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Abstract Short- to medium-range flood forecasts are central to predicting and mitigating the impact
of flooding across the world. However, producing reliable forecasts and reducing forecast uncertainties
remains challenging, especially in poorly gauged river basins. The growing availability of synthetic aperture
radar (SAR)-derived flood image databases (e.g., generated from SAR sensors such as Envisat advanced
synthetic aperture radar) provides opportunities to improve flood forecast quality. This study contributes
to the development of more accurate global and near real-time remote sensing-based flood forecasting
services to support flood management. We take advantage of recent algorithms for efficient and automatic
delineation of flood extent using SAR images and demonstrate that near real-time sequential assimilation
of SAR-derived flood extents can substantially improve flood forecasts. A case study based on four flood
events of the River Severn (United Kingdom) is presented. The forecasting system comprises the SUPERFLEX
hydrological model and the Lisflood-FP hydraulic model. SAR images are assimilated using a particle filter.
To quantify observation uncertainty as part of data assimilation, we use an image processing approach
that assigns each pixel a probability of being flooded based on its backscatter values. Empirical results show
that the sequential assimilation of SAR-derived flood extent maps leads to a substantial improvement
in water level forecasts. Forecast errors are reduced by as much as 50% at the assimilation time step,
and improvements persist over subsequent time steps for 24 to 48 hr. The proposed approach
holds promise for improving flood forecasts at locations where observed data availability is limited but
satellite coverage exists.

1. Introduction

Short- to medium-range flood forecasts are central to mitigating the impact of flooding, allowing stake-
holders in flood management to better anticipate critical needs. Flood forecasts can help meet many of the
foreseeable needs identified by the World Health Organization, including coordinating search and rescue,
providing medical assistance, managing displacement of people and goods, and avoiding the interruption
of critical supply chains that are known to cause extreme financial losses. Hydrological (rainfall-runoff) and
hydraulic models are powerful tools in flood forecasting systems (Revilla-Romero et al., 2016). Yet, opti-
mal decision making in emergency situations is hampered by forecast uncertainties (Hostache et al., 2011;
Pappenberger et al., 2007). To mitigate uncertainties, the models comprising the forecasting chain are often
calibrated using in situ streamflow and/or water level measurements. A well-established method of reducing
forecast uncertainties and keeping predictions on track is to periodically adjust the forecast models, for exam-
ple, by assimilating external observations (Neal et al., 2007). Ideally, this is achieved using data from distributed
streamflow gauging stations, yet such data are often not available. Even where gauged data are available, it
is seldom publicly accessible in near-real-time (Revilla-Romero et al., 2016); moreover, the number of gaug-
ing stations worldwide is in decline, and existing coverage is sparse (Biancamaria et al., 2011; Mason et al.,
2012). A promising approach for improving flood forecasts that has gained recent attention is to assimilate
hydrology-related data derived from globally and freely available Earth observation data sets. Flood extent
maps derived from satellite images can then be either integrated with models on their own (Wood et al., 2016;
e.g., via calibration or data assimilation) or intersected with a digital elevation model (DEM) to produce, after
a number of postprocessing steps, shoreline water levels for integration with models (Mason et al., 2012).
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Among available sensors mounted on spaceborne platforms, synthetic aperture radars (SARs) are arguably
the most relevant for estimating flooded areas. SAR sensors are capable of imaging the Earth’s surface day and
night and under almost all weather conditions. This capability offers a major advantage over optical sensors,
which are hindered by cloud cover and can only acquire synoptic images of the Earth’s surface during the day.
Due to the specular reflection of the incoming radar signal, detection of (smooth, open) water bodies in SAR
images is relatively straightforward (Giustarini et al., 2013; Pulvirenti et al., 2016), although layover, vegetated,
and shadow areas can mask water or induce false alarm in derived maps. Many studies on data assimilation
into hydraulic models or forecasting systems integrate synthetic, in situ or remote sensing-derived observa-
tions of water levels. For example, see Table 1 in Revilla-Romero et al. (2016), and also Neal et al. (2007), Matgen
et al. (2010), Hostache et al. (2010), Giustarini et al. (2011), Yoon et al. (2012), Andreadis and Schumann (2014),
García-Pintado et al. (2015), Hostache et al. (2015), and Xu et al. (2017). Indeed, water level is a diagnostic
variable of any hydraulic model and hence is more straightforward to assimilate than flood extent (Lai et al.,
2014), which is a prognostic variable (diagnostic variables are defined as variables that are required to solve
the model, that is, state variables, whereas prognostic variables are derived quantities). However, working with
water levels from SAR images has several important limitations: (i) they offer information only at the flood
extent shoreline; (ii) the estimation methods are neither straightforward nor automatic, and they typically
require high-resolution topographic data (e.g., Lidar DEM) that are not globally available, as well as hydraulic
expertise for interpretation (Hostache et al., 2009, 2010; Mason et al., 2012; Wood et al., 2016). Although
the accuracy of globally available DEMs has improved appreciably (e.g., Yamazaki et al., 2017), the above-
mentioned limitations arguably will continue hindering the use of SAR-derived water levels for automatic,
near-real-time applications.

Methods that directly assimilate flood extent (rather than water levels) maps into flood forecasting chains are
hence of interest. The main advantage is that flood extent mapping from SAR images can be implemented
using fast automatic algorithms that provide information over the entire area of interest (Chini et al., 2017;
Giustarini et al., 2013). Promising results have already been obtained by assimilating flood extents derived
from satellite images into a hydraulic model (Lai et al., 2014) and into a forecasting system (Revilla-Romero et
al., 2016). The study by Lai et al. (2014) was based on 4DVAR (variational) data assimilation, with no objective
toward real-time forecasting; they showed that the assimilation of a flood extent map derived from MODIS
data (250-m spatial resolution) allows for the optimization of a lumped friction parameter. Revilla-Romero
et al. (2016) used the ensemble Kalman filter to assimilate low resolution (0.1∘ × 0.1∘) satellite-derived flood
extents based on the Global Flood Detection System (http://www.gdacs.org/flooddetection/) into a global
forecasting system composed of a hydrological model and a routing function, with an objective toward
real-time forecasting; their study over 101 stations in Africa and South America shows that flood extent assim-
ilation improves simulated streamflow at the majority of stream gauges, especially at the gauges with poorest
skill scores on open-loop runs. One limitation of the study by Revilla-Romero et al. (2016) is the relatively
coarse spatial resolution of the model results (i.e., 0.1∘), which may not meet operational needs in a crisis
management context.

This study develops an efficient framework for the assimilation of high-resolution flood extent information
derived from SAR images, for the purposes of improving near real-time flood forecasts. An approach based
on particle filtering (PF) (e.g., Giustarini et al., 2011; Hostache et al., 2015; Matgen et al., 2010) is developed to
optimally combine observations and simulations, within a flood forecasting chain that couples a conceptual
hydrological model with a 2-D hydraulic model.

The paper is organized as follows. Section 2 describes the algorithm for deriving probabilistic flood maps from
SAR images and the flood forecasting model cascade. Next, section 3 presents a new approach for assimilating
SAR-derived flood maps into the forecasting chain. Section 4 describes the study area and available data, as
well as the case study experiments. Section 5 reports, evaluates, and discusses the results obtained using the
proposed methods. Conclusions are given in section 6.

2. Flood Mapping and Flood Forecasting System
2.1. Probabilistic Flood Mapping From SAR Image
When attempting to assimilate flood extent maps into a model, it is necessary to estimate the uncer-
tainty associated with the flood extent observations (Giustarini et al., 2015). These uncertainty estimates
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are obtained using the method of Giustarini et al. (2016), which is a further development of previous studies
(Giustarini et al., 2013; Hostache et al., 2012; Matgen et al., 2011).

The probability of a pixel corresponding to open water given its backscatter value in the SAR image is
estimated using Bayes’ theorem as follows:

p(w|𝜎0) =
p(𝜎0|w)p(w)

p(𝜎0|w)p(w) + p(𝜎0|nw)p(nw)
=

p(𝜎0|w)p(w)
p(𝜎0)

(1)

In equation (1), p(𝜎0) is the marginal probability of recording the backscatter 𝜎0 for any pixel, p(𝜎0|w) is the
conditional probability of recording the backscatter 𝜎0 if the pixel is water, p(𝜎0|nw) is the conditional prob-
ability of recording the backscatter 𝜎0 if the pixel is nonwater, p(w) and p(nw) are the prior probabilities of a
pixel being water and nonwater, respectively. As no a priori information is available, we set p(w) = p(nw) = 0.5
as suggested in Giustarini et al. (2016). The unknown quantities p(𝜎0|w) and p(𝜎0|nw) are estimated from the
empirical distribution of backscatter values derived from the SAR image. The image histogram is assumed
to represent a mixture of two distributions: (i) a distribution of backscatter values from water pixels that is
approximated by a Gaussian probability density function (pdf); and (ii) a distribution of backscatter values
from nonwater pixels, estimated as the difference between the total histogram and the estimated Gaussian
distribution (Giustarini et al., 2016). The Hierarchical Split Based Approach (Chini et al., 2017) is used to estimate
the parameters of the Gaussian pdf describing the distribution of water backscatter even when water pixels
cover only a small fraction of the SAR image. This approach iteratively splits the image into tiles of decreasing
size and identifies those that exhibit a bimodal histogram, allowing an automatic calibration of the assumed
distribution of open water backscatter. These steps generate a probabilistic flood map where each pixel is
assigned a probability p ∈ (0, 1) of being water (i.e., flooded). The unknown quantities p(𝜎0|w) and p(𝜎0|nw)
are estimated from the empirical distribution of backscatter values derived from the SAR image. The image
histogram is assumed to represent a mixture of two distributions: (i) a distribution of backscatter values from
water pixels that is approximated by a Gaussian pdf; and (ii) a distribution of backscatter values from nonwa-
ter pixels, estimated as the difference between the total histogram and the estimated Gaussian distribution
(Giustarini et al., 2016). The Hierarchical Split Based Approach (Chini et al., 2017) is used to estimate the param-
eters of the Gaussian pdf describing the distribution of water backscatter even when water pixels cover only
a small fraction of the SAR image. This approach iteratively splits the image into tiles of decreasing size and
identifies those that exhibit a bimodal histogram, allowing an automatic calibration of the assumed distribu-
tion of open water backscatter. These steps generate a probabilistic flood map where each pixel is assigned a
probability p ∈ (0, 1) of being water (i.e., flooded).

2.2. Flood Forecasting Model Cascade
Flood forecasting systems often comprise coupled rainfall-runoff models and hydraulic models. This fore-
casting model setup is particularly relevant for achieving accurate predictions of flood extents and water
depth over large floodplains, which is of primary importance for flood management (Grimaldi et al., 2016).
In contrast, simplified channel flow routing models are generally not able to accurately predict floodplain
inundation extents (Montanari et al., 2009; Schumann et al., 2013). In this study, the flood forecasting model
cascade comprises the conceptual hydrological model SUPERFLEX loosely coupled with the grid-based
hydraulic model Lisflood-FP. These models are generally able to capture floodplain and streamflow dynam-
ics in a parsimonious and computationally efficient manner, making them very well suited for near-real-time
flood forecasting across a wide range of locations.

SUPERFLEX (Fenicia et al., 2011) is a flexible modeling framework designed for hypothesis testing in hydrology.
It is based on a combination of generic elements, namely reservoirs, lag functions, and connection functions.
The reservoir elements are intended to represent hydrological processes such as rainfall interception, upper
soil root zone storage, riparian zone storage, and fast/slow runoff generation. A variety of model structures can
be built from these generic elements. Within each reservoir, the storage/flow relationships and shape of lag
functions can be specified from a set of available options. In our application, SUPERFLEX uses as inputs time
series of rainfall and air temperature and produces as outputs time series of simulated storage, subsurface
flow, and surface runoff.

Lisflood-FP (Bates & de Roo, 2000) is a grid-based two-dimensional hydraulic model. In the floodplain,
the model solves a simplified inertial version (neglecting convective acceleration) of the de Saint Venant
equations over the two horizontal dimensions using a finite difference method (de Almeida et al., 2012).
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A posteriori developments of the model include a subgrid channel routing (Neal et al., 2012) for simulating
the flow within the channel. As usual in hydraulic modeling, Lisflood-FP requires downstream boundary con-
ditions, the inflow for all river streams within the area of interest, the ground elevations in the floodplain, and
the geometry of river streams. The main hydraulic parameter is the Manning friction coefficient, which can be
specified as spatially distributed.

The streamflow time series simulated by the hydrological model SUPERFLEX are used as inputs into the
hydraulic model Lisflood-FP. The model cascade outputs time series of water depth and water fluxes at each
model grid cell.

As a working hypothesis, it is assumed that the main and eventually dominating source of uncertainty in
the streamflow, water depth, and flood extent forecasts is the rainfall forecast. Following this assumption,
an ensemble of perturbed rainfall forecasts is used to produce an ensemble of rainfall inputs, which is then
propagated through the forecasting chain. This assumption is expected to be reasonable in an operational
context (Laurent et al., 2010; Yatheendradas et al., 2008), though it is well understood that hydrological and
hydraulic model parameters, as well as catchment properties such as river and floodplain geometries, can
also contribute substantial uncertainty. Instances where these other sources of error are significant would
require developing separate error models, for example, using aggregated approaches such as in McInerney
et al. (2017). Alternatively, the perturbed rainfall could potentially be used to compensate for other sources of
uncertainty; this compensation will reduce the interpretability of the perturbed rainfall (Renard et al., 2010;
Renard, 2011) but could still lead to operationally adequate predictions.

3. Data Assimilation Framework

This section develops the new data assimilation framework for integrating SAR-derived probabilistic flood
maps within the flood forecasting model cascade.

The major structural assumption is that the hydraulic model uncertainty originates solely from uncertainty
in the boundary conditions (i.e., upstream streamflow), which in turn originates from the uncertainty in
rainfall forecasts.

Using the outputs of the hydrological model as upstream boundary conditions, the hydraulic model generates
an ensemble of water depth and flood extent maps. An output of the hydraulic model is then an ensemble of
binary maps where each pixel is either flooded or nonflooded. The set of flooded/nonflooded pixels is then
compared against the probabilistic flood map derived from a SAR image (section 2.1). To optimally combine
observations and simulations, we adopt an approach based on PF. The prior and posterior probability distri-
butions, which describe model state variables and flood extent across model grid cells before and after the
assimilation event, respectively, are approximated by a set of particles. In this study, each particle represents
the output from the forecast model with its own set of forcing data (rainfall amounts) and its own weight,
which can be interpreted as the probability of that particular model output being correct. During an assimila-
tion event, the PF is used to update the particle weights based on information from the satellite flood extent
data. The proposed implementation of the PF is based on Sequential Importance Sampling (Plaza et al., 2012).
The PF framework offers the key advantage of relaxing the assumption that observation errors are Gaussian
(Moradkhani, 2007), making it better suited to data assimilation of probabilistic flood maps than the more
widely used ensemble Kalman filters (EnKFs; e.g., García-Pintado et al., 2015; Neal et al., 2007; Revilla-Romero
et al., 2016). Moreover, the Sequential Importance Sampling implementation of a PF has the advantage of
avoiding an update of model states that may lead to hydraulic model instabilities.

In our PF implementation, the weight of a given particle (equation (4)) is obtained by aggregating (equation
(3)) the weights associated with the individual pixels across the simulated area given the observed image
being assimilated (equation (2)). The computation of these weights is described next.

The weight wi
(k,j) associated with the kth pixel of the jth particle (i.e., model ensemble member) is calculated

for the ith observation as follows:

wi
(k,j) = pi

k(w|𝜎0) × 𝜃i
(k,j) +

(
1 − pi

k(w|𝜎0)
)
×
(

1 − 𝜃i
(k,j)

)
(2)

where pi
k(w|𝜎0) is the probability of the kth pixel in the ith flood map being water (see Equation (1). The term

𝜃i
(k,j) is the corresponding model prediction, interpreted as follows: 𝜃i

(k,j) = 1 if the pixel is predicted as flooded
and 𝜃i

(k,j) = 0 otherwise.
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The spatial aggregation of individual local weights wi
(k,j) (i.e., weights for individual pixels within a given par-

ticle) to obtain the global particle weight 𝜔i
j makes the use of three pragmatic ideas: (i) prevent particles

being given a weight of zero solely due to a mismatch at a few pixels (e.g., if a pixel estimated as being
certainly flooded in the observed image but is simulated as dry by the model, and vice versa), (ii) reduce biases
due to overprediction of flood extent (false positive) being penalized more strongly than underprediction;
and (iii) reduce the risk of particle degeneration (Plaza et al., 2012), where weights for all but a few particles
go to zero.

The first challenge, namely, the risk of discarding an entire particle due to mismatches at a few pixels, arises
because pixels with probability values close to 0 or 1 in the SAR-derived flood map can lead to weights of
zero if observation and model result disagree locally. The entire particle could then be discarded (given zero
weight), even if all but one pixel provide a perfect match. To avoid this unreasonable behavior, probability
values of individual pixels in the probabilistic flood map are constrained to lie in the range (0.001, 0.999); all
lower and higher probability values are truncated to these min and max bounds, respectively.

The second challenge, namely, asymmetric penalties for overprediction and underprediction, arises because,
most of the time, flooded pixels only cover a limited portion of the flood image. As a consequence, the
satellite-derived probabilistic flood map tends to be dominated by values below 0.5, and overprediction of
flood extent tends to be penalized much stronger than underprediction when computing the global weights
(see equations (3) and (4) hereafter). To overcome this undesirable behavior, pixels with the lowest probabili-
ties of being flooded are masked out prior to the assimilation, so that the numbers of assimilated pixels with
probabilities below and above 0.5 are (approximately) balanced.

The third challenge, namely particle degeneration, can be illustrated by considering the (rather unrealistic)
assumption that all pixel observations are independent and computing the global weight of a particle as the
simple product of its local pixel weights. When the number of pixels in the assimilated image is large, the
global weights for the majority of particles degenerate virtually to zero. The challenge of particle degeneracy
is a well-known problem in the PF community, and no theoretically complete solution exists to our best knowl-
edge (Li et al., 2014). In this work, we employ a pragmatic solution, which introduces an empirical rescaling
factor 𝛼 into the computation of the global weight 𝜔i

j (see equation (3)).

𝜔i
j =

N∏
k=1

(
wi

(k,j)

) 𝛼

N
(3)

where N indicates the number of pixels within the assimilated image.

In this work, 𝛼 is set to the maximum value such that the worst possible model (in complete disagreement
with the SAR-derived probabilistic flood map) has a strictly positive (nonzero) global weight. A specific 𝛼 value
is set for each individual satellite observation. This approach prevents the particle degeneracy issue because
all particles are guaranteed to retain a nonzero weight.

To ensure the particle posterior probabilities sum up to 1, the global weights are normalized

Wi
j =

𝜔i
j∑Np

j=1𝜔
i
j

(4)

where Wi
j is the posterior probability of the jth particle given the ith observation. Once all particles and their

weights are computed, they are used to obtain the expectation of any state variable of the modeling cascade.
For example, consider the ensemble of simulated water depth Di

k =
{

di
(k,j), j = 1,… ,Np

}
on the kth grid cell

and at time step i. The expectation of the water depth Ex(Di
k) at this grid cell and this time step is computed

as follows:

Ex(Di
k) =

Np∑
j=1

Wi
j × di

(k,j) (5)

The same formula (equation (5)) is used to compute expectation of streamflow. The expectation of water level
and flood extent is derived from the expectation of water depth (equation (5)).
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4. Study Area, Data, and Forecasting Model Setup
4.1. Study Area and Gauging Station Network
The study area is a 30.5 km by 52.4 km domain around the town of Tewkesbury (United Kingdom), located at
the confluence of River Severn and River Avon. Figure 1 shows the model domain and river network. The green
squares indicate model upstream boundaries (with associated gauging stations); the yellow stars indicate
gauging stations in the interior of the hydraulic model domain, which are used to evaluate model results.
Two of these evaluation stations are located upstream of the confluence, along River Avon (Bredon) and River
Severn (Saxons Lode), and two others are located downstream of the confluence (Deerhurst and Haw Bridge).
This gauging station network configuration is highly beneficial for this study, as it allows model predictions
for the Rivers Severn and Avon to be evaluated both jointly and separately.

4.2. Hydrometeorological Data
All gauging stations (see Figure 1) provide time series of water level at 15-min intervals. In this study,
streamflow time series at Evesham (River Avon) and Bewdley (River Severn) gauging stations are used as well.

Observed streamflow time series at Evesham (River Avon) and Bewdley (River Severn) for years 2004 to 2006
were used for the calibration of the SUPERFLEX models, and time series for years 2007 to 2010 were used for
their validation.

The assimilation experiment considers four flood events. These flood events are of moderate to large magni-
tude and occurred in March and July 2007, January 2008, and January 2010 and have been described in detail
by Wood et al. (2016).

Time series of rainfall and 2-m air temperature over the corresponding river basins are available at a 3-hourly
time step and 0.75∘ spatial resolution from the ERA-Interim reanalysis data set (Dee et al., 2011). From this
data set, based on the grid cells (or portions of the grid cells) located within each river basin, we computed
spatially averaged rainfall and 2-m air temperature for the period 2003 to 2010. Next, the resulting time series
were uniformly redistributed to an hourly time step. The potential evapotranspiration was estimated from the
air temperature data using the Hamon formula (Hamon, 1963). Rainfall and potential evapotranspiration time
series are used as inputs of the SUPERFLEX models.

4.3. Earth Observation Data Set
A total of 11 flood images of the 4 considered flood events (see section 4.2) are selected from the Envisat Wide
Swath Mode imagery archive (European Space Agency). The satellite data are described in detail in Wood
et al. (2016).

The flood event of July 2007 is of particular value for testing and evaluating the proposed methodology
because an airborne campaign imaged the flood at a very high spatial resolution (50 cm) the day following
the two Envisat image acquisitions on 23 July 2007 at 10:27 a.m. and 9:53 p.m. (GMTZ). The aerial photographs
taken during this airborne campaign were photo-interpreted to delineate flood extents (see Giustarini et al.,
2016 for more details). The resulting flood validation map allows to evaluate the flood extent forecasts using
a data set independent from the SAR images.

Figure 2 shows all probabilistic flood maps derived from the SAR image database using Giustarini et al.’s (2016)
method, together with the flood validation map manually delineated from the aerial photography campaign
of 24 July 2007. As seen in Figure 2, these probabilistic flood maps correspond to markedly different flood
extents. This makes the image database especially valuable for testing the proposed assimilation framework
under diverse hydrological conditions. The probabilistic flood maps derived from the two images acquired
in July 2007 were evaluated in earlier work (Giustarini et al., 2016), demonstrating a good reliability com-
pared to the flood validation map acquired almost synchronously (see reliability diagrams in Figures 1 and 2
of Giustarini et al. (2016)).

4.4. Hydrologic and Hydraulic Models
Two SUPERFLEX hydrological models were calibrated to the two main river basins in order to predict stream-
flow hydrographs at Evesham (River Avon) and Bewdley (River Severn).

The calibration of the two SUPERFLEX models uses as input the ERA-Interim reanalysis data and the potential
evapotranspiration (section 4.2). The same SUPERFLEX model structure (but with different parameter values)
is assumed in both basins. This structure was set to comprise a total of four reservoirs intended to simu-
late, respectively, the interception of rainfall, the water storage in the upper root zone soil layer, and the fast
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Figure 1. Study area and hydraulic model domain, showing the model boundary conditions (green squares) and the
hydrometric gauging station used
as a reference (yellow stars).
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Figure 2. Probabilistic flood maps derived from the Envisat images (all events) and binary flood validation map derived from the aerial photographs (July 2007
flood event). SAR = synthetic aperture radar; PFM = probabilistic flood map.
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and the slow runoff components. The SUPERFLEX models were calibrated to observed streamflow time series
at Bewdley (Severn) and Evesham (Avon; section 4.2) using the weighted least squares technique, with inverse
weights linearly dependent on the simulated flow magnitude (Kavetski & Fenicia, 2011; Evin et al., 2014).
The Nash-Sutcliffe efficiency (Nash & Sutcliffe, 1970) achieved over the calibration period was 0.6 for the
Avon model and 0.75 for the Severn model; over the validation period the Nash-Sutcliffe efficiencies at these
locations were 0.63 and 0.74, respectively.

The hydraulic model used in this study is identical to the observed model described by Wood et al. (2016).
This model was created using surveyed cross sections of the main rivers to determine channel width and
depth, and fixing Mannings channel roughness coefficient to 0.038. Outside of the river channel, Mannings
roughness coefficient was set to 0.06 (Wood et al., 2016). The downstream boundary condition is of uniform
flow type with an energy slope set to 7×10−5. The grid cell of this model is aligned with the SAR images, with a
75-m pixel spacing. The hydraulic model uses as input inflow for Rivers Severn and Avon the streamflow time
series simulated by the corresponding SUPERFLEX models. Moreover, as Rivers Severn and Avon represent the
two major tributaries within the hydraulic model domain, the streamflow hydrographs for the other tributaries
shown in Figure 1 were constructed from gauged data without the use of a SUPERFLEX model.

4.5. Particle Ensemble Generation
As explained in section 2.2, rainfall inputs are assumed to be the main source of streamflow forecast uncer-
tainty. This section describes the generation of particle ensembles via propagation of rainfall uncertainty.
ERA-Interim uses a fixed version of a numerical weather prediction system to produce reanalyzed data. This
system assimilates daily observations once they become available. The result of this assimilation is the starting
point for the next forecast. Strictly speaking, the ERA-Interim predictions are not forecasts because they are
produced at increasingly later times. In this study, we artificially emulate ensemble weather forecasts by per-
turbing the ERA-Interim data set. The control criteria proposed by de Lannoy et al. (2006) were used to obtain
suitable prior particle probability distributions, and no additional quality assessment of the ERA-Interim rain-
fall product was carried out since de Leeuw et al. (2015) already showed a good correlation (0.91) with daily
rainfall observations over England and Whales (covering our study area) despite underestimated daily rainfall
amounts (∼20% on average).

To emulate rainfall ensemble forecasts, the rainfall time series were perturbed using lognormal multiplica-
tive noise. Each hourly rainfall value had an independently drawn random multiplier. These perturbed rainfall
time series were then propagated through the SUPERFLEX models, generating a total of 128 streamflow
hydrographs at Bewdley and 128 streamflow hydrographs at Evesham, for the period 2007–2010.

The parameters of the lognormal rainfall perturbation model were set based on the criteria proposed by de
Lannoy et al. (2006) computed over the streamflow time series simulated by the SUPERFLEX models, namely,
(i) the ratio of the averaged ensemble skill and the averaged ensemble spread (VM1, see equations (6) and
(7)), and (ii) the ratio of the average squared ensemble skill and the averaged root-mean-square error (RMSE)
computed between simulation and observation (VM2, see equations (6) and (8)).
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In equations (6)–(8) the vertical bar indicates the ensemble mean (over the particles, see equation (6)), q̂i,j

is the streamflow simulated by particle j at time step i, Np is the number of particles, ⟨.⟩i indicates the aver-
age over the time steps with available streamflow observations, Nt the number of time steps with available
streamflow observations, and qo

i is the observed streamflow at time step i. The quantities enski , enspi , and
msei denote, respectively, the skill, spread, and mean squared error of the ensemble at time step i.
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Table 1
Statistical Evaluation of SUPERFLEX Model Ensemble Based on de Lannoy et al.
(2006) Recommendations

River station VM1 VM2

Bewdley Severn 0.99 0.63

Evesham Avon 1.184 0.54

Target values (with 128 particles) 1 0.71

Criterion VM1 assesses whether the ensemble spread and the model devi-
ation to observation are of the same order of magnitude, and criterion
VM2 assesses whether the observation and the ensemble are statistically
indistinguishable.

To define a suitable rainfall perturbation, many lognormal perturbations
with various standard deviations were tested and the corresponding rainfall
realizations were randomly generated. The set of perturbations that yielded
VM1 and VM2 values closest to the target values (see Table 1) was selected.
The rainfall perturbation can therefore be considered calibrated and site

specific. The corresponding VM1 and VM2 values obtained for the two SUPERFLEX models are reported in
Table 1 as well as the corresponding target values for 128 particles as given by de Lannoy et al. (2006). The
values of VM1 and VM2 in Table 1 are reasonably close to their target values for both models, and hence, the
generated ensemble is considered statistically satisfactory. For the River Severn, the lognormal perturbation
mean and standard deviation were set to 1.0 and 0.2, respectively. For the River Avon, the mean and standard
deviation were set to 1.0 and 0.35.

The ensemble of 128 perturbed rainfall amounts is used as forcings to the two calibrated SUPERFLEX models
for the Rivers Severn and Avon. Figure 3 shows the ensemble of streamflow hydrographs generated by the
two SUPERFLEX models for the considered flood events (see section 4.2). Each black line corresponds to a
single particle simulation, and the red line indicates the corresponding observed streamflow hydrograph.

The ensembles of forecast hydrographs obtained for the two rivers generated using SUPERFLEX are then prop-
agated through the Lisflood-FP hydraulic model to yield ensemble forecasts of streamflow, water depth, water
level, and flood extent maps. The forecasts are therefore generated continuously, so that any time step can
be considered as a forecast initialization date.

4.6. Assimilation of SAR-Derived Flood Maps
The method developed in section 3 for assimilating SAR-derived probabilistic flood maps is applied to the
four flood events described in section 4.2. The forecast distributions are represented using 128 particles.
Each time a SAR image is available, the corresponding probabilistic flood map is assimilated by comput-
ing the posterior probability of each particle (see equations (2)–(4)), updating the particle weights, and
computing the resulting expectation (see equation (5)) of streamflow, water depth, water level, and flood
extent forecasts.

Figure 3. Ensembles of inflow time series (black lines) of Lisflood-FP based on SUPERFLEX simulation at Bewdley on the River Severn and Evesham on the River
Avon. Red lines indicate the observed streamflow time series.
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Figure 4. Comparison of forecast versus observed validation flood extent maps. Left-hand panel shows results of open-loop simulation; right-hand panel shows
results obtained after the assimilation of the SAR image acquired on 23 July 2007 at 21:53.

4.7. Analyses Used to Test the Proposed Framework
The proposed framework for improving flood forecasting using SAR image assimilation is evaluated using a
series of empirical tests. The tests are based on comparing the model expectation of flood extent, stream-
flow, and water levels against respective reference data sets, namely, the aerial photography-derived flood
validation map (only available for the July 2007 flood event), the observed streamflow time series at Evesham
and Bewdley, and the water level measurements at Saxons Lode, Bredon, Haw Bridge, and Deerhurst gauging
stations. Two forecasting regimes are considered: (i) an open-loop simulation where no image is assimilated
and all particles remain equally weighted at all time steps, and (ii) an assimilation experiment, where particle
weights are updated each time an image is available as described in section 3.

First, we investigate the impact of the assimilation procedure on the forecast flood extent. The forecast flood
extents obtained using the open-loop expectation and the assimilation expectation are plotted and com-
pared to the observed validation flood extent on 24 July 2007 (see Figure 2, second row, right panel). The
forecast flood extents are then further evaluated using the following performance coefficients (metrics):
the confusion matrix (Jolliffe & Stephenson, 2011), overall accuracy (Stehman, 1997), critical success index
(Donaldson et al., 1975), and Cohen’s kappa (Cohen, 1960). These metrics are commonly used to assess fore-
cast or image classification quality (Jolliffe & Stephenson, 2011; Stehman, 1997). The confusion matrix is
composed of four values, which in this study are defined as follows: the number of pixel correctly predicted
as flooded, the number of pixels associated with overprediction of flood extent (false positives), the number
of pixels associated with underprediction (false negatives), and the number of pixels correctly predicted as
nonflooded. The accuracy, critical success index, and kappa coefficients are computed from the confusion
matrix. These metrics quantify goodness of fit; they attain their highest value of 1 when the predictions
provide a perfect fit to the observations.

Second, the impact of SAR image assimilation on forecast quality is investigated for streamflow time
series. This analysis is carried out by plotting observed, open loop, and assimilation experiment-derived
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Table 2
Evaluation of the Forecast Flood Extent Maps Using as a Reference the Observed Flood Extent Map
Derived From the Aerial Photographs on 24 July 2007

Confusion Matrix
Experiment FF FN Accuracy CSI Kappa Stat.

Open Loop OF 7867 652 0.938 0.785 0.838

ON 1506 24930

Assimilation OF 7975 544 0.938 0.787 0.839

ON 1618 24818

Note. CSI = critical success index; FF = forecast flooded; FN = forecast nonflooded; ON = observed
nonflooded; OF = observed flooded.

streamflow time series at Bewdley (River Severn) and Evesham (River Avon). It is used to evaluate the
hydrological forecasts.

Third, the impact of SAR image assimilation on the forecast quality and uncertainty is investigated for
water level time series. This analysis is carried out by first plotting observed, open loop, and assimilation
experiment-derived water level time series at Saxons Lode, Bredon, Deerhurst, and Haw Bridge. As these loca-
tions lie throughout the hydraulic model domain, this analysis allows to evaluate the complete modeling
chain (SUPERFLEX + Lisflood-FP) forecasts. In addition, we compare the widths of the 90% uncertainty inter-
vals of the ensemble forecasts of water levels generated using the open loop and assimilation experiments,
at Saxons Lode, Bredon, Deerhurst, and Haw Bridge.

Fourth, a brief comparison of the forecast performance of the assimilation experiments in our study and
the study by García-Pintado et al. (2015) is carried out. The study by García-Pintado et al. (2015) shares
two similarities with our work: (i) information derived from a series of very high-resolution SAR images

Figure 5. Streamflow time series at Evesham for the four flood events: open-loop expectation (green), assimilation
experiment expectation (cyan), and observations (red).
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Figure 6. Streamflow time series at Bewdley for the four flood events: open-loop expectation (green), assimilation
experiment expectation (cyan), and observations (red).

(namely, water levels derived from Cosmo-Skymed satellite images) is assimilated (using the local ensem-
ble transform Kalman filter) into a flood forecasting chain; (ii) the same model domain, River Severn, is
used—although for a different flood event from July 2011. For this comparison, we use in situ observations
to compute the RMSE of streamflow forecasts at Bewdley and Evesham and the RMSE of water level fore-
casts at Bredon and Saxons Lode, and report the RMSE averaged over the four flood events considered in
our case study (section 4.2). These forecast quality metrics are then compared to the metrics reported in
García-Pintado et al. (2015) for the July 2011 flood event at the same locations and with a similar assimilation
experiment setup.

Finally, we consider the persistence of the impact of data assimilation, in terms of the simulated water level
time series at Saxons Lode, Bredon, Deerhurst, and Haw Bridge. This behavior is investigated by computing
the averaged (over the 11 assimilation events) ratio of the forecast error of the open-loop simulation and the
forecast error of the assimilation experiment, and reporting this ratio as a function of increasing prediction
lead time from the assimilation event.

5. Results and Discussion
5.1. Assessment of Forecast Flood Extent
We begin by analyzing the flood event of July 2007. Figure 4 compares the observed flood validation map with
the flood extent map derived, respectively, from the open loop and the assimilation experiment. Table 2 sum-
marizes the comparison of forecast and observed (validation map) flood extent. In Table 2 the notations OF,
ON, FF, and FN stand, respectively, for observed flooded, observed nonflooded, forecast flooded, and forecast
nonflooded pixels.

Figure 4 and Table 2 show that assimilation experiment during the July 2007 flood event has a somewhat lim-
ited effect on the predicted flood extent. Indeed, the maps in Figure 4 are very similar, and the flood extent
map derived from the open loop is already quite accurate and closely resembles the observed validation
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Figure 7. Water level time series at Saxons Lode, Bredon, Deerhurst, and Haw Bridge for March 2007 flood event:
open-loop expectation (green), assimilation experiment expectation (cyan), and observations (red).

map. Figure 4 also shows that most of the overprediction (i.e., red pixels) occurs along the upstream part
of River Severn, while most of the underprediction (i.e., yellow pixels) occurs along the upstream part of River
Avon. In Table 2, a slight improvement is visible in all metrics. An in-depth examination of the confusion matri-
ces in Table 2 indicates that only a limited number of pixels are actually updated during the assimilation.
One promising result is that the assimilation substantially increases the number of correctly forecast flooded
pixels (i.e., correct positives), from 7867 pixels in the open loop to 7975 pixels in the assimilation experi-
ment. However, this positive effect is counterbalanced by an increase in overprediction (false positives), from
1506 pixels in the open loop to 1618 pixels in the assimilation experiment.

5.2. Assessment of Forecast Streamflow Time Series
The predicted streamflow time series at the hydraulic model upstream boundaries (Evesham and Bewdley) are
examined next. Figures 5 and 6 show the streamflow hydrographs obtained for the considered flood events
against the observed data. Each of these figures is dedicated to one gauging station, and each figure panel
is dedicated to a single flood event. Within these figures, the vertical dashed lines indicate the acquisition
time of the SAR images. It is worth noting that, for each flood event, the open loop and the sequentially
updated simulations are identical before any satellite image has been assimilated, because prior weights of
the particles are assumed uniform.

Results are clearly encouraging for Evesham (River Avon, Figure 5). Streamflow forecasts obtained using SAR
image assimilation (cyan lines) move substantially closer to the observation than the open-loop simulations
(green line) at all 11 assimilation events in all 4 flood events. In three of the four flood events, the assimi-
lation procedure results in the expected streamflow forecast matching the observation almost exactly. On
average over the 11 assimilation events, assimilation reduces the errors in forecast streamflow at Evesham by
a factor of 5. The bottom left panel of Figure 5 demonstrates that assimilation corrects both overprediction
and underprediction. The results obtained for the River Severn are more ambivalent, as shown in Figure 6.
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Figure 8. Water level time series at Saxons Lode, Bredon, Deerhurst, and Haw Bridge for July 2007 flood event:
open-loop expectation (green), assimilation experiment expectation (cyan), and observations (red).

Here the assimilation leads to an overestimation of streamflow forecasts during the first three flood events
at Bewdley (Figure 6). This result indicates that the hydraulic model would need more incoming water than
is observed at River Severn upstream boundary condition to reproduce the observed flood extents. At this
stage it is difficult to establish the reason for this streamflow overprediction. For example, it could be due to
the simplified representation of riverbed geometry in the hydraulic model, errors in the rating curves used for
converting water level into streamflow (Bates et al., 2006; Bermúdez et al., 2017; Neal et al., 2011), or an over-
estimation of the flood extent extracted from the SAR images. An additional reason for this overestimation
could be the locally sourced flows due to rainfall within the hydraulic model domain, which are not taken into
account as usual in hydraulic modeling. The study by Bermúdez et al. (2017) reported similar model overpre-
diction in the same study area for the July 2007 flood event. It highlighted underestimation of river streamflow
for River Teme at Knightsford Bridge gauge and for River Severn at Bewdley gauge especially for high stream-
flows. Moreover, it showed that the 2007 rainfall storm event occurred right over the hydraulic model domain
and that it was necessary to take local rainfall-runoff processes to correctly simulate flood peak for this event
over River Severn. Given this storm path, we can hypothesize that, in our study, the assimilation experiment
overpredicts the upstream River Severn streamflow (at Bewdley) because it is trying to improve the fore-
casts downstream, while compensating for underestimated streamflow in other tributaries and for locally
sourced flows.

5.3. Assessment of Forecast Water Level Time Series
Figures 7–10 show the assimilation results for the four flood events against observed water levels, at
four gauging stations. Note that the results for the Deerhurst gauging station are not shown in Figure 9
because this station did not record the water levels during the January 2008 flood event. The symbology in
Figures 7–10 is identical to that of Figures 5 and 6.

Figures 7–10 indicate that sequential assimilation of satellite observations improves the quality of water level
forecasts. The forecasts obtained using assimilation (cyan lines) move substantially closer to the observation
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Figure 9. Water level time series at Saxons Lode, Bredon, and Haw Bridge for January 2008 flood event: open-loop
expectation (green), assimilation experiment expectation (cyan), and observations (red).

than the open-loop simulation (green line), at all assimilation steps in all flood events, at all four gauging
stations. On average, assimilation reduces the errors in predicted water levels by a factor of 2. This finding
demonstrates that the assimilation is effective at correcting errors for both the River Severn and the River
Avon. Results shown in Figures 7–10 are clearly encouraging: the assimilation of flood extent maps that char-
acterize floodplain inundation effectively corrects simulated water levels within the main channel. This finding
suggests that, although flood extent is not a diagnostic, but rather a prognostic variable of hydraulic mod-
els, it is a relevant source of information that can substantially improve predictions of water level over the
entire model domain. Moreover, the systematic improvement of water level forecast lends further weight to
the hypothesis that the overprediction of streamflow at Bewdley as a result of the assimilation (section 5.2) is
due to a compensation for missing incoming water in the hydraulic model domain.

Figure 11 plots the widths of the 90% uncertainty intervals of the water level forecasts produced by the assim-
ilation and open-loop approaches. Forecast uncertainty reduces systematically for every assimilation event,
at all river stations. On average, assimilation tightens the 90% uncertainty interval by a factor of 3 compared
to the open loop.

5.4. Comparison With the Similar Study by García-Pintado (2015)
The average (over the four flood events) performances of the streamflow and water level forecasts obtained
in our assimilation experiments are as follows: the RMSE of streamflow forecasts at Bewdley and Evesham are
69.67 m3/s and 56.80 m3/s, respectively, and the RMSE of water level forecasts at Bredon and Saxons Lode
are 0.47 m and 0.72 m, respectively. These RMSE values are similar to those reported by García-Pintado et al.
(2015) in their Tables 3 and 4. Although the setup of the forecast models, the SAR images and the derived
information, the assimilation filter, and the considered flood events in our study is different from those of
García-Pintado et al. (2015), the model domain —River Severn—is the same. Hence, the similarity of RMSE
values here and in the study by García-Pintado et al. (2015) suggests that the performance of the models
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Figure 10. Water level time series at Saxons Lode, Bredon, Deerhurst, and Haw Bridge for January 2010 flood event:
open- loop expectation (green), assimilation experiment expectation (cyan), and observations (red).

is not very sensitive to the assimilated variable—both the assimilation of water levels and flood extents
derived from SAR images provide similar levels of performance, at least for the study area considered. One
of the main advantages of assimilating flood extent rather than water levels is to avoid the nontrivial step of
converting flood extent shorelines into water levels.

Figure 11. Widths of the 90% uncertainty intervals (UIs) of the water level
forecasts produced by the assimilation and open-loop approaches. Results
shown for Saxons Lode, Bredon, Deerhurst, and Haw Bridge.

5.5. Persistence of Assimilation Benefits
Figures 7–10 show that the assimilation improves model prediction not
only at the assimilation time step but also at subsequent time steps. The
improvement due to the assimilation lasts from a few hours to a few days,
depending on the station and the flood event. However, the benefits of the
update reduce over time and eventually the past assimilation event starts
to have a negative effect. We attribute this behavior to the fact that the
best-performing particles at the assimilation time step are not necessarily
the best-performing particles long after this event, especially if the hydro-
logical conditions change substantially (e.g., as the storm event hydro-
graph switches from its rising limb into its recession). Figure 10 illustrates
this effect. In this figure, where the two satellite images were acquired at
the flood peak, the improvement due to the assimilation persists for a few
days, until the recession has become substantial.

The eventual reduction in forecast quality represents a limitation due
to the currently rather long revisit time of satellites. Had other images
been acquired sooner, a new assimilation step would have been carried
out, and we hypothesize that the expectation would have most likely
moved back toward the observation. Results in Figures 7–10 confirm
this hypothesis: the recession is better reproduced by the expectation

HOSTACHE ET AL. IMPROVING FLOOD FORECAST USING SAR DATA 5532



Water Resources Research 10.1029/2017WR022205

Table 3
Average (Across Assimilation Events) Reduction of Error in Forecast Water Levels, as a Function of Prediction Lead Times

River Station 1 hr 2 hr 6 hr 12 hr 18 hr 24 hr 48 hr 72 hr 120 hr 168 hr

Saxons Lode 0.54 0.54 0.53 0.51 0.49 0.47 0.46 1.44 0.78 1.60

Bredon 0.29 0.29 0.28 0.24 0.23 0.24 1.06 1.36 2.60 7.29

Deerhurst 0.55 0.55 0.55 0.55 0.54 0.52 0.43 0.90 0.78 1.39

Haw Bridge 0.52 0.52 0.52 0.51 0.50 0.48 0.41 0.72 0.77 1.51

when images are assimilated during the recession. The overall picture provided by these figures is that the
assimilation is most beneficial during the time steps following the data assimilation itself but continues to
provide an increase in model performance as long as hydrological conditions do not change too rapidly.

To quantify the persistence of improvements due to assimilation steps, Table 3 reports the average reduc-
tion of forecast error in the water levels as a function of prediction lead times, for the Saxons Lode, Bredon,
Deerhurst, and Haw Bridge gauging stations. A value of 0.54 in the first line, first column of Table 3 indicates
that, on average, the assimilation of one SAR image reduces the 1-hr lead time forecast error by a factor of
almost 2. Table 3 shows that, at the Saxons Lode, Deerhurst, and Haw Bridge gauging stations, all located on
the River Severn, the forecast error is still reduced by a factor of almost 2 more than 2 days after the assimila-
tion of a single image. In other words, the substantial positive effect of the assimilation of a single SAR image
persists for more than 2 days. For Bredon on the River Avon, assimilation effects remain positive for 1 day but
starts to become negative after 2 days. The shorter persistence of assimilation benefits on River Avon could
be tentatively explained by the faster reaction of the Avon basin to rainfall inputs. This behavior can be seen in
Figure 3, where the flood durations are clearly shorter in Evesham than in Bewdley. This finding lends further
weight to the hypothesis that the persistence of the positive effect of the assimilation is closely linked to the
reactivity of the basin, with positive effects persisting longer in slower basins. If this hypothesis is valid, satellite
revisit time emerges as a major remaining limitation for using SAR image assimilation to improve flood extent
forecasts. As satellite imagery becomes more accessible and frequent, for example, due to new initiatives such
as the Sentinel missions of the Copernicus program (http://www.copernicus.eu/) that employ multiple satel-
lites, we expect this limitation to gradually reduce. Using images from multiple satellites (including optical
sensors during daytime and when cloud cover is limited) could also help in decreasing revisit times.

6. Conclusion

This study introduces a particle filter-based method for assimilating SAR-derived probabilistic flood maps into
a flood forecasting chain composed of a conceptual hydrological model and a hydraulic model. The uncer-
tainty in the flood maps derived from the SAR image is quantified using a Bayesian approach (Giustarini et al.,
2016), which assigns all image pixels a probability of being flooded based on the observed backscatter value.
The particles representing individual forecasts with different (perturbed) rainfall inputs are given weights
computed based on the degree of match between forecast and observed flood extent at the assimilation
time step.

Four flood events on the Rivers Severn and Avon (United Kingdom) were used as test cases. A set of 11 SAR
flood images were processed for these events. The corresponding flood extent observations were assimilated
sequentially. The performance of the assimilation approach was evaluated with reference to an indepen-
dent flood validation map (derived from aerial photography), gauged streamflow time series at the upstream
boundaries of the hydraulic model for the River Severn and the River Avon, and water level time series from
four gauging stations at various locations across the Rivers Severn and Avon.

The following key conclusions can be drawn:

1. Satellite-derived flood extent observations represent a relevant source of information for improving flood
forecasts, despite not being a state (diagnostic) variable of the model cascade. For example, compared
to the open loop, the sequential assimilation of the 11 probabilistic flood maps shows a systematic and
substantial improvement of the model cascade forecasts in terms of predicted water levels.

2. In most instances, flood extent assimilation improves forecasts at the assimilation time step. Using the
observed flood validation map as a reference, we found that the predicted flood extents are slightly
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improved by the data assimilation likely because the flood extent predicted by this open loop is already
accurate. Furthermore, the predicted input streamflow is systematically well corrected by the assimilation
for the River Avon while it is often overestimated for the River Severn. Forecast errors in the water levels are
reduced, on average, by factors of 2 to 3, at the assimilation time steps.

3. The benefits of flood extent assimilation persist for several time steps after the assimilation event. Depend-
ing on the hydrological conditions, the improvements may persists from a few hours to a few days. However,
improvements in performance wane some days after the assimilation event: the best-performing particles
(simulations) at the assimilation time step do not maintain their high performance indefinitely. The degra-
dation of forecast performance occurs more rapidly when hydrological conditions change substantially
since the last assimilation time step.

Overall, the study provides consistent empirical evidence that the assimilation of flood extent data improves
the performance of flood forecasting systems. The forecast performance in terms of water levels and stream-
flows is comparable to those obtained by García-Pintado et al. (2015) in a broadly similar study where
SAR-derived water levels (rather than flood extent) were assimilated into a flood forecasting model cascade
using a local ensemble transform Kalman filter. One main advantage of our method is to directly assimilate
flood extent rather than water levels avoiding therefore the nontrivial step of converting flood extent shore-
lines into water levels and opening the door for a more straightforward application especially in near-real
time. The main limitation of using satellite-derived flood extent to improve flood forecasting models appears
to lie with the satellite revisit times. This limitation is expected to reduce in the future as the number of satellite
images available in near-real-time increases.
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