634 research outputs found

    Assimilating SAR-derived water level data into a hydraulic model: a case study

    Get PDF
    Satellite-based active microwave sensors not only provide synoptic overviews of flooded areas, but also offer an effective way to estimate spatially distributed river water levels. If rapidly produced and processed, these data can be used for updating hydraulic models in near real-time. The usefulness of such approaches with real event data sets provided by currently existing sensors has yet to be demonstrated. In this case study, a Particle Filter-based assimilation scheme is used to integrate ERS-2 SAR and ENVISAT ASAR-derived water level data into a one-dimensional (1-D) hydraulic model of the Alzette River. Two variants of the Particle Filter assimilation scheme are proposed with a global and local particle weighting procedure. The first option finds the best water stage line across all cross sections, while the second option finds the best solution at individual cross sections. The variant that is to be preferred depends on the level of confidence that is attributed to the observations or to the model. The results show that the Particle Filter-based assimilation of remote sensing-derived water elevation data provides a significant reduction in the uncertainty at the analysis step. Moreover, it is shown that the periodical updating of hydraulic models through the proposed assimilation scheme leads to an improvement of model predictions over several time steps. However, the performance of the assimilation depends on the skill of the hydraulic model and the quality of the observation data

    Calibration of channel depth and friction parameters in the LISFLOOD-FP hydraulic model using medium resolution SAR data and identifiability techniques

    Get PDF
    Single satellite synthetic aperture radar (SAR) data are now regularly used to estimate hydraulic model parameters such as channel roughness, depth and water slope. However, despite channel geometry being critical to the application of hydraulic models and poorly known a priori, it is not frequently the object of calibration. This paper presents a unique method to simultaneously calibrate the bankfull channel depth and channel roughness parameters within a 2-D LISFLOOD-FP hydraulic model using an archive of moderate-resolution (150 m) ENVISAT satellite SAR-derived flood extent maps and a binary performance measure for a 30 × 50 km domain covering the confluence of the rivers Severn and Avon in the UK. The unknown channel parameters are located by a novel technique utilising the information content and dynamic identifiability analysis (DYNIA) (Wagener et al., 2003) of single and combinations of SAR flood extent maps to find the optimum satellite images for model calibration. Highest information content is found in those SAR flood maps acquired near the peak of the flood hydrograph, and improves when more images are combined. We found that model sensitivity to variation in channel depth is greater than for channel roughness and a successful calibration for depth could only be obtained when channel roughness values were confined to a plausible range. The calibrated reach-average channel depth was within 0.9 m (16 % error) of the equivalent value determined from river cross-section survey data, demonstrating that a series of moderate-resolution SAR data can be used to successfully calibrate the depth parameters of a 2-D hydraulic model

    CryoSat-2 satellite radar altimetry for river analysis and modelling

    Get PDF

    Integrating VGI and 2D hydraulic models into a data assimilation framework for real time flood forecasting and mapping

    Get PDF
    Crowdsourced data can effectively observe environmental and urban ecosystem processes. The use of data produced by untrained people into flood forecasting models may effectively allow Early Warning Systems (EWS) to better perform while support decision-making to reduce the fatalities and economic losses due to inundation hazard. In this work, we develop a Data Assimilation (DA) method integrating Volunteered Geographic Information (VGI) and a 2D hydraulic model and we test its performances. The proposed framework seeks to extend the capabilities and performances of standard DA works, based on the use of traditional in situ sensors, by assimilating VGI while managing and taking into account the uncertainties related to the quality, and the location and timing of the entire set of observational data. The November 2012 flood in the Italian Tiber River basin was selected as the case study. Results show improvements of the model in terms of uncertainty with a significant persistence of the model updating after the integration of the VGI, even in the case of use of few-selected observations gathered from social media. This will encourage further research in the use of VGI for EWS considering the exponential increase of quality and quantity of smartphone and social media user worldwide
    corecore