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ABSTRACT 

In the last few decades hydrologists have made tremendous progress in using dynamic 
simulation models for the analysis and understanding of hydrologic systems. However, 
predictions with these models are often deterministic, and as such they focus on the 
most probable forecast, without an explicit estimate of the associated uncertainty. This 
uncertainty arises from incomplete process representation, uncertainty in initial 
conditions, input, output, and parameter error. The Generalized Likelihood Uncertainty 
Estimation (GLUE) framework was one of the first attempts to represent prediction 
uncertainty within the context of Monte Carlo (MC) analysis coupled with Bayesian 
estimation and propagation of uncertainty. Because of its flexibility, ease of 
implementation, and its suitability for parallel implementation on distributed computer 
systems, the GLUE method has been used in a wide variety of applications. However, 
the GLUE method has been criticized for not being formally Bayesian, and for often 
being implemented with a stratified MC parameter sampling scheme that does not 
properly sample the high probability density of the parameter space. In this paper we 
alleviate these problems through the development of an adaptive Markov Chain Monte 
Carlo sampling (the Shuffled Complex Evolution Metropolis, SCEM-UA, algorithm) 
scheme, and by determining the value of the cutoff threshold based on statistical 
arguments which allow for a better representation of the prediction uncertainty bounds. 
We demonstrate the superiority of this revised GLUE method with three different 
conceptual watershed models of increasing complexity, using both synthetic and real-
world streamflow data from two different catchments with different hydrologic regimes. 
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1. INTRODUCTION AND SCOPE 

It is an accepted fact that a hydrologic model prediction should not be 
deterministic, most-probable representation, but should also explicitly include an 
estimate of uncertainty. Uncertainty in model predictions arise from measurement errors 
associated with the system input (forcing) and output, from model structural errors 
arising from the aggregation of spatially distributed real-world processes into a 
mathematical model, and from problems with parameter estimation. Realistic 
assessment of these various sources of uncertainty is important for science-based 
decision making and will help direct resources towards model structural improvements 
and uncertainty reduction.
 Recent years have seen an explosion of methods to derive meaningful prediction 
uncertainty bounds on our model predictions. Methods to represent model parameter, 
state and prediction uncertainty include classical Bayesian (Kuczera and Parent, 1998; 
Thiemann et al., 2001; Vrugt et al., 2003a), pseudo-Bayesian (Beven and Binley, 1992; 
Freer et al., 1996), set-theoretic (Keesman, 1990; Klepper et al., 1991; van Straten and 
Keesman, 1991; Vrugt et al., 2001), multiple criteria (Gupta et al., 1998; Yapo et al.,
1998; Boyle et al., 2000, Madsen, 2000; Madsen, 2003; Vrugt et al., 2003b) and 
sequential data assimilation methods (Madsen et al., 2003; Vrugt et al., 2005; 
Moradkhani et al., 2005). These methods all have strengths and weaknesses, but differ 
in their underlying assumptions and how the various sources of error are being treated 
and made explicit. Among these methods, the Generalized Likelihood Uncertainty 
Estimation (GLUE) methodology of Beven and Binley (1992), inspired by the 
Hornberger and Spear (1981) method of sensitivity analysis was one of the first 
attempts to represent prediction uncertainty. This method maps the uncertainty in the 
modeling process onto the parameter space, and operates within the context of Monte 
Carlo analysis coupled with Bayesian estimation and propagation of uncertainty. The 
GLUE approach calls for rejecting the concept of a unique global optimum parameter 
set within some particular model structure, instead recognizing the acceptability, within 
a model structure, of different parameter sets that are similarly good in producing fit 
model predictions. This concept, defined as equifinality, is directly addressed by the 
evaluation of different sets of parameters within a Bayesian MC framework. The 
outputs of the GLUE procedure are posterior parameter distributions and associated 
prediction uncertainty bounds. 
 Since its introduction in 1992, the GLUE framework has found widespread 
application for uncertainty assessment in environmental modeling, including rainfall-
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runoff modeling (Beven and Binley, 1992; Freer et al., 1996; Lamb et al., 1998), soil 
erosion modeling (Brazier et al., 2001), modeling of tracer dispersion in a river reach 
(Hankin et al., 2001), groundwater modeling and well capture zone delineation (Feyen 
et al., 2001; Jensen 2003), unsaturated zone modeling (Mertens et al., 2004), flood 
inundation modeling (Romanowicz et al., 1996; Aronica et al., 2002), land-surface–
atmosphere interactions (Franks et al., 1997), soil freezing and thawing modeling 
(Hansson and Ludin, 2006), crop yields and soil organic carbon modeling (Wang et al.,
2005), ground radar-rainfall estimation (Tadesse and Anagnostou, 2005), and 
distributed hydrological modeling (McMichael et al., 2006; Muleta and Nicklow, 2005). 
The popularity of GLUE is probably best explained by its conceptual simplicity, relative 
ease of implementation and use, and its ability to handle different error structures and 
models without major modifications to the method itself. 

Despite this progress made, various contributions to the hydrologic literature 
have criticized GLUE for not being formally Bayesian, requiring subjective decisions 
on the likelihood function and cutoff threshold separating behavioral from non-
behavioral models, and for not implementing a statistically consistent error model 
(Montanari, 2005; Christensen, 2004). Moreover, those implementing the GLUE 
method typically use a rather simplistic stratified MC sampling scheme (Latin 
Hypercube Sampling – LHS – McKay et al., 1979) to sample from the prior parameter 
distributions and to derive estimates of the posterior parameter probability density 
functions (PDFs) and associated model output prediction uncertainty bounds. While this 
approach may be adequate for low-dimensional sampling problems, it is unlikely to 
result in stable and consistent estimates of the posterior PDF for high-dimensional 
estimation problems. To compensate for this drawback, the LHS method typically 
requires many thousands of model simulations to result in a statistically sufficient 
number of behavioral parameter sets to draw inferences from (Pappenberger et al.,
2005; Montanari, 2005). Even at this extreme, it may be difficult to obtain a statistically
significant number of behavioral models. In those situations, one should be particularly 
careful not to infer erroneous conclusions about parameter identifiability and 
equifinality (Boyle et al. 2000; Vrugt et al., 2003a). 
 In a separate line of research, Markov Chain Monte Carlo (MC2) methods have 
been developed to locate the high probability density (HPD) region of the parameter 
space efficiently. These methods generate a random walk through the parameter space 
and successively visit solutions with frequency proportional to their weight in the 
posterior PDF. To do so, MC2 methods use information from accepted solutions in the 
past to improve their search efficiency and converge to the posterior PDF of the 
parameters. For example, the Shuffled Complex Evolution Metropolis (SCEM-UA) 
algorithm, recently developed by Vrugt et al. (2003a), is a general purpose optimization 
algorithm that uses adaptive MC2 sampling to provide an efficient search of the 
parameter space. 
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 In this paper, we examine the use of adaptive MC2 sampling within the GLUE 
methodology to improve the sampling of the HPD region of the parameter space. The 
concept is to construct the initial sample using the SCEM-UA algorithm, and derive the 
associated model output estimates (as the median of the distribution) and prediction 
uncertainty bounds (as percentiles of the output prediction) using the GLUE method. By 
using an algorithm designed to find the global optimum in the parameter space, we 
believe that this revised GLUE method should locate behavioral models much more 
efficiently, thereby improving the computational efficiency and statistical validity of the 
predictive uncertainty results. 

This paper is structured as follows. Section 2 briefly describes the GLUE 
methodology and discusses the LHS and SCEM-UA methods for sampling of the prior 
parameter distribution. In section 3, we discuss the three conceptual watershed models 
and catchments used to test the revised GLUE methodology. Section 4 discusses the 
results of the analysis, comparing the LHS method and SCEM-UA algorithm for 
generating the initial sample, and examining the influence of model complexity on the 
sampling and GLUE-derived median forecasts and uncertainty bounds. Finally, section 
5 summarizes the most important findings. 

2. METHODS 

In this section we briefly discuss the GLUE methodology, and describe the LHS 
and SCEM-UA algorithms for sampling of the prior parameter distribution. 

2.1. The GLUE methodology

The GLUE procedure is a Monte Carlo method, the objective of which is to 
identify a set of behavioral models within the universe of possible model/parameter 
combinations. The term “behavioral” is used to signify models that are judged to be 
“acceptable,” that is, not ruled out, on the basis of available data and knowledge. To 
implement GLUE, a large number of runs are performed for a particular model with 
different combinations of the parameter values, chosen randomly from prior parameter 
distributions. By comparing predicted and observed responses, each set of parameter 
values is assigned a likelihood value, i.e. a function that quantifies how well that 
particular parameter combination (or model) simulates the system. Higher values of the 
likelihood function typically indicate better correspondence between the model 
predictions and observations. Based on a cutoff threshold, the total sample of 
simulations is then split into behavioral and non-behavioral parameter combinations. 
This threshold is either defined in terms of a certain allowable deviation of the highest 
likelihood value in the sample, or more commonly as a fixed percentage of the total 
number of simulations. The likelihood values of the retained solutions are then rescaled 
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to obtain the cumulative distribution function (CDF) of the output prediction. The 
deterministic model prediction is then typically given by the median of the output 
distribution, and the associated uncertainty is derived from the CDF, normally chosen at 
the 5% and 95% confidence level in most of the published GLUE studies. These 
respective bounds are called 90% confidence bounds or prediction limits. 

2.2. Parameter Sampling Strategy 

To sample the prior parameter distribution, practitioners of the GLUE 
methodology generally implement a Latin Hypercube Sampling (LHS) strategy. This 
stratified random sampling method, though relatively simple to implement, is unlikely 
to densely sample the parameter space close to the global optimum with a dense 
distribution of points. Our conjecture is that considerable improvements in sampling can 
be made by using an adaptive sampling method that uses information from past draws to 
update the search direction. Such a method would probably result in parameter and 
prediction uncertainty estimates that are more reliable from a statistical point of view. 

In this paper, we explore the use of the SCEM-UA algorithm to achieve this 
improvement. Instead of randomly sampling the prior parameter space, the SCEM-UA 
algorithm generates a random walk through the parameter space such that any 
individual state is visited with a frequency proportional to its weight in the posterior 
PDF. In contrast to LHS, the SCEM-UA algorithm is an adaptive sampler that 
periodically updates the covariance (size and direction) of the sampling or proposal 
distribution during the evolution of the sampler toward the HPD region of the parameter 
space, using information from the sampling history induced in the transitions of the 
Markov Chain. Experiments using synthetic mathematical test functions have 
demonstrated that the SCEM-UA algorithm has the appropriate ergodic properties, and 
provides a more efficient sampling of the HPD region of the parameter space than 
traditional Metropolis-Hastings samplers (Vrugt et al., 2003a). 
 In the SCEM-UA algorithm, a predefined number of different Markov Chains 
are initialized from the highest likelihood values of the initial population. These chains 
independently explore the search space, but communicate with each other through an 
external population of points, which are used to continuously update the size and shape 
of the proposal distribution in each chain. The MC2 evolution is repeated until the R-
statistic of Gelman and Rubin (1992) indicates convergence to a stationary posterior 
distribution. An extensive description and explanation of the method appears in Vrugt et 
al. (2003a) and so will not be repeated here. 
 The rationale for adopting this sampling strategy in the GLUE methodology 
rests on arguments of the generation of statistically representative results, as well as on 
computational efficiency. Because the SCEM-UA algorithm provides an adequate 
sampling of the HPD region of the parameter space, it will find a greater number of  
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behavioral solutions, thereby yielding more statistically valid estimates of parameter 
and prediction uncertainty. Also, because the SCEM-UA method is well suited for 
searching high-dimensional parameter spaces, far fewer model evaluations will be 
needed to provide a good approximation of the posterior PDF. Finally, although the 
equifinality method that inspired the GLUE method downplays the importance of 
finding the global optimum in a global search procedure (e.g. Beven, 2006), we believe 
that it is logical to take steps to ensure that the global optimum is contained in the 
family of behavioral models. The SCEM-UA algorithm is designed to find this optimal 
parameter set. 

2.3. Choice of the likelihood function 

 Various likelihood functions have been proposed in the literature (e.g. Beven 
and Binley, 1992; Romanowicz et al., 1994; Christensen, 2004; Montanari, 2005) as 
measures that quantify the closeness between model simulations and observations. Most 
of these functions are considered pseudo-likelihood functions because they do not 
adhere to formal Bayesian statistics, but instead are designed to implicitly account for 
errors in model structure and input data, and to avoid over-conditioning to a single 
parameter set. In this study we implement the following commonly used likelihood 
function:

22 /exp)|( obsii NYL                   (1) 

where L( i|Y) is the likelihood measure for the i-th model conditioned on the 
observations Y, 2

i  is the error variance for the i-th model (i.e. the combination of the 

model and the i-th parameter set) and 2
obs  is the variance of the observations. The 

exponent N is an adjustable parameter that sets the relative weightings of the better and 
worse solutions: higher N values have the effect of giving more weight to the best 
simulations, thus increasing the difference between good and bad solutions (Freer et al.,
1996). Small values for N result in a flat likelihood function with significant probability 
mass extending over a large part of the parameter space. On the contrary, relatively high 
values for N will result in a peaked likelihood function, with a well-defined global 
optimal solution. 
 This likelihood function was chosen principally because it is commonly used 
within the GLUE methodology, so using it facilitates comparison with other studies. 
Furthermore, varying N in Eq. (1) is a simple and flexible way to test the influence of 
the shape of the likelihood function on the efficiency of the LHS and SCEM-UA 
algorithm for sampling of the prior distribution. In this paper we provide a comparison 
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assessment of LHS and the SCEM-UA algorithm for different N values ranging from 1 
to 100. 

2.4. Choice of the cutoff threshold for the behavioral simulations 

One criticism of the GLUE methodology is that the prediction uncertainty 
bounds are subjective, based on an arbitrary cutoff to differentiate between behavioral 
and non-behavioral simulations. Ideally, the prediction uncertainty spread should be as 
small as possible, but consistent with observations, so that the predictive PDF is as 
sharp as possible. Stated differently, if the model is required to generate a probabilistic 
forecast at a given confidence level, say, 95%, then the predictions should encompass 
95% of the observations. Unfortunately, most formulations of the GLUE methodology 
do not guarantee that the appropriate percentage of the observations lies within the 
uncertainty bounds. In this study, instead of using predefined quantiles from the GLUE 
derived output CDF, we tune the uncertainty bounds so they exhibit the appropriate 
coverage. For all case studies we use 90% prediction intervals. These intervals are 
found by a trial-and-error method in which the acceptance criterion is adjusted and the 
coverage is computed over a fixed calibration period. 

3. CASE STUDIES 

In this section we describe the three conceptual watershed models used in our 
comparison analysis, and discuss the synthetic and measured streamflow data used. 

3.1. Models Used and Prior Uncertainty Ranges 

Three conceptual watershed models of increasing complexity are used in the 
present study: HYMOD (Boyle, 2000), NAM (Nielsen and Hansen, 1973; Havnø et al.,
1995) and the Sacramento Soil Moisture Accounting Model (SAC-SMA: Burnash et al.,
1973; Burnash, 1995). Brief descriptions of each model are presented in the following 
three sections. These models differ in their structure, simulated hydrologic processes, 
and number of calibration parameters, thereby allowing us to examine how model 
complexity affects the results of our sampling and uncertainty assessment analysis. 

3.1.1. The HYMOD model 

The HYMOD model consists of a relatively simple rainfall excess model, 
associated with two series of linear reservoirs: three identical reservoirs generating the 
quick flow response and a single reservoir for the slow response. A slightly different 
version of HYMOD is employed in this study: two identical reservoirs in series for the 
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quick response, and two reservoirs in parallel for the slow response. The 5 model 
parameters (summarized in Table 1) assessed in this work are the same as those 
considered in the studies by Vrugt et al. (2003b) and Montanari (2005). The last column 
in Table 1 lists the prior uncertainty ranges used to generate the initial sample. 

Table 1. Parameters of the models used and their prior uncertainty ranges. 

HYMOD 
Parameter Unit Range Description 
Cmax [mm] 1 - 500 maximum storage capacity in the catchment 

bexp [-] 0.1 - 2 degree of spatial variability of soil moisture capacity within the 
catchment 

[-] 0. - 0.99 factor distributing the flow between the two series of reservoirs
Rs [day] 0 - 0.1 residence time of the linear slow response reservoir 
Rq [day] 0.1 - 0.99 residence time of the linear quick response reservoir 
    
NAM
Parameter Unit Range Description 
Umax    [mm] 1- 50 maximum water content (size) of the surface storage 
Lmax      [mm] 50 - 1000 maximum water content (size) of the root zone storage 
CQOF [0,1] 0 - 1 fraction of excess rainfall that contributes to the overland flow 
CKIF [hours] 0.01 - 2000 time constant for drainage of interflow 

CK12 [hours] 3 - 100 time constant for routing interflow and overland flow; it 
determines the shape of hydrograph peaks 

TOF [-] 0 - 0.99 threshold value for overland flow, which is generated only for 
relative moisture content of the lower zone higher than TOF 

TIF [-] 0 - 0.99 threshold value for interflow (similar effect on interflow as 
TOF has on overland flow) 

TG [-] 0 - 0.99 root zone threshold value for recharge (similar effect on 
recharge as TOF on overland flow) 

CKBF [hours] 0.01 - 5000 time constant for baseflow, it determines the shape of the 
hydrograph in dry periods (exponential decay) 

Csnow [mm/°C/day] 0.5 - 10 degree-day coefficient for determining snow melting 
    
SAC-SMA 
Parameter Unit Range Description 
UZTWM [mm] 1 - 150 upper zone tension water capacity 
UZFWM [mm] 1 - 150 upper zone free water capacity 
UZK [day-1] 0.1 - 0.5 upper zone free water lateral depletion rate 
PCTIM [-] 0.000001 - 0.1 fraction of the impervious area 
ADIMP [-] 0 - 0.4 fraction of the additional impervious area 
ZPERC [-] 1 - 250 maximum percolation rate coefficient 
REXP [-] 0 - 5 exponent of the percolation equation  
LZTWM [mm] 1 - 500 lower zone tension water capacity 
LZFSM [mm] 1 - 1000 lower zone supplementary free water capacity 
LZFPM [mm] 1 - 1000 lower zone primary free water capacity 
LZPK [day-1] 0.0001 - 0.25 lower zone primary free water depletion rate 
LZSK [day-1] 0.01 - 0.25 lower zone supplementary free water depletion rate 

PFREE [-] 0 - 0.6 fraction percolating from upper to lower zone free water 
storage 

RTCOEF [day-1] 0 - 1 retention coefficient of routing linear reservoirs 
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3.1.2. The NAM model 

The NAM model is a deterministic, lumped, conceptual rainfall-runoff model 
originally developed at the Technical University of Denmark (Nielsen et al., 1973; 
Havnø et al., 1995). It has been used in many different applications and studies (Storm 
et al., 1988; Lorup et al., 1998; Madsen, 2000; Khu and Madsen, 2005). The NAM 
model describes, in a simplified quantitative form, the behavior of the different land 
phase of the hydrological cycle, accounting for the water content in different mutually 
interrelated storages. These storages are the surface zone storage (water content 
intercepted by vegetation, in surface depression and in the uppermost few centimeters of 
the ground), the root-zone storage, the ground-water storage and the snow storage. The 
river routing is done through linear reservoirs that represent the overland flow (two 
identical liner reservoirs in series), the interflow (a single reservoir) and the baseflow (a 
single reservoir), each characterized by a specific time constant. The NAM model 
specifies 10 parameters that need to be determined by calibration against a historical 
record of streamflow data. A description of these parameters, including their prior 
uncertainty ranges is given in Table 1. 

3.1.3. The Sacramento Soil Moisture Accounting (SAC-SMA) model 

The Sacramento soil moisture accounting model, SAC-SMA, is a lumped 
conceptual watershed model developed by Burnash et al. (1973; – see also Burnash,
1995). It is currently used by the National Weather Service River Forecast System 
(NWSRFS) center to perform real-time river and flood forecasts as well as long term 
predictions.

The SAC-SMA model distributes soil moisture in various depths and energy 
states of the soil with a network of interconnected tanks. It is constituted by an upper 
and a lower zone, each including tension and free-water storages. These storages 
interact with each other and with the other catchment components through the processes 
of evapotranspiration, vertical drainage (percolation), and generation of five different 
runoff components. In the original Sacramento model, the runoff components combine 
to produce the river runoff through a unit hydrograph routing. In the version of the 
Sacramento model used in this study, the routing module is replaced with a series of 3 
linear Nash-Cascade reservoirs, all characterized by the same retention coefficient, 
RTCOEF. This formulation of the SAC-SMA model does not require independent 
derivation of the unit hydrograph, and therefore provides a more flexible formulation 
for application in different watersheds. In this study, the parameters SIDE, RSERV and 
RIVA were fixed at values recommend in Peck (1976); this leaves a total of 14 
parameters in our analysis. Table 1 provides a condensed overview and description of 
the SAC-SMA calibration parameters, including their prior uncertainty ranges.
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3.2. Hydrologic Systems and Data Used 

We compare the usefulness and power of our revised GLUE method (using 
SCEM-UA) to the traditional GLUE approach (using LHS) by application to two 
different catchments with significantly different hydrologic regimes. The first is the 
Tryggevælde catchment, located in the eastern part of Denmark. This catchment, which 
has an area of approximately 130.2 km2, consists of predominantly clayey soils, and has 
an average daily river discharge of about 1 m3/s. For the period between January 1, 
1975 and December 31, 1984, available data for this catchment includes the mean areal 
precipitation (mm/d), potential evapotranspiration (mm/d), daily average temperature 
(°C) and discharge (m3/s). To reduce sensitivity to state value initialization, a one-year 
warm up period was used in which no updating of the likelihood function was 
performed. 
 The second system studied is the Leaf River catchment, located in southern 
Mississippi. It is a principal tributary of the Pascagoula River, which flows to the Gulf 
of Mexico. It is a humid watershed, with an area of about 1944 km2. The available data 
record consists of mean daily precipitation (mm/d), potential evapotranspiration 
(mm/d), and daily streamflow (m3/s). The Leaf River data have been discussed and used 
extensively in previous studies. In the present study, data in the period between July 28, 
1952 and September 30, 1962 are used, with a warm-up period of 65 days. 
 The Tryggevælde and Leaf River watersheds have quite different hydrologic 
regimes, thereby providing diverse data sets for testing the revised GLUE method. For 
example, the average daily runoff of the Leaf River (27.13 m3/s) is much higher than 
that of the Tryggevælde catchment. In addition, the Leaf River data set includes a 
relatively large number of significant rainfall-runoff events, with streamflow values up 
to about 800 m3/s.
 Before analyzing the measured data sets, described in this section, initial 
benchmarking analyses were performed using corrupted synthetic data to test the 
performance of our sampling methods in the presence of data error only.  This synthetic 
streamflow data was generated by calibrating the HYMOD, NAM and SAC-SMA 
model using the SCEM-UA algorithm, then using these parameter values in a forward 
model run to represent catchment behavior.  This synthetic time series of streamflow 
data was then corrupted with a normally distributed error with an error deviation of 10% 
of the simulated value. 

3.3. Implementation Details 

For the data sets considered in this paper, the GLUE methodology is applied for 
the likelihood function defined in Eq. (1), using the initial sample of simulations derived 
with either the LHS and SCEM-UA sampling schemes. The analysis uses a total of 
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10,000 parameter combinations for the HYMOD model and 20,000 for the NAM and 
SAC-SMA models. Initial analyses have demonstrated that these numbers are sufficient 
and result in stabilized estimates of parameter and prediction uncertainty. After 
sampling, the GLUE-derived model prediction is then given by the median of the output 
distribution, and the associated uncertainty is derived from tuning the uncertainty 
bounds to obtain an approximate coverage of about 90% of the observations. 

4. RESULTS AND DISCUSSION 

This section presents analyses for the synthetic and measured data sets for the 
three different conceptual watershed models. The presentation is organized by starting 
with the synthetic data sets, discussing the GLUE results for (i) median prediction, (ii) 
prediction uncertainty bounds and (iii) parameter uncertainty and correlation. We then 
repeat this process for the measured data sets. 

4.1. Synthetic data sets 
4.1.1. Median GLUE prediction 

Table 2 lists the likelihood values for different values of N of the best 
streamflow simulation from the initial sample generated with the LHS and SCEM-UA 
algorithm for the Tryggevælde watershed. Though we restrict attention to this 
catchment, similar results are found for the Leaf River watershed. The results in this 
Table clearly demonstrate the advantages of the SCEM-UA algorithm for sampling the 
prior parameter distribution. The algorithm generally finds better values of the 
likelihood function than LHS, with differences becoming larger with increasing N-
values and model complexity. Small values of N result in a flat likelihood function with 
probability mass extending over a large range of the parameter space. Even with random 
sampling, it is then likely to find a parameter combination that reasonably fits the data. 
For increasing N values the likelihood function becomes peakier, and it is increasingly 
important to have the search capabilities of the SCEM-UA algorithm to find acceptable 
solutions. In addition, note that, as expected, increased modeling complexity will further 
reduce the chance of finding preferred solutions with random sampling (see, for 
example, the results of HYMOD, NAM and SAC-SMA for N = 100). 
 To verify whether the quality of the initial sample is influencing the 
deterministic forecast of the GLUE methodology, consider Table 3, which presents the 
likelihood value of the median prediction of the GLUE-derived CDF for the synthetic 
Tryggevælde data set using the HYMOD, NAM and SAC-SMA models. Consistent 
with the previous results, the median GLUE prediction derived from the initial samples 
created using the SCEM-UA algorithm is generally better than its counterpart derived 
using LHS. Adaptive MC2 sampling improves the quality of the initial sample and 
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therefore the results derived with the GLUE method. Also notice that the GLUE derived 
median prediction is generally a better predictor than the best individual simulation in 
the initial sample (compare tables 2 and 3). This is particularly true for the SCEM-UA 
created initial sample and suggests that averaging of predictions of different parameter 
combinations increases predictive capabilities, something that is commonly observed 
with ensemble forecasting (Raftery et al., 2005; Vrugt and Robinson, 2007). Again, 
differences between the LHS and SCEM-UA algorithm increase with increasing N
value and complexity of the catchment model. 

Table 2. Likelihood of the best runoff simulation from the initial sample generated with the LHS and 
SCEM-UA algorithm for different values of N: Tryggevælde watershed - synthetic data. 

Table 3. Likelihood value of the median runoff estimate from the posterior CDF derived with the GLUE 
methodology: Tryggevælde watershed - synthetic data. The output CDF was tuned to contain 90% of the 
streamflow observations. 
 SCEM-UA LHS 

N HYMOD NAM SAC-SMA HYMOD NAM SAC-SMA 
1 0.9815 0.9655 0.9771 0.9803 0.9276 0.9063 
5 0.9112 0.8112 0.8883 0.9055 0.8263 0.8825 

10 0.8246 0.7055 0.7995 0.8201 0.6854 0.7798 
20 0.6899 0.5263 0.6370 0.6730 0.4752 0.6101 
50 0.3826 0.2271 0.3515 0.3725 0.1514 0.2854 
100 0.1546 0.0799 0.1420 0.1401 0.0018 0.0653 

 Next, the dependency of the goodness-of-fit of the GLUE-derived median 
streamflow estimate as function of the number of retained or behavioral solutions is 
analyzed. Plots of likelihood function versus the number of retained solutions are 
presented for the Tryggevælde and Leaf River data sets in Figures 1 and 2, respectively 
for the NAM model. First, note that accepting a relatively small number of solutions as 
behavioral generally produces the closest correspondence of the GLUE median output 
estimate with the observed streamflow data. On the order of 20 individual streamflow 
simulations (about 0.1% of the total sample) is required for accurate streamflow 
forecasting, whereas a larger sample of retained solutions decreases the goodness-of-fit 
of the median GLUE output estimate. However, a large sample improves the accuracy 
of the uncertainty bounds, as will be shown later. Thus, there is a considerable trade-off 

 SCEM-UA LHS 
N HYMOD NAM SAC-SMA HYMOD NAM SAC-SMA 
1 0.9798 0.9614 0.9760 0.9784 0.9527 0.9698 
5 0.8995 0.7652 0.8552 0.8964 0.7847 0.8578 

10 0.8177 0.6837 0.7324 0.8035 0.6158 0.7357 
20 0.6827 0.4754 0.5982 0.6456 0.3792 0.5413 
50 0.3888 0.1031 0.2659 0.3349 0.0885 0.2156 

100 0.1609 0.0475 0.1681 0.1122 0.0078 0.0465 
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between accuracy and precision when selecting the appropriate number of behavioral 
solutions. Given this situation, it is pertinent to point out that for the SCEM-UA sample, 
the likelihood value of the GLUE derived median output estimate appears to be less 
affected by the number of behavioral samples. The SCEM-UA algorithm provides a 
denser sampling in the vicinity of the HPD region of the parameter space, and thus 
yields a higher frequency of good solutions. 
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Figure 1. Tryggevælde watershed - NAM model.  
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Figure 2. Leaf River watershed - NAM model.  
Likelihood of the median GLUE estimates obtained from the LHS and SCEM-UA samples versus 
number of retained solutions. Plots correspond to different values of the exponent of the likelihood 

function, N: (a) N=1; (b) N=5; (c) N=10; (d) N=20; (e) N=50; (f) N=100.

Finally, the plots show that the relative difference between the likelihood of the 
estimated median hydrograph from the LHS and SCEM-UA sampling methods 
increases with increasing value of the exponent N of the likelihood function. This trend, 
found for both data sets, can be explained by the increased performance of the SCEM-
UA algorithm in cases with a well-defined HPD region. In contrast, the SCEM-UA 
algorithm will not have good convergence properties when a large part of the parameter 
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space exhibits similar performance in producing the observed data (i.e. for low values of 
N). Thus, in these situations LHS might suffice to generate the initial sample. However, 
increasingly peaked likelihood functions, require optimization-based algorithms to 
locate and visit solutions in the HPD region. 

4.1.2. Prediction Uncertainty Bounds 

In this section we address the uncertainty bounds derived with the GLUE 
methodology for the LHS and SCEM-UA sampling methods. Accurate probabilistic 
forecasting requires that the uncertainty bounds are statistically meaningful and exhibit 
the appropriate coverage.  Instead of focusing on the goodness-of-fit of the median 
output estimate of the GLUE-derived CDF, we examine the statistical properties of the 
ensemble of retained solutions. 
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Figure 3. Tryggevælde watershed - NAM model.  
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Figure 4. Leaf River watershed - NAM model.  

Percentage of runoff observations outside GLUE LHS and SCEM-UA uncertainty intervals versus number of 
retained solutions. Plots correspond to different values of the exponent of the likelihood function, N: (a) N=1;

(b) N=5; (c) N=10; (d) N=20; (e) N=50; (f) N=100.
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 Figures 3 and 4 are plots of the percentage of observations falling outside the 
prediction uncertainty bounds versus the number of retained parameter sets for the 
NAM model. For a given number of retained solutions, the GLUE-derived uncertainty 
bounds using LHS are generally larger than their counterparts derived from GLUE 
implemented with the SCEM-UA algorithm. The GLUE method implemented with 
SCEM-UA exhibits better predictive performance, resulting in less spread of the 
uncertainty bounds. This is further demonstrated in Figure 5, which depicts the average 
width of the streamflow uncertainty bounds as function of the number of retained 
solutions for different values of N.

0 500 1000 1500 2000 2500 3000 3500 4000
16

18

20

22

24

26

28

30

32

34

36

38

W
id

th
 o

f u
nc

er
ta

in
ty

 in
te

rv
al

 [m
3 /s

]

Number of retained solutions

(a).SCEM-UA

N = 1
N = 5
N = 10
N = 20
N = 50
N = 100

0 500 1000 1500 2000 2500 3000 3500 4000
16

18

20

22

24

26

28

30

32

34

36

38

W
id

th
 o

f u
nc

er
ta

in
ty

 in
te

rv
al

 [m
3 /s

]

Number of retained solutions

(b).LHS

N = 1
N = 5
N = 10
N = 20
N = 50
N = 100

Figure 5. Leaf River watershed - SAC-SMA model: width of the uncertainty bounds as a function of the 
number of retained solutions: (a) SCEM-UA and (b) LHS results.

 To examine this behavior further, consider Figures 6 (SAC-SMA model, 
Tryggevælde watershed) and 7 (NAM model, Leaf River Catchment), time-series plots 
of observed versus predicted streamflow data for a representative portion of the 
historical record. The top panels in both figures present the measured hyetograph, 
whereas the bottom two panels illustrate the GLUE-derived 90% uncertainty bounds for 
the predicted hydrographs for three different values of N (1, 20 and 100) using the (b) 
SCEM-UA and (c) LHS methods for sampling the prior parameter distribution. 
 The results for both sampling methods are qualitatively similar, and appear 
relatively unaffected by the choice of the value of the exponent N in the likelihood 
function. Although the uncertainty bounds exhibit the appropriate coverage and are 
generally centered on the observations, they appear to be unrealistically large, especially 
for the SAC-SMA model for low flows. This is a limitation of the GLUE method, and 
caused by the way the method treats uncertainty. The total uncertainty is mapped onto 
the parameters, without explicitly accounting for input and model structural errors. 
Much tighter uncertainty bounds that still exhibit the appropriate coverage can be 
obtained by using a formal Bayesian likelihood function (in the case of synthetic data) 
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or by accounting for input and model structural errors using state-space filtering 
methods such as the Ensemble Kalman Filter (Vrugt et al., 2005). 

4.1.3. Parameter Uncertainty and Correlation 

In this section we compare the GLUE-derived posterior parameter PDFs from 
the LHS and SCEM-UA derived initial sample using the two sampling techniques. The 
GLUE-derived posterior parameter PDFs for different values of N are presented for the 
parameter Lmax in the NAM model (Figure 8) and the parameter LZFSM in the SAC-
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Figure 6. Tryggevælde watershed - SAC-SMA model: hyetograph (a) and hydrographs including the 
uncertainty bounds containing the 90% of the observations generated by GLUE from SCEM-UA (b) 
and LHS initial samples (c). The error bars in these plots represent the error properties of the 
streamflow data: the boxes correspond to the 5th and 95th percentiles of the error distribution, while the 
vertical lines extend up to the 0.5th and 99.5th percentiles. 



17

SMA model (Figure 9). This selection of parameters and models is representative of the 
entire set of results. 
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Figure 7. Leaf River watershed - NAM model: hyetograph (a) and hydrographs including the 
uncertainty bounds containing the 90% of the observations generated by GLUE from SCEM-UA (b) and 
LHS initial samples (c). The error bars in these plots represent the error properties of the streamflow 
data: the boxes correspond to the 5th and 95th percentiles of the error distribution, while the vertical 
lines extend up to the 0.5th and 99.5th percentiles.

  First, note that the LHS and SCEM-UA derived posterior PDFs are qualitatively 
similar for the NAM model, but different for the SAC-SMA model. For models of 
higher dimensionality, random sampling does not provide a sufficiently large sample of 
solutions within the HPD region of the parameter space. Second, with respect to the 
parameter N, the posterior PDFs become narrower and peakier with increasing N-
values.  But even for increasing N-value the LHS derived posterior PDFs remain multi-
modal, while the SCEM-UA derived histograms become Gaussian-like with a single  
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(b) SCEM-UA: Lmax posterior distribution
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Figure 8. Posterior distribution of parameter Lmax for Tryggevælde watershed - NAM model obtained 
from SCEM-UA (a) and LHS dataset (b). Real value: Lmax = 121.1. 

well-defined mode (the desired result). Finally, note that the mode of the LHS and 
SCEM-UA derived posterior PDFs are different, with the SCEM-UA result converging 
to the true value of the parameter used to generate the synthetic data, but the LHS-
derived result deviating from the true value. This outcome is also reflected in the 
correlation coefficients between the true parameter sets used to generate the synthetic 
data sets, and the modal values of the posterior distributions derived with the LHS and 
SCEM-UA methods. For example, for the NAM and SAC-SMA models, the correlation 
between the true parameter sets and mode of the posterior PDF is 0.12 and 0.44 
respectively for the LHS method, and 0.88 and 0.66 for the SCEM-UA sampling. This 
finding is consistent with our previous results. 
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(b) SCEM-UA: Parameter LZFSM posterior distribution
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Figure 9. Posterior distribution of parameter LZFSM for Tryggevælde watershed - Sacramento model: 
obtained from SCEM-UA (a) and LHS dataset (b). Real value: LZFSM = 438.85. 

 As illustration, Figure 10 presents correlation plots between the parameters in 
the HYMOD model using synthetic streamflow data for the Tryggevælde watershed. 
These plots correspond to the GLUE-derived posterior PDF using the SCEM-UA 
derived initial sample for N = 100. Most plots show very low correlations, with the 
exception of the {Cmax, bexp} panel, which exhibits a linear dependency, with correlation 
coefficient of about 0.75. This correlation plot is consistent with previous results 
presented in Vrugt et al. (2003b). Correlations between parameters in other models were 
typically low, but increase with increasing N-value for the SCEM-UA sampling. 
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Figure 10. HYMOD model - Tryggevælde river: correlation plots of normalized parameters from 
posterior distributions obtained from SCEM-UA sample with likelihood function exponent N=100.
Diagonal: histograms of parameter distribution.

4.2. Measured data sets 
4.2.1. Median GLUE prediction 

When measured streamflow observations are used, the presence of model error 
and forcing input error adds additional uncertainty into the modeling process. The main 
effects of these errors become apparent when deriving uncertainty bounds that contain a 
prescribed percentage of the streamflow observations (90% in this study). A much 
larger number of solutions need to be retained for real applications, compared to the 
synthetic data cases previously discussed. This is true regardless whether the LHS or 
SCEM-UA method is used for sampling of the prior distribution, and reflects an 
inability of the GLUE method to properly treat input and model structural error. Table 4 
summarizes these results for N = 1, and lists the percentage of observations included 
within the confidence bounds and the associated number of retained solutions. 

For increasing N values, the narrowing down of the bounds causes depletion of 
the coverage of the observations by the uncertainty intervals. Table 5 compares 
likelihood values of the median deterministic GLUE forecast between the LHS and 
SCEM-UA sampling for different values of N for the Tryggevælde catchment. As in the 
synthetic data experiment, the predictive capability of the median GLUE forecast is 
generally higher when sampling the prior distribution with the SCEM-UA algorithm 
than when using LHS to derive the initial sample. Also note that the relative differences 
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in likelihood values between the methods become larger with increasing values of N. As 
mentioned earlier, the reason for the latter tendency is explained by the better 
performance of the SCEM-UA method in sampling the HPD region of the parameter 
space, when using a peakier probability distribution. Finally, note that when explicitly 
dealing with model and input errors, the likelihood values of the median deterministic 
GLUE forecast are significantly lower than for the synthetic experiment. Similar 
tendencies are found for the Leaf River dataset. 
 The dependency of the likelihood value of the GLUE-derived median estimate 
of the hydrograph on the number of retained solutions shows similar patterns as 
previously found and discussed in our synthetic experiment. A similar trade-off between 
the predictive quality of the median GLUE estimate of the runoff, and the number of 
retained solutions is also visible when analyzing measured streamflow data. 
Furthermore, the GLUE-derived median estimate of the hydrograph appears less 
affected by the number of retained solutions when deriving the initial sample with the 
SCEM-UA algorithm. 

Table 4. Percentage of observations contained within the GLUE uncertainty intervals and number of 
retained solutions (in parentheses). Results correspond to the Tryggevælde and Leaf River data sets using 
the LHS and SCEM-UA methods (likelihood exponent N=1). 

 Tryggevælde Leaf River 
Model SCEM-UA LHS SCEM-UA LHS 
HYMOD  71.1  (2596) 74.0  (2800) 84.6  (2032) 87.9  (2000) 
NAM 86.3  (2143) 87.7  (2600) 88.8  (2507) 90.8  (2200) 
SAC-SMA 78.2  (5148) 77.8  (2800) 87.7  (1822) 89.6  (1800) 

Table 5. Likelihood of the best runoff simulation from the initial sample generated with the LHS and 
SCEM-UA algorithm: Tryggevælde watershed – measured data set. 
  SCEM-UA LHS 

N HYMOD NAM SAC-SMA HYMOD NAM SAC-SMA 
1 0.7024 0.7138 0.7170 0.7025 0.7196 0.7175 
5 0.1712 0.1944 0.1919 0.1711 0.1929 0.1901 

10 0.0298 0.0379 0.0369 0.0293 0.0372 0.0361 
20 0.00088 0.00159 0.00134 0.00086 0.00139 0.00131 
50 2.326E-08 7.169E-08 8.341E-08 2.149E-08 7.152E-08 6.163E-08 

100 5.810E-16 1.310E-14 7.164E-15 4.618E-16 5.115E-15 3.799E-15 

4.2.2. Prediction Uncertainty Bounds 

As previously mentioned, the presence of input and model structural error 
reduces the coverage of the observations by the uncertainty intervals, thus making it 
more difficult to produce statistically meaningful predictions. However, Table 4 shows 
that percentages of observations close to the 80% can be included within the bounds, if 



22

a very large number of solutions are retained. Figures 11 and 12 show the percentage of 
solutions included within the uncertainty bounds, and the width of these bounds, 
respectively, as functions of the number of retained solutions. Given a pre-specified 
number of retained solutions, the GLUE-derived uncertainty bounds are generally 
smaller for the SCEM-UA algorithm than for LHS. For the SCEM-UA-derived sample, 
the average distance to the optimal model is small, resulting in relatively small 
uncertainty bounds. In contrast, the inability of the LHS method to adequately sample 
the HPD region of the parameter space results in a rapid increase in average width of the 
uncertainty bounds with increasing number of retained solutions (Figure 12). 

In addition, Note that the slopes of the curves decrease with increasing N values. 
While retaining more solutions will extend the extreme tails of the GLUE CDF 
streamflow output distribution, it hardly affects the size of the 95% uncertainty bounds, 
as most of the probability mass is located within the desired confidence interval. 
Furthermore, smaller values of N result in larger uncertainty bounds, because the 
likelihood function causes the probability mass to be spread out over a large part of the 
parameter space, resulting in a wide variety of simulations that are considered to be 
behavioral.
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Figure 11. Leaf River watershed – SAC-SMA 
model: percentage of solutions included within the 
uncertainty bounds as a function of the number of 
retained solutions.

Figure 12. Leaf River watershed – SAC-SMA 
model: width of the uncertainty bounds as a 
function of the number of retained solutions.

4.2.3. Parameter Uncertainty and Correlation 

As mentioned earlier, fewer observations are covered by the uncertainty 
intervals when the measured streamflow data is used. Moreover, there is a decrease in 
the coverage for increasing value of N. While the uncertainty intervals generated with 
the LHS and SCEM-UA samples include between 75-90% of the observations for N = 
1, these percentages, for all the models and data sets considered, range between 83% 
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and 40% for N = 100. Thus, it is not always possible to generate uncertainty intervals 
with a reliable statistical meaning. Nevertheless, the analysis of the posterior 
distributions of the available parameters fully confirms the results for the artificially 
generated data sets. This is also exemplified in Figure 13, a plot of the GLUE-derived 
posterior PDFs obtained from the LHS and SCEM-UA samples for the parameter 
LZFSM of SAC-SMA model applied to the Leaf River watershed. First, note that the 
posterior distributions get narrower and peakier for increasing N value. Moreover, while 
the PDFs inferred from the SCEM-UA sample show a well-defined peak, those from the 
LHS dataset generally exhibit multimodality. This feature, caused by the peculiarities of 
the initial random sample, reduces the reliability of the parameter estimates. Also, 
similar to what was found for the synthetic streamflow data, the difference between the 
PDFs obtained from the LHS and the SCEM-UA initial samples increases with 
increasing model complexity. 

Finally, no relevant correlations were found among the parameters of the various 
models, with the exception of the parameters Cmax and bexp of the HYMOD model, 
which have a correlation coefficient of about 0.78 when the model is applied to the 
Tryggevælde watershed. In this case, similarly as before, this correlation is found within 
all the LHS datasets as well as from the SCEM-UA sample, but, in this last case, only 
when N = 100. 
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Figure 13. Posterior distribution of parameter LZFSM for Leaf River and Sacramento model obtained 
from LHS (a) and SCEM-UA dataset (b). The number of observations contained within the uncertainty 
interval ranges from 82% to 90% in this case.
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5. SUMMARY AND CONCLUSIONS 

This paper demonstrates the potential of improving the GLUE method by 
employing the Shuffled Complex Evolution Metropolis (SCEM-UA) global 
optimization algorithm for sampling the prior distribution of the model parameters. The 
SCEM-UA algorithm is an adaptive Markov Chain Monte Carlo (MC2) sampler that 
periodically updates the size and direction of the proposal distribution. This feature 
enables it to visit solutions in the HPD region of the parameter space with higher 
frequency than a random sampling scheme. Through a comparison of the GLUE results 
using LHS and SCEM-UA sampling for creating the initial sample, we demonstrated 
the following conclusions: 

1. The combined SCEM-UA – GLUE method provides better predictions of the model 
output than a classical GLUE procedure based on random sampling. This improvement 
is obtained for the median GLUE estimates and best parameter estimates from the initial 
sample. At the same time, the Markov Chain sampler yields a reduction in the 
uncertainty of the output estimate, providing narrower confidence intervals than those 
obtained from the LHS dataset. The differences in the results from the two sampling 
methods increase with the model complexity and with N, the exponent of the likelihood 
function.
2. When using SCEM-UA sampling, the GLUE-derived median output estimate and 
associated prediction uncertainty bounds are less affected by the number of retained 
solutions in the analysis. The SCEM-UA-derived initial sample contains numerous 
solutions in the HPD region of the parameter space, so that the average distance of the 
various parameter combinations to the optimal model is small. This results in 
uncertainty bounds that are less dependent on the number of retained solutions. In 
contrast, the inability of random sampling to closely sample the HPD region of the 
parameter space results in a widening of the uncertainty bounds when a larger number 
of solutions are retained. 
3. The SCEM-UA algorithm will likely be able to find the global optimum in the 
parameter space. In contrast, random sampling can require an unmanageably large 
number of model simulations to attain a statistically sufficient number of behavioral 
parameter sets. The LHS scheme, used frequently in the GLUE method and 
implemented in this paper, finds solutions well removed from the best attainable model. 
Therefore, the GLUE method with SCEM-UA sampling should be superior for making 
valid conclusions about parameter identifiability and equifinality. 
4. The efficiency of the SCEM-UA algorithm is controlled by the shape of the 
likelihood function used in the GLUE analysis. Likelihood functions for which 
significant probability extends over a large range of the prior parameter space will 
adversely affect the search and explorative capabilities of the SCEM-UA algorithm. The 
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sampler will have difficulty converging under these circumstances. On the contrary, in 
situations in which the likelihood function is peaked and significant probability mass is 
associated with a small interior region of the parameter space, the SCEM-UA method 
will significantly improve the quality of the GLUE results. This conclusion has been 
demonstrated in this paper through comparisons of results for different values of the 
parameter N.
5. The results presented in this paper, along with additional analyses not presented,  
show strong consistency between results derived for synthetic and measured data sets, 
for models of two watersheds with significantly different hydrologic characteristics. 
This result demonstrates that our findings on the usefulness of our revised GLUE 
method are quite general. 
6. Our approach for discriminating between behavioral and non-behavioral solutions 
using information from the coverage of the uncertainty bounds results in statistically 
meaningful uncertainty intervals. This approach therefore provides an adequate and 
satisfactory solution to the often criticized subjectivity involved in the choice of an 
appropriate cutoff value on the retained solutions (or on the likelihood function value). 
Nevertheless, even with the implementation of a more objective approach to separate 
between behavioral and non-behavioral solutions, a strong trade-off appears between 
the accuracy of the median GLUE forecast and precision of the uncertainty bounds. It is 
shown that the best output estimates are obtained when a relatively small number of 
solutions are retained, whereas a large number of solutions must be retained to generate 
uncertainty bounds with a sufficient coverage of the observations. 
7. Adaptive MC2 sampling of the prior parameter distribution improves the efficiency 
and robustness of the GLUE methodology. This result is especially true for complex 
environmental models with a relatively large number of model parameters, and 
likelihood functions that assign significant probability to a relatively small region 
interior to the plausible model or parameter space. 
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