, 63]. UWB
signals occupy a much wider frequency band compared to narrowband sig-
nals and thus share the spectrum with other existing systems. Due to the
low emission levels allowed by regulatory agencies , UWB systems are mainly
used for short-range indoor applications. UWB systems are ideal for use in
frequency sensitive places such as hospitals due to the low power and high
precision capabilities. EM waves stimulate the environment and dielectric
changes in the propagation medium induce reflections, scattering or reflec-
tions of the EM waves which are received and analysed by the UWB sensors.
Based on the recorded echoes different properties of the inspected environ-
ment may be identified, such as different geometrical structures, presence
and position of people in the environment, possible hidden weapons, etc.

Since this thesis is concerned with person detection and localisation, in
addition to presenting the general UWB sensing principle, in this chapter
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2.2 UWB SENSING

person detection and localisation is discussed, taking into consideration
scenarios with multiple people. A simple extension to the single person
localisation method is proposed for multiple person localisation.

2.2 UWB sensing
UWB sensors use low power EM waves for sensing the environment as shown
in Fig. 2.1. The objects in the scenario influence the wave propagation. The
received signal is then distorted based on the object geometry and material
properties. Based on the antenna characteristics, the observation volume is
either cone-shaped or omnidirectional. In the time domain radar equation,
all objects that do not move too fast with respect to the hardware such as
antennas and scatterers may be considered as an linear time invariant (LTI)
systems. The information about the channel propagation (transmission,
reception and scattering) can be formally described by IRFs.

Tx

Rx
IRF out

in

ref.

Figure 2.1: Two target scenario and corresponding impulse response function
obtained by a bistatic radar

Let the transmitting antenna be denoted by Tx and the receiving antenna
be denoted by Rx. Disregarding polarization, dispersion, angular and range
dependencies, and assuming a limited target size in the far field and no
antenna coupling, the transmission between the two antennas can be written
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2 ULTRA WIDEBAND-BASED LOCALIZATION

in terms of M scatterers:

bRx(t) = S21(t) ∗ aTx(t) ⇒ bRx(t) ∼ S21(t) for aTx(t) ≈ δ(t)

and S21(t) = T1(t) ∗R2(t) ∗
M∑
i=1

Λ21
(i)
(
t− dTx

(i)+dRx
i

c0

)
dTxidRxi

(2.1)

where aTx is the stimulus signal, bRx is the received signal, c0 = 3× 108 m/s

is the signal propagation velocity in air, dTxi and dRxi are the distances
of the i-th scatterer to the transmitter and receiver, T1 and R2 are the
antenna responses for transmit and receiving mode, and Λ21

i is the scatterer
impulse response for incidence by Tx and observation by Rx and contains all
information about the i-th target accessible by the measurement. One thing
that is not mentioned in the above equation is the antenna coupling and the
object interaction which also constitutes part of the IRF. Such interactions
include multipath components. Λ21

i responses can be interpreted either as
a reaction of a single body onto an incident field or the reaction of distinct
scattering centres of a composed target. The scattering response Λ21(t) of
a complex structured target is typically comprised of many peaks caused by
specular reflections and damped oscillations that represent the eigenmodes
of the target. In this equation clutter is considered as some of the M
scatterers. To resolve these properties the temporal width of the sounding
wave must be shorter than the peak distance and the sounding bandwidth
should cover the eigenfrequencies of the target [61].

The stimulus signal aTx may have different waveforms, e.g. chirp signal,
short-impulse signal, binary sequence, etc. An appropriate stimulus signal
should be used depending on the application where it is required. Chirp
signals are not appropriate for real-time surveillance due to their slow
measurement rate. Short-impulse signals also result in low measurement
rate and these systems are susceptible to jitter and drift. Pseudo-random
binary sequences allow for real-time operation, are generated in stable
manner and have low crest factor (allowing signal energy maximisation at
low peak voltages).
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The UWB sensing system used for the work in this thesis is an M-
sequence UWB radar [64] which uses a multiple length binary sequence as
stimulus signal. The M-sequence generator can be realised on integrated
circuit technology, meeting the bandwidth, low jitter and high SNR re-
quirements [40, 61, 64]. Additionally, its spectral shape follows the (sinc)2

function with around 80 % of its energy concentrated at frequencies below
half of the clock rate [61].

Since the stimulus sequence is cyclic, an exact ’time zero’ for the IRF can
not be directly determined. To determine ’time zero’ calibration measure-
ments should be performed.

Using a UWB sensor, the IRF S21(t) is primarily determined from the
inspected environment. The IRF contains information about possible tar-
gets and the environment based on their reflections. In the applications
considered in this thesis, a non-cooperative target is assumed. The EM
waves scattered from its body are used to aid in the detection of the target.
The IRF is determined by cross-correlating the excitation signal with the
received signal.

Rewriting Eq. (2.1) in terms of the auto- (Caa) and cross-correlation
(Cba) function of the stimulus and receive signal, the following equation is
obtained:

Cba(t) = S21(t) ∗ Caa(t)

with Cba(t) = bRx(t) ∗ aTx(−t).
(2.2)

For Caa ≈ δ(t), Cba ∝ S21(t), i.e. the desired IRF S21(t) is proportional
to the cross-correlation function as long as the autocorrelation function of
the stimulus signal is short enough. The technical solutions for implementing
a wideband correlator are given in [61]. For the purpose of this work, the
cross-correlation of the received and stimulus signal was done digitally on a
separate computing unit.

Dependent on the size of the object of interest, multiple echoes per object
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2 ULTRA WIDEBAND-BASED LOCALIZATION

can be detected. Time variant multipath components can be separated
easily due to the high spatial resolution as a function of time delay. If
the transmitting and receiving antennas are stationary throughout the
measurement time, changes in the measured impulse responses indicate
presence of moving objects which in turn correspond to moving people.
Depending on the application, specific data processing techniques can be
used to extract the desired information from these responses. For people
localisation, the primary interest is to extract information from the IRF
regarding the position of a person. Various position related signal parameters
can be estimated from the measured received signal depending on accuracy
requirements and transceiver design constraints, such as the received signal
strength (RSS), Doppler, TOA, time difference of arrival (TDOA) and angle
of arrival (AOA).

Time based parameters provide more reliable and accurate target locali-
sation compared to other parameters as shown in [32, 65] due to the high
time resolution of UWB signals. Time-based parameters can be estimated
if there is some sort of cooperation and synchronisation between the trans-
mitter and receivers of the system. TOA measurements provide the time it
takes for a signal to travel from a transmitter to a receiver, possibly after
backscattering from a person or other target of interest. To acquire the
TOA, synchronisation and no clock bias is needed between the transmitter
and the receiver of the system. TDOA is defined as the difference between
the arrival times of the signal to two synchronised receivers. Only synchro-
nisation between the receivers is required for acquiring the TDOA. The
TOA, or correspondingly the range between the target and the sensor, is
one of the most useful parameters for target localisation when using UWB
systems.

It is often suggested that using Doppler information in addition to time-
based parameters is advantageous. However in UWB systems the Doppler
effect can not be threated as a simple frequency shift, instead the signal
is compressed or stretched. This makes Doppler processing complex. Ad-
ditionally, the systems used in this thesis uses subsampling and averaging
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which further complicates Doppler processing.

2.3 EM wave propagation in localization
scenarios

If there is only a direct line-of-sight (LOS) between the transmitter and
receiver, the received power at frequency f and distance dTx,Rx between
the transmitter and receiver, can be expressed as

PRx(dTx,Rx, f) = PTxGTx(f)ηTx(f)GRx(f)ηRx(f)

(
c0

4πfdTx,Rx

)2

(2.3)

where PTx is the transmit power, GTx and GRx are the transmit and receive
antenna gains, ηTx and ηRx are the efficiencies for the transmit and receive
antennas and c0 is the signal propagation velocity. The received power at
frequency f when the signal is reflected by an object at distance dTx from
the transmitter and distance dRx from the receiver can be expressed as

PRx(dTx, dRx, f) = PTxGTx(f)ηTx(f)GRx(f)ηRx(f)
c0

2σRCS(f)

(4π)3f2dTx2dRx2

(2.4)
where σRCS is the radar cross-section (RCS) of the reflecting object.

Considering a transmitted signal with flat power spectral density over
[fL, fU ] with fU = fL + β, the received power scattered by the target is

PRx =
PTxGTx(f)ηTx(f)GRx(f)ηRx(f)c0

2σRCS(f)

(4π)3dTx2dRx2

(
1

fL
− 1

fU

)
(2.5)

The antenna gains and efficiencies vary considerably with frequency,
influencing the received power. In narrowband systems the antenna gains
and the object reflection and scattering properties are considered to be
frequency independent due to the small frequency band of interest. This
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2 ULTRA WIDEBAND-BASED LOCALIZATION

assumption can not be applied to UWB systems. In UWB systems the
frequency dependence of material and object properties as well as the
frequency dependence of transmit and receive antennas are significant. The
antenna efficiency is influenced by the impedance bandwidth of the antenna,
specifying a frequency band over which the signal loss is not significant. It
is challenging to limit this signal loss to low and fixed levels over a wide
frequency band when designing a UWB antenna.

The RCS of an object is a complex function of wave frequency, polarization,
aspect angle, and shape of the object. In radar literature, the RCS is
considered to be a random variable [66–69]. The RCS generally increases
with frequency [70, 71] and can cause significant changes in the received
power over the range of frequencies. Its mean power can be estimated using
Eq. (2.4). In UWB localization, a person is a complex extended target and
its RCS has large influence on the scattering of the signal and thus target
detection.

Transmission through an object is another factor that influences the
channel characteristics. The dielectric properties of an object affect both
transmitted and received signal, and for most materials the dielectric char-
acteristics vary with frequency, for example the dielectric constant of a
brick wall has an almost linear increase from 3.7 to 4.48 in the frequency
band from 1.31 GHz to 7.01 GHz whereas the dielectric constant of glass,
wood and concrete have much smaller variations in the same band [72].
UWB signals consist of many frequency components, some of which can
be well reflected from the objects and others can propagate through them.
This makes UWB signals useful in many scenarios such as in through-wall
applications.

In addition to reflection and transmission, diffraction of an edge and scat-
tering on rough surfaces are two other important propagation characteristics
that also depend on frequency. In conclusion, objects in the environment
have frequency dependent effects on the propagation and this should be
considered when using UWB systems.
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2.4 UWB sensor node
A UWB sensor node within this work is defined by an autonomous UWB
module with one transmitter, two receivers and a local processing unit as
shown in Fig. 2.2. In [26] it is referred to as a bistatic bat-type UWB
sensor node. The two receiving antennas are positioned on each side of
the transmitting antenna forming a bat-type structure. The transmitter
and receivers are synchronised and from each of the two IRFs the TOA of
possible targets can be obtained.
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Rx1

Rx2
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Cross-Correlation Echo Separation Range Estimation

Received Signal Processing

Cross-Correlation Echo Separation Range Estimation

Received Signal Processing

Figure 2.2: UWB sensor node structure

The UWB module consists of the analogue part and the analogue-digital
converter. A basic concept is given in Fig. 2.3. More details of the M-
sequence radar are given in [40]. The RF clock pushes a shift register which
provides the stimulus signal and a binary divider which controls the data
acquisition. The shift register generates the M-sequence as defined by its
internal structure. Data acquisition is undertaken by sub-sampling due to
the periodic nature of the signal, thus reducing the technical requirements
of the receiver electronics. For an M-sequence composed of 2n − 1 chips,
after 2m signal periods, the binary divider takes care that at least one data
sample is taken from every chip of the sequence. According to the sampling
theorem, the sampling rate fc corresponds to usable bandwidth from direct
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2 ULTRA WIDEBAND-BASED LOCALIZATION

current (DC) to fc/2. By selecting the RF clock, the desired bandwidth for
the system can be matched.

RF clock
n stage

shift register

m stage binary
divider

ADC

fc

response signal

M-Sequence

stimulus signal

input to the digital

signal processing

Figure 2.3: Architecture of UWB Radar Module

The sensor signal processing is done digitally. The received signal is
correlated with the excitation signal used by the module to define the
IRF (cross-correlation). Generally this step is followed by target detection
and relevant parameter estimation techniques. For the specific purpose
of person localisation the IRF is processed for detecting the scattering of
a person (echo separation) and determine this person’s range from the
sensor node (range estimation). The details for person detection including
echo separation and range estimation are given in Section 2.5. Since the
sensor node used within this work has two receivers, the range estimates
of a person with respect to the two receivers can be used to determine the
person location. Details on single sensor person localisation are given in
Section 2.6.

A sensor defined in this manner is applicable in many scenarios where
the sensor node needs to be used from one side of the scenario of interest
such as in through-wall scenarios. A portable sensor that can operate in a
"plug and play" mode would be ideal. This means that the sensor should
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be quickly ready for use in an unknown scenario and can provide real-time
or near real-time information for the presence of people in that scenario.

2.4.1 UWB sensor properties

Each of the two transmitter-receiver pairs of the UWB sensor node can be
considered as bistatic radar. The signal received by the receiver contains
pulses directly from the transmitter and reflections from targets and obsta-
cles. Two targets can be resolved by the receiver if they are separated in
time with a sufficient temporal separation which is defined by the receiver
specifications. This theoretical minimum resolvable delay for targets with
δ(t) response is defined as follows:

γτ ≈
Tp
2
≈ 1

2β
(2.6)

for effective bandwidth β and pulse width Tp. The minimum distance at
which a target can be detected is known as the minimum ellipse [73, 74]. A
target inside this minimum ellipse can not be resolved by the receiver since
its pulse is too close to the direct path from the transmitter to the receiver.
The minimum detectable distance is then defined as

Dmin =
√

(xTx − xRx)2 + (yTx − yRx)2 + γτ c0. (2.7)

Sensor coverage is also dependent on the minimum SNR required at the
receiver for reliable target detection. The SNR of a target can be calculated
as follows [73]

SNR =
NsPRx
N0PRF

(2.8)

with Ns being the number of pulses collected for TOA estimation (also
known as scan period), PRF is the pulse repetition frequency and N0

is the one-sided noise power spectral density. PRx is the received power
after scattering of the target as defined in Eq. (2.5). The limit on received
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power due to target reflection is inversely proportional to the product of
the distances between the radar antennas and the target [61, 75] as can be
seen from Eq. (2.5).

For reliable target detection a minimum SNR, SNRth, is required at the
receiver. The maximum distance product as a limit on the bistatic coverage
area can be derived using Eq. (2.8) and (2.5) as

(dTx,maxdRx,max)∗ =√
PTxGTx(f)ηTx(f)GRx(f)ηRx(f)σRCS(f)c02

(4π)3PRx,th

(
1

fL
− 1

fU

)
(2.9)

The points satisfying the above equation form a curve called Cassini oval
whose shape depends on the distance product [73].

The coverage area of a bistatic radar is thus defined as the area between
the minimum ellipse and the maximum Cassini oval as demonstrated in
Fig. 2.4, i.e. a target with distance dTx from the transmitter and distance
dRx from the receiver can be detected by a sensor if

dTx + dRx > Dmin and

dTx
2dRx

2 < (dTx,maxdRx,max)∗
(2.10)

The target detection probability is defined as the probability that a target
is inside the coverage area. If directive antennas are used their directionality
and coverage area should also be considered for defining the system coverage
area. The detection probability can be calculated as the ratio between the
coverage area belonging to the surveillance area and the surveillance area
itself as defined in [74].

The input of a detection circuit is pure noise in the absence of a target.
When a target is present the voltage rises due to the reflection. The time
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Tx Rx
dTx,Rx

dTx dRx

Figure 2.4: Coverage area of an omnidirectional bistatic radar defined as the
area between the minimum ellipse and the maximum Cassini oval

position of the voltage above the noise threshold represents the round trip
time of the target and its height corresponds to the target reflectivity. Since
received signals are often perturbed a signal above a threshold might not
correspond to a target and when a target is present the signal might not
be above the threshold leading to false alarms and missed targets. The
probability of false alarms can be reduced by increasing the threshold level
however then the probability of not detecting weak targets increases.

2.5 Person detection principle
Detection of people can be difficult since reflections of a complex target
such as a person are much weaker than reflections from metal objects or flat
surfaces. Person detection is crucial for person localisation. The received
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signal of a UWB sensor contains reflections and scattering from any objects
in the environment as well as antenna coupling. All components are also
overlaid within one measured IRF. In a typical scenario, the backscattered
signal from the people is one of the weakest components in the IRF and the
system is subject to many perturbations. The source of these perturbations
can come from electronic noise, jamming, stationary and non-stationary
clutter, etc.

The reflections of a person are very weak compared to the stationary
clutter perturbations. In order to detect the echoes related to reflections of
a person, a moving person in a static environment is assumed. Echoes from
the person are then time-variant and echoes of other static objects in the
environment and antenna coupling are stationary. Separation of the time-
variant and static signals is much easier when the person to be detected is
moving and not sitting or laying. When the person is stationary, s/he should
be detected based on the respiratory and heartbeat activity which is more
challenging especially when the person is behind an obstacle. A framework
for respiration and heart rate estimation of a single person is presented
in [76] and extended for multiple people in [77]. Respiration and heart
rate detection is also considered in [77–83]. Experimental demonstration
for different antenna polarisation and different body positions is presented
in [84] where person breathing cross section is presented.

Knowing the motion profile of the targets (such as person walking speed)
it is possible to separate the moving target echo from the stationary clut-
ter (antenna crosstalk and stationary reflections) by a method known as
background subtraction as has been demonstrated in Section 2.5.1.

Non-stationary clutter arises from reflections of objects with the same
range profile as the desired target or from distant objects, in which case the
clutter may be gated out if the unambiguous range of the radar is sufficiently
large. Non-stationary clutter is one of the most difficult perturbation sources
to be counteracted. The different motion profiles may be used to distinguish
between a person and non-stationary clutter. Non-stationary clutter is not
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considered at this stage, however [61] suggests that non-stationary clutter
often contains strong signal components at frequencies below the breathing
rate which can be used to cut the clutter components out.

Once the echoes of the targets are separated from the stationary back-
ground reflections, parameters can be estimated that help localise the targets.
The restrictions and accuracy of possible parameters which can be estimated
are discussed in Appendix II. In this thesis time-based parameters are used.
The main sources of error in time-based parameter estimation techniques
come from the clock synchronization, the signal acquisition, multipath
interference, sampling rate, etc. Precise timing reference is needed between
sensor nodes. The different error sources and methods for minimization of
their influence in active localization in multipath and NLOS environment are
discussed in [5]. Conventionally, TOA estimation is performed by matched
filtering or correlation.

To be able to estimate the TOA the most important thing is to determine
the start time. In M-sequence radars, a sequence of bits are transmitted
continuously in a cyclic manner and thus the start time is not directly
known. Shifting to ’time zero’ is important for compensation for the length
of the RF cables and device internal delays. The reference for this shift can
be derived either from additional calibration measurement or from the time
position of the pulse related to the direct wave between the antennas. In
the second case the TOA parameter of the target is effectively a TDOA
parameter where the time difference of the target reflection and direct
path is used. For this to work, a LOS direct path is needed between the
transmitter and receiver, which in the scenarios and sensor constellation
used in this work is not a problem due to the proximity of the two. Since
the antenna distance is known, the start time can be easily calculated. The
time shifting for determining ’time zero’ is done after determining the IRF
by cross-correlating the received signal with the stimulus signal of the device
used. Within this work the ’time zero’ estimation method is used as it is
assumed that in unknown and possibly dynamic scenarios a calibration
measurement might not be possible.
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2.5.1 Moving target echo separation

To detect the weak echoes of the moving persons, the time-invariant strong
background reflections should be removed. The first step is to estimate
the time-invariant background. Different methods for background subtrac-
tion exist [85, 86]. If a measurement of the static background is available,
subtracting the background template is a reliable method for target echo sep-
aration. In many application scenarios the background cannot be measured
ahead of time and thus needs to be estimated. Most common background
estimation methods are based on mean, median or mode [87], exponential
averaging [88] and low pass filters and predictors [86]. Methods based on
mean, median or mode are applicable for offline processing since they require
access to all measured IRFs. Exponential averaging can be applied in more
realistic scenarios since the background is iteratively computed from the
previous background estimation. It is a well suited method for background
estimation since it is simple and it is controlled by only one parameter.
Background subtraction algorithms that rely on prediction filters can pro-
vide more precise adaptation to the specifics of the environment; however
they are computationally expensive due to matrix inversion for finding the
predictor coefficients.

Due to its simplicity, good performance, high robustness and low com-
putational complexity, exponential averaging is one of the most popular
methods for background subtraction. The background estimate as seen
by receiver j of sensor s at time t, ubs,j(t), is computed using the previous
background estimate ubs,j(t− 1) and the newly received IRF us,j(t)

ubs,j(t) = αubs,j(t− 1) + (1− α)us,j(t) (2.11)

with α being a constant scalar weighting (or forgetting) factor between 0
and 1. This factor determines whether recent events (α→ 0) or long-term
trends (α→ 1) in the background estimation are emphasised. For person
motion α→ 1 should be used since it allows for detection of slow motion in
the received signal. The background estimate ubs,j(t) and the IRF us,j(t)
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are both signals in time domain (also referred to as fast time) and the index
t is a time index at which the IRF is received. To be complete the IRF
should be described using both fast and slow time i.e. the time defining its
duration and the time indexes describing the instances in which new IRFs
are being received. However for the purpose of the background subtraction
the IRF is taken at its entirety with its full duration over the fast time.

The signal of interest containing the person echoes is then

ups,j(t) = us,j(t)− ubs,j(t). (2.12)

In Fig. 2.5 the normalised measured IRF, us,j(t), and the resulting signal
after background subtraction, ups,j(t), are shown for a given time point t.
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Figure 2.5: Target echo detection - normalised measured impulse response (above)
and normalised signal magnitude after background subtraction (below)

In addition to the echoes resulting from the movement of persons in the
environment, the IRF contains strong multipath signals from the direct
transmitter-receiver feed and the reflections of dominant, flat or metallic
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objects. The echoes of the moving people are so weak that they are unde-
tectable in the directly measured signal response. Since the reflections of the
background are time invariant and the sensor is stationary, variations in the
IRF over time indicate changes in the measured environment corresponding
to movement of an object in the environment. After background subtraction
the echoes from the moving persons in the scenario are clearly detectable and
can be separated from other background reflections and from each other.

The radargrams of people walking in a room before and after background
subtraction (over time) are given in Fig. 2.6a and Fig. 2.6b respectively.
As can be seen, the reflections induced by both people walking in the
scenario can be separated from the static background throughout the
scenario duration. One drawback to this method is that it might not be
easy to separate closely spaced persons without additional target separation
techniques or target detection tracking techniques. The instances where the
target further from the sensor is not detectable are discussed later in this
thesis and some solutions are proposed (Chapters 3 and 5).
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Figure 2.6: Radargram of (a) the raw radar signal and (b) the signal after
background subtraction
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2.5.2 Range estimation

The signal ups,j(t) contains echoes from all time variant reflectors which
include the intended targets i.e. people in the coverage area of the sensor. In
addition some low peaks in the signal correspond to shadowed background
reflections that mimic time variance (see Fig. 2.6b). To extract the range
estimates of the targets from the background subtracted signal, various
hypothesis or threshold based methods may be used depending on the
application requirements. A short overview is given below.

2.5.2.1 Single target ranging techniques

In most indoor scenarios clutter arrives later in the fast time (range) com-
pared to the first target. Thus the estimation of the range of the closest
target can be simplified and no clutter models are necessary. The simplest
method is peak detection. In this method the first maximum peak of
the signal is used to denote a detected target. It has low computational
complexity and is suited for completely analogue implementation. However
it is only applicable in single target scenarios or when only the closest
target to the sensor is of interest. In addition, in multipath channels the
first peak of the signal may not be the strongest peak leading to wrong
range estimates. Since a person is an extended target, threshold-based
approaches are more appropriate [89–91]. Leading edge detection methods
with adaptive threshold can also be applied as a relatively cheap and simple
method [11].

2.5.2.2 Multiple targets ranging techniques

For multiple target scenarios, more sophisticated methods are needed. Based
on the peak detection method, a peak search subtract and readjust method
can be applied [29]. Peak detection methods typically require the number
of peaks to be estimated in advance and are typically more complex than
threshold-based methods. For most multiple target detection methods, the
background subtraction data needs to be analysed over a certain period of
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time to derive a test statistic and threshold values. Depending on the propa-
gation environment, the choice of the threshold values can be critical for accu-
rately detecting target range. According to the test statistic and threshold, a
decision between two hypotheses, H0 - absence of a target and H1 - presence
of a target, should be taken. The output of the detector is then discrete cor-
responding to the two hypotheses. Optimum detectors often rely on Bayes,
maximum-a-posterior (MAP) or Neyman-Pearson criteria. The most com-
mon detectors in UWB systems for person detection are (N, k) detectors [92],
inter-period correlation processing (IPCP) [93] and CFAR detectors [94].

CFAR detectors provide good and robust performance for through-wall
moving target detection using UWB systems. The threshold level is au-
tomatically adapted keeping the given false alarm rate constant. Here we
give some more detail on the Gaussian adaptive threshold CFAR detector
as used in [95]. It provides the maximum probability of detection for a
given false alarm rate based on the Neyman-Pearson optimum criterion.
Although the detector is simple and assumes a Gaussian clutter model, it
has good and robust performance for many through-wall scenarios. The
adaptive threshold is determined using exponential weighted moving average
(EWMA) filter. A test statistic X is defined using an EWMA over the
unbiased, normalised signal magnitude of ups,j(t). The background Y is
then estimated using a slower moving EWMA over the signal magnitude
and the signal variance σ2 is defined by using a slow-moving EWMA filter
over the signal energy. The adaptive threshold is defined as

θ = ησ + Y (2.13)

where η satisfies

PFA = 1−
∫ η

−∞

1√
2π

e−
1
2 ξ

2

dξ (2.14)

for a given false alarm rate PFA. The output of the CFAR detector is then

H(X) =

{
1 ifX > θ

0 ifX ≤ θ (2.15)
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The output is a binary sequence which is used to define the time indexes of
the signal when a target has been detected (the indexes of the 1’s). Each
index correspond to the TOA information, τs,j(xt), of a detected person
with unknown state xt at time t with respect to the jth receiver of sensor
s. The estimated ranges of two moving targets using the CFAR estimator
are shown in Fig. 2.7.
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Figure 2.7: Output of CFAR based detector and range estimator

2.5.2.3 Extended targets

Since a person is an extended target when UWB sensors are used for short-
range localisation, multiple detections per person are available corresponding
to different parts of the person’s body that reflected the signal toward the
receiver. The extent of a person with respect to the sensor resolution
decreases with increasing distance, thus it can happen that people further
from the sensors are represented by fewer observations. This has to be
considered when modelling the likelihood function for statistically processing
the detections. One possibility to deal with the multiple detections is to
model or define the extent of the targets of interest. This raises some
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difficulties since persons further from the sensors, and in case of multiple
targets the targets detected later are represented by much less observations
compared to the people closer (or detected first) by the sensor. This can be
seen in Fig. 2.9 where the detections of the targets at a given time point
are represented in grey. As can be seen the closer target (with TOA of
around 20 ns) is represented by more detections compared to the second
target (with TOA around 38 ns).

To reduce the multiple detections per target to one, different clustering
techniques can be used. Hierarchical clustering [96] with a predefined
threshold corresponding to a typical spread of a person in range can be
applied since the number of detected persons in the scenario is unknown.
However, clustering may hinder detection of multiple targets when they
have similar range distance from the sensor. The range detections after
CFAR and subsequent hierarchical clustering are shown in Fig. 2.8.
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Figure 2.8: Output of CFAR detector after hierarchical clustering

For the obtained results clusters with at least two detections forming the
cluster are considered. As can be seen much of the clutter is filtered out.
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The performance of the CFAR detector depends on the false alarm
rate and the choice of parameters for the EWMA filters. Although these
parameters can be adjusted, depending on the position, quality and direction
of the sensors, some clutter points will still be classified as targets. These
false positives hinder the target localisation and should be removed.

In cases where the leftover clutter and false detections after using the
CFAR detector are significantly hindering the localisation of the people,
a range tracking algorithm can be applied for removing the clutter and
any false detections that do not follow a possible target trajectory. In
through-wall scenarios, a wall effect compensation procedure as in [97] can
be applied. If the walls are thin with small relative permittivity, the wall
effect can be considered negligible.

2.5.3 Tracking of range estimates

To improve the target range estimates and remove clutter, a PHD filter
as explained in Section 4.4 can be applied on the CFAR range detections.
Different tracking methods may be applied for the same purpose. However
we choose a one dimensional Gaussian mixture PHD (GMPHD) filter due
to its simplicity and capability to track more than one target. Details on
the PHD filter are given in Section 4.4. The target states are defined by the
target’s range and velocity with respect to the sensor, x = [r ṙ]T , whereas
the observations used for state update are the CFAR range detections.

As can be seen in the signal sample in Fig. 2.9, the CFAR detector would
results in one false target detection around 58 ns in fast time away from the
sensor. After applying the simplified GMPHD algorithm, only two Gaussian
components remain to represent the states of the detected targets (shown
in black), filtering out the false target detection. Applying range tracking
over the detections shown in Fig. 2.8, the range estimates from this sensor
for the two person scenario can be seen in Fig. 2.10.

When using tracking algorithms for target location estimation, range
pre-filtering might not be necessary if the number of clutter and false alarms
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Figure 2.9: Person detection - normalised signal magnitude after background
subtraction in black with adaptive threshold in grey (above) and corresponding
TOA estimates in grey and GMs from the range tracking in black (below)
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Figure 2.10: Output of CFAR detector after range tracking
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is low since the tracking done for location estimation purpose can filter
out possible false location estimates in real time. If there are many targets
and a lot of clutter the range pre-filtering might be necessary to be able to
estimate locations in real time.

2.5.4 Comparison of range estimation methods

In this chapter so far multiple range estimation methods have been discussed.
In Fig. 2.11 the relevant range estimation methods are compared on a
scenario observed by three different sensors placed around the scenario.

The leading edge detection method as a closest target detection method
works well and has little clutter, however is only capable to detect the
closest target to the sensor. The second method is the CFAR method with
hierarchical clustering as explained above. It performs well, however it may
happen that high clutter is present in the signals dependent on the sensor
placement. By applying the additional simplified range tracking procedure,
most of the clutter is removed from the range estimates.

The advantages of range tracking are especially noticeable for Sensor 3 in
Fig. 2.11. For the scenario and movement trajectory considered within this
scenario, the sensor placement is suboptimal. Such situations should be
expected in unknown scenarios. Due to the suboptimal sensor placement,
the sensor can detect the moving targets only in small portions of the
scenario run. The rest of the time there are no target-relevant detections.

Which algorithms or methods are applied to process the signals always
depends on the scenario requirements. If accuracy in detection of the
person is required then most of the methods explained should be applied
to assure it. However each applied method uses resources such as time,
power consumption, processor resources etc. If the resources are scarce or
needed for other applications, some methods such as range tracking, wall
compensation, etc may be skipped leading to reduced detection and ranging
accuracy. In such cases some false detections are provided to the localisation
and tracking framework and should be dealt with there.
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Figure 2.11: Comparison of ranging techniques for multiple sensors looking over
the same scenario with two moving persons: (a) the simple leading edge detection,
(b) the CFAR detector, (c) the CFAR detector followed by range tracking

2.6 Person localization principle
In single sensor localisation, one UWB sensor node is used to localise and
track possibly multiple persons in the area of interest. Ranges are estimated
for each detected person in the IRF of each transmitter-receiver pair. The
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range information of each detected person by each transmitter-receiver pair
can be ’fused’ to estimate the number and location of the people in the
scenario at a given time.

The number of people detected by each sensor varies over time. Whether
a person is detected or not depends on the sensor position, antenna direction
and polarisation, as well as location of the people in the scenario. A sensor
does not always detect all people in its coverage area. Some are shadowed by
other people in the area and cannot be detected. Others may move on the
range ellipse of a sensor and appear as not moving to the sensor, resulting
in subtraction of their echoes when the static background is subtracted.

In case of multiple persons, having only range information leads to
ambiguities in the estimation of the location of the detected people. These
ambiguous locations are also known as ghost targets in target tracking
literature [98]. In Fig. 2.12 an example of a scenario with two targets and
their range estimates is presented. As can be noticed, in addition to the false
intersections, four plausible target locations can be extracted. Two of these
target locations correspond to the actual target locations and the other two
are ghost target locations. In the presence of more targets, clutter and when
using more transmitter-receiver pairs, the problem becomes more complex.

Tracking methods can be applied to improve the localisation of the
detected persons. In this case, the target location is estimated based on
the current range observations of the target and its previous position. In
many tracking systems, simple or advanced modifications of the Kalman
filter (extended, unscented, etc.) or particle filters are used.

Target localisation and tracking based on UWB radar technology has been
previously investigated in [11, 88, 99–105] among others, where [88, 99–101]
only consider single target localisation and tracking. Multipath reflections of
the person in a known geometry are used to localise a single person behind
a corner in [13]. In [102] multiple target tracking using measurement-
target data association and a KF bank is investigated. In [11] single target
detection per sensor and imaging based data fusion is used for multiple sensor
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Figure 2.12: Simple scenario with two targets, their range and location estimates
with the emergence of two ghost target locations

multiple target localisation. The authors in [103, 106, 107] use multiple
hypothesis tracking for both person localisation and characterisation based
on parameters estimated from the channel impulse response. The authors
in [104] consider people as extended targets and utilise both range and
Doppler information for target localisation. The authors in [105] present a
TOA based localisation complemented by Cramér-Rao lower bound (CRLB)
comparison of TOA and TDOA based localisation.

2.6.1 Range-based localization of a single target

When two receivers are close to each other, it can be safely assumed that a
person detected by one receiver would be also detected by the other receiver.
The range detection of a person corresponds to an ellipse in two-dimensional
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(2D) Cartesian space. This ellipse is defined by the transmitter and receiver
positions as foci and the estimated range as the length of the semi-major
axis. A person’s location can be estimated as the intersection of two ellipses
defined by the range estimates from each transmitter-receiver pair of a
sensor. The principle of TOA-based localisation using a single sensor is
illustrated in Fig. 2.13.
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Figure 2.13: ToA-based localisation

The true range of a target xt with coordinates (xt, yt) at time t detected
by sensor s using receiver j is defined as the distance from the transmitter
to the target, dTx plus the distance from the target to receiver, dRxj , i.e.

rs,j(xt) = dTx + dRxj

=
√

(xt − xs)2 + (yt − ys)2 +
√

(xt − xs,j)2 + (yt − ys,j)2
(2.16)

where (xs, ys) are the transmitter coordinates of sensor s and (xs,j , ys,j)

are the coordinates of the j-th receiver of sensor s.
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The estimated target range is corrupted by additive noise i.e. random
distance estimation error, and can be represented as

r̃s,j(xt) = rs,j(xt) + εs,j,t (2.17)

where εs,j,t is the random distance estimation error at time t for the
transmitter-receiver channel of sensor s and receiver j, i.e. additive noise of
the TOA estimation. The target range can also be expressed based on the
estimated TOA, τs,j(xt), of the target using the algorithms presented in
Section 2.5:

r̃s,j(xt) = τs,j(xt)c0. (2.18)

The target localisation can then be redefined as estimation of the target
coordinates (xt, yt) based on the set of non-linear equations (2.17) for all
s and j. In the case when single sensor is used (s = 1), the solution of
two non-linear equations, each corresponding to one of the sensor receivers
(j = 1, 2) should be found. The same equations can be used for other
sensor constellations of multiple input multiple output (MIMO) sensor
architectures with multiple transmitters and receivers.

A popular method for solving the set of non-linear equations is based
on Taylor Series expansion [108]. The non-linear equations are linearised
by expanding the Taylor series around a guess of the solution and only
keeping the first order terms. The linear equations are then solved by using
the least-squares method and thus estimate the target coordinates. The
solution is then used for the next iteration as a point around which the
equations are linearised. The iterations continue until a predefined criterion
such as minimum error is satisfied.

If a perfect TOA estimate is assumed, i.e. ε = 0, Equations (2.16) and
(2.18) can be rewritten as:

τs,j(xt) c0 =
√

(xt − xs)2 + (yt − ys)2 +
√

(xt − xs,j)2 + (yt − ys,j)2

(2.19)
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which is the equation of an ellipse with foci (xs, ys) and (xs,j , ys,j) and semi-
major axis as,j = τs,j(xt) c0/2 and a semi-minor axis bs,j =

√
a2
s,j − e2

s,j

where es,j is the half distance between the transmitter and receiver.

Equation (2.19) can be rewritten as bivariate quadratic equation, i.e.

Ajx
2
t +Bjy

2
t + Cjxtyt +Djxt + Ejyt + Fj = 0 (2.20)

where

Aj = (xs,j − xs)2 − 4a2
s,j

Bj = (ys,j − ys)2 − 4a2
s,j

Cj = 2 (xs,j − xs) (ys,j − ys)
Dj = 4 (xs,j + xs) a

2
s,j + (xs,j − xs)

(
x2
s − x2

s,j + y2
s − y2

s,j

)
Ej = 4 (ys,j + ys) a

2
s,j + (ys,j − ys)

(
x2
s − x2

s,j + y2
s − y2

s,j

)
Fj = 4a4

s,j − 2a2
s,j

(
x2
s,j + x2

s + y2
s,j + y2

s

)
+

(
x2
s − x2

s,j + y2
s − y2

s,j

)2
4

Since such an ellipse is defined for all transmitter-receiver pairs (s, j)

where the target is detected, the target location can be estimated as the
intersection point of those ellipses. For one sensor node detecting one target
two such equations are defined. The closed form solution can then be derived
by solving the 4th-degree polynomial using standard linear elimination of
variables (for the case of two ellipse intersections) by applying the Bézout’s
Theorem.

The number of intersections of two ellipses can be zero if the ellipses
never touch, infinity if the ellipses overlap, and one, two, three or four if
the ellipses touch or cross each other. Since the two ellipses share one focus
(the transmitting node) and the major axis, there are at most two solutions
as ellipse intersection points (the problem reduces from fourth to second
degree). In the presence of a target two intersection points are expected.
Each should have the same likelihood of being the target location, however
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the sensor node is typically positioned on one of the edges of the area of
interest and directive antennas are used to observe the front half-space of
the sensor. Using this knowledge of the sensor-scenario geometry, in most
cases one of the intersection points can be directly discarded as undesirable
or a low likelihood can be assigned to it since it does not lie within the
area of interest.. If a target is present in the scenario and the ellipses do
not intersect, it can be assumed that either the target range has not been
estimated properly or the target is not detected by one of the receivers of the
sensor node and a detected clutter or false alarm point is being used as target
information. Same applies to the case of only one intersection point.

A problem with the ellipse intersection method for target localisation
arises when the target is far from the sensor. Since the receivers are relatively
close to each other, the ellipses are mostly overlapping leading to a flat
intersection corresponding to a large localisation error.

2.6.2 Range-based localisation of multiple targets

In the presence of only one target, in theory, there is only one range
estimate per receiver, leading to only one possible ellipse intersection for
the target location. However, in the presence of multiple targets, multiple
combinations of range estimates are possible giving rise to ghost target
locations as shown in Fig. 2.12. The calculation of the ellipse intersection
points is computationally expensive and time consuming, thus it might be
advantageous to first associate range estimates from both IRFs corresponding
to the same target.

In the scenarios considered in this thesis the static sensor nodes have both
receivers very close to the transmitter and thus a similar range estimate
value is expected for a target by both receivers. Based on this assumption an
intersection threshold is defined for associating the correct range estimates
from the two receivers for the correct target. This intersection threshold
is based on the maximum range difference expected of a target detected
by both receivers of the sensor node. Since the size of the area of interest
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2.6 PERSON LOCALIZATION PRINCIPLE

A is known (or can be approximated based on the sensor locations) the
intersection threshold, Ts, for each sensor s can be calculated in advance
for given transmitter and receiver positions as

Ts = max
xt∈A

|r̃s,1(xt)− r̃s,2(xt)|. (2.21)

Let ζ and χ denote two objects in the target space. If the range estimate
of object ζ with respect to the first receiver, r̃s,1(ζ), and the range estimate
of object χ with respect to the second receiver, r̃s,2(χ), satisfy

|r̃s,1(ζ)− r̃s,2(χ)| ≤ Ts, (2.22)

it can be concluded that the objects ζ and χ represent the same object.
If multiple range estimates satisfy (2.22), the estimate resulting in the
smallest absolute difference is chosen. The target location is estimated
as the intersection point of the ellipses defined by the range estimates
corresponding to the same target as explained in Section 2.6.1. The above
association does not only reduce the computational load, but it also helps in
reducing ghost location estimates. Ghost location estimates may result due
to intersection of ellipses defined by ranges belonging to different targets, or
by choosing multiple intersections of one ellipse with the other ellipses.

2.6.3 Measurement-based method verification

The method described above for localisation of multiple targets using a
single UWB sensor node has been verified using measurements from an
indoor scenario with two moving people.

Fig. 2.15 shows the estimated locations of two targets moving in a scenario
surrounded by four sensors. The different colours of the location estimates
correspond to the sensors whose observations were used to determine the
location. Fig. 2.14 depicts the estimated positions of the two targets by
Sensor 3. The area surrounded by the grey lines denotes the area there the
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targets were moving. In Fig. 2.14 the arrows denote the starting position of
the two targets and their movement direction.
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Figure 2.14: Locations of two targets as estimated by Sensor 3. The grey zone
depicts area where people were moving.
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Figure 2.15: Locations of two targets as estimated by four separate sensors. The
colour of the location estimates corresponds to the colour of the respective sensor.
The grey zone depicts area where people were moving.
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As can be seen in these figures, each sensor has different performance
in locating both targets over the scenario. This performance depends on
how the person is positioned and moving with respect to the sensor as
well as the distance of the target to the sensor and whether there is an
obstacle (wall) separating the targets and the sensor. As can be seen from
Fig. 2.14, the locations of targets closer to the sensor have better location
estimates compared to targets further from the sensor due to the flatness of
the ellipse intersection with growing distance (leading to inaccurate location
estimates).

In Fig. 2.15 the estimated locations by all sensors are shown. As can be
noticed, each sensor on its own can not localise both targets continuously
and reliably. There are many outliers when the targets are further from the
respective sensor. However, all sensors together can cover the scenario and
the movement of both targets. Thus as next step a reliable fusion of the
location estimates is needed for more reliable target location estimation.

2.7 Concluding Remarks

Indoor localization of persons that do not cooperate with the system network,
such as potential intruders, can be complimented by the use of UWB systems.
The large frequency spread makes UWB systems applicable for through-wall
detection and localization by using the lower frequencies of the spectrum.
In this chapter person detection and localisation using UWB sensor system
is presented. The principle of UWB sensing and different EM aspects that
need to be considered are discussed.

For detection of people in the IRF a combination of exponential averaging
for echo separation and CFAR followed by hierarchical clustering is used.
The selected methods allow for real-time processing of the received signals
and providing accurate range estimates of multiple targets present in the
environment. Range tracking procedure is also introduced which can be
used when a lot of clutter is present in the detections. However this will
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cost some computational resources and some delay in the processing. In
well defined and modelled environments, range tracking can be skipped.

Due to the sensor structure with a transmitter and two receivers, a
detected person can be localised by finding the intersection of the ellipses
defined with major axis equal to the bistatic range of the target with respect
to the two receivers. This method is straight forward when each channel
provides only one detection. However when reflections of multiple targets
are present in the channel, the task is not straight forward any more. The
detections from each channel need to be associated with a target so that
the correct ellipse intersections can be chosen as target location estimates.
If the association is not done correctly false locations or ghost locations
may be chosen as target location estimates. In this chapter a method for
detection-to-target association is presented and verified on data measured
by four different UWB sensors observing an environment with two moving
people. The sensor geometry has influence on the accuracy of the location
estimates. In the following chapter the concept for distributed UWB sensor
network is introduced so that the data from all observing sensors can be
used for improving the accuracy of the location estimates.
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CHAPTER 3

MULTIPLE SENSOR DATA FUSION
FOR LOCALISATION

By using UWB sensors objects in the area of interest can be detected with
substantial accuracy, as shown in [109] and above in Section 2.5. A single
sensor node is often not well suited for detection and localisation of multiple
targets as seen in Fig. 2.14. Targets close to the receiver and/or transmitter
of a sensor node shadow over other targets in the environment, making
them undetectable or only partially detectable to the sensor.

One possibility to detect those shadowed targets is to use multiple sensor
nodes and place them around the scenario. In such case at least some of
the sensors can detect some of the targets in the scenario. By fusing their
detections appropriately all targets may be localised. This chapter describes
the concept for a distributed UWB sensor network taking into consideration
the issues that need to be addressed when designing such a network for real
time operation. Possible sensor operation principles, system synchronisation
and sensor cooperation issues are discussed, followed by description of the
sensor network architecture with sensor node and fusion center frameworks.
After discussing some real time operation and implementation challenges,
the multiple sensor fusion concept is presented. Different challenges present
in multiple sensor fusion scenarios are discussed and a multiple sensor
likelihood function is derived. The likelihood function is then visualised
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3 MULTIPLE SENSOR DATA FUSION FOR LOCALISATION

and compared based on the input provided for a two person scenario.

3.1 Introduction
In a scenario with reflective walls and multiple objects, the background
subtraction method may fail in separating the moving from static objects.
One of the reasons is the unavoidable interaction of the multiple reflections
and especially the influence of shadowing [10] either by static objects over
the targets, or dynamically by the targets themselves. As a result, the
SNR is low, leading to multiple false alarms that influence the detection
and localization accuracy. Since the estimated parameters are also noisy,
and in the UWB sensor structure used here the two receivers are close to
each other, the estimated position is distorted. Additionally, sensors have
limited field of view and limited accuracy in ranging depending on the target
distance from the sensor. Due to the use of directional antennas, blind-spots
arise in the scenario where a sensor can not detect any present target.

Distributing multiple UWB sensors around the scenario decreases the
geometric dilution of precision and increases the coverage area of the sys-
tem. Different sensor distribution schemes for UWB systems have been
discussed in literature [26, 109, 110]. The distributed UWB sensor network
scheme used here is based on multiple autonomous bistatic bat-type UWB
sensor nodes (described in Section 2.4) placed at any convenient1 locations
around an area of interest. Fig. 3.1 demonstrates the idea of the sensor
network scheme. Multiple standalone UWB nodes are distributed around
an unknown area of interest and each is connected to a common fusion
center or control system which provides the target detections and locations
to the system user.

A scheme like this is useful since no operators are needed around each
sensor node at all times. The sensors need only be placed at the desired
location and the full control of the sensors can be done from the fusion
1 In this case convenient is meant as spatially convenient placement and not due to
optimal sensor positioning. Optimal sensor positioning is not in the scope of this work.
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Figure 3.1: Example of possible scenario of interest surrounded by multiple
UWB sensor nodes

center by a single operator. The network covers a larger area and many
shadowed regions and blind-spots in the area of interest with respect to
one sensor are covered by another sensor of the network. Moreover not all
sensors are influenced by multipath in the same manner. Targets in the area
of interest may be detected by multiple sensors of the network, providing
information regarding the target from different angles. This information
needs to be properly fused accounting for target extent, ranging errors, bias
and systematic errors so that a target detected by two different sensors does
not appear as two separate targets close to each other in the final results.

When using distributed sensor networks, it is desired that as little data
as possible is transmitted between nodes. Thus sending the full channel
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impulse response to the central node compared to few parameters relating
to the detected targets might be excessive. Additionally, attention must
be paid to the performance of the overall system in real time. Both the
detection of the targets by the sensors and the fusion of this information
must be provided in real or near real time.

Person detection and localisation using distributed UWB sensor networks
have been studied in [26, 73, 74, 111–113]. In [111] the CRLB for object
tracking in a 2D environment assuming specular reflections is derived.
The authors in [73] study the impact of the sensor network geometry on
the target localisation for anti-intruder UWB radar systems. Optimum
detection metrics for target detection and tracking in UWB sensor networks
are defined in [112]. The authors in [74] analyse UWB sensor networks,
taking into consideration the sensor coverage area and probability of target
detection.

Within this chapter the bat-type UWB sensor is considered as a single
sensor node and multiple such nodes are used to design a sensor network
around scenarios of interest. The considerations taken when designing
a distributed UWB sensor network are described further in this chapter,
followed by derivation of the multiple sensor likelihood function for fusion
of the data from the contributing sensors.

3.2 Sensor network design and sensor
cooperation principles

Using distributed sensor network has many advantages, and can significantly
improve the UWB radar system abilities due to the diversity gain offered
by the sensor network. However, to exploit this, we need appropriate
sensor cooperation and synchronization, as well as appropriate fusion of the
information obtained by each of the sensors in the network. For coherent
real-time signal processing, the components of the UWB sensor need to be
temporally synchronized.
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PRINCIPLES

3.2.1 System synchronisation

Synchronisation of the transmitters and receivers in distributed sensor
network is necessary for acquiring the target range and location information.
To obtain TOA information about a target of interest a transmitter and
receiver need to be synchronised. For TOA localisation three synchronised
transmitter-receiver pairs are required. This number can be reduced to
two if additional information about the observation direction of the sensors
is provided. An example is shown in Fig. 3.2a where one transmitter
is synchronised with two receivers. By use of directional antennas the
observation direction is also known, and can be used to calculate a target
location. Depending on the scenario and network constellation, it might be
simpler to have only two synchronised receivers which are not synchronised
with a transmitter, for example a scenario where the receivers can be placed
on the same platform and a transmitter needs to be placed at a distance. In
this constellation TDOA information can be used to determine a hyperbola
of the range of the target as in [109]. If at least three temporally synchronized
receivers are provided, two hyperbolas whose intersection would result in
the target location as in Figure 3.2b can be obtained.

Tx1 Rx1 Rx2

(a) TOA based localisation

Tx1

Rx1 Rx2 Rx3

(b) TDOA based localisation

Figure 3.2: Target localisation methods
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When bat-type sensors are used there is inherent temporal synchronisation
between the transmitter and the two receivers of the sensor since a local RF
clock is used (the receivers of the platform are also synchronised). The TOA
information from each transmitter-receiver pair can be used to determine
the target location as in Section 2.6. Since the receivers are synchronised,
using the transmitted signal of a transmitter from a separate sensor node, a
TDOA parameter may be estimated as well. This requires knowledge of the
transmitted sequence by the external receivers for appropriate correlation
when determining the IRF. An example of a scenario where one transmitter
from a bat-type sensor node is used is shown in Fig. 3.3. Using the receivers
of the same platform two TOA parameters, each from the respective receiver,
can be estimated as target observations. If another bat-type sensor node is
present or additional two synchronised receivers are present in the scenario,
a TDOA parameter may be estimated and used in addition to the TOA
parameters as additional information which may improve the target location
estimation.

Tx1

Rx21 Rx22

Rx11

Rx12

Figure 3.3: Target localisation with TOA and TDOA using UWB sensor nodes
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The connection between each sensor node and the fusion centre node
is either wired or wireless. To synchronise the system, a common system
clock should be shared among all sensor nodes either via coax, optical
cables or wirelessly. The wired synchronisation offers more precise and
stable measurements, however it requires the use of long cables. The
synchronisation between the sensor nodes and the fusion center is needed
so that the provided data may be appropriately fused. The synchronisation
accuracy here depends on the target speed and does not have to be in
pico- or nano-second range as is required for TOA estimation. For person
localisation millisecond time accuracy between the sensor nodes and the
fusion center is sufficient.

3.2.2 Sensor network operating principles and control

How the sensor nodes cooperate with each other and how can they be
controlled is another network design question that needs to be addressed
here. In a sensor network defined by using multiple bat-type UWB sensor
nodes, two operating principles can be defined: sequential and parallel.

The sequential network operation mode would reduce the interference
caused by multiple transmitters being active at the same time. However this
increases the measurement time due to switching through the transmitters
used in the network. For the sequential mode, synchronisation or a shared
system clock between all sensor nodes is required, otherwise the switching
between the different sensors may be too slow causing latency in the data
delivered to the fusion center and thus resulting in localisation errors. In
the sequential operational mode, the master node has a greater role. It
can control when a specific sensor node is active and avoid having multiple
sensor nodes being active at the same time. A sensor scheduler needs to be
implemented with appropriate scheduling algorithm. In this case the active
sensor node can push target detections to the fusion center to improve on the
location estimation by fusing this data over time and with data from other
sensor nodes The target detection can be either range estimates from the
two receivers or locally calculated locations. Another possibility is to only
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control the transmitters of each sensor node and have all receivers active at
all times. The sensor whose transmitter is active can use the signals received
by its two receivers to estimate the TOA of possible targets, whereas the
other sensor nodes can estimate the TDOA of possible targets. In this case
more information can be gathered since in addition to the TOA information
from the active sensor node, TDOA information can be gathered by all
other sensor nodes whose transmitter is currently not active (see Fig. 3.3).
The master node will have to have a dedicated and accurate transmitter
scheduler implemented that would also consider possible communication
delays.

In a parallel operating principle RF synchronisation between the sensor
nodes is not required. By relaxing the synchronisation requirement, each
sensor node operates using a local system clock. The transmitters of
each sensor node may operate in parallel, and the signals scattered by
the environment can only be resolved by using the receivers which are
synchronised with that transmitter, given that the transmitted signals
of the different transmitters are orthogonal. This means that for each
transmitter of a sensor node, only the two receivers of the same sensor node
are used. Since all sensors are active at all times, there is not much control
from the master node (also known as the fusion center) over the sensor
nodes. Basically the master node is only used for gathering the data from
the sensors and processing it for estimating target locations. The advantage
of the parallel mode is the reduced measurement time for acquisition of the
’reduced’ MIMO impulse response function and the lack of synchronisation
between the sensor nodes.

Within this work the parallel operational mode was used. Although
the sequential operational mode was considered, especially due to the
information gain, it was decided that the higher measurement rate of the
parallel mode is more important. Additionally, the single sensor processing
described in Chapter 2 can be reused and single sensor failure in the network
should not cause problems to the network operation. In the conducted
experiments the influence of the interference of the other transmitters was
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not significant which also meant that even if sequential mode was used,
TDOA information could not be obtained (the obtained IRF when using
transmitter of a different platform resulted in a noisy signal most likely due
to frequency mismatch in the RF clocks). Another practical advantage of
the parallel operating mode is that single sensors can easily be disconnected
from the network and used autonomously or moved to a more optimal
position and connected again.

3.3 Sensor Network Architecture
Although there is no synchronisation between the different sensor nodes,
each sensor node cooperates with a central master node which controls the
operation and data flow of the sensor nodes. The fusion center node is
responsible for sensor discovery and definition of the sensor network based
on the number of connected sensors. It also provides a common reference
coordinate system based on the knowledge of the sensor locations. The
sensors are assumed stationary and with known location, i.e. they are
capable of self-localisation. If a sensor is moved to a different area, it is
deactivated from the network and reconnected as a new sensor node on its
new location.

3.3.1 Sensor node framework

The structure of the UWB sensor node has been described in Section 2.4.
As mentioned, the sensor node consists of a stand-alone UWB module with
a processing capability, i.e. connected to, for example, a mini-PC which
acquires the data from the UWB module and can process them locally
before sending processed data to the fusion center.

The framework of a sensor node is shown in Fig. 3.4. The Sensor Driver
block provides local access to the UWB module for data acquisition from the
UWB module and propagating sensor control messages to the sensor itself
if specific transmitter or sensor control is desired for the specific scenario.
These control commands may also define specific sensor parameters such
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as subsampling rate, sensor measurement rate, etc. It can also be used to
provide access to a simulated sensor module.

Rx1 Tx Rx2
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Sensor Driver
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Background Subtraction

Range Estimation

...

Sensor Data Processor

Figure 3.4: Sensor node structure

The Sensor Data Processor block processes the received UWB pulses
by both receivers to provide range estimates of the detected persons. It
consists of the processing steps defined in the green building blocks. An
additional processing step for Target Localisation can be defined where
the ranges estimated by the two receivers are fused to result in locations
of the detected targets as explained in Section 2.6. The Node Controller
block provides the interface for the data structure and transfer from the
module to the processor and the processed data to the network interface.
It provides data buffering capability from sensor driver to data processor,
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and from data processor to the network interface, pushes remote sensor
configuration and control messages to the sensor driver and provides remote
access to buffered data via the network interface module.

Finally, the Network Interface block provides communication between
the sensor node and the fusion center node. It has a data interface for
transmitting the processed data by the sensor node to the fusion center node,
a configuration interface for configuration of various parameters needed for
the algorithms used for data processing and a control interface for providing
controls for the sensor operation from the fusion center node.

3.3.2 Fusion center framework

The fusion center acts as a control center for all sensor nodes. It manages
the operation of each sensor and is responsible for sensor discovery and
definition of the sensor network. It has a sensor scheduler which controls
the measurement operation sequence of all sensor nodes in the network and
defines the operation mode of the sensors. In the parallel operation mode
the sensor scheduler is not used, i.e. all sensors operate in parallel. The
data received by each sensor is first aligned to account for communication
delay and missing data. Then it is passed to a processing unit where it
is fused defining location estimates and tracks for each of the detected
targets in the scenario. Depending on the design of the network, either
locations or range estimates are sent to the fusion center. For fusion of the
range estimates of each sensor into location estimates, a common reference
coordinate system is defined. This means that the transmitter and receiver
locations of each sensor with respect to a common reference node should
be known to the fusion center. The framework of the fusion center node is
shown in Fig. 3.5.

The Network Interface block provides a management interface for
managing the operation of each sensor and a push/pull data interface for
gathering the data from all sensors. It is equivalent to the network interface
block of the sensor nodes. The Sensor Manager block implements the

59



3 MULTIPLE SENSOR DATA FUSION FOR LOCALISATION

Data Manager

Data CollectorS
en

so
r
S
ch

ed
u
le
r

S
en

so
r
M
a
n
a
g
er ...

Localisation

Tracking

...

Data Fusion Processor

Network Interface

Application Interface

Figure 3.5: Fusion center structure

sensor group management, i.e. sensor discovery. The Sensor Scheduler
controls the sensor operating sequence and defines the operation mode of
the sensors. It uses the control interface of the sensor nodes. The Data
Collector block acquires and aligns the data received from the sensor nodes
and passes it to the processing unit. The data alignment uses the signal
acquisition time provided together with the target detections. Although
all sensors are not synchronised with a common master clock, they all use
distributed clock synchronisation protocol. The Data Manager block
provides access to current and recent system data using the data structure
required by the Data Fusion Processor. The data processor consists
of different processing steps (represented in green) for fusing the target
detections provided by all sensors and thus estimating more accurate target
locations. Target tracking is also inherently applied. The target tracks are
then provided via the data manager to the Application Interface which
can then provide them to any application that may use them, for example
a visualisation application.
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3.3.3 Distributed UWB Person Localisation Demonstrator

Based on this work a demonstrator was built and tested in different envi-
ronments as well as presented live during the Future Security conference
(Bonn, 2012) in its basic form. Later on the experimental demonstrator
was upgraded with the newly implemented data processing algorithms.

For the design of a sensor network, multiple challenges are faced. Here
it is assumed that the sensor nodes are at known locations with respect
to each other. This could be done using global positioning system (GPS)
and each sensor node can be self-localised, or active target localisation
techniques and time difference of arrival method can be used to localise
the sensor nodes [3, 114] (for TDOA based active localisation at least three
synchronised receiver antennas are needed to localise a transmitter). If GPS
can be used for sensor localisation, it can also be used for synchronising
the time between the different sensors. The reason methods other than
GPS are investigated for sensor self localisation and time synchronisation,
is because this sensor network for person localisation is meant to be used
indoors and possibly in areas where the GPS signal might not be reliable or
even available. Additionally, the accuracy of GPS localisation might not be
sufficient for the small size of the scenarios of interest. Thus local network
based time synchronisation is used and active UWB transmitter localisation
is considered for sensor localisation.

An experimental system for on-line real-time processing of data-streams
by multiple distributed UWB sensors for localisation and tracking of multiple
non-cooperative targets was designed and implemented according to the
design layout described in the previous sections of this chapter. An example
scenario setup is shown in Fig. 3.6. The UWB modules used provide an
Ethernet interface with two TCP/IP sockets: a command socket where an
application can configure and control the module (e.g. transmitter operation)
using binary message protocol, and a data socket where an application can
read the received signals of the receivers as stream of 16 kB length. The
data socket provides the readings of the sensor’s receivers to the sensor data
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processor where they are directly processed. It also provides the sensor
position coordinates to the fusion center for reference plane definition.

The fusion center provides an interface for recording data from exper-
iments for off-line analysis and an interface for various user applications
for visualizing the processed sensor data in real-time. It also provides
control and data interfaces similar to the sensor node for access of sensor
parameters and current tracking data such as target locations, confidence
factors, etc. The sensor nodes does not need to have a physical connection
with each other or with the fusion center. Both Wireless and Ethernet
based communication between nodes and the fusion center were tested. A
decentral service discovery and network-node auto configuration based on
Zeroconf [115] is used for sensor discovery. The processing algorithms are
implemented in Matlab, while the rest of the sensor network system is
implemented in Java. For simplification of further extension and usage
of the system, usage of low-level network or operating system interfaces is
avoided. Internet communication engine [116] is used for remote interfaces
due to its simplicity and portability.

Sensor Node 3
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Fusion Center

classroom

windows

door

Figure 3.6: Schematic of a measurement scenario setup

The sensor nodes are distributed around the area of interest and as soon
as they connect to the network, they are registered on the fusion center side.
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In the scenario depicted in Fig. 3.6 three sensor nodes are placed behind each
of the walls of a classroom (Fig. 3.7) as can be seen in Fig. 3.8. Each sensor
node is driven by a separate 7 GHz RF clock and the measurement rate is
set to about 100 IR/s. Using this setup multiple scenarios are measured,
using different trajectories and different number of persons as targets, as
well as scenarios where the classroom is either full or emptied from its
furniture. Some results on the person localisation improvement when using
multiple sensors are shown in Appendix III for one and two persons walking
in the classroom.

Figure 3.7: Classroom as area of interest

(a) Sensor 1 (b) Sensor 2 (c) Sensor 3

Figure 3.8: Sensors as placed around the area of interest
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3.4 Multiple sensor data fusion
Sensor data fusion describes the combination of data either from multiple
sensors or from a single sensor such that the result of it has lower uncer-
tainty compared to when the sensor data is used individually. In multiple
sensor fusion the data provided by all sensors observing the desired targets
should be fused to accurately represent their actual states. The theoreti-
cally optimal method for fusing data from multiple sensors is to fuse the
observations from all sensors in a central fusion center [50]. In fusion and
tracking approaches, the observations are associated to either an existing
track or used to initialise a new track. More on data fusion and tracking
approaches is discussed in Chapter 4.

Sensor data fusion consists of three main tasks: data association, target
detection and target localisation. The data association task identifies which
observations from different sensors belong to the same target and which
are false alarms. The target detection determines how many targets are
detected and which sensor provides observations for the detection of specific
targets and the target localisation uses the provided observations to estimate
the locations of the detected targets.

As mentioned in Chapter 2, each sensor is capable of estimating the
locations of detected targets. A target is typically detected by more than
one sensor as seen in Fig. 2.15. It can be built up upon this method by
fusing the locally estimated target locations by the different sensors. Any
target detection that can not be used locally for estimating a target location
is discarded. Within this work this method is also referred as distributed
fusion approach. In a centralised fusion approach all target detections (range
estimates) are fused together at the fusion center. Target detections which
can not be used locally for target location estimation are not discarded.
Instead they are used for target location estimation in the fusion center,
where they can be paired with target range estimated from different sensors.
The two fusion methods and their differences are also separately explained
in Appendix IV.
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Association of the observations made by the different sensors to the
correct targets is one of the main challenges since the number of possible
associations increases the more sensors and targets are present. All targets
are not detected by all sensors at every time step. There are many non- and
missdetections as the target moves further from a sensor, and if detected
the accuracy of this detection is degraded with distance.

3.4.1 Multiple sensor fusion challenges

When using multiple sensors for detection and localisation of target, dif-
ferent challenges can be expected. Some of these challenges arise due to
the parameter estimation errors and sensor bias. Fusion of inaccurate and
biased parameters estimated in a state space different from the localisation
state space can be challenging and thus an appropriate estimation error
representation is needed. Within this section some of these challenges are
discussed. For simplicity ellipses are used to represent target TOA detections
in Cartesian state space instead of likelihood functions or annuli.

In the ideal case with no TOA estimation error, the target location
estimated by each sensor coincide resulting in a scenario as seen in Fig. 3.9(a).
However, in practical applications there is always a non-zero estimation error.
The case when the range estimation error is small is shown in Fig. 3.9(b).
It can be observed that the target location estimates with respect to each
sensor (blue point intersections) are close to the true target location (black
point intersection). In some scenarios, such as through-wall, the range
estimation error is large leading to the situation depicted in Fig. 3.9(c)
where the target location estimate using sensor 1 is further from the true
target location. Finally, it can also happen, in addition to TOA estimation
errors, that a target is not detected in one of the IRFs of a sensor as depicted
in Fig. 3.9(d), where a target cannot be localised by a sensor since it is not
detected in one of the transmitter-receiver channels of the sensor.

These cases have also been considered in [117] where single target locali-
sation by two UWB sensor nodes is considered. A joining intersection of
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(a) (b)

(c) (d)

Actual target location

Target location estimates per sensor

Other ellipse intersections,
i.e. possible target locations

Transmitter

Receiver

Figure 3.9: Range estimation error influence on location estimates in multiple
sensor scenarios: (a) Ideal localisation, no range estimation error; (b) small
range estimation error; (c)large range estimation error by one sensor; (d) target
missdetection by one receiver of one sensor

ellipses method is proposed, where additional ellipse intersections close to
the true target position are utilised to form a cluster of intersections, which
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is later used for target positioning. The presented approach is shown to
be better than simple averaging of locations estimated by single sensors or
Taylor series methods. However, it is also computationally extensive since
all possible ellipse intersections should be determined to form the cluster of
intersections.

In the presence of multiple targets and high clutter, this method would
be impractical mainly due to the many ellipse intersections that need to
be determined, the measurement to target association involved as well as
the possibility of not being able to correctly separate multiple targets. In
multiple target scenarios, it can happen that the cluster of intersections
determines a false target location instead of two separate targets, as shown
in Fig. 3.10 where one target is detected by one sensor and the other target
is detected by the other sensor. If it is not known how many targets are
present in the scenario, the cluster of intersections determines one target
location instead of the expected two targets.

Figure 3.10: Possible location estimation error source in multiple sensor multiple
target scenarios: false intersections may be chosen as single target location (green
ellipse) instead of the true locations of two targets (black circles)
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An additional challenge not described in the above cases is the detection
of clutter by some of the transmitter-receiver pairs. This becomes a problem
when there is an unknown number of multiple targets and many sensors
placed around the scenario for target detection.

In the next section the likelihood function is derived for multiple sen-
sor scenarios, and some instances of it based on the acquired scenario
observations are presented.

3.4.2 Multiple sensor likelihood function

A likelihood function characterizes the information obtained from sensors.
For the purpose of this work, a joint likelihood function as described in [118,
119] is defined using the range information from each transmitter-receiver
pair, the approximate size of the area of interest and the predefined Cartesian
coordinate system. The classical likelihood function in the presence of K
observations, {zt,k}Kk=1, from one sensor (sensor pair [sj]) for a single target
can be defined as

p(Zt
[sj]|ζ) =

K∏
k=1

p (zt,k|ζ) (3.1)

where
p (zt,k|ζ) = N

(
zt,k;hs,j(ζ), Rt

[sj]
)

(3.2)

represents the functional relationship between the target state xt and obser-
vation zt,k as Gaussian probability density function (pdf) with observation
noise covariance matrix, Rt[sj], at time t. hs,j (ζ) denotes the measurement
function defining the relationship between the observation and the target
state for sensor [sj]. Equation 2.16 is used as measurement function since
range is the only target observation used in the scenarios considered within
this thesis. However the equations presented here can be used for any
combination of multiple target observation parameters as typical for Radar
observations. The noise variance is typically different for each estimate2,

2 depends on the array configuration, system bandwidth, SNR, etc
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however, for simplicity, in the following equations equal variance for all
estimates is assumed.

The functional relationship between the target state and observation
represented in (3.2) does not necessarily need to be Gaussian pdf, although
it is very commonly used. To clarify, a likelihood function does not represent
the estimate of a target state, it calculates the probability of obtaining the
observation zt provided the target is in state ζ. In most cases likelihood
functions are not pdfs on the target state space and do not integrate to one
over the target state space.

If the normalized residual of the k-th estimate for a target at location ζ
is defined as

ukζ =
hs,j(ζ)− zt,k√

Rt[sj]
(3.3)

the likelihood function can be rewritten as

p(Zt
[sj]|ζ) =

K∏
k=1

exp(− 1
2 (ukζ )2)√

2πRt[sj]
. (3.4)

The maximum likelihood estimation can be generalized by a maximum-
likelihood-type estimator as

p(Zt
[sj]|ζ) =

K∏
k=1

exp(−p(ukζ ))√
2πRt[sj]

(3.5)

where p is a symmetric, positive-definite function with a unique minimum
at zero. With p(u) = u2

2 the likelihood function is as in Eq. (3.4). In [118]

the Welsh function, p(u) =
c2α
2 (1 − exp(−(u/cα)2)), is used for outlier

suppression. The tuning constant cα used in the Welsh function is used
to make the maximum likelihood estimator more robust or more efficient.
Other functions are also compared such as for example a least power function
with p = 1.2, Cauchy function with 95 % efficiency or a German Macalure
function.
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When more information is available such as the probability of detection of
the sensor, pD(ζ), as a function, the two likelihood functions can be combined
by pointwise multiplication. Incorporating the model for probability of
detection of the sensor and the model for the false alarm intensity, %F (zt,k),
the likelihood function for maximum one detection per target can be given
by

p(Zt
[sj]|ζ) ∝ pD(ζ)

%F (zt)
p (zt|ζ) + (1− pD(ζ)) . (3.6)

Any information that can be put into the form of a likelihood function can
be integrated in the overall likelihood function by combination, including
subjective information.

The extension of the single target likelihood to a multiple target likelihood
is straightforward. Typically an association variable, β, describing the
measurement to target association is used. β can be defined as a vector
with β(i) being the index of the observation associated with target i and
β(i) = 0 describes the event of no detection. The likelihood is then given
by:

p(Zt
[sj]|ζ(1), ..., ζ(N))

∝
∑
β

 ∏
j:β(j)6=0

[
pD(ζ(j))

%F (zt(β(j)))
p
(
zt

(β(j))|ζ(j)
)]

+
∏

j:β(j)=0

[
1− pD(ζ(j))

] .

(3.7)

The likelihood function presented above considers only measurements
by one transmitter-receiver pair. For the scenario used here, the above
likelihood function should be generalized to consider the estimates of all
transmitter-receiver pairs. The generalization is as follows:

p(Zt|ζ) =

Ns∏
s=1

Nsj∏
j=1

p(Zt
[sj]|ζ) (3.8)
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where Ns is the number of sensors in the network and Nsj is the number of
receivers on each sensor. Considering each transmitter-receiver pair as a
single sensor, the joint likelihood function is defined as the product of all
contributing single sensor likelihood functions.

The multiple sensor multiple target likelihood function described above
is a generalised likelihood which can be used in scenarios where possibly
different sensors can be used, some of which provide multiple estimation
parameters per sensor. In this case the measurement function hs,j (ζ) and
the outlier suppression function p(u) should be chosen appropriately to
represent the provided sensor estimates.

3.4.3 Comparison of deterministic and statistical
localisation

Previously on single sensor platform target range estimates are ’fused’ to
estimate a target location by ellipse intersection. This method does not
take into consideration the variance of the target observations, and instead
calculates a point intersection which deterministically represents the possi-
ble target location. A noisy estimated parameter can thus result in a wrong
target position estimation for which there is no additional information on
its accuracy. When multiple sensors are used, multiple location estimates
of the same target are obtained. The mean of this cluster of estimates can
then represent the final estimate of the target by the system of multiple
sensors. Another method to fuse range estimates is by using a likelihood
function as derived in Section 3.4.2. This function maps target observations
to the target state space. Different noise distributions can be considered
and used. The likelihood function defines the probability that a given
observation is generated by a certain state from the state space. Thus the
mapping in state space results in peaks in the likelihood function where
the most likely target state is. In addition to target observations, sensor
properties and context information may also be incorporated within the
likelihood function. In case of multiple sensors, the likelihood functions
with respect to each sensor may be multiplied and the product represents
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a joint likelihood function that ideally describes the position of the target
in the scenario more accurately compared to single sensor. A target state
is usually extracted by searching for the peaks in the likelihood function.

In Fig. 3.11a the likelihood function over the scenario is represented for a
target whose position is depicted as a green point in the scenario. The range
estimates by the sensor are noisy and represented by the ellipses in blue. The
sensor location (transmitter and two receivers on each side) are represented
as black diamonds. If the ellipses are directly used to calculate the target
location, the target location estimate is the one depicted by the blue point.
As can be seen in the figure, this location estimate is not identical with the
actual target position, i.e. the estimate is noisy. In this specific scenario ex-
ample the peak of the likelihood function (dark red area) would not provide
a more accurate location estimate. However the likelihood of the real target
location is not zero as would be the case with the deterministic ellipse inter-
section. If however two sensors are used as depicted in Fig. 3.11b, the differ-
ence in the accuracy of the estimates is significant. The likelihood function
in Fig. 3.11b has two noticeable peaks one of which is more pronounced.

In multiple target scenarios the ellipse intersections are not unique and
the observation-target association becomes more cumbersome. As can be
seen in Fig. 3.12a for the single sensor case and in Fig. 3.12b when two
sensors are used, the likelihood function for localisation of the two targets
has peaks close to the actual target positions.

For the derivation of the likelihood function shown in these figures no
explicit observation-target association has been used and thus has multiple
peaks which may be ambiguous. In single target scenarios the highest peak
can be chosen as an estimate of the target state, however in scenarios where
the number of targets is not known the question arises as to how many
peaks should be extracted and how. Incorporation of observation-target
association as in Eq. (3.7) may resolve some of the ambiguities. Additional
information due to the target propagation over time would also resolve some
of the ambiguities and is considered in Chapter 4.
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Figure 3.11: Sensor likelihood function overlaid by blue ellipses representing
noisy target range estimates for a) single sensor and b) multiple sensors. Target
location is depicted as green point and its estimate using ellipse intersection is
depicted as blue point.
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Figure 3.12: Sensor likelihood function overlaid by blue ellipses representing
noisy target range estimates for a) single sensor and b) multiple sensors. Location
of targets are depicted as green points and their estimates using ellipse intersection
are depicted as blue points.
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3.4.4 Likelihood function comparison based on
experimental data

The joint likelihood function defined in Section 3.4.2 is used on a two person
scenario surrounded by three UWB sensor nodes as described in Fig. 3.6.
In all figures below the actual target positions are represented by the black
and magenta points. The ground truth for actual positions of the targets
could not be accurately measured and is thus an approximation itself.

In Fig. 3.13 a sample of the derived likelihood function is shown using the
range estimates as used for the centralised and distributed fusion methods
i.e. using all range estimates from all sensors and using only the range
estimates that can be used to locally estimate a target location. In this
specific snapshot it seems that using the distributed method is better since
most of the clutter is filtered out and thus can not be mistaken as an
additional target as in the centralised approach (see Fig. 3.13a upper right
corner of the scenario).
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Figure 3.13: M-type likelihood function sample comparing data selection influ-
ence using a) all range estimates from the sensors and b) selected range estimates
as used in the distributed fusion method

However, now taking another sample of the scenario (Fig. 3.14), it can
be seen that by using the distributed approach one of the targets is not
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represented in the likelihood. The reason for this is that the single detection
of the second target is filtered out and discarded in the distributed approach.
In the centralised approach (Fig. 3.14a), the target is represented in the
likelihood but a peak can not be accurately extracted.
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Figure 3.14: M-type likelihood function sample comparing data selection influ-
ence using a) all range estimates as used in the centralised fusion method and b)
selected range estimates as used in the distributed fusion method

In Fig. 3.15 it can be noticed that both targets are properly represented in
the likelihood function. The same time step as in Fig. 3.14 is depicted, how-
ever range tracking has been applied on the range estimates of each sensor.
Due to the range tracking even though there are no target measurements pro-
vided by one of the transmitter-receiver pairs of the sensor, target estimates
which can be used for localisation of the second target are available.

In Fig. 3.16 a sample of the likelihood function is shown where all range
estimates from all sensors (top left), selected range estimates as in the
distributed approach (top right), all range estimates after range tracking
(bottom left) and selected range estimates after range tracking (bottom
right) are used. What can be seen here is that range tracking removes some
of the clutter detections without using the distributed approach for filtering
out possible clutter. In addition, when range tracking is used, in both cases
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Figure 3.15: M-type likelihood function sample comparing data selection in-
fluence using a) centralised approach with tracked ranges and b) distributed
approach with tracked ranges

the likelihood represents both targets, however in the centralised fusion
method, the target states can be selected in an easier manner as peaks from
the likelihood function. The peaks of the likelihood function when using
the distributed approach are much wider.

The likelihood function for the different algorithm choice has been applied
on many different scenarios with different sensor positions. It is difficult to
derive a conclusion on which algorithm choice is better or worse. Applying
range tracking filters out a lot of the clutter present in the range estimates
of the different transmitter receiver pairs. In addition it also provides better
target separation. However it also requires additional processing on the
sensor side which can lead to delays in providing range estimates to the
fusion center.

Using the distributed approach clutter is also removed by assuming that
any target must be detected by both transmitter receiver pairs of a sensor.
However some target information is also lost, making the estimation of the
target position less accurate and more difficult. One important thing which
can be noticed from our investigation is that in areas where a target can
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Figure 3.16: M-type likelihood function sample comparing data selection in-
fluence using a) all range estimates as used in the centralised fusion method b)
selected range estimates as used in the distributed fusion method c) all range
estimates after range tracking and d) selected range estimates after range tracking

be detected by more than one sensor, the peak of the likelihood function is
more concentrated and easier to estimate. This is mainly accounted to the
fact that the targets are observed from different aspect angles and data from
transmitter-receiver pairs which are not too close to each other is used.

The aim of this thesis is to define a framework for person localisation.
Range tracking seems to have a positive impact on filtering out clutter and
improving target detections by filling in the gaps of target missdetection,

78



3.5 CONCLUDING REMARKS

however it may be too expensive computationally to be done on the sensor
side, thus a framework for target localisation and tracking in the fusion
center is defined. Both centralised and distributed fusion approaches are
further investigated, however range tracking is not used. Instead the track-
ing is done simultaneously with the localisation. Further details are given
in Chapter 4.

3.5 Concluding remarks
In this chapter a distributed UWB sensor network is described. The
main purpose of using a distributed sensor network is extension of the
coverage area. Another advantage it offers is improvement in the system
localisation capabilities in the overlap area. The processing of the measured
impulse responses is also distributed in the network for reduction of the
data transmission load between the network components.

As part of the work in this thesis a distributed sensor network concept is
developed and implemented as demonstrator. The system, sensor and fusion
center framework and architecture are described in this chapter. Different
sensor cooperation and operating principles are investigated. Based on
the sensor constellation and possibilities for synchronisation between the
transmitters and receivers on the platforms, possibilities are explored for
TOA, TDOA and hybrid TOA/TDOA localisation.

Fusing data from multiple sensors may be tricky due to possible additive
noise in the sensor estimates as well as due to missdetections. Typically
target observations by different sensors need to be associated to a target,
especially in the regions where multiple sensors detect the targets. In
this chapter the typical multiple sensor fusion challenges are described.
Additionally a multiple sensor likelihood function is derived for the TOA
based localisation case.

As can be seen in the likelihood function samples shown in this chapter the
use of multiple distributed sensors for multiple person localisation increases
the precision with which targets can be localised in overlapping areas.

79





CHAPTER 4

MULTIPLE PERSON TRACKING IN
DISTRIBUTED UWB NETWORK

In the previous chapter a distributed sensor network is introduced for
improvement of the detection and localisation of multiple targets. It was
also shown how challenging combining observations of multiple sensors can
be depending on the scenario geometry. The likelihood function presented in
Section 3.4.2 presents a method for linking the observations of the sensors to
the target state. The instantaneous likelihood only takes into consideration
current target observations by the sensors. However due to the many missed
detections by some sensors, it is worth to consider the information due to
the target propagation and previous target detections by the sensors for
improving the target detectability and localisation performance.

In this chapter introduction into statistical sensor data fusion and tracking
is given with a brief review of possible methods and detailed explanation of
the PHD filter as a chosen algorithm to further improve the multiple target
localisation methodology presented in this thesis. The developed multiple
target multiple sensor localisation and tracking method is applied on the
same scenario in two ways: by using local target location estimates from
each sensor as shown in Chapter 2, and by using all target range estimates
from all synchronised transmitter-receiver pairs of the sensor network as
suggested in Chapter 3.
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4.1 Introduction
According to the revised definition of the Joint Directors of Laboratories
(JDL) Data Fusion Model [120],

Data fusion is the process of combining data or information to
estimate or predict entity states.

Data is combined to estimate or predict the state of some aspect of the
world. The objective is often estimation of the physical state of a system:
identity, location, track over time, etc. of existing targets. Typically the
input of a sensor data fusion system consists of the following:

1. data gathered/observed by sensors

2. data and command inputs by human operators or users

3. a-priori data from a pre-established database

The output of a data fusion system is intended to support human deci-
sion processes and can be provided at different level of inference, that is
for instance parametric data for identification, time and local geometric
analysis for entity behaviour inference, situation/goal analysis for situation
assessment inference and contextual analysis for threat analysis inference.

Target tracking can be summarised as an estimation of the number of tar-
gets and their states at each point in time using a set of noisy measurements
and previous target states. A state contains all the relevant information to
describe the target such as location, velocity, identity, etc. Within this work
targets are localised in 2D, thus four-term target states containing the x
and y coordinates of the target and the respective velocities are estimated.
Target identity is not considered. Nevertheless, the methods explained here
are expandable for differently defined target states.

Within this chapter and thesis, UWB sensors are used to provide target
observations (range data) and a-priori information on the possible scenario
extent is used. There is no a-priori information from a established database
since for the application scenarios considered there would be no option of
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gathering a-priori information and instead the system would have to run in
real-time and adapt on the available scenario challenges in real time.

4.2 Bayesian single target tracking

The Bayes filter is a successful approach to sequential estimation of the
state of a dynamic system by using a sequence of noisy measurements.
It is based on the theory of probabilistic filtering presented in [121]. A
tracking system is considered Bayesian if there is a prior distribution on
the state of the targets with probabilistic description of the target’s motion
characteristics, a likelihood function to define the relationship between the
sensor observations and the target state, and a posterior distribution on the
set of target states (joint distribution) defining the output of the tracker. It
requires a good dynamic model that describes the state evolution over time
as accurate as possible and a measurement model that relates the noisy
measurements to the state.

The main idea of the single-target Bayes filter is to construct a pos-
terior pdf p(xt|Z1:t) of a state xt based on all the available information,
including the sequence of received measurements Z1:t = {Z1, Z2, ...Zt} up
to time t. Recursive filtering provides an estimate sequentially every time a
new measurement is available. It incorporates two stages: prediction and
update.

In the prediction stage a system model is used to predict the pdf of the
state from time t− 1 to a given time instant t:

p (xt|Z1:t−1) =

∫
p (xt|xt−1) p (xt−1|Z1:t−1) dxt−1 (4.1)

where p (xt|xt−1) is the state transition pdf defining the target motion.
Equation 4.1 is also known as the Chapman-Kolmogorov equation.

In the update stage the measurements received at time t are used to
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correct or modify the predicted pdf by using the Bayes’ formula

p (xt|Z1:t) = p (xt|Zt, Z1:t−1) =
p (Zt|xt) p (xt|Z1:t−1)∫
p (Zt|ζ) p (ζ|Z1:t−1) dζ

. (4.2)

with p (Zt|xt) being the measurement likelihood function. From the posterior
pdf the optimal state estimates with respect to a given criterion can be
computed. In the case of minimum mean squared error (MMSE) the optimal
state estimate is x̂tMMSE = E {xt|Z1:t} =

∫
xtp (xt|Z1:t) dxt, whereas for

MAP it is x̂tMAP = argmax
xt

p (xt|Z1:t).

In general the solution can not be computed analytically. An analytic
solution exists only in some situations such as the KF in linear-Gaussian
cases. In other cases suboptimal solutions such as EKF or UKF or particle
filters are used.

4.2.1 The Kalman filter

The KF assumes perfect measurement to track association and linear-
Gaussian density for representing the measurement likelihood and track
evolution model. The track evolution model, p (xt|xt−1) describes the target
dynamics from time t− 1 to time t. In the linear-Gaussian case it is given
by:

p (xt|xt−1) = N (xt;Ftxt−1, Qt) (4.3)

where Ft denotes the linear state transition over time (state evolution
matrix) and Qt is the process noise covariance describing the uncertainty
in state evolution.

The measurement likelihood function p (zt|xt) models the sensor char-
acteristics and corresponds to p (Zt|xt) for single observation per sensor
at a given time. Its covariance describes the measurement quality. In the
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linear-Gaussian case it is given by

p (zt|xt) = N (zt;Htxt, Rt) . (4.4)

where Ht is the observation matrix describing the state contribution to the
observation and Rt is the observation noise covariance (uncertainty in the
observation). The process and observation noise are Gaussian, uncorrelated
and zero-mean.

The optimal estimation density p (xt|Z1:t) is given by

p (xt|Z1:t) = N (xt;mt, P t) . (4.5)

The KF filter recursive equations are given as follows. Given a posterior
at time t− 1,

p (xt−1|Z1:t−1) = N (xt−1;mt−1, P t−1) (4.6)

the prediction step calculates the prior as in Eq. (4.1) and results in

p (xt|Z1:t−1) = N
(
xt;mt|t−1, P t|t−1

)
(4.7)

with

mt|t−1 = Ftmt−1

P t|t−1 = FtP t−1Ft
T +Qt.

(4.8)

Using the prior, the posterior density is then calculated as in Eq. (4.2)
and defined as in Eq. (4.5) with

mt = mt|t−1 +Kt

(
zt −Htmt|t−1

)
P t = (I −KtHt)P t|t−1

Kt = P t|t−1Ht
T
(
HtP t|t−1Ht

T +Rt
)−1

.

(4.9)
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The Kalman gain, Kt, has a high value if the predicted covariance is
large or the innovation covariance, HtP t|t−1Ht

T +Rt, is small. In this case
the innovation, zt−Htmt|t−1, is reliable and the target estimate relies more
on the innovation then on the prediction. If on the other hand the Kalman
gain is low the filter follows the model predictions more closely and has low
confidence in the sensor observations.

If the process and observation noise are not Gaussian, but symmetric and
with finite moments, the KF would still provide good estimates. However if
the noise distribution is skewed, the KF would provide misleading results.

4.2.2 The extended Kalman filter

The EKF is a variant of the KF that can be used when the state and/or ob-
servation model are non-linear. The process and observation noise are again
Gaussian, uncorrelated and zero-mean. The process model is now described
by a non-linear state transition function, f(xt), and the observation model
is also a non-linear function, h(xt), describing the matching of the target
states to the sensor observations. Both function should be differentiable.

The EKF follows closely the KF derivation with an additional step of
linearisation of the process and observation models using Taylor series, i.e.

f(xt) ≈ f(mxt) + JF (mxt)(xt −mxt)

h(xt) ≈ h(mxt) + JH(mxt)(xt −mxt)
(4.10)

where xt ∼ N (mxt , Pxt) and JF and JH are the Jacobian matrices of f
and h respectively.

The first terms in the linearisation contribute to the approximate means
of the process and observation model i.e.

E [f(xt)] ≈ f(mt) and

E [h(xt)] ≈ h(mt).
(4.11)
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The second terms define the approximate covariances of the respective
functions i.e.

Cov [f(xt)] = E
[
(f(xt)− E [f(xt)]) (f(xt)− E [f(xt)])

T
]

≈ E
[
(f(xt)− f(mt)) (f(xt)− f(mt))

T
]

≈ JF (mt)PxtJ
T
F (mt) and

(4.12)

Cov [h(xt)] = E
[
(h(xt)− E [h(xt)]) (h(xt)− E [h(xt)])

T
]

≈ E
[
(h(xt)− h(mt)) (h(xt)− h(mt))

T
]

≈ JH(mt)PxtJ
T
H(mt)

. (4.13)

The Jacobian matrix of the models is used in the equations for state
covariance and gain calculation. The approximate predicted and posterior
pdf are approximated by a Gaussian distribution as in Eq. (4.7) and (4.5).

The EKF equations can thus be summarised as the following prediction
equations:

mt|t−1 = f(mt−1)

P t|t−1 = JF (mt−1)P t−1J
T
F (mt−1) +Qt−1

(4.14)

and the following update equations:

mt = mt|t−1 +Kt

(
zt − h(mt|t−1)

)
P t =

(
I −KtJH(mt|t−1)

)
P t|t−1

Kt = P t|t−1J
T
H(mt|t−1)

(
JH(mt|t−1)P t|t−1J

T
H(mt|t−1) +Rt

)−1
.

(4.15)

Since the Jacobian of the process and observation model are dependent
on both state and time, they are not constant and thus need to be computed
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online at each time step as the recursions are calculated. This makes the
EKF more computationally demanding compared to the KF. Additionally,
it is very important to initialise the filter accurately since in the recursion
equations it uses linearisation of the model functions over the estimated or
previous target states. It has to be taken care that the state predictions
are close to the true state so that the second order terms of the Taylor
series expansion are indeed insignificant and only the first term i.e. the
Jacobian can be used. In case of high non-linearity the filter may become
unstable and diverge from the estimation of the true states. Methods using
higher order Taylor expansion have been considered but are limited by their
increasing complexity [49].

4.2.3 The unscented Kalman filter

The UKF is another sub-optimal approximation of the single-target Bayes
filter. The basic idea is to approximate the probability distribution instead
of the non-linear model function. It is more accurate than the EKF for
estimating the spread of a random variable [122]. It can deal with severe
non-linearities with computational complexity of the same order. As in the
other versions of the KF, Gaussian distribution is assumed. The Gaussian
density is approximated by a set of deterministically chosen sample points,
known as sigma points. The sigma points are then propagated using the
non-linear process model function, and later used to re-approximate the
mean and covariance of the Gaussian distribution. The Jacobian does
not need to be explicitly calculated, which is an advantage and reduces
complexity when the functions are complex or non-differentiable.

4.2.4 Particle filters

Another sub-optimal solution for the single-target Bayes filter is to ap-
proximate the densities using particles, i.e. Np independent identically
distributed samples [123–125]. In this way any non-linear model with non-
Gaussian noise may be approximated. These sequential Monte Carlo (SMC)
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based Bayes filter approximations are often popular for their flexibility,
efficiency and simplicity.

Each particle has a likelihood weight representing the probability of that
particle being sampled from the pdf. The particles and their weight are
propagated over time to define the pdf at subsequent time steps. Weight
collapse is often an issue in particle filters, however it can be avoided by
using resampling techniques. In the resampling step particles with very low
weight are replaced by new particles from the proximity of particles with
higher weight. Closely related method is the bootstrap filter [124, 126].A
Rao-Blackwell technique is often incorporated within the particle filter to
reduce the size of the state space [125].

4.3 Bayesian multiple target tracking
Most of the methods above handle single target state i.e. estimate the
behaviour of a target independent on the surrounding environment. In a
multiple target scenario, the number of targets may change over time and
the duration of target existence in the area of interest is unknown. The
sensors observing the scenario do not always detect all existing targets, and
the sensor observations are corrupted by spurious measurements that do not
belong to any of the existing targets (clutter). In other words, the available
sensor observations are indistinguishable and may belong to any of the
present targets or clutter. Multiple target tracking involves joint estimation
of the number and state of the targets from the available observations.

Traditional techniques split the multiple target problem in two separate
methods: measurement to target association and target state estimation
based on the association and single target tracking approaches, some of
which are discussed in [49, 127–129]. One of the approaches for measurement
to target association is the nearest neighbour method [50]. It associates the
closest measurement to a target. The closeness of the measurement and
target is defined in some statistical sense. Since multiple target tracks and
measurements are available it happens that multiple measurements may
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associate to a target, and a measurement may associate to more than one
target track. The global nearest neighbour considers all possible associations
and chooses the one that minimizes the sum of statistical distances between
the targets and measurements [50].

4.3.1 Multiple hypothesis tracking

MHT is a technique that considers all possible associations at each time
step and resolves the uncertainty in subsequent time steps when more
measurements are available. Whenever an observation is obtained, multi-
ple hypotheses are formed for associating the observation to the different
targets, as well as hypotheses considering the observation a false alarm or
belonging to a new target. These hypotheses are propagated over time, and
any new observation spans multiple hypotheses from each of the already
present hypotheses. This increases the complexity and computational cost
of the method. In practice different techniques are used to reduce this
complexity and truncate the number of spanning hypotheses at a given
time such as gating (only observations within the gate region of an existing
target may be associated to it), hypothesis pruning (any hypotheses with
low probability of existence are discarded) and hypothesis merging (any
hypotheses propagating very close to each other are merged to one).

The target states and covariances of each hypothesis may be updated using
observations using the KF, EKF or UKF update equations. Additionally
the hypothesis scores are also calculated and used to choose the best fitting
hypothesis to define the target states. Practical implementations of the
MHT are discussed in [50, 127].

4.3.2 FISST and RFS theory

The purpose of finite set theory (FISST) is to extend the idea of propagating
the expectation of the posterior density from single target to multi-target
problem. Some of the challenges are that the multi-target state and mea-
surement have unknown dimension, changing in time, and at any time a
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new target may appear or an existing target may disappear. In FISST
terminology, the set Xt and the observation set Zt are RFSs of the states
and observations, respectively, at time t [53].

The multi-target state and measurement are the collection of the state and
measurements of each target i.e. the state is the set Xt = {xti}Nxt

i=1 as above
and the multi-target measurement is the set Zt = {zti}Nzt

i=1 with variable
number of targets Nxt and number of measurements Nzt over time.

The uncertainties in the multitarget state Xt and observation Zt are de-
scribed respectively by the RFSs Ξt = St(Xt−1)

⋃
Γt and Ψt = Θt(Xt)

⋃
Ct.

The RFS Ξ encapsulates all aspects of multi-target motion such as the
time-varying number of targets, individual target motion, target birth,
target spawning, and target interactions. St(Xt−1) denotes the RFS of
surviving targets from the previous time step and Γt describes the newly
arising targets at time t. The RFS Ψ encapsulates all sensor characteristics
such as measurement noise, sensor field of view (state dependent probability
of detection), and false alarms. Θt(Xt) is the RFS modelling the measure-
ments generated by the targets and Ct models the RFS of the clutter and
false alarms. Each zt

i is either a noisy observation of one of the targets or
clutter. Each target state is represented by xt

i. The set-based approach
allows for varying number of targets to appear and disappear without any
particular order while avoiding explicit data association.

4.3.3 Multiple target Bayes filter

In case of multiple targets, the single-target Bayes filter can be extended
to jointly estimate the states of all targets. The multi-target Bayes filter
propagates the multi-target posterior density to find an optimal solution
in terms of the minimum covariance. The recursion involves evaluation of
multiple integrals on the state space. The size of the state space grows
exponentially with the number of targets.

The states of all Nxt targets at time t are represented by the set Xt =
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{xti}Nxt
i=1 . The prediction and update equations are as follows:

p (Xt|Z1:t−1) =

∫
p (Xt|Xt−1) p (Xt−1|Z1:t−1) dXt−1 (4.16)

p (Xt|Z1:t) =
p (Zt|Xt) p (Xt|Z1:t−1)∫
p (Zt|X) p (X|Z1:t−1) dX

(4.17)

where p (Xt|Z1:t) is the multi-target posterior density which is conditional
on the measurements Z1:t up to time t. p(Xt|Xt−1) is the transition density
and p (Zt|Xt) is the measurement multi-target likelihood function. The
integral used in Equations 4.16 and 4.17 is not an ordinary integral but a
set integral as explained in [53].

Since the multi-target Bayes filter is NP hard i.e. numerically intractable,
it is too complex to be applied in practical scenarios. One of its approxima-
tions based on the Point process theory leads to the PHD filter [53–55].

4.4 The PHD filter
The Bayes filter propagates the posterior probability which in general case
is not feasible. However propagation of its first-order statistical moment is
feasible, as proposed by Mahler in [53]. This first-order statistical moment
is also known as the intensity function or the PHD. Within this thesis both
terms are used. It is defined as vt (xt) =

∫
δXt (xt) p (Xt|Z1:t) δXt where

δXt (xt) =
∑
w∈Xt δw (xt). The PHD is a multi-modal distribution over

the target space and each mode, or peak, represents a high probability of
target presence. At a given time the target population is described by a
set-valued state, thus it operates on single target state space and avoids the
complexities arising from data association. A drawback of this superposition
target space is the loss of target identities. Thus if the target identity is
needed, target labels have to be obtained in a separate post processing
step [130].

The PHD is not a pdf and its integration over a finite subset of the space
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gives an estimated number of the targets in this subset. The propagation
of the posterior intensity function vt uses the following recursion:

vt|t−1 (xt) =

∫
φt|t−1 (xt,xt−1) vt−1 (xt−1) dxt−1 + γt (xt) (4.18)

vt (xt) = [1− pD (xt)]vt|t−1 (xt) +
∑

zt∈Zt

ψz,t (xt) vt|t−1 (xt)

κt (zt) +
∫
ψz,t (ζ) vt|t−1 (ζ) dζ

.

(4.19)

The transition density in (4.18) is defined as:

φt|t−1 (xt,xt−1) = pS (xt−1) p (xt|xt−1) + βt|t−1 (xt|xt−1) (4.20)

where p (xt|xt−1) is the single target transition density, pS (xt−1) is the
probability of survival and βt|t−1 (xt|xt−1) is the PHD for spawned target
birth. γt (xt) is the PHD for spontaneous birth of new targets at time
t. In the update equation (4.19), the first term, [1 − pD (xt)]vt|t−1 (xt),
relates to the undetected targets with pD (xt) being the probability of
target detection. It is considered that targets for which there are no sensor
observations available at a given time would still be ’updated’ by reducing
their weight contribution in the joint posterior intensity. In this way targets
unobserved for very short periods of time would still produce a state estimate
since their contribution in the joint posterior intensity would still be high.
If however such targets are not observed for prolonged period of time their
contribution in the posterior intensity decreases and at some point they
would no longer result in a state estimate.

The second term of the update equation (4.19) deals with targets observed
by sensors. Namely,

ψz,t (xt) = pD (xt) p (zt|xt) (4.21)

where p (zt|xt) is the single target likelihood function. The single target
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likelihood function depends on the type of sensor used for observation and
the measurement function defining the expected sensor observations. The
clutter intensity is defined as

κt (zt) = λtqt (zt) , (4.22)

where λt is the Poisson parameter defining the expected number of false
alarms and qt (zt) is the clutter/false alarm probability distribution over
the measurement space.

The cardinality, or the number of targets in the area of interest A is
estimated as

Nxt =

∫
A

vt (ζ) dζ. (4.23)

The main assumptions of the PHD filter are independence of the mea-
surements generated by each target, the clutter is Poisson and independent
from target-based measurements, and that the predicted multi-target RFS
is Poisson. Since the PHD function requires the computation of integrals
that in general do not have a closed form, it is approximated either by a
set of particles (using the Particle filter) as in [55] or by GM components
as in [54].

4.4.1 Particle PHD filter

The SMC implementation of the PHD filter is based on the random sample
approximation of the PHD

vt (xt) =

Np∑
i=1

witδx̃ti (xt) (4.24)

where δx̃ti (xt) is the Dirac delta function and {wit, x̃ti}
Np
i=1 is the weighted

particle set describing the intensity. x̃ti are random samples of this intensity
and their corresponding weight is wit.
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Most particles are drawn from the importance distribution (posterior
intensity) and describe the target states. An additional number of particles
are drawn from the birth intensity to represent possibly new born targets.
The estimated number of targets is given by the total mass (summation
of weights), Nxt =

∑Np
i=1 w

i
t. A resampling step is applied to so that the

number of particles does not grow exponentially.

4.4.2 Gaussian Mixture PHD filter

In this implementation of the PHD filter, it is approximated by weighted
GMs which are projected to the next time step by using the prediction
equation. Let the posterior intensity vt−1 (xt) at time t−1 be approximated
as

vt−1 (xt) =

Jt−1∑
i=1

wit−1N
(
xt;m

i
t−1, P

i
t−1

)
(4.25)

where mi
t−1 and P it−1 are the mean and covariance of the J t−1 Gaussians

representing the RFS of target states at time t− 1.

The predicted intensity can then be represented as

vt|t−1 (xt) = vS,t|t−1 (xt) + γt (xt) (4.26)

where the survival intensity that describes the intensity of the targets which
survive from time t− 1 is defined as

vS,t|t−1 (xt) =

∫
φt|t−1 (xt,xt−1) vt−1 (xt−1) dxt−1

= pS

Jt−1∑
i=1

wit−1N
(
xt;m

i
S,t|t−1, P

i
S,t|t−1

) (4.27)

when target spawning is not considered, i.e. βt|t−1 (xt|xt−1) = 0 and the
probability of survival is state independent, i.e. pS (xt) = pS . The GM
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parameters are defined as follows:

mi
S,t|t−1 = Ftm

i
t−1

P iS,t|t−1 = FtP
i
t−1Ft

T +Qt
. (4.28)

The birth intensity is defined as a sum of weighted GMs with Jγt compo-
nents with weight wiγt , mean mi

γt and covariance P iγt :

γt (xt) =

Jγt∑
i=1

wiγtN
(
xt;m

i
γt , P

i
γt

)
. (4.29)

The GM components used to define the birth intensity may be randomly
distributed over the whole area of interest, or distributed only over specific
areas of the scenario where possible new target births are expected. More
on how the birth intensity may be defined is given in Section 4.5.1.

Now, let the predicted intensity vt|t−1 (xt) be represented using J t−1 +Jγt
GMs:

vt|t−1 (ζ) =

Jt−1+Jγt∑
i=1

wit|t−1N
(
ζ;mi

t|t−1, P
i
t|t−1

)
. (4.30)

The posterior intensity at time t is then

vt (xt) = (1− pD (xt)) vt|t−1 (xt) +
∑

zt∈Zt

vD,t (xt; zt) (4.31)

where the first term deals with targets not detected by the sensors i.e. targets
for which there is no observation to update their tracks. The vD,t (xt; zt) is
the intensity of the detected targets and defined as:

vD,t (xt; zt) =

Jt−1+Jγt∑
i=1

wit (zt)N
(
xt;m

i
t (zt) , P

i
t (zt)

)
. (4.32)
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The GM parameters are dependent on the target observations zt and are
defined as follows:

wit (z) =
pD (xt)w

i
t|t−1p

(
z|xti

)
κt (z) +

∑Jt−1+Jγt
j=1 pD (xtj)w

j
t|t−1p (z|xtj)

mi
t (z) = mi

t|t−1 +Ki
t

(
z −Htm

i
t|t−1

)
P it (z) =

(
I −Ki

tHt

)
P it|t−1

(4.33)

with
Ki
t = P it|t−1Ht

T
(
HtP

i
t|t−1Ht

T +Rt

)−1

(4.34)

and the marginal likelihood function defined as

p
(
z|xti

)
= N

(
z;Htm

i
t|t−1, HtP

i
t|t−1Ht

T +Rt

)
(4.35)

4.4.3 Pruning and merging

When using the GMPHD, after the update step GMs with weight below a
predefined threshold are pruned and GMs close to each other are merged.
This is done to limit the number of GMs representing the posterior PHD to
only relevant contributing mixtures. If the posterior PHD is represented as

vt (xt) =

Jt∑
i=1

witN
(
xt;m

i
t, P

i
t

)
(4.36)

and the weights w1
t , ..., w

Jτ
t are below the predefined threshold, τ , then the

posterior PHD can be represented as

vt (xt) =

∑Jt
l=1 w

l
t∑Jt

j=Jτ+1 w
j
t

Jt∑
i=Jτ+1

witN
(
xt;m

i
t, P

i
t

)
. (4.37)
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That is the new weights are determined as:

wit = wit

∑Jt
l=1 w

l
t∑Jt

j=Jτ+1 w
j
t

. (4.38)

The next step is to merge Gaussians whose distance between their means
falls within a merging threshold, U . In the set of Gaussian components,
I = {i = Jτ+1, ..., J t}, first the component with largest weight is chosen, i.e.
j = argmax

i∈I
wit. Then the set of components whose Mahalanobis distance to

this component is below the predefined merging threshold is defined as

L = {i ∈ I|
(
mi
t −mj

t

)T (
P it
)−1

(
mi
t −mj

t

)
≤ U}. (4.39)

The new Gaussian component for l = 1 is then defined as

w̃lt =
∑
i∈L

wit

m̃l
t =

1

w̃lt

∑
i∈L

witm
i
t

P̃
l

t =
1

w̃lt

∑
i∈L

wit

(
P it +

(
m̃l
t −mi

t

) (
m̃l
t −mi

t

)T)
. (4.40)

Next, the components in the set L are removed from the set I and the
same procedure given above is repeated for l = l + 1 until the set I is
empty.

Typically a maximum number of Gaussian components, Jmax, is set
for controlling the number of possible Gaussian components from growing
exponentially and limiting the computational performance. In the case
when l > Jmax, the Jmax components with largest weights are used.
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4.4.4 Target state estimation

Gaussian terms with weight above a predefined confirmation threshold, T ,
are considered for target state estimation. The GM mean is considered to
be the target state. The number of targets is considered to be equal to the
number of Gaussians with weights above this threshold.

Thus the set of target estimates is

X̂t = {mi
t : wit > T}. (4.41)

4.4.5 Track labelling and identification

Identity declaration is a basic step of the processing chain of a data fu-
sion system to associate a label to a target. This label can be semantic
i.e. describing the class (for e.g. vehicle or human) of the target, or an
identification number used for associating purposes. Pattern recognition
techniques are employed to perform this task. Thus, this process is usually
associated with the feature extraction approaches in order to extract relevant
information from the data. Many different techniques may be employed
in this stage such as artificial neural networks, support vector machines,
Bayesian methods, clustering algorithms, etc. Within this work targets are
not specifically identified since the PHD filter works specifically without
data association. If the target identity is needed, a simple target labelling
procedure as in [131] may be applied.

4.5 Extensions to the PHD filter
The PHD filter as described above in Section 4.4 has been extended using
methods available in literature for application on the scenarios considered in
this thesis. One extension is the use of measurement-based target birth for
target track initialisation. The other extension considers the use of multiple
sensors. The PHD filter assumes single observation per target, which is
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not applicable when multiple sensors observe the target. Thus sequential
update PHD filter is applied.

4.5.1 Target birth and initialisation

For having a working multiple target tracking algorithm based on the
PHD filter, defining an appropriate birth intensity is very important. The
intensity of the spontaneous birth RFS is usually defined as

γt (xt) =

Nγt∑
i=1

wiγtN
(
xt;m

i
γt , P

i
γt

)
(4.42)

where Nγt is the number of birth GMs at time t, wiγt is the weight of the
i-th GM with mean mi

γt and covariance P iγt .

In this formulation, the intensity function of the new-born targets is
independent of the measurements, and generally it covers the entire state
space since new targets may appear anywhere. This can also be seen in
the formulation of the PHD filter equations, Eq. (4.18) and (4.19), where
new targets are "born" in the prediction step. The mean of the newly
born mixtures is chosen randomly from the state space, and the defining
parameter is Nγt . Defining the birth intensity this way is inefficient. A
simple alternative birth intensity definition is to use only one big Gaussian
at the center of the field of view with large enough covariance to cover the
whole field of view.

Measurement-based birth intensity as in [132] is more efficient for target
initialisation compared to random initialisation. The subspaces where a
target may appear are based on target observations and not randomly over
the whole state space, i.e. newly born targets appear in regions with high
likelihood. The weights of the Gaussians representing the new targets are
given as wbt = n̂t|t−1/Nzt , where n̂t|t−1 is the expected number of newborn
targets and Nzt is the number of observations used to define the birth
intensity. Only observations not previously used for updating persistent
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targets are used for target initialisation. This means that at the initialisation
step all available observations would be used. The mean of the Gaussians is
directly taken from the provided observations if the observations and targets
coordinate systems correspond, otherwise the observations are converted
to the targets coordinate system. If incomplete observations are provided
(as is the case in the work presented in this thesis), samples of the high
likelihood regions of the likelihood function are used:

γt
new (xt) =

∑
zt∈Zt

p (zt|xt) γt (xt)

κt (zt) +
∫
p (zt|xt) γt (ζ) dζ

. (4.43)

The birth intensity also depends on whether a target is persistent or not.
Persistent targets are basically all existing targets in the state space. If
a target is persistent it cannot be considered as a newborn target and a
newborn target becomes persistent at the next time step. Thus the target
state xt can be extended to also contain a label which denotes if the target
is persistent or newborn. The upgraded PHD filter equations are given
in [132] with details for the SMC PHD filter.

Within this work measurement-based birth intensity is used for initialisa-
tion of new targets throughout the scenario as well as for initialisation of
the PHD filter recursion.

4.5.2 Sequential-update PHD filter

Generalizations of the single-sensor PHD filter to a multiple sensor case
have been originally proposed by Mahler in [53]. The update equation is
however too complicated to be of practical use.

An inaccurate solution is often applied by fusing the observations of all
sensors into one pseudo-sensor observation set and then applying the single
sensor PHD filter. This solution is inaccurate since it violates the measure-
ment model used to derive the update equation, i.e. single observation per
target.
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Different multiple sensor approximations are presented in [133]. The most
common approach is to apply the single sensor update equation multiple
times in succession as in [134]. The update equation of the multiple sensor
PHD filter is then approximated as:

vt (xt) = vt|t−1
[Ns] (xt) (4.44)

where Ns is the number of sensors used.

Initialising with
vt|t−1

[0] (xt) = vt|t−1 (xt) (4.45)

and updating using the observations of each sensor sequentially where the
update equation for the j-th sensor is defined as follows:

vt|t−1
[j] (xt) = [1− pD [j] (xt)]vt|t−1

[j−1] (xt)

+
∑

zt∈Zt[j]

ψz,t
[j] (xt) vt|t−1

[j] (xt)

κt[j] (zt) +
∫
ψz,t[j] (ζ) vt|t−1

[j] (ζ) dζ

(4.46)

and
ψz,t

[j] (xt) = pD
[j] (xt) p (zt|xt) (4.47)

where pD [j] (xt) is the probability of detection of sensor j, Zt[j] is the set of
acquired measurements by sensor j at time t, κt[j] (z) is the clutter intensity
for sensor j and p (zt|xt) is the single target likelihood function for sensor j
when zt ∈ Zt[j].

The sequential PHD filter is highly dependent on the order the sensors
are used. Thus if sensor ’reliability’ is known or computed, the observations
of the most ’reliable’ sensors should be used first. To avoid the sensor
order dependency, the sequential PHD filter can be applied over all possible
sensor orders. This can be very expensive when many sensors are used.
The updated intensities of the different sensor orders can then be merged.
It has to be noted that before merging the intensity obtained from the
different sensor orders a normalization with the number of possible sensor
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order permutations should be applied.

For the GM implementation of the PHD filter, omitting spawning for
simplicity, the number of GMs in vt (xt) is

J t = (J t−1 + Jγt)
(

1 + |Zt[1]|
)
...
(

1 + |Zt[Ns]|
)

(4.48)

and it has an almost exponential growth with time and number of sensors. If
|Zt[1]| = ... = |Zt[Ns]| and Jγt is time independent, the growth is exponential.
Thus the use of pruning and merging is very important.

4.6 Bistatic Range-Only Target Tracking
Concepts

In range-only localization, to estimate the location of a target the only
observation of the target considered is the target range. It is assumed that
the location of the transmitters and receivers is known. The time needed for
the signal to travel from the transmitter to a target and back to a receiver
can be accurately measured and the distance from the transmitter to the
target plus the distance from the target to the receiver represents the target
bistatic range.

In this section two approaches for target localization and tracking based
on range-only estimates are presented. Before the methods are elaborated,
the common target state dynamics model is described. The first approach
determines location estimates from the estimated ranges by an ellipse
intersection method with simple local data association procedure to eliminate
possible ghost target locations as described in section 2.6.2. Then a location
tracking method is applied to smooth and merge the location estimates from
the multiple sensors. This method is here also referred to as distributed
fusion approach. The second approach is a direct tracking approach where
the range estimates of all sensors are directly applied to determine the
likelihood function used in the tracker as given in Section 3.4.2. The
advantage of this method is that the range estimation errors are not directly
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propagated into location estimation errors and target detections of a receiver
is not discarded if the other receiver of the sensor did not detect the target.
A block diagram of a multiple sensor target tracker is given in Fig. 4.1.

Tracker
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Figure 4.1: Block diagram of a multiple target tracker

The difference in the two approaches is in the observations provided by
sensors to the fusion center. This makes the measurement functions in the
measurement update step different, i.e. in the first case a linear function
may be used and in the second case the non-linear relationship between
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the target observation and target state is linearised. The specifics of the
sensor models used for describing the measurement function are given in the
description of each method below, i.e. Section 4.6.2 and 4.6.3 respectively.
Due to the use of multiple sensors, the sequential update presented in
Section 4.5.2 with the resective measurement function is applied. For the
prediction stage of the tracker a target dynamic model is used as described
in Section 4.6.1. For the target birth and target initialisation stage the
measurement based model described in Section 4.5.1 is used and thus only
unused measurements from previous processing step are used as input for
the target initialisation. The pruning and merging stages are described in
Section 4.4.3 and the finally the state estimation method is described in
Section 4.4.4.

4.6.1 Target state dynamics

The target state is usually defined as a vector containing kinematic compo-
nents such as target position, velocity and acceleration. Often constraints
are used to control the growth of the specific components i.e. maximum
speed for the velocity component. In this way the specific target motion can
be better modelled. Other components such as for example target identity
may also be part of the target state. The target state should be able to
describe a target in the best possible way taking into consideration the
specific scenario application. When defining the state space it should be
taken into consideration that the target’s motion is Markovian in the chosen
state space and that the sensor likelihood functions depend only on the
target state at the time of observation.

For the work presented in this thesis, the state vector of a target at time t
is defined by the Cartesian (x, y) target position coordinates and velocity:

xt = [xt, yt, ẋt, ẏt]
T (4.49)
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Linear Gaussian target dynamics is considered:

p (xt|xt−1) = N (xt;Ftxt−1, Qt) (4.50)

with

Ft =

[
I2 dtI2
O2 I2

]
and Qt = σ2

υt

[
dt4

4 I2
dt3

2 I2
dt3

2 I2 dt2I2

]
as the state transition matrix and the process noise covariance. dt is the
time interval between two observations, σ2

υt is the variance of the process
noise υt ∼ N (0, Qt), and In and On denote n×n identity and zero matrices
respectively.

This model is also known as constant-velocity, or "nearly-constant-velocity"
model [135] for non-manoeuvring targets. The process noise is a discrete-
time vector-valued white noise and should only have a small effect on the
target state accounting for unpredictable modelling errors due to slight
manoeuvres, etc. The elements of υt correspond to noisy accelerations along
the corresponding coordinates. It is assumed that υt is uncoupled across
its components, i.e. uncoupled across x and y direction. By increasing
the intensity of the process noise this model can be used for manoeuvring
targets (white-noise acceleration model [135]).

This is a simple target dynamics model and target state. By modelling
the process noise as a Wiener process the constant-acceleration or "nearly-
constant-acceleration" model can be derived [135]. When using this model
the target state needs to also include the target acceleration. This model
assumes that the acceleration increment is independent over different sam-
pling intervals, which is rarely true in practice. More on different dynamic
models can be read in [136].

A more sophisticated interacting multiple model set may be used to cover
different possibilities for target motion such as specific model for straight
movement, model for coordinated turns etc [137]. In this case the target
state should be extended to consider the angular turn at each time step.
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Depending on scenarios and targets the target state and dynamic model
should be upgraded to account for other target specific motion profiles i.e.
if the desired target is a flying object the target state should be defined in
3D and maybe consider yaw, roll and pitch.

4.6.2 Location tracking in multiple sensor scenario

Since a target is typically detected by more than one sensor, these location
estimates are fused to result in a single target location per target. The
estimated target locations using this method contain significant amount of
noise due to the propagation of range estimate errors into location estimate
errors. In addition, pairs of closely spaced receiving antennas result in
a flat intersection of two ellipses corrupting the final result significantly.
These location estimates can be used as noisy location observations of the
targets in the scenario and applied to a filter designed to fuse observations
from multiple sensors to target location estimates for all targets in the
scenario. In case of multiple targets, an association step of the observations
to the different targets might be needed. Here a variation of the PHD filter
is used. As mentioned earlier in this chapter the PHD filter can handle
multiple target localisation without specific observation-target association.
In Fig. 4.2 a block diagram of a target tracker based on this approach is
presented.

The observation set at time t is defined as Zt =
⋃Ns
s=1 Zt

[s], where Zt[s]

is the set of location estimates determined using the data from sensor s
at time t. Ns is the number of sensors used. The observation equation is
defined as

zt
[s] = Htxt + ωt

[s], (4.51)

where Ht =

[
1 0 0 0

0 1 0 0

]
for a four-term target state, ωt[s] ∼ N

(
0, Rt

[s]
)

is the observation process noise and zt
[s] is the observation vector at time t

from sensor s.

In this method the observation zt
[s] is not the directly estimated parameter
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Figure 4.2: Block diagram of a tracker based on location tracking

from the received signal, but instead it is defined as the estimated location
using the ellipse intersection method explained in Section 2.6.2 using the
estimated ranges in the received signal by each of the receivers of the sensor.
The observation process covariance is thus highly dependent on the range
estimation error εs,j,t from (2.17) of the two transmitter receiver pairs used
for calculating the location estimate. The observation process covariance
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can thus be defined as:

Rt
[s] =

(
∂r̃s,1(xt)

∂xt
σ−1
s,1,t

(
∂r̃s,1(xt)

∂xt

)T
+
∂r̃s,2(xt)

∂xt
σ−1
s,2,t

(
∂r̃s,2(xt)

∂xt

)T)−1

(4.52)
where r̃s,j(xt) is the range equation for a target with state xt with respect
to receiver j of sensor s given in (2.17), ∂r̃s,j(xt)∂xt

is the Jacobian of the range
equation and σs,j,t is the covariance of the range estimation error εs,j,t.

The classical single target likelihood is then

p(zt
[s]|xt)

=
1√

|Rt[s]|(2π)l
exp

(
−1

2

(
zt

[s] −Ht ∗ xt
)′
Rt

[s]−1
(
zt

[s] −Ht ∗ xt
))

(4.53)

where l is the length of the measurement vector zt[s].

4.6.3 Direct range-to-location tracking in multiple sensor
scenarios

For this approach the target observations used for the tracker are defined
as the estimated ranges from all transmitter-receiver pairs of the observing
systems. The concept is depicted in Fig. 4.3. The range of the targets
with respect to each transmitter-receiver pair defines the observations at
time t as Zt[s,j] = {zt[s,j]

i}Nzt
sj

i=1 where Nzt
sj is the number of targets de-

tected by the j-th receiver of sensor s. The observation set is defined as
Zt =

⋃Ns
s=1

⋃Nsj
j=1 Zt

[s,j] where Ns is the number of sensors used and Nsj is
the number of receivers of sensor s.

At time instant t, the observation of a target with respect to receiver j is
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Figure 4.3: Block diagram of a tracker using all range estimates as observations

defined using the measurement equation as:

zt
[s,j] = hs,j (xt) + ωt

[sj] (4.54)

where

hs,j (xt) = rs,j(xt)

=

√
(xt − xs)2

+ (yt − ys)2
+

√
(xt − xs,j)2

+ (yt − ys,j)2

(4.55)
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is the measurement equation, which is same as the range equation (2.16),
and ωt[sj] ∼ N

(
0, Rt

[sj]
)
is the observation process noise. The observation

process noise is same as the TOA estimation error εsj,t defined in (2.17). It
is assumed to be Gaussian additive noise.

The single target likelihood function for each transmitter receiver pair is
then defined as:

p
(
zt

[sj]|xt
)

=
1√

|Rt[sj]|(2π)l
exp

(
−1

2

(
zt

[sj] − hs,j(xt)
)′
Rt

[sj]−1
(
zt

[sj] − hs,j(xt)
))

(4.56)

where for hs,j (xt) its first order linear approximation is used as in sec-

tion 4.2.2. Rt[sj] = σ
[sj]
t

2
is the measurement covariance matrix for the s, j

transmitter receiver pair. l is the length of the observation zt
[sj], which

in range-only scenarios is 1, making Rt[sj] one-dimensional and thus just
variance.

Combining the observations from all, Ns×Ns,j , transmitter-receiver pairs,
the likelihood function becomes:

p (zt|xt) =

Ns×Ns,j∏
i=1

p
(
zt

[i]|xt
)
. (4.57)

The above likelihood function is applicable for single target scenarios. In
the multiple target case, the case that a measurement originated from a
specific target should be considered. That is, assuming independence of tar-
get states and measurements, the overall multiple target likelihood function
can be defined as the product of the single-target likelihood functions.

Different single-target likelihood functions can be used as discussed in
Section 3.4.2. However normal distributions have a wonderful property
of closure under linear combinations i.e. the linear combination of two
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independent normally distributed random variables also follows the normal
distribution. This property is quite valuable for the derivation of the tracker
equations. Thus if a differently defined likelihood function is used, then
it can be approximated by GMs while keeping all other equations of the
tracker same.

4.7 Method comparison and experimental results
The two approaches for multiple target multiple sensor localisation described
above are verified on a scenario with two people moving perpendicular to
each other with their paths crossing in the middle of the room. The person
that has a shorter path turns and walks back. The same scenario and tracks
are used in Section 2.6.2. A sensor network consisting of four UWB sensor
modules is used. One of the sensors (Sensor 3 in Fig. 4.4) is placed behind
one of the walls of the room, and the other three sensors are placed in three
of the corners of the room. As mentioned earlier, each sensor consists of
one transmitter and two receivers synchronised by an internal 7 GHz RF
clock. About 25 impulse responses per second were measured. Directional
horn antennas with different size and quality were used on all sensor nodes,
resulting in varying sensor performance. No synchronisation between the
different sensor nodes was considered, and all sensor nodes were running in
parallel. The scenario is illustrated in Fig. 4.4, where the start position of
the people is shown by a circle and the end position by an arrow showing
the direction of movement the person had at the end of their movement.

The position of the transmitter and the two receivers of each sensor is
shown in different colour for each sensor where the transmitter of each
sensor is always placed between the two receivers of the sensor. The data
used for target range estimation and consequently location estimation was
obtained from a measurement campaign conducted at TU Ilmenau. The
scenarios were measured indoors. Since GPS does not provide high accuracy
indoors, the ground truth for these scenarios was extrapolated from the
person motion path and positions at predefined anchor points at a given
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Figure 4.4: Measurement scenario used for method verification

time. Thus the ground truth used for comparison of the results is only a
close approximation to the true ground truth path.

Fig. 2.15 shows the estimated locations of the two targets by each sensor.
The different colours of the location estimates correspond to the sensors
whose observations were used to determine the location. It can be noticed
that the location estimates of each sensor are less noisy when the target
is closer to the respective sensor. In Fig. 4.5 the fused location estimates
are presented. As can be noticed, the fused location estimates are more
accurate and less noisy than the direct location estimates per sensor and
provide target tracks. The tracks of the direct localisation approach are
shown in Fig. 4.6.

As can be seen, both two-step and direct approach seem to properly
track both targets and determine their locations. There are minor visible
differences between the results from the two approaches, which are quantified
in Fig. 4.7. Here the optimal subpattern assignment (OSPA) [138] metric
with cut-off c = 10 and order p = 1 is shown. The OSPA metric represents
the sum of localisation and cardinality errors. It measures the distance
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Figure 4.5: Location estimates fused by the fusion centre node
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Figure 4.6: Target tracks using the direct range fusion approach

between two finite sets by minimizing the sum of distances, taking into
consideration the set cardinalities. The cut-off parameter c deals with
any mismatch between the number of elements of the two finite sets being
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compared (the ground truth and estimated target states). A penalty c

is added for each extra track in either set, representing either a missing
existing target or an extra false target in the set of estimated targets. The
maximum distance between two elements of the sets being compared should
be less than c. Details on the OSPA metric are given in Appendix V.
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Figure 4.7: OSPA metric for the direct range fusion (blue) and two-step location
fusion (grey) tracking approaches

Although both methods have rather low location estimation errors, the
direct approach has greater stability. For both approaches, a measurement-
based birth intensity was used, and all other parameters required by the
GMPHD filter were kept the same, except for the differences in the type of
observations and likelihood function as explaned in 4.6.2 and 4.6.3. This
difference can be accounted to the fact that in case of target missdetection
by one of the transmitter-receiver pairs of a sensor, no location estimate is
provided for the fusion in the two-step localisation approach, whereas in the
direct approach the existing range estimate of the other transmitter-receiver
pair is used (see Fig. 3.9(d)).
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4.8 Concluding remarks
This chapter introduces Bayesian target tracking methods. A brief overview
and introduction to the different methods that may be used for single and
multiple target tracking is given. In multiple target realistic scenarios
complexities arise due to the uncorrelated observations available from
both existing targets and clutter. The PHD filter is described as one
possible solution to deal with these scenarios. The specific modifications
for applicability of the PHD filter in multiple sensor scenarios is described
using the sequential update equations in Section 4.5.2.

Two approaches for localisation of persons using bistatic range estimates
by multiple UWB sensors are described. These approaches are simplistic,
computationally solid and implemented for real-time operation. The first
approach relies on single-sensor localisation being performed on the sensor
node platform and fusion of the estimated locations using the GMPHD
filter. In this case linear models are used. The second approach does
only range estimation on the sensor platform, and a direct localisation and
tracking GMPHD filter based fusion is performed. This means that the
range observations of the targets are directly used as sensor observations in
the multiple sensor PHD filter. Thus the observation model is a non-linear
function. Linearisation as in the EKF equations is used.

The approaches are evaluated in near-real-time operation in a measure-
ment scenario using UWB sensors. The measurement campaign was con-
ducted in office environment which corresponds closely to real application
scenarios for security or smart-home applications.
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CHAPTER 5

OCCLUDED TARGET TRACKING

When used in realistic scenarios, UWB-based localisation becomes chal-
lenging due to errors caused by multipath propagation, multiple access
interference, non-line-of-sight propagation, and others [139]. In most lo-
calisation and tracking techniques only positive information, i.e. target
features observed by the sensors, is used. However, additional information
is available from scenario areas and targets that should be observed by the
sensor but no measurements are available due to possible occlusions of the
targets present in these areas.

In this chapter localisation and tracking of multiple tag-free persons is
considered as in the previous chapters of this thesis and presented in [1, 2],
where persons are detected by the changes they impose in the IRF measured
with a transmitter-receiver pair of a UWB module. In the presence of
multiple persons, a person close to the transmitter or receiver of the sensor
’shadows’ the persons located behind it with respect to the sensor since UWB
signals are strongly attenuated after scattering from a person. Occlusions
results in missing or incomplete measurements and are a serious challenge
for extended multi-target tracking. An occlusion handling procedure can
thus benefit the overall person localization and tracking procedure. This
chapter presents such a handling procedure together with dynamic occlusion
region modelling and incorporation within the tracking procedure presented
in Chapter 4.
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5.1 Introduction
Since a person is a complex target from radar point of view, UWB signals
scattered from a person are strongly attenuated and often cause occlusion or
missed detection of the other persons in the scenario. Shadowing influences
on UWB sensors for multiple person detection and localisation are discussed
in [140, 141] where weak signal enhancement, sensor positioning at higher
altitude and use of multiple distributed sensors are suggested. Incorporation
of the negative information in the multiple target tracking procedure is not
considered.

Negative information describes the general case that no targets were
detected in the field of view of the sensor where targets are expected.
According to [142] measurements can be missing if an expected object is out
of range, occluded or due to sensor failure. Thus if a target is within sensor
range and there hasn’t been any sensor failure, it can be concluded that the
expected target is occluded either by other targets in the scenario or static
objects. It is suggested that false interpretation of negative information can
be avoided by modelling the measurement process as exactly as possible and
considering occlusions by dynamic and/or static objects in the scenario.

Negative information is commonly used in robotics [143] in occupancy
grid mapping. In [144], a centralised occupancy grid is generated from
multiple cooperative sensors and used to confirm the tracking results by
discarding tracks in unoccupied regions. [145] uses negative information
to address sensor limitations such as Doppler blindness, jamming, finite
resolution etc. In localisation, negative information is used in [142] for
particle filter based localisation in a known map and in [146] for tracking
known number of objects in a known map. Analytic model of occlusion
is presented in [147], where a penalty cost is defined for unresolved tracks
dependent on the modelled track visibility. In [148, 149] an occlusion
likelihood model is derived for occlusions created by dynamic extended
targets. A range-bearing sensor on an ego sensory vehicle is considered as
source. Utilisation of the occlusion information improves the accuracy and
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sensibility of state estimates for occluded objects. An early publication of
the same authors, [150], was used as inspiration for the procedure described
and applied within this work.

The PHD filter [53] provides good estimates of the target locations as
long as a target is observed by a sensor. Track continuity and target death
models have been proposed to handle missed detections, however they are
mainly applicable when a target is not detected for very few consecutive
time steps. When a target is not observed for multiple time steps, its weight
falls below a predefined threshold and the target track is lost or discarded.

In [9, 10] dynamic target occlusion regions are introduced and incor-
porated within the target tracking system. Results show that fusing the
occlusion information into a tracking filter improves the accuracy and sen-
sibility of state estimates for occluded objects. In [9] a geometry based
occlusion model was introduced and a simple occlusion handling procedure
was applied. The results show that an occlusion handling procedure highly
benefits the overall person localisation and tracking procedure. The models
presented in [9] are extended in [10] where an occlusion likelihood function is
derived and incorporated within a PHD filter based person tracking system.
The proposed method is numerically and experimentally verified. This
chapter reiterates and extends the work presented in [9, 10].

5.2 Occlusion region modelling
The occlusion region of a detected person is a region in the scenario where
other persons/targets can not be detected due to the strong attenuation of
the UWB signals caused by this person. For a known person location and
extent and known sensor positions, the occlusion region can be modelled as
the area behind the detected target with respect to the sensor as seen in
Fig. 5.1.

Since only the range information of the target is used as observed by the
UWB sensor, the location, extent and direction of that target need to be
estimated and/or approximated from within the target tracking procedure.
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Tx Rx

Figure 5.1: Occlusion region (grey) induced by the closest target (blue) - the
orange target is shadowed and the violet target can be detected.

A person in 2D can be approximated as an elliptical target if the direction
of movement is known.

In this section the occlusion region of a detected person i.e. the region of
the scenario where due to the presence of this person, other persons can
not be detected, is modelled. Since as target observation only the range
is used, a unique solution for the target location based only on this one
observation is not possible. If only range information is considered, a target
n is occluded by a target m, if target m exists and the following range
condition is satisfied:

Rn,m = (r̃n > r̃m) (5.1)

where r̃m is the minimum range of object m with respect to a transmitter-
receiver pair (red and green triangles in Fig. 5.2 and 5.3).

As can be seen in Fig. 5.2, based on this condition only the closest target
can be detected and all others are within the occlusion region. However,
some targets that satisfy Eq. (5.1) can actually be detected. Since bearing
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5.2 OCCLUSION REGION MODELLING

observations are not available, the extent of a target needs to be defined or
assumed and then used to limit the region that satisfies the above range
condition. Thus, the target location is needed. The target location can
be determined as the intersection of two ellipses (each defined by a target
range estimate of different transmitter-receiver pair).

Tx Rx

Figure 5.2: Occlusion region (grey) by using Eq. (5.1) - both violet and orange
targets appear to be shadowed by the blue target if only the range condition is
considered, although the violet target can actually be detected.

For simplicity, lets assume that a target m can be modelled by a circle
with radius rm and center (xm, ym) (blue dashed circle in Fig. 5.3). The
range of the observed target is r̃m (represented by the black ellipse in
Fig. 5.3). The target range is represented by an ellipse due to the bistatic
configuration of the transmitting and receiving antennas. The target extent
limits with respect to the sensor can be determined as the intersection
points of the circle representing the target and the range ellipse (the two
black points in Fig. 5.3).
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Tx Rx

Figure 5.3: Occlusion region of a target: the modelled occlusion region (dark
grey) based on modelled target extent and the true occlusion region (light grey) -
target 1 (orange) is fully shadowed, targets 2, 3, and 4 are partially shadowed by
target m (blue), and target 5 (violet) may be observed by the sensor

These intersection points can be determined by solving the two equa-
tions:

rm =

√
(xm − x)

2
+ (ym − y)

2 (5.2)

r̃m =

√
(x− xs)2

+ (y − ys)2
+

√
(x− xj)2

+ (y − yj)2 (5.3)

where (xs, ys) and (xj , yj) are the coordinates of the transmitter s and
receiver j respectively.

122



5.3 OCCLUSION LIKELIHOOD FUNCTION

To determine the region shadowed by target m, the left and right cut-off
lines need to be determined. They are determined by the line passing
through one of the antennas and one of the points determined as solution
to the equations above (light grey dotted lines in Fig. 5.3). Two different
regions can be determined. Often, one of these regions is not a convex
polygon and can be thus discarded. If both regions are convex, the one that
covers larger area is chosen as occlusion region. The modelled occlusion
region is limited to the field of view of the sensor.

The true size, shape and orientation of the object influence the accuracy of
this model. Any inaccuracies result in a conservative likelihood, guaranteeing
that the true shadow is a subset of this approximation and is not mistaken
to be visible.

In a generalised case, an arbitrary number of tracked targets exist, and
each of them generates a shadow over the field of view. To avoid duplicates,
the likelihood that target n is shadowed is defined as the likelihood that
target n is shadowed by the target with minimum range to the sensor that
also shadows target n.

5.3 Occlusion likelihood function
To determine the occlusion likelihood at a given point in time, the estimated
location and extent of the present targets is needed. In the above section
the occlusion region is modelled geometrically. In this section the minimum
conditions that need to be satisfied to define the occlusion region analytically
are given. This is similar to the modelled likelihood in [148], with the
difference that in [148] both range and bearing measurements are available,
and here only range measurements are available and the target extent is
modelled to obtain its angular extent.

Object n is shadowed by object m if m is closer to the sensor compared
to n, i.e. Rn,m = (r̃n ≥ r̃m), and the angular extend of object n is
smaller than the extent of object m with respect to the sensor position, i.e.
Bn,m1 = (θn ≥ θm) ∩ (φm ≥ φn), where θi is the clockwise angular extent
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of object i and φi is the counter clockwise angular extent of object i. The
angular extent of the objects is always calculated positive clockwise from
the x-axis as shown in Fig. 5.4 where the target defining parameters are
shown. The probability that object n is fully occluded by object m, On,m,
assuming Rn,m and Bn,m1 are independent of each other, is then defined
as:

p(On,m) = p(Em) p(Rn,m|Em) p(Bn,m1 |Em) (5.4)

where p(Em) is the probability that object m exists.

Tx

Rx
φm

θm

φn

θn

dm

dn

Figure 5.4: Full occlusion diagram of a target and defining parameters

The range and angular extent probabilities are computed using a smooth
transition function based on the hyperbolic tangent function, i.e.

p(Rn,m|Em) = s

 r̃n − r̃m√
σ2
r̃n

+ σ2
r̃m

 (5.5)
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p(Bn,m1 |Em) = s

 θn − θm√
σ2
θn

+ σ2
θm

 s

 φm − φn√
σ2
φn

+ σ2
φm

 (5.6)

where
s(x) =

1

2
+

1

2
tanh(kx) (5.7)

with large k corresponding to a sharp transition at x = 0. Within this work
k = 1 is used.

Different smoothing functions can be used such as Cauchy or normal
distribution functions or any other cumulative distribution function of
a continuous probability distribution peaked around zero and having a
parameter to regulate the variance.

Analogous to the occlusion model in [148], the occlusion likelihood func-
tion is extended to also cover the cases of partially occluded targets such as
targets 2, 3, and 4 in Fig. 5.3. For these cases additional angular extent
conditions are defined i.e.

Bn,m2 = (φm ≥ θn) ∩ (φn ≥ φm)

Bn,m3 = (θm ≥ θn) ∩ (φn ≥ θm)
(5.8)

where Bn,m2 is the condition for partially occluded targets on the left of
the occlusion region (covering case 2 and 4 from Fig 5.3) and Bn,m3 is the
condition for partially occluded targets on the right of the occlusion region
(covering case 3 and 4 from Fig 5.3).

Since Bn,m2 and Bn,m3 both include case 4, they are not mutually exclusive.
Thus the partial occlusion likelihood is

p(On,m) = p(Em) p(Rn,m|Em) p(Bn,m|Em) (5.9)
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where

p(Bn,m|Em) = p(Bn,m1 ∪Bn,m2 ∪Bn,m3 |Em)

= p(Bn,m1 |Em) + p(Bn,m2 |Em) + ...

p(Bn,m3 |Em)− p(Bn,m2 ∩Bn,m3 |Em)

(5.10)

and

p(Bn,m2 |Em) = s

 φm − θn√
σ2
φm

+ σ2
θn

 s

 φn − φm√
σ2
φn

+ σ2
φm


p(Bn,m3 |Em) = s

 θm − θn√
σ2
θm

+ σ2
θn

 s

 φn − θm√
σ2
φn

+ σ2
θm


p(Bn,m2 ∩Bn,m3 |Em) = s

 θm − θn√
σ2
θm

+ σ2
θn

 s

 φn − φm√
σ2
φn

+ σ2
φm


(5.11)

In the general case of arbitrary number of tracked targets, N , the total
occlusion likelihood of object n is

p(On) =

N⋃
m=1,m 6=n

p(On,m) (5.12)

Since an object n may be occluded by multiple targets simultaneously, the
events in (5.12) are not mutually exclusive. Thus (5.12) can be expanded
as in [148]:

p(On) =

N−1∑
i=1

(−1)(i+1)

(N−1)Ci∑
j=1

[
i∏

k=1

p
(
On,C

i
j(k)
)] (5.13)

where Cij(k) is the k-th object in the j-th i-combination and (N−1)Ci is the
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number of i-combinations in the set of N − 1 tracked targets (all targets
excluding n).

The complement of the occlusion likelihood is the detection likelihood,
i.e. the likelihood that target n is fully visible to the sensor

p(On) = 1− p(On) (5.14)

If an existing track/target becomes unresolved over time, its estimate has
large covariance. This uncertainty can be reduced by fusing the negative
measurements and thus asserting that an unresolved target is unlikely to
exist in areas that should be visible to the sensor.

5.4 Occlusion information integration
The occlusion model and likelihood function presented above are integrated
within the PHD filter as shown in Fig. 5.5.

The Feature extraction block estimates the ranges from the raw mea-
surements which are then used as observations in the tracker. The range
estimation procedure is explained in Section 2.5. An observation dependent
birth model for the target birth intensity is used as explained in Section 4.5.1.
Each transmitter-receiver pair is considered as separate sensor and thus the
multiple sensor update equations are used in the PHD filter. This is the
way the conventional PHD filter is defined and used in Section 4.6.3. In the
modified PHD filter the Occlusion likelihood definition block is used
to define the probability of target occlusion based on the predicted target
states. It is later integrated within the Measurement update block.

Often the probability of detection, pDt(x) at time t is considered constant
or dependent on the signal-to-noise ratio. In the modified version of the
PHD filter a probability of target detection based on the occlusion likelihood
is used. Thus, the detection likelihood is calculated as the complement
of the occlusion likelihood defined in Section 5.3. The new probability of
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Figure 5.5: Block diagram of the modified multi-target tracker

detection is then defined as

pD
new
t (xt) = pDt (xt) p(On) = pDt (xt) (1− p(On)) (5.15)
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This probability of detection is used in the update step of the PHD filter,
i.e. equations (4.19), (4.46) and (4.47).

5.5 Evaluation and results
To verify the importance of negative information fusion and improvements
it brings in multiple target tracking applications, the methods presented in
this chapter are first applied on single sensor scenarios. First a simulation
is used to verify the method applicability, and then the method is applied
on a through-wall classroom scenario.

5.5.1 Numerical analysis

For demonstrating the performance of the described PHD filter with oc-
clusion likelihood incorporation a scenario with three moving targets is
simulated. The target trajectories are shown in Fig. 5.6 where the end state
of each trajectory is indicated by a black circle. The sensor transmitter
and two receivers are indicated by the black, blue and green triangles,
respectively. For simulating the scenario a person is modelled as a circle
with radius 0.3 m. Based on the sensor position and the target trajectories,
the closest target shadows the other two targets at some points of time in
the scenario.

The range observations of the targets including clutter is shown in Fig. 5.7,
where the blue circles represent the observations with respect to the first
receiver and the green squares with respect to the second receiver. Target
2 is shadowed by the Target 1 from time 29 to time 50. Target 3 is
shadowed by the Target 1 and 2 from time 44 to time 65. P (1) clutter
points uniformly distributed along the range are simulated at each time
step, where P (x) = e−λλx

x! is the Poisson distribution.

The measurement noise standard deviation used is σw = 0.1 m. The prob-
ability of target detection by the receivers is assumed constant and same for
both receivers, i.e. pD

[j]
t (xt) = pD = 0.95. Thus the probability of detection

in the modified version of the tracker is pDnewt (xt) = pD (1− p(On)). For
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Figure 5.6: Simulated tracks for three targets (purple, red and orange) moving in
a straight line ending at the respective black circle. Sensor position - transmitter
(black) placed between two receivers, receiver 1 (blue) and receiver 2 (green)
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Figure 5.7: Targets observations (range as transmitter-target-receiver distance)
by Rx1 (blue circles) and Rx2 (green squares)
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the probability of occlusion, a target is modelled as a circle with radius
0.5 m. In both versions of the filter a process noise standard deviation
σv = 10−3 and probability of survival pS,t (xt−1) = pS = 0.99 is used.

In the target birth model the intersection points of all range-induced
ellipses are used as x and y terms of the meanmγ,t of the newborn GMs. The
ẋ and ẏ terms of the mean are 0. The covariance of the newborn targets
is P γ,t = diag ([1, 1, 0.1, 0.1]). Pruning threshold of 10−4 and merging
threshold 50 is used. The state extraction threshold is set to 0.5.

To evaluate the performance of the PHD filter the OSPA metric with
cut-off c = 10 and order p = 1 is used 1. The modified PHD filter with
occlusion likelihood incorporation and the conventional sequential PHD
are compared in Fig. 5.8 where the OSPA metric averaged over 100 Monte
Carlo runs for the scenario described above is shown.
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Figure 5.8: Average OSPA metric using the sequential PHD filter (grey) and
the modified PHD filter with occlusion likelihood incorporation (blue)

As can be observed, using the PHD filter with occlusion likelihood to

1 Details in Appendix V and [138]
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define the probability of target detection leads to better results, since the
filter is able to track the occluded targets (between time step 29 and 65 one
or two targets are occluded) and update their state as soon as there is a
fitting observation of the previously occluded target. It can be observed
that from time step 65 to 69 although all three targets are detected, the
GMPHD takes some time until it can correctly estimate the states of all
three targets, whereas the GMPHD filter with occlusion incorporation is
quicker in correcting the track.

5.5.2 Experimental verification

The suggested modification with occlusion likelihood integration is applied
to data acquired using one UWB sensor node with transmitter and two
receivers placed behind a wall. The scenario is as described in Fig. 5.9. Two
persons walk in a room along roughly predefined paths straight to and from
the sensor node to the end of the room. The complete ground truth path
of the motion of the persons is unfortunately not available and thus a close
approximation is used. The UWB module used has 3.5 GHz bandwidth.
The measurement rate is 100 IR/s.

The feature extraction procedure is range estimation from the received
IRFs at each time step as in Section 2.5. The background subtraction
method is exponential averaging with forgetting factor 0.85 which removes
the static background reflections. For range detection the CFAR detector
with false alarm probability 0.15 is applied due to the low signal-to-noise
ratio resulting from the signal attenuation when propagating through the
wall. To reduce the number of range estimates per target and transmitter-
receiver pair to one a hierarchical clustering algorithm is applied. Range
tracking is not used at this time. The estimated ranges from the IRF
received by receiver 1 are shown in Fig. 5.10. The expected range estimates
at each time point from a simulation of the same scenario are depicted
as grey line for comparison. As expected, the person closer to the sensor
is detected whereas the other person is only sometimes detected. This is
accounted to the low signal-to-noise ratio, the attenuation of the UWB signal
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Figure 5.9: Measurement scenario schematics

due to the penetration through wall, and in part to the shadowing imposed
by the person closer to the sensor over the rest of the scenario. Based on the
approximated ground truth the person closer to the sensor partially occludes
the other person throughout the complete measurement time. However, in
the first 3 s of the track less than 50 % of the body is occluded, and thus
it can often be detected by the sensor. Starting from the 4th second larger
portions of the body (more than 50 %) are occluded increasingly.

133



5 OCCLUDED TARGET TRACKING

0 1 2 3 4 5 6
0

5

10

15

20

25

time [s]

ra
ng

e
[m

]

Figure 5.10: Target range estimates using CFAR and simulation based expected
range estimates (grey line) for receiver 1 in the two person scenario

Detected targets are modelled as circles with radius 0.7 m and the angular
extent parameters are obtained from the model at each time point for each
detected target. The radius used to model the target is very large, however
it partially accounts for location estimation errors of the detected target.
In this scenario location estimation errors arise due to the vicinity of the
antennas. The range estimates of both transmitter-receiver pairs are close
to each other and the intersection of the range induced ellipses is flat. The
accuracy of the occlusion likelihood estimation is highly dependent on the
location estimation of the detected targets. Location estimation errors of
detected targets can result in predicting high occlusion probability for non-
occluded targets or predicting low occlusion probability for occluded targets.
Modelling the target with larger radius or based on the error covariance of
the current estimate might lead to better results and is worth investigating
in future. It should be noted that since range-only observations are often not
enough to accurately localise the targets, the error covariance can be rather
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large resulting in targets appearing to shadow the whole scenario. Another
option would be to model the targets as ellipses by using the estimated
target heading.

For this scenario measurement noise standard deviation σw = 0.3 m

and process noise standard deviation σv = 0.5 is used. The other filter
parameters are same as in the simulation scenario.

It should be mentioned that in the implementation of both conventional
and modified GMPHD filter, the number of estimated targets equals the
number of surviving mixtures after merging and pruning, and the state
estimate of these targets is the mean of those mixtures. Thus, as expected
when the paths of the two targets are crossing (around 3.5 s), the filter
doesn’t manage to keep the tracks of both targets.

The OSPA metric with cut-off c = 10 and order p = 1 of the scenario
for the sequential GMPHD filter using only target range estimates and the
modified GMPHD filter using the modified probability of detection based
on the occlusion likelihood in addition to the same range estimates is shown
in Fig. 5.11 2.

As can be seen in Fig. 5.11, the OSPA metric of the conventional GMPHD
filter results in many jumps over the measurement time. This can be
attributed to the many target missed detections due to it being partially
occluded by the other target. In the first half of the measurement time
a smaller portion of the target is occluded and thus it is often detected.
However there are still many intervals where the target is not detected
(missed detections). Since the PHD filter is not a conventional tracker, if a
target state is not updated by an observation for multiple time steps it’s
weight falls below the estimation threshold and it’s state is thus not part of
the estimated target states.

Sample of the scenario with the occlusion likelihood at the given time
step shown in the background and the estimated target locations as green
error ellipses for the conventional and modified GMPHD filter are shown
2 Details on the OSPA metric can be found in Appendix V and in [138]
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Figure 5.11: Average OSPA metric using the sequential GMPHD filter (grey
line) and the modified GMPHD version with occlusion likelihood incorporation
(blue line)

in Fig. 5.12. The black circles represent the approximated ground truth
location of the persons. As can be seen in this sample, integrating the
occlusion likelihood within the PHD filter allows for tracking both targets
in the scenario although one of them is occluded by the other and does not
provide observations to the sensor. In the left figure, the target locations are
estimated using the sequential PHD filter without the use of the occlusion
likelihood. The occlusion likelihood is depicted there for comparison.

As shown in Chapter 3 using multiple UWB sensor nodes improves the
localisation and tracking of multiple persons. However in this chapter it is
shown that by using a single sensor and considering the occlusion likelihood,
multiple persons may be localised and tracked. Having multiple sensors
observing the scenario is obviously an advantage, however, there might be
scenarios where placing multiple sensors might be impractical or restricted.
In such cases without the incorporation of the occlusion likelihood, multiple
targets can not be tracked.
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Figure 5.12: Sample occlusion likelihood at a given time point calculated for
the scenario without (left) and with (right) occlusion likelihood incorporation.
Black circles represent the targets positions and green ellipses representing the
estimated state covariances of detected targets.

5.6 Concluding remarks

In multiple person localisation scenarios, person-induced shadows (or oc-
clusions) lead to target missdetection. In this chapter an occlusion model
for dynamically defining the occluded area in the scenario at each time
point based on the estimated target locations is presented. Based on this
model, an occlusion likelihood function is described and is later used to
calculate the probability of target detection. The modified GMPHD filter
is evaluated on a simulated scenario with three moving persons showing
a significant improvement compared to the typical GMPHD filter where
occluded targets are simply discarded after few time steps of non-detection.
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The modified GMPHD filter is also applied on experimental data gathered
using a bat-type UWB sensor. The improvement in target localisation with
the modified GMPHD filter is significant since occluded targets continue
to be tracked even tough there are no detections from the sensor. Future
improvements by incorporating the occlusion likelihood function in the
innovation would limit the error estimate within the occluded region. In
addition improvement of the target extent model should result in improved
target estimates with lower error covariance.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Localisation and tracking of people using UWB sensors is important in many
applications for indoor localisation. This thesis concentrates on defining
a real-time framework for localisation and tracking of multiple people in
realistic scenarios. On one side the use of multiple distributed sensors
is explored and on the other side potential improvement due to negative
information fusion is investigated.

6.1 Summary
Indoor localisation of people that do not cooperate with the system network
can be achieved and complemented by the use of UWB systems. Due to
their high time resolution, various multipath components can be separated
from the echoes of the people of interest. The large frequency spread makes
UWB systems applicable for through-wall detection and localisation by
using the lower frequencies of the spectrum.

This thesis focuses on detection, localisation and tracking of people using
UWB sensors for real-time applications. First and foremost the basis of
UWB sensing is described, followed by the operating principle of single UWB
sensor for person detection and localisation. Different methods are discussed
by concentrating on most fitting methods for multiple person detection and
localisation in real-time for unknown scenarios. Since a person is an extended

139



6 CONCLUSION AND FUTURE WORK

target for UWB sensors in indoor scenarios, multiple detections per person
should be considered. Within this thesis a hierarchical clustering approach
is used over the target detections for reducing the multiple observations
per sensor per target to one. A range association technique is proposed to
associate estimated ranges to existing targets for simple single sensor based
localisation.

Once the ranges are associated, single target localisation can be used.
Since each target range corresponds to an ellipse in Cartesian coordinates,
the target location is derived as the intersection of the ellipses derived
by associated range estimates. This method has its drawbacks in the
scenarios and sensor constellations considered within this thesis. Since the
two receivers of a sensor are close to each other the ellipse intersection (or
annuli intersection if range estimate errors are considered) is rather flat
and leads to large location estimation error. Additionally, if only one range
is associated to a target it is discarded and can not be used for target
localisation.

In multiple person localization scenarios, person-induced shadows lead to
target missdetection. Thus the question of how to better detect, localise
and continuously track multiple people in the area of interest is raised. Two
directions are explored in this thesis.

The first direction is in expanding the field of view of the system by using
multiple distributed sensors. The concept, structure and architecture of
a distributed UWB sensor network is described. In addition to allowing
for detection of possibly shadowed targets in the area with respect to one
sensor, it also increases the coverage area of the system and can lead to more
accurate detection and localisation of multiple people in the overlapping
areas. The processing of the measured impulse responses is also distributed
in the network for reduction of the data transmission load between the
network components. Based on the concept developed within this thesis a
simple demonstrator is implemented.

Fusing information from multiple sensors can be tricky. Typical multiple
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sensor fusion challenges are described and a multiple sensor likelihood
function for range-only detections is derived.

For improving target detectability over time, target propagation is con-
sidered. Brief overview of Bayesian tracking and some derived methods for
single and multiple target tracking is given. More detailed explanation of
the PHD filter as a filter of choice is provided with additional explanations
regarding the target birth model, multiple sensor application and observa-
tion models used for successful application of the filter in real time over the
information obtained by our sensor system.

This thesis describes two approaches for localisation of people using the
measured target scatterings by the multiple sensor receivers in the sensor
network. The described approaches are simplistic, computationally solid
and implemented for real-time operation. The first approach relies on
single-sensor localisation being performed on the sensor node platform and
fusion and tracking of the estimated locations at the fusion centre node.
The second approach does only range estimation on the sensor platform,
and a direct localisation and tracking is performed on the fusion centre
platform. An extensive multiple sensor tracking framework based on the
PHD filter is proposed with measurement-based target birth model and
sequential measurement update procedure. Both methods have low location
estimation errors, however the second approach has greater stability over
time.

The second direction explored is to use the missdetections of targets by
a sensor to our advantage by analysing the reasons of missdetection and
if the cause is due to shadowing of the targets of interest either by each
other or by other objects in the scenario, to incorporate this information
into the multiple target tracker. A dynamic occlusion model is derived
based on an assumed target extent, followed by derivation of an occlusion
likelihood function. This occlusion likelihood function is used to redefine the
target probability of detection dynamically before it is used in the tracking
framework. The improvement in target location estimation when using
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negative information is significant since occluded targets which can not be
detected by the sensor continue to be tracked.

The approaches are evaluated in near-real-time operation in measurement
scenarios using M-sequence UWB sensors, conducted in office scenarios
which correspond closely to real application scenarios for security or smart-
home applications.

6.2 Future work and extensions
During the course of this thesis different research questions arose which
due to time constraints could not be covered within this work and are thus
proposed as future directions of research.

The background subtraction method used here for suppression of sta-
tionary reflections is very useful for online real-time applications. However
contributions of stationary people are also suppressed. Using UWB sensors,
heartbeat and breathing patterns of people can be detected [151, 152]. Thus
it would be preferable to develop a detection method by which both moving
and stationary people can be detected.

The clutter present in the detections seems to often be following the
movement of one of the targets. This may be delayed target reflections due
to additional scattering from walls (multipath). Thus a filter for removing
them may be developed, or they may be also included as additional target
observations. The second suggestion has been explored in [13] for single
person detection and localisation (behind a corner scenario). Multipath
propagation exploitation can also provide additional information when the
number of sensors observing the targets is small. A ray-tracing engine can
be used for multipath prediction.

The sensor network system and approach can be further improved by
inclusion of other parameters corresponding to moving people, which can
be extracted from the measured impulse responses. Hardware constraints
limited the explorations of this topic. TDOA and Doppler information can
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greatly improve the localization and target characterization/classification
approach. In addition a higher cooperation level between the sensors can
lead to additional information resulting from using signals transmitted by
one sensor node and received by another sensor node as described in the
concept presented in Section 3.2. Different sensor placement geometries can
be explored for finding an optimal sensor geometry for different scenarios.

The tracking framework presented here can be expanded for extended
target tracking and thus observation inaccuracies due to possibly over
simplistic clustering can be avoided. The occlusion likelihood derived
in Chapter 5 can benefit from an appropriate target extent modelling.
Incorporating the occlusion likelihood fully in the update process of the
tracker can limit target covariance estimates of occluded targets to occlusion
regions only.

An interesting field to explore in is target classification using UWB
sensors. Different polarisations as well as micro-Doppler information of
the detected targets may be used for classification. Categorisation of the
moving objects in the defined scenario as human or non-human can help
in simplifying the localization and tracking procedures by considering only
targets classified as human in those procedures. This would be helpful in
rescue scenarios where detection and localisation of people is a priority. A
simple and effective solution to this problem can be based on waveform
analysis where certain statistical features can be extracted from the return
signals, and then compared to a database of feature sets from different
objects. This procedure requires statistical models of different objects that
can be encountered in the scenario for which a lot of training data is required.
It also requires training data from different people to cover the diversity of
human forms.
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APPENDIX I

LOCALISATION SCHEMES AND
SYSTEMS

Different classification schemes for localization technologies exist. One
important classification is based on the signalling scheme it uses. RF
frequency is one of the most commonly used signalling scheme for localization
purposes due to its ability to penetrate through obstacles and propagate long
distances. Infra-red signals have low power and are inexpensive but can not
propagate through obstacles and are susceptible to sunlight thus requiring
an extensive network of infra-red sensors in the indoor environment to pick
up the transmitted signal. Optical signals also require LOS conditions, are
affected by sunlight and require low power. High accuracy can be achieved
and these sensors are appropriate for short ranges (less than 10 meters).
Ultrasound signals provide high accuracy in short range. Signals travel
slowly and thus slow clock is sufficient and high accuracy can be achieved
cheaply in LOS conditions. However acoustic emitters need a lot of power
and do not work well in NLOS conditions.

Depending on where the localization takes place, there exist handset-
based (location aware) and network-based (location support) systems. In
the first one the target calculates its own position based on the signals it
receives from the reference nodes, also known as self-positioning. In the later
one a central processing unit calculates the targets position, also known as
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remote positioning. Privacy issues may be of concern for the later one.

Localisation systems can also be classified as indoor or outdoor systems
due to the significant propagation characteristic differences in each environ-
ment. Examples of outdoor localisation systems are: GPS using more that
24 satellites with location accuracy of 1 to 5 meters, or the E911 service
in cellular networks. Both perform well outdoors but are not designed
for indoors where technical challenges exist and accuracy requirements
are typically much higher. Indoor systems may require unique infrastruc-
ture or use pre-existing infrastructure such as wireless local area network
(WLAN). Software-based localization can be implemented by using existing
infrastructure and there is no need to deploy additional hardware for local-
ization purposes. Hardware based localization systems require installation
of additional hardware.

In active localization systems the network sends specific signals for location
estimation of the targets. In passive localization systems pre-existing signals
are used, i.e. no specific signal for localization purposes is transmitted.

In centralized localization systems, position related information is for-
warded to a data fusion center where the target’s location is estimated.
Terminals that use decentralised localization systems determine their loca-
tion jointly by communicating with each other.

Additionally, if the target to be localised cooperates with the localisation
system, for example carries an RF tag, the estimation process is also
termed cooperative localisation. Otherwise if the target is just a passive
bystander and is possible not aware it is being localised, or it can not help
the localisation system, the estimation process is termed non-cooperative
localisation.

Accuracy is the metric that tells us how well a certain localization tech-
nology performs. It is defined as how far the estimated location of a target
is away from its actual location. It is desired that a certain localization
accuracy is achieved with high probability. Precision defines the percent-
age that a certain accuracy or better is achieved. In cell identification
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localization, the target’s position is approximated based on the location of
the reference node, limiting the accuracy to the cell size. In triangulation
based systems, the intersection of at least two lines obtained from AOA
information from at least two reference nodes are used. In trilateration
systems at least three reference nodes are needed for 2D localization and at
least four nodes are needed for three-dimensional (3D) localization. Circle
or hyperbola intersections obtained from TOA, RSS or TDOA are used
for location estimation. Fingerprint-based or pattern-matching localization
technologies compare real-time measurements with a location database to
infer the terminal location. Accuracy is limited to the granularity of the
training locations and an off-line calibration stage is required which may
need to be repeated if the environment propagation characteristics change.
Range-based systems depend on the distances (TOA, TDOA, RSS) or angles
(AOA) between the nodes. Range-free localization systems do not require
estimation of the absolute distances. They either rely on high density of
anchors (i.e. location estimate is the average location of all connected
anchors) or are hop counting techniques.

Within this thesis indoor localisation of non-cooperative targets using
UWB radar is considered. This same problem description is often wrongly
referred to as passive localisation. A two-step trilateration-based localisation
system is to be used, where in the first step target’s ranges are estimated
and in the second step they are used for target localisation.
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APPENDIX II

PARAMETER ESTIMATION
ACCURACY

In two-step localisation techniques, the first step is to estimate signal pa-
rameters such as RSS, AOA, TOA and TDOA, based on which the target
location can be estimated using triangulation, trilateration or hybrid tech-
niques. Typically single parameter can be estimated for each received signal,
however if feasible multiple parameters may also be estimated to improve
accuracy. Below, the estimation accuracy of some of these parameters is
discussed.

Received signal strength. RSS measurements provide distance
information between two nodes by measuring the power of the received signal.
The average signal power decays with distance. UWB signals experience
multipath fading, shadowing and path loss (PL) while propagating. Ideally
signal power over longer time interval is not as influenced by the multipath
fading and shadowing, and thus the model is as follows:

P (d) = P0 − 10n log10(d/d0) (II.1)

for PL exponent n, distance d between nodes and P0 average received
signal power in dB at reference distance d0. The PL exponent is hard to
estimate due to propagation influences such as reflection, scattering and
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diffraction. The multipath effect in UWB systems can be mitigated by
having long enough integration interval to include all multipath components.
In the case of tag-free target detection, in addition to multipath fading,
shadowing and PL, backscattering of the object and its RCS should also be
considered. If the received power P (d) is modelled as a Gaussian random
variable with mean P (d) and variance σsh, the CRLB for range estimation
using RSS can be expressed as

√
V ar(d̂) ≥ ln 10σsh

10n
d (II.2)

with d̂ being the unbiased estimate of d and σsh the standard deviation
representing the log-normal shadowing effect. For transmitter detection,
the standard deviation of the error is always above 1m for distances above
6m, meaning that RSS measurements do not provide very accurate range
estimates for UWB systems [65].

Angle of arrival. AOA is the angle between the propagation direc-
tions of the incident waveforms. For measuring the AOA antenna arrays
are used, and the angle information is obtained by measuring the difference
in arrival time of the incoming signal at different antenna elements. The
idea is that the difference of the arrival times at different antenna elements
contains the phase information for a known geometry. For narrowband
signals time-difference can be represented as a phase shift and thus the
angle can be estimated by testing phase-shifted versions of the received
signal at the array elements. Due to the large bandwidth in UWB, the time
delay can not be represented as a unique phase value and thus time-delayed
versions of the received signal should be considered.

Time of arrival. The TOA parameter measures the time needed from
the target node to the reference node in active localisation and the time
needed for a transmitted signal to reach a receiver by bouncing (scatter-
ing) off a target in passive localisation. To estimate unambiguous TOA
parameters the transmitter and receiver need to have a common clock or
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exchange time information. In bistatic configuration for passive localisation
techniques, each TOA measurement forms an ellipse. For unambiguous
2-D positioning, at least three synchronised transmitter-receiver pairs are
needed.

The conventional TOA estimation technique uses matched filtering or
correlation to estimate the time shift of a transmitted signal. For a simplified
received signal model

r(t) = αs(t− τ) + n(t) (II.3)

where τ represents the TOA, α represents the channel coefficient, n(t) is
white Gaussian noise with zero mean and N0/2 spectral density, and s(t)
represents the transmitted signal, the CRLB of the TOA measurement error
for single-path AWGN channel can be expressed as:

√
V ar(τ̂) ≥ 1

2
√

2πβ
√
SNR

(II.4)

where τ̂ is the unbiased TOA estimate and β is the effective signal
bandwidth:

β =

(
1

E

∫ inf

− inf

f2|S(f)|2
)1/2

(II.5)

with S(f) being the Fourier transform of the transmitted signal and E the
energy of the signal. The SNR is SNR = α2E/N0.

As can be noticed, TOA estimates can be improved by increasing the
SNR or the effective bandwidth β whereas RSS cannot. Since UWB signals
have large bandwidth, very accurate TOA parameters can be estimated.

Time difference of arrival. If clock synchronisation between the
transmitter and receiver is not available, TDOA parameters may be esti-
mated if multiple receivers are synchronised. TDOA represents the difference
in the signal arrival time between two synchronised receivers. TDOA es-
timates can be obtained by estimating the TOA at each receiver (with
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time-offset) and calculating the difference between the two TOA estimates.
Analogous to TOA, TDOA estimates may be improved by increasing the
SNR or signal bandwidth. TDOA may also be obtained by cross-correlating
the received signals from the two synchronised receivers to calculate the
delay corresponding to the largest cross-correlation value. This method
wors well in single-path channels but its performance degrades in multipath
channels and in the presence of coloured noise [65].

Doppler frequency. The Doppler effect is often considered to be
pure frequency shift (also referred to as Doppler shift or Doppler frequency)
caused due to motion of a target. This interpretation is however only valid
for narrowband signals and does not hold for wideband signals [61]. When
affected, signals are either stretched or compressed, which in narrowband
case corresponds to shift of the center frequency of the signal. In wideband
case the transmit and receive signals decorrelate with increasing speed and
signal duration [61]. To determine the Doppler effect, the ambiguity func-
tion should be sensitive to both time shift and Doppler scaling. The width
of an ambiguity function in time-delay or velocity can be controlled by the
bandwidth and duration of the sounding signal. Narrowband systems tend
to have bad range (low bandwidth) and good Doppler (long signal duration)
resolution whereas wideband systems tend to have good range (large band-
width) resolution and bad Doppler (short signals) resolution. In narrowband
processing the decorrelation between the receive and transmit signal does
not have to be respected. The Doppler ambiguity is mainly determined by
the system update rate. For a system measuring 25IR/s the refresh rate
of the system is 25Hz which corresponds to maximum detectable Doppler
frequency of ±12.5Hz. However in wideband processing a two-dimensional
search in time-delay and Doppler scaling is needed which increases the
complexity of the sensor electronics. Typically one tries to avoid Doppler in-
fluence by either using signal which are not sensitive to Doppler (short pulses)
or by using signals which do not decorrelate (e.g. linear frequency modulated
sine waves). More information on UWB systems and designs can be found
in [61] and on narrowband and wideband ambiguity functions in [153].
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APPENDIX III

RESULTS COMPARISON IN A
SAMPLE SCENARIO

By using a distributed sensor network for detection and localisation of
targets in an indoor scenario more information is obtained which can be
used for more reliable target localisation. This information abundance helps
in consistently localising targets even in the event of target missdetection by
one of the sensors. Although obvious, the information gain by using multiple
sensors has been verified experimentally in realistic indoor scenarios.

Lets consider the scenario from Fig. 3.6 and the centralised fusion ap-
proach. The target range is estimated using the methods in Section 2.5.
For the background subtraction method a forgetting factor of 0.85 is used.
The false alarm probability for the CFAR detector is set to 0.1 due to
the low SNR. Hierarchical clustering is applied on the CFAR estimates to
reduce the number of range estimates per target to one (due to the target
being an extended target for the system). The estimated ranges of the two
receivers of the first sensor are fused together using the sequential PHD filter
described in Section 4.6.3. The resulting location estimates (tracks) are
shown in Fig. III.1a in red. The estimated ground truth tracks are shown
in black. As we can see, by using only one sensor we can not track the full
track of the person. By fusing all range estimates from both sensors, the
targets can be tracked continuously over the full time span of the scenario.
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The results of the fused sensor information can be seen in Fig. III.1b. The
same thing happens when two persons are present in the area of interest.
The target tracks when using a single sensor and when using both sensors
are shown in Fig. III.2. The information gain by using multiple sensors is
obvious. Both targets can be tracked throughout the whole scenario when
using both sensors.
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Figure III.1: Estimated target track (red) by using (a) single sensor and (b)
fusion of the estimates by both sensors. The corresponding estimated ground
truth track of the person is depicted in black.

The presented results show that by only using a single sensor there are
cases when there is not enough information to localize multiple moving
persons. When only one sensor is used the targets further away from the
sensor are not detectable mainly due to them being shadowed by the target
which is closer to the sensor. This same scenario is used in Section 5.5
where instead of using two sensors, negative information fusion is used to
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Figure III.2: Estimated target tracks (red) by (a) using only sensor 1 and (b)
fusing information from both sensors. The corresponding estimated ground truth
track of the persons is depicted in black.

improve the target location estimation.
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APPENDIX IV

CENTRAL AND DISTRIBUTED DATA
FUSION

The main idea as well as challenge of dynamic sensor fusion is the fusion of
data from all the sensors (observing a phenomenon represented as a random
variable x(t)) to provide an estimate.
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Figure IV.1: Distributed state estimation
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IV CENTRAL AND DISTRIBUTED DATA FUSION

If all sensors transmit their measurements at every time step, the problem
can be solved. The theoretically optimal solution is the fusion of all available
observations at a global fusion centre (centralised fusion). Alternatively
distributed tracking may be used where tracks are locally formed at the
nodes and these tracks are then fused at the fusion centre (distributed
fusion). The problems of the centralised fusion is firstly the computational
cost i.e. the central node needs to handle matrix operations that increase
in size as the number of sensors increases and secondly the transmission
i.e. the sensors may not be able to transmit at every time step, thus one
may want to transmit after some local processing. A possible way to handle
the first problem (reduce computational burden) is by using distributed
Kalman filter [154].

Within this thesis when referring to a centralised approach direct fusion of
all the ranges from all transmitter-receiver pairs is considered. In this case
non-linear observation models should be used since the observations and
target states are defined in different subspaces for e.g. polar and Cartesian
coordinates. When referring to distributed fusion, local location estimates
provided by each sensor of the network are fused. In this case linear models
can be used since both observations and target states are defined in the
same space i.e. both use for Cartesian coordinates.
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APPENDIX V

OSPA METRIC

For performance evaluation of multiple target tracking problems a suitable
distance measure is required which takes into consideration the possibility of
target track birth/death and misdetection. Within this thesis target states
are represented as a finite state set. Thus a suitable error metric would be
able to compare two sets. Originally, the Hausdorff metric was considered
for performance evaluation of multiple target tracking problems, however it
was found to be insensitive to the difference between the number of elements
of two sets [155]. The suggested Wp distance in [155] only partially solved
this problem since it was not defined if one of the sets was empty and was
inconsistent when the sets have different number of elements. Schuhmacher
et al proposed a new metric called optimal subpattern assignment (OSPA)
in [138] based on a metric between distributions of point processes. The
proposed metric is based on the Wasserstein distance. The OSPA metric
represents the sum of localisation (spatial distance) and cardinality distance
via a cut-off parameter c. The localisation error is represented as the
minimum sum of distances. The cut-off parameter c deals with any mismatch
between the number of elements of the two finite sets being compared (the
ground truth and estimated target states). The unassigned elements, extra
target states representing either a missing existing target or an extra false
target in the set of estimated targets, are penalised with maximum error
c, which is considered to be the cardinality error. The maximum distance
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between two elements of the sets being compared should be less than the
cut-off value c. Let X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn} represent
two finite sets. The OSPA metric of order p with cut-off c can be defined
as

d̄(c)
p (X,Y ) =

(
1

n

(
min
π∈Πn

m∑
i=1

d(c)
(
xi, yπ(i)

)p
+ cp(n−m)

))1/p

(V.1)

for m ≤ n where d(c)(x, y) = min(c, ||x− y||) defines the distance between
state x and state y for a cut-off c > 0. Πk defines the set of permutations
on {1, 2, ..., k} for any k ∈ N = {1, 2, ...}.

For m > n, d̄(c)
p (X,Y ) = d̄

(c)
p (Y,X) and for m = n = 0 the distance is set

to zero, i.e. d̄(c)
p (X,Y ) = d̄

(c)
p (Y,X) = 0.

The practical use of the OSPA metric is as follows (assume m ≤ n):
• Find the m-point subpattern of Y (subset of Y consisting of m ele-
ments) closest to X in terms of the pth order Wasserstein distance
metric.

• For each element yj of Y , define αj where αj = c if there is no element
from X assigned to it, or αj = min(c, ||yj − xi||) where xi is the
assigned element in X.

• Compute the pth order average ((1/n)
∑n
j=1 α

p
j )

1/p for the defined αj
values.

The order p ≥ 1 is used to define the order for the per-target location error
and the order for the per-target cardinality error. These error component
for p <∞ and m ≤ n are given by

ē
(c)
p,loc(X,Y ) =

(
1

n
min
π∈Πn

m∑
i=1

d(c)
(
xi, yπ(i)

))1/p

ē
(c)
p,card(X,Y ) =

(
cp(n−m)

n

)1/p
(V.2)
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The value p determines the sensitivity of the OSPA metric to outlier
estimates. For p = 1 the OSPA metric measures the first order per-object
error. The sum of the localisation and cardinality components is the total
metric and the components of the metric are easier to interpret. This is the
reason it is also used for the performance analysis within this thesis. An
order of p = 2 would result in a more smooth distance curve and might be
more appropriate to use. However the metric components of localisation
and cardinality error can not be as easily interpreted.

The cut-off c determines the weighting of the cardinality component
against the localisation error. Typically a cut-off value should be chosen
which corresponds to the magnitude of a typical localisation error. If c
corresponds to the magnitude of a typical localisation error, it is considered
small and emphasises localisation errors. If c corresponds to the maximal
distance between objects, it can be considered large and emphasises cardi-
nality errors. The cut-off c can be interpreted as the penalty given if there
is a false or missing estimate. Within this thesis cut-off value c = 10 is
used. This means that if no targets are estimated and there are two targets
present in the ground truth finite set, the OSPA metric has the value 10.
If one of those targets is correctly estimated with small localisation error
ε and the other is not estimated at all, the OSPA metric would have the
value 5 + ε.

Since the OSPA metric compares two finite sets composed of a finite
collection of states, it was considered insufficient for performance analysis
of multiple target tracking problems. For sufficiently analysing tracking
problems the finite sets should be collections of sequences of target states.
In this case target trajectories instead of target states would be compared.
Different extensions have been proposed, such as the one in [156], however
for the performance analysis in this thesis the OSPA metric was deemed
sufficient and used.
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