1,614 research outputs found

    Testing of leakage current failure in ASIC devices exposed to total ionizing dose environment using design for testability techniques

    Get PDF
    Due to the advancements in technology, electronic devices have been relied upon to operate under harsh conditions. Radiation is one of the main causes of different failures of the electronics devices. According to the operation environment, the sources of the radiation can be terrestrial or extra-terrestrial. For terrestrial the devices can be used in nuclear reactors or biomedical devices where the radiation is man-made. While for the extra- terrestrial, the devices can be used in satellites, the international space station or spaceships, where the radiation comes from various sources like the Sun. According to the operation environment the effects of radiation differ. These effects falls under two categories, total ionizing dose effect (TID) and single event effects (SEEs). TID effects can be affect the delay and leakage current of CMOS circuits negatively. The affects can therefore hinder the integrated circuits\u27 operation. Before the circuits are used, particularly in critical radiation heavy applications like military and space, testing under radiation must be done to avoid any failures during operation. The standard in testing electronic devices is generating worst case test vectors (WCTVs) and under radiation using these vectors the circuits are tested. However, the generation of these WCTVs have been very challenging so this approach is rarely used for TIDs effects. Design for testability (DFT) have been widely used in the industry for digital circuits testing applications. DFT is usually used with automatic test patterns generation software to generate test vectors against fault models of manufacturer defects for application specific integrated circuit (ASIC.) However, it was never used to generate test vectors for leakage current testing induced in ASICs exposed to TID radiation environment. The purpose of the thesis is to use DFT to identify WCTVs for leakage current failures in sequential circuits for ASIC devices exposed to TID. A novel methodology was devised to identify these test vectors. The methodology is validated and compared to previous non DFT methods. The methodology is proven to overcome the limitation of previous methodologies

    A study of pseudorandom test for VLSI

    Get PDF

    Critical hazard free test generation for asynchronous circuits

    Get PDF
    Journal ArticleWe describe a technique to generate critical hazard-free tests for self-timed control circuits build using a macromodule library, in a partial scan based DFT environment. We propose a 6 valued algebra to generate these tests which are guaranteed to be critical hazard free under an unbounded delay model. This algebra has been incorporated in a D-algorithm based automatic test pattern generator

    Efficient Path Delay Test Generation with Boolean Satisfiability

    Get PDF
    This dissertation focuses on improving the accuracy and efficiency of path delay test generation using a Boolean satisfiability (SAT) solver. As part of this research, one of the most commonly used SAT solvers, MiniSat, was integrated into the path delay test generator CodGen. A mixed structural-functional approach was implemented in CodGen where longest paths were detected using the K Longest Path Per Gate (KLPG) algorithm and path justification and dynamic compaction were handled with the SAT solver. Advanced techniques were implemented in CodGen to further speed up the performance of SAT based path delay test generation using the knowledge of the circuit structure. SAT solvers are inherently circuit structure unaware, and significant speedup can be availed if structure information of the circuit is provided to the SAT solver. The advanced techniques explored include: Dynamic SAT Solving (DSS), Circuit Observability Don’t Care (Cir-ODC), SAT based static learning, dynamic learnt clause management and Approximate Observability Don’t Care (ACODC). Both ISCAS 89 and ITC 99 benchmarks as well as industrial circuits were used to demonstrate that the performance of CodGen was significantly improved with MiniSat and the use of circuit structure

    Design error diagnosis and correction via test vector simulation

    Full text link

    A Discrete Event System approach to On-line Testing of digital circuits with measurement limitation

    Get PDF
    AbstractIn the present era of complex systems like avionics, industrial processes, electronic circuits, etc., on-the-fly or on-line fault detection is becoming necessary to provide uninterrupted services. Measurement limitation based fault detection schemes are applied to a wide range of systems because sensors cannot be deployed in all the locations from which measurements are required. This paper focuses towards On-Line Testing (OLT) of faults in digital electronic circuits under measurement limitation using the theory of discrete event systems. Most of the techniques presented in the literature on OLT of digital circuits have emphasized on keeping the scheme non-intrusive, low area overhead, high fault coverage, low detection latency etc. However, minimizing tap points (i.e., measurement limitation) of the circuit under test (CUT) by the on-line tester was not considered. Minimizing tap points reduces load on the CUT and this reduces the area overhead of the tester. However, reduction in tap points compromises fault coverage and detection latency. This work studies the effect of minimizing tap points on fault coverage, detection latency and area overhead. Results on ISCAS89 benchmark circuits illustrate that measurement limitation have minimal impact on fault coverage and detection latency but reduces the area overhead of the tester. Further, it was also found that for a given detection latency and fault coverage, area overhead of the proposed scheme is lower compared to other similar schemes reported in the literature

    Cross-layer Soft Error Analysis and Mitigation at Nanoscale Technologies

    Get PDF
    This thesis addresses the challenge of soft error modeling and mitigation in nansoscale technology nodes and pushes the state-of-the-art forward by proposing novel modeling, analyze and mitigation techniques. The proposed soft error sensitivity analysis platform accurately models both error generation and propagation starting from a technology dependent device level simulations all the way to workload dependent application level analysis

    A comprehensive comparison between design for testability techniques for total dose testing of flash-based FPGAs

    Get PDF
    Radiation sources exist in different kinds of environments where electronic devices often operate. Correct device operation is usually affected negatively by radiation. The radiation resultant effect manifests in several forms depending on the operating environment of the device like total ionizing dose effect (TID), or single event effects (SEEs) such as single event upset (SEU), single event gate rupture (SEGR), and single event latch up (SEL). CMOS circuits and Floating gate MOS circuits suffer from an increase in the delay and the leakage current due to TID effect. This may damage the proper operation of the integrated circuit. Exhaustive testing is needed for devices operating in harsh conditions like space and military applications to ensure correct operations in the worst circumstances. The use of worst case test vectors (WCTVs) for testing is strongly recommended by MIL-STD-883, method 1019, which is the standard describing the procedure for testing electronic devices under radiation. However, the difficulty of generating these test vectors hinders their use in radiation testing. Testing digital circuits in the industry is usually done nowadays using design for testability (DFT) techniques as they are very mature and can be relied on. DFT techniques include, but not limited to, ad-hoc technique, built-in self test (BIST), muxed D scan, clocked scan and enhanced scan. DFT is usually used with automatic test patterns generation (ATPG) software to generate test vectors to test application specific integrated circuits (ASICs), especially with sequential circuits, against faults like stuck at faults and path delay faults. Despite all these recommendations for DFT, radiation testing has not benefited from this reliable technology yet. Also, with the big variation in the DFT techniques, choosing the right technique is the bottleneck to achieve the best results for TID testing. In this thesis, a comprehensive comparison between different DFT techniques for TID testing of flash-based FPGAs is made to help designers choose the best suitable DFT technique depending on their application. The comparison includes muxed D scan technique, clocked scan technique and enhanced scan technique. The comparison is done using ISCAS-89 benchmarks circuits. Points of comparisons include FPGA resources utilization, difficulty of designs bring-up, added delay by DFT logic and robust testable paths in each technique
    • …
    corecore