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ABSTRACT 

 

This dissertation focuses on improving the accuracy and efficiency of path delay 

test generation using a Boolean satisfiability (SAT) solver. As part of this research, one 

of the most commonly used SAT solvers, MiniSat, was integrated into the path delay test 

generator CodGen. A mixed structural-functional approach was implemented in CodGen 

where longest paths were detected using the K Longest Path Per Gate (KLPG) algorithm 

and path justification and dynamic compaction were handled with the SAT solver.  

Advanced techniques were implemented in CodGen to further speed up the 

performance of SAT based path delay test generation using the knowledge of the circuit 

structure. SAT solvers are inherently circuit structure unaware, and significant speedup 

can be availed if structure information of the circuit is provided to the SAT solver. The 

advanced techniques explored include: Dynamic SAT Solving (DSS), Circuit 

Observability Don’t Care (Cir-ODC), SAT based static learning, dynamic learnt clause 

management and Approximate Observability Don’t Care (ACODC). Both ISCAS 89 and 

ITC 99 benchmarks as well as industrial circuits were used to demonstrate that the 

performance of CodGen was significantly improved with MiniSat and the use of circuit 

structure. 
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1. INTRODUCTION  

 

1.1 Delay Testing 

Physical defects such as electrical opens and shorts may occur during the 

fabrication process of semiconductor chips. Most defects affecting circuit performance 

are functional defects that can be detected using traditional test methods. [1][2][3] 

However, some manufacturing defects, which are not “large” enough to cause functional 

failure in the circuit, may only affect the operating speed of the circuit. Delay tests target 

the small manufacturing defects, to ensure that the manufactured chips work within the 

specified timing constraints. As fabrication processes are becoming more complex and 

the system clock speeds are getting faster, delay testing has become essential in ensuring 

the proper operation of the manufactured chips. Based on their origins, delay faults can 

be classified as global delay faults, which are caused by global process parameter 

variations, and local delay faults, which are caused by local process disturbance. Delay 

fault models [4][5] have been developed as the abstraction of delay defects and have 

been implemented in software for the purpose of Automatic Test Pattern Generation 

(ATPG) [6][7] and fault coverage estimation [8]. Various delay fault models are 

presented in the Section 1.2. Among them, the path delay fault model is accurate enough 

to detect Small Delay Defects (SDDs) and therefore is the basis of this research. Section 

1.3 presents circuit structures and approaches that are used to enable delay testing. 

Sections 1.4 and 1.5 introduce the idea of the K Longest Path Per Gate (KLPG) delay 

test approach, as well as pseudo-functional testing. 
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1.2 Delay Fault Models 

A defect in a circuit is the unintended manufacturing difference between the 

actual circuit implementation and the specification. A fault is the representation of a 

defect at the abstracted function level.  A fault model is an abstraction of the behavior of 

the circuit in the presence of a defect. Some popular delay fault models are discussed in 

the following sub-sections. 

1.2.1 Transition Fault Model 

The transition fault (TF) model [4] is the most commonly used delay fault model. 

It assumes that the delay fault affects only one place in the circuit. In this model, each 

gate input and output is assumed to have two transition faults: a slow-to-rise (STR) and a 

slow-to-fall (STF) delay fault. Thus the fault space of transition fault test is linear in the 

number of gates in the circuit. The extra delay introduced by the transition fault is 

assumed to be large enough to prevent the transition from reaching any observable 

primary outputs within the specified time. In other words, the transition fault effect can 

be observed through any path (whether long or short) to any observable primary output. 

This eliminates the need to consider circuit timing when generating transition fault tests. 

Stuck-at fault test generation tools can be easily extended to generate tests for 

transition faults [2]. A transition fault test vector pair {v1, v2} can be composed by 

pairing stuck-at-0 and stuck-at-1 test patterns. The first vector v1 initializes the circuit 

and the second vector v2 sensitizes and propagates the fault effect to observable primary 

output(s). Any stuck-at fault is covered by a corresponding transition fault test, since a 

stuck-at fault can be considered as an asymptotically very slow transition fault. 



 

3 
 

 

The main disadvantage of the TF model is that the size (i.e. the value of the delay 

caused by the defect) of the fault is not considered. Transition fault test generators 

normally select the “easiest” path, which is the shortest one in most cases, to activate and 

propagate a transition. Thus the quality of TF test for small delay defects is a concern 

[9][10]. Another problem is that TF test often propagates a glitch from the fault site [11], 

which introduces a potential loss in the quality of the tests. 

1.2.2 Gate Delay Fault Model 

The gate delay fault model [6][7][8][12] assumes that a spot defect is lumped on 

a gate input or output and takes into account the size of the extra delay. Detecting such 

faults requires testing a long path through the fault site. It is necessary to specify the 

delay fault size in order to determine the quality of a test set, which is defined by how 

close the minimum detected delay fault sizes are to the minimum detectable fault sizes.  

1.2.3 Line Delay Fault Model 

The line delay fault model [13][14] is a variation of the gate delay fault model. It 

requires testing a rising or falling delay fault through the longest sensitizable path on 

every line in the circuit. Sensitizing the longest path through the target line can detect the 

smallest delay defect on the target line. However, this model may fail to detect some 

defects [15] with the increase of process variation in new technologies [16]. 

1.2.4 Path Delay Fault Model 

The path delay fault model [5] models the cumulative delay on a path. It is the 

most conservative model since the fault space is all paths in the circuit. This model 
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assumes that any path can have any delay. A circuit is considered faulty with a path 

delay fault if any one path is slow for a rising or falling transition. Thus tests for the path 

delay fault model can be used to detect Small Delay Defects (SDDs) in the circuit. The 

primary limitation of the path delay fault model is that the number of paths in the circuit 

can be an exponential function of the number of gates. For this reason it is often not 

considered practical to test all paths in the circuit and achieve high test coverage.  For 

example, ISCAS85 benchmark circuit c6288, a 16-bit multiplier has close to 1020 paths 

[17]. However, it has been shown that for several circuits of interest, the number of paths 

is significantly less than exponential in the number of gates in the design. 

1.3 Scan Based Delay Test 

Testability is a relative measure of the effort or cost of testing a logic circuit. 

Testability analysis can be performed by calculating the controllability and observability 

of each signal line in the circuit. [18] Design-For-Test (DFT) techniques are used to 

improve the testability of a circuit. The most widely used DFT technique is scan design. 

In scan design, all or most storage elements in the design are converted into scan cells 

and the scan cells are “stitched” together to form one or more scan chains. The idea of 

scan design is illustrated in Figure 1. 
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Figure 1. Structure of scan design 

 

 

In scan based testing, first the Circuit-Under-Test (CUT) is set to scan mode and 

the test vectors are serially shifted into the scan registers (cells). Then the CUT is 

switched to test mode and the test vectors are applied to the combinational logic. The 

test results are captured into the scan cells at the next clock cycle. Then the CUT is 

switched back to scan mode and the test results are serially shifted out and compared 

with the expected responses. The next test vector can be shifted in at the same time. Scan 

design provides access to internal storage elements in the circuit which are not directly 

observable, and thus the testability of the circuit is improved. Another advantage of scan 

design is that the complexity of test generation is significantly reduced. 
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1.3.1 Scan Cell Types 

1.3.1.A Muxed-D Scan 

Figure 2 shows an edge-triggered muxed-D scan cell design. The scan cell is 

composed of a multiplexer and a standard D flip-flop (FF). The scan enable (SE) signal 

controls the multiplexer to select between the data input (D) and scan input (SI). Clock 

signal (CP) is used to clock the flip-flop in both normal and test modes.  

 

Figure 2. Muxed-D Scan Cell 

 

1.3.1.B LSSD Scan 

A shift register latch (SRL) [19][20] can be used as a level sensitive scan design 

(LSSD) scan cell. This scan cell contains a pair of latches, a master two-port D latch L1 

and a slave D latch L2. Clocks C, A and B are used to select between the data input D 

and the scan input I to drive +L1 and +L2, as shown in Figure 3. During test the SRLs 

are accessed by applying appropriate clock signal sequences. LSSD can be implemented 

using a single-latch design [19] or a double-latch design [21] based on different clock 

schemes. 
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Figure 3. LSSD Scan Cell 

1.3.1.C Enhanced Scan 

Enhanced scan [22][23] allows storing two bits of data in the scan cell. Thus both 

the initialization and test vector can be loaded into a scan cell and applied consecutively 

to the circuit under test. For a flip-flop design, this is achieved by adding an extra 

holding latch to the output of each flip-flop. Since the two bits are independent of one 

another, a higher fault coverage can be achieved (since there is the ability to apply an 

arbitrary pair of test vectors). The main disadvantage of enhanced scan design is the 

extra area, timing and power introduced by the extra holding latch. An example of 

enhanced scan cell is shown in Figure 4. 

 

Figure 4. Example of enhanced scan cell 
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1.3.2 Scan Based Delay Testing 

Delay testing requires launching transitions into the circuit: therefore there are 

two vectors in the test pattern of delay tests. The first vector initializes the circuit and is 

termed the initialization vector (V1) and the second vector launches the transitions and is 

termed the test vector (V2). According to the clocking scheme and the relationship 

between V1 and V2, delay tests can be classified into two types: Launch-On-Shift (LOS) 

[24][25] and Launch-On-Capture (LOC). [26] Figure 5 shows the clock diagram of both 

approaches. Experimental results show that LOS test can have higher delay fault 

coverage than LOC test. However, LOS test requires an at-speed Scan Enable (SE) 

signal, therefore it is more difficult to lay out a scan design in LOS style. 

 

Figure 5. Clock Diagram for Scan Based Delay Testing 

 

1.3.2.A Launch-On-Shift (LOS) 

In the Launch-On-Shift scheme, the first vector V1 is loaded to the scan cells for 

initialization and the second vector V2 is shifted into the scan cells to launch the 
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transition. In this case, V2 is a one-bit shift of the first vector V1. One capture clock cycle 

is then applied at-speed to capture the test response. The Scan Enable (SE) signal must 

switch during the test clock cycle, which is the reason why the SE signal must operate at 

speed in LOS design. Since this effectively requires the generation of a second clock 

network for the SE signal (which has tight timing constraints just like a clock signal 

does), LOS is not practical in high-speed designs. 

1.3.2.B Launch-On-Capture (LOC) 

In the Launch-On-Capture scheme, two capture clocks are applied at speed to 

capture the test response into the scan cells. In this scenario, the second vector V2 is the 

combinational circuit’s response to the first vector V1. The first capture clock is used to 

capture V2 into the scan cells and launch transitions into the circuit, and the second 

capture clock is used to capture the test response. In LOC design, the SE signal is 

switched during the dead cycles between lowering the SE signal and applying the first 

capture clock so it can operate at lower speed. As a result, the timing constraints on the 

SE signal are less aggressive, and hence LOC is used in high-speed designs. 

1.4 KLPG Algorithm and CodGen 

Based on the path delay fault model, the K Longest Path Per Gate (KLPG) 

algorithm [27][28] has been proposed to efficiently test delay faults in combinational 

and sequential circuits. In KLPG based path delay test generation, delay tests for K 

longest rising and falling paths going through each gate (or line) are generated. The 

reason why more than one path has to be tested is that because of process variations, the 
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longest path reported by timing analysis may not be the actual longest path in the 

fabricated circuit. [29] This is illustrated in Figure 6. As shown in this figure, because of 

process variation, each path has certain probability to be the longest path in the 

fabricated circuit as a result of process variations. All of these paths must be tested to 

detect a Small Delay Defect (SDD) at the targeted fault site. For example, path P1 (which 

is not statically the longest path) may become the longest path in a fabricated design 

with a delay defect of size greater than ∆1. 

 

Figure 6. Probabilistic distribution of path lengths 

 

This research is built on top of prior work with CodGen, which is a KLPG based 

path delay test generator supporting Pseudo Functional Test (PFT) [30] and dynamic 

compaction. [31] The basic CodGen algorithm is shown in Figure 7. In CodGen, path 

delay tests are generated in three steps: 

 Path Search: For each targeted fault site, longest rising and falling paths are 

generated with the KLPG algorithm. The result of path search is the set of 

Necessary Assignments (NAs) to sensitize the path. An example of Necessary 

Assignment is a logic one value on the side input of an AND gate, in order to 

permit a transition to propagate from the other input to the output. 

 

 PDF P2 P1 

0 
1 

tmax 

P0 P3 

2 

Delay 
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Figure 7. Basic CodGen algorithm 

 

 Path Justification: The paths found in the first step are topological longest paths, 

but some of them can be false paths, which means that the transition cannot 

propagate along the path. Because of this the paths must be justified to check 

whether they are sensitizable. During justification, a set of input value 

assignments are found to set the necessary assignments. An example of a 

sensitizable path is shown in Figure 8. In this example, a=0 and c=1 are 

necessary assignments to sensitize the path from b to g, and X0 and S1 are the 

values on a and c to justify them. Here, “X0” on a means that the value is “X” or 

“don’t cares” (DC) in the first vector and 0 in the second vector. The value “S1” 

on c means “stable one”. 
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Figure 8. Example of sensitizable path 

 

 Dynamic Compaction: Paths are compacted to reduce the total number of test 

patterns generated. In the case where test vectors have been generated for each 

path, the direct compaction of test vectors is called static compaction. Dynamic 

compaction is implemented in CodGen where the Necessary Assignments (NAs) 

of the paths are compacted to improve the compaction ratio. However, dynamic 

compaction takes significantly more CPU time than static compaction. 

1.5 Pseudo Functional Test 

The voltage level of the power grid in the circuit can significantly affect the 

accuracy of delay test. [32][33] The launching of the delay test causes a surge in the 

current drawn from the power grid. Because of the inductance on the power grid, this 

current surge will cause a large drop in power supply voltage, followed by inductive 

ringing, as shown in Figure 9. The temporarily lowered power supply voltage as a result 

of this ringing (marked on the left of Figure 9) will cause the circuit to operate more 

slowly than normal, and may cause a good chip to be rejected as bad. This is termed test 

overkill. 
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Figure 9. Delay test induces drop of power supply voltage [32] 

 

The solution to this power supply voltage problem is called Pseudo Functional 

Test (PFT) where the delay test vectors are preceded by several medium-speed preamble 

cycles, after which the delay test vectors are launched at-speed. The timing diagram of 

PFT is shown in Figure 10. After the preamble cycles, the power supply voltage should 

have been stabilized such that it won’t affect the accuracy of the delay test. However, 

introducing preamble cycles adds to the complexity of test generation. In this case, the 

test vectors scanned in from the tester are different from the actual delay test vectors 

applied during the launch cycle. So once the test generator has generated the test vectors 

for the delay tests, it must back-trace through the preamble time frames to determine the 

test patterns to scan in. This is termed time frame expansion, and is typically used during 

sequential test. It takes considerable CPU time to generate PFT patterns. Improving the 

performance of PFT test generation is the central focus of this dissertation. 
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Figure 10. Clock diagram of pseudo functional test 

 
 

1.6 Structure of This Dissertation 

The rest of this dissertation is structured as follows: In Section 2, the design of a 

SAT based path delay test generator is presented along with its implementation using the 

CodGen structure. Section 3 discusses a number of advanced techniques to speed up the 

performance of SAT based ATPG and benchmark results are shown to justify the 

effectiveness of each technique. In Section 4, enhancements to CodGen are discussed 

which improve its usability. Section 5 concludes the research. 
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2. BOOLEAN SATISFIABILITY BASED DELAY TEST GENERATION 

 

2.1 Motivation 

Automatic Test Pattern Generation (ATPG) is a very time consuming process. In 

industry, it often takes several days or even weeks to generate test patterns for a newly 

designed digital chip. [34] This problem becomes more serious in the case of path delay 

testing, especially when Pseudo Functional Test (PFT) and dynamic compaction are 

used by the test generator, due to the increased complexity of these approaches. CodGen 

employs both of these technologies, and hence its runtime performance becomes a major 

concern. Besides runtime, accuracy is another concern of CodGen performance. 

Originally CodGen used the PODEM algorithm [35] in path justification and dynamic 

compaction. The built-in backtrack limitation in PODEM may cause the algorithm to 

give up some delay tests even though they can be justified with a more efficient method. 

This problem reduces the fault coverage of the delay tests.  

Recently the performance of modern Boolean Satisfiability (SAT) solvers has 

significantly improved [36][37] and SAT based ATPG has been successfully 

implemented to generate test patterns for stuck-at faults and transition delay faults. 

[38][39] It is therefore natural to explore SAT based approaches for the purpose of 

generating test patterns for path delay faults. 

The motivation of this research is to improve both the efficiency of path delay 

test generation and the fault coverage of delay tests with the help of a highly efficient 

SAT solver. 
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2.2 Boolean Satisfiability (SAT) Solver 

2.2.1 Boolean Satisfiability Problem 

Definition of Boolean Satisfiability Problem: Given a formula S, expressed in 

Conjunctive Normal Form (CNF), on Boolean variables X = {x1, x2 …, xm}, decide if 

there exists an assignment to X, such that S evaluates to true. In that case, S is said to be 

satisfiable. Otherwise, it is unsatisfiable. 

2.2.2 Survey of SAT Solvers 

Boolean Satisfiability (SAT) is one of the most well-known NP-complete 

problems. Despite its worst-case exponential runtime characteristics, general-purpose 

SAT solvers have found diverse applications in such areas as hardware and software 

verification, ATPG, scheduling and even machine intelligence. [40] Modern SAT 

solvers are able to solve large problems with over a million variables and several million 

constraints. Some of the most commonly used modern SAT solvers include: Chaff, [36] 

Berkmin, Seige and MiniSat. [37]. 

In essence, SAT solvers provide a generic combinational reasoning and search 

platform. SAT solvers can be divided into two categories: A complete SAT solver is one 

that, given the input formula F, eventually either produces a satisfying assignment for F 

or proves F is unsatisfiable. An incomplete SAT solver does not provide a guarantee that 

it will eventually either report a satisfying assignment or prove the given formula 

unsatisfiable. There is a preset backtrack limit in some incomplete SAT solvers, after 

which they may or may not produce a solution. Incomplete SAT solvers use many 



 

17 
 

 

Stochastic Local Search (SLS) strategies to improve their typical-case performance such 

that on many problems they significantly outperform their complete counterparts. 

However, these incomplete SAT solvers perform well on randomly generated SAT 

instances, but often perform much worse on circuit-derived structural SAT instances. 

Most classic SAT solvers are built using the Davis-Putnam-Logemann-Loveland 

(DPLL) procedure, [41][42] which is a complete, systematic search process for finding a 

satisfying assignment for the given Boolean formula. The DPLL procedure performs 

backtrack in the space of partial truth assignments and efficiently prunes the search 

space. Most modern SAT solvers are Conflict-Driven Clause Learning (CDCL) solvers. 

The organization of CDCL solvers is primarily inspired by the GRASP SAT procedure. 

Since their inception in the mid-90s, CDCL SAT solvers have been applied, in many 

cases with remarkable success, to a number of practical applications including hardware 

verification and ATPG. The concept and organization of CDCL SAT solvers are 

discussed in Section 2.2.4. 

2.2.3 Conjunctive Normal Form (CNF) 

The inputs to the SAT solvers are in the format of Conjunctive Normal Form 

(CNF) or more colloquially, a “product of sum” expression. Some examples of CNF 

clauses are shown in Figure 11. A Boolean formula F in CNF format is a conjunction 

(AND) of clauses, where each clause is a disjunction (OR) of literals, where each literal 

is either a Boolean variable or its negation.  

To use SAT solvers in the applications of electronic circuit design and 

verification, the circuit structure must be translated to a Boolean formula in CNF format. 
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The basic idea of translating combinational gates into CNF was proposed in [44]. In 

Section 2.5, I will show how to generate CNF clauses for sequential elements in the 

circuit. 

 

Figure 11. Examples of CNF clauses 

 

2.2.4 Conflict Driven Clause Learning (CDCL) 

Besides using DPLL, CDCL SAT solvers implement a number of additional key 

techniques: [43] 

 Learning new clauses from conflicts during backtrack search 

 Exploiting structure of conflicts during clause learning 

 Using lazy data structures for the representation of formulas 

 Branching heuristics that have low computational overhead and receive 

feedback from backtrack search 

 Periodically restarting backtrack search 

 Additional techniques include deletion policies for learnt clauses, the actual 

implementation of lazy data structures, and the organization of unit clause 

(implication) propagation. 

CDCL SAT solvers dynamically generate learnt clauses based on conflicts 

detected in searching a satisfying solution. For example, if a CDCL SAT solver made 
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the assignments: A=0, B=0, C=0 when trying to solve a particular problem and this 

resulted in a conflict, the solver would construct a conflict graph, and, from this graph, it 

will dynamically generate a learnt clause which would ensure that this conflict would not 

recur. If the conflict graph only had variables A=0 and C=0 involved in the conflict, one 

possible format of this learnt clause is A+C. This would ensure that A=0 and C=0 would 

not be tried again in the SAT solving procedure.  

The most common lazy data structure is the watch list. [43] In CDCL SAT 

solvers, each literal has a watch list which contains pointers to CNF clauses in which this 

literal is watched. Each clause has 2 watched literals (selected at random). By definition, 

both watched literals in a clause are unassigned. Whenever the value of one literal is 

asserted, the CNF clauses on its watch list are evaluated. If there is another unwatched, 

unassigned literal in these clauses, one of these unwatched unassigned literals is now 

watched instead of the asserted literal. If there is no remaining unwatched unassigned 

literal in the clause, then an implication is generated on the other watched literal of the 

clause being evaluated. The purpose of using watch lists in CDCL SAT solvers is to 

enable the solver to very rapidly locate the implications that are generated as a 

consequence of a variable assignment, and avoid useless evaluations of all the CNF in 

order to find implications. 

 CDCL SAT solvers use Boolean Constraint Propagation (BCP) [36] to identify 

the assignments of Boolean variables and propagate the assigned value. This method is 

based on the observation that if a n-literal clause consists of n-1 literals whose assigned 

value is 0, and one unassigned literal, then that unassigned literal must take on a value of 
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1 to make the CNF satisfiable. This can be illustrated with the example shown in Figure 

12. This example shows the evaluation process of CNF clause A+B+C. At the 

beginning, this clause is added to the watch lists of A and B. If A is assigned to 0, this 

clause is evaluated. Since there are two unassigned literals in the clause, their 

assignments cannot be decided yet. Then this clause is removed from the watch list of A 

and added to the watch list of C. Later when the value of C gets assigned, this clause is 

evaluated again. If C=1, this clause has been satisfied. If C=0, according to the rule of 

BCP, B is assigned to the value of 1 such that the CNF can be satisfiable and the value 

of this assignment gets propagated by evaluating those clauses on the watch list of B. 

 

Figure 12. Example of Boolean constraint propagation 

 

2.3 Previous Work on SAT Based ATPG 

Previously SAT based ATPG has been successfully applied to stuck-at and 

transition delay fault testing [39][44]. In recent years, as the performance of SAT solvers 

has continued to improve [36][37], this approach has become increasingly practical for 

test generation. 
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There has been very limited previous work on SAT-based ATPG for path delay 

testing. [38][45][46] The fundamental challenge in applying SAT solvers to path delay 

test generation is in encoding path delay with Boolean variables. In [45] the path delay 

uses a unipolar encoding. This approach works well for unit gate delays, but the number 

of variables grows exponentially with delay resolution. For example, a precision of three 

digits requires 1000 Boolean variables for each logic gate. Binary encoding can be used 

to reduce the number of Boolean variables used for gate delays, but this approach 

introduces complex CNF clauses in describing the arithmetic operations of delay 

variables. 

2.4 Mixed Structural-Functional Approach 

To cope with the difficulty of encoding delay values in SAT-based path delay 

test, we propose a mixed structural-functional approach for path delay test generation. 

The entire process of path delay test generation contains two stages: the first stage is 

path searching, which is implemented using the KLPG algorithm. As discussed in 

Section 1, the KLPG algorithm generates K longest paths for each gate in the circuit. 

Since the KLPG algorithm is based on structural information, the delay encoding 

problem is avoided and real-valued delays can be used. In the second stage, the 

generated paths are justified and then compacted into patterns using a SAT solver.  

By separating path delay test generation into two stages, we can fully exploit the 

advantages of both the KLPG algorithm and the SAT solver. With the SAT solver, we 

can generate path delay tests more efficiently and accurately. Using the KLPG algorithm 

for path search saves the trouble of encoding delays. The new CodGen flow chart after 
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implementing mixed structural-functional method is shown in Figure 13. In this new 

flow chart, the shaded region, which consists of path justification and dynamic 

compaction, is the portion of the new CodGen implemented with the SAT solver. 

 

Figure 13. Mixed structural-functional approach 

 

2.5 MiniSat Integration 

2.5.1 MiniSat 

The SAT solver used in this research is MiniSat. [37] MiniSat is a minimalistic, 

open-source SAT solver, developed to help researchers and developers alike to get 

started on SAT. [47] It is one of the most well developed SAT solvers at this time and 

was a winner of the international SAT competition. [48] The key features of MiniSat 

include: 
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 Easy to modify: MiniSat is small and well-documented, making it an ideal 

starting point for developers to adapt SAT based techniques 

 Highly efficient: As a previous winner of the international SAT competition, 

MiniSat is well maintained to reflect the latest developments in SAT solvers. 

 Designed for integration: MiniSat supports incremental SAT and has 

mechanisms for adding non-clausal constraints. It is also extensible. 

Developers from multiple research areas have been using MiniSat to solve 

Boolean satisfiability (SAT) problems originating from diverse disciplines. There have 

been reports of using MiniSat in SAT-based ATPG to generate test patterns for structural 

tests [38][49]. It is reported that this approach can significantly improve the fault 

coverage and runtime efficiency of the ATPG process, especially for large designs from 

industry. SAT-based ATPG also provides a robust solution for some faults which are 

hard to test with traditional ATPG techniques. 

2.5.2 CNF Generation 

Boolean formulas written in Conjunctive Normal Form (CNF) format can be 

easily manipulated programmatically and modern SAT solvers, including MiniSat, 

require CNF as the input format. The basic idea of translating logic circuits into CNF is 

described in [44]. The idea is based on the fact that in a logic gate, the output variable 

and its logic function are implications of each other. The advantage of this approach is 

that the CNF can be generated locally, without considering any other gates in the circuit. 

The disadvantage is that the generated CNF is not always efficient and may contain 

many redundancies. The CNF of most commonly-used Boolean gates are summarized in 
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Table 1. In the table, X and Y are input signals of the gate and Z is the output. Following 

the idea described in [44], the CNF of gates with arbitrary truth table can also be 

generated. Over the years, there have been several efforts in improving the efficiency of 

CNF generation with chained ITE [50] or BDDs [51]. 

 

Table 1. CNF of Common Boolean Gates 

Type CNF 

BUF (Z+ ̅)( ̅+X) 

NOT (Z+X)(  ̅+ ̅) 

AND ( ̅+X)( ̅+Y)(Z+ ̅+ ̅) 

NAND (Z+X)(Z+Y)( ̅+ ̅+ ̅) 

OR (Z+ ̅)(Z+ ̅)( ̅+X+Y) 

NOR ( ̅+ ̅)( ̅+ ̅)(Z+X+Y) 

 

In delay test, we must generate test vectors for multiple time frames. For 

example, there are two test vectors in either Launch-On-Capture (LOC) or Launch-On-

Shift (LOS) scan test. Pseudo-Functional Test (PFT) requires test vectors for more than 

two preamble time frames. In traditional delay test generation based on PODEM, we 

have to perform time frame expansion such that the algorithm can handle multiple time 

frames. To use CNF in delay test generation, we must find an efficient way to generate 

the CNF for multiple time frames. The most straightforward way to do this is to create 

separate Boolean variables for any logic signal in every time frame. For example, if 

there is a logic signal called X in the circuit, we create the Boolean variable X0, X1, ..., 

Xn-1 to represent the values of X in the time frames 0, 1, …, n-1, where n = 2 for either 



 

25 
 

 

LOC or LOS test and n > 2 for PFT. Following Table 1, the CNF of combinational gates 

can be generated using the Boolean variables with time frame annotation. 

 

Figure 14. CNF for DFF (non-inverting and inverting) 

 
 

Special cautions must be taken when generating CNF for sequential elements in 

the circuit, since their input and output signals are Boolean variables in different time 

frames. Figure 14 shows both non-inverting and inverting D Flip-flops (DFFs) and their 

corresponding CNFs. The CNFs of inverting and non-inverting DFFs are in the same 

format as the CNFs of inverters and buffers except that the output Boolean variable is 

one time frame later than the input variable.  

Another special case in CNF generation is in handling fixed Primary Inputs (PIs). 

Because of the limited number of high-speed pins on low-cost testers, the PIs of a chip 

are fixed during the application of a test pattern. In this case, for each PI, there is only 

one Boolean variable used for all time frames. Due to the same low-cost tester 

constraints, the Primary Outputs (POs) of the circuit are ignored. 
𝐷𝑚−1 

𝑄𝐵𝑚 

(𝑄𝐵𝑚 + 𝐷𝑚−1) (𝑄𝐵𝑚̅̅ ̅̅ ̅̅  + 𝐷𝑚−1̅̅ ̅̅ ̅̅ ̅) 

m = 1, 2, …, n-1 

n: Number of time frames 

𝐷𝑚−1 𝑄𝑚 

(𝑄𝑚 + 𝐷𝑚−1̅̅ ̅̅ ̅̅ ̅)(𝑄𝑚̅̅ ̅̅̅ + 𝐷𝑚−1) 
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Since the Circuit-Under-Test (CUT) does not change during the process of delay 

test generation, we can create one CNF describing the entire CUT at the beginning of 

test pattern generation following the approach described above, and use it over and over 

again during the entire test generation process. 

2.5.3 MiniSat/CodGen Interface 

There are two options in implementing the interface between MiniSat and 

CodGen. Each of them has its advantages and disadvantages: 

1. Private Inheritance/Inclusion: Better protection for the internal data 

structures of MiniSat. Less efficient since only the public interface of the 

SAT solver instance can be accessed. 

2. Public Inheritance/Extension: MiniSat is designed to be extensible. The 

advantage of this option is that the code can be very efficient by directly 

accessing the internal data structures of MiniSat. But this option adds the 

danger of corrupting the internal data of MiniSat. 

In this research, originally the MiniSat/CodGen interface was implemented using 

option 1 for its simplicity and security. Later for the purpose of improving the 

performance of SAT based test generation, the interface is modified to option 2. The 

code to implement this interface is illustrated in Figure 15. 
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Figure 15. MiniSat/CodGen interface 

 
 

Since we are using MiniSat, which is a general purpose SAT solver, in the 

particular application of delay test, we can define those data structures necessary to 

represent the circuit under test in this wrapper class. By calling the public functions 

defined in this wrapper class, CodGen will have the ability to access the internal data 

structures of MiniSat through this wrapper class. It is believed that this new approach of 

implementing the CodGen-MiniSat interface will greatly facilitate the future effort of 

improving SAT performance with the knowledge of circuit structure. 

2.6 Benchmark Platforms 

Two Windows servers are used in this research for the purpose of running 

benchmarking test cases and they are described as follows: 

 Server 1 (S1): A Windows 7 PC with dual AMD Opteron Processors 252 

(2.59 GHz) and 16.0 GB main memory 

 Server 2 (S2): A Windows 7 PC with dual Intel E5-2603 Processors (4 

core, 1.80 GHz) and 64.0 GB main memory 

In this dissertation, unless specially mentioned, results presented in Section 2 are 

generated on Server 1 and results presented in Section 3 are generated on Server 2. 
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2.7 Experimental Results 

Experiments are conducted to test the performance of CodGen with MiniSat and 

the results are compared with those of the original CodGen using PODEM. All 

experiments are performed for K=1 and K=5 where K is the number of rising and falling 

paths to be tested through each line in the circuit, using robust path constraints. Besides 

Launch-On-Capture (LOC) test, where number of time frames n=2, we also did Pseudo 

Functional Test (PFT) with number of time frames n=4, 6, 8, 10. Fixed primary inputs 

(PIs) are used in all the experiments. In the case of using PODEM, a backtrack limit of 

200 is used for the runs.  

 
Table 2. Comparison of number of paths found with PODEM and SAT (K=5) 

 

Compared with PODEM, using the SAT solver in CodGen detects more 

sensitizable paths, achieves a higher compaction ratio and runs much faster. The number 

of paths found by CodGen in both scenarios are summarized in Table 2 for the case of 

Circuit 
n=2 n=4 n=6 n=8 n=10 

PODEM SAT PODEM SAT PODEM SAT PODEM SAT PODEM SAT 

s1423 1323 1419 488 1088 199 1080 137 1080 135 1080 

s1488 189 261 121 261 113 261 104 261 95 261 

s1494 202 285 133 285 115 285 108 285 95 285 

s5378 5214 5226 1731 2753 1052 2310 826 2268 698 2257 

s9234 6605 7043 3342 4828 905 4516 779 4516 852 4516 

s13207 6886 6945 2513 3286 1042 2050 786 1349 592 1027 

s15850 6618 7073 4284 5548 3241 5027 3147 4991 3101 4991 

s35932 22274 22418 21890 22034 21506 21906 21314 21906 20988 21906 

s38417 50172 50949 42085 48417 30885 41266 23255 40204 17825 39750 

s38584 17314 18518 11031 15231 7072 14227 6428 13961 4590 13728 

Average 1.00 1.11 1.00 1.57 1.00 2.53 1.00 2.98 1.00 3.19 
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K=5. For n=2, on average MiniSat detects 11% more paths than PODEM. Also, the 

advantage of using MiniSat increases with increasing number of time frames. 

 

Table 3. Comparison of compaction ratios of PODEM and SAT (K=5) 

. 

Table 4. Comparison of runtime performance of PODEM and SAT (K=5) 

Circuit 
n=2 n=4 n=6 n=8 n=10 

PODEM SAT PODEM SAT PODEM SAT PODEM SAT PODEM SAT 

s1423 4.32 4.64 2.82 4.17 2.73 4.14 2.74 4.15 3.29 4.17 

s1488 2.91 3.53 2.69 3.53 2.46 3.58 2.36 3.58 2.26 3.58 

s1494 3.11 3.61 2.66 3.61 2.40 3.61 2.35 3.61 2.16 3.56 

s5378 10.41 11.21 6.58 12.57 8.62 13.59 6.83 13.42 6.02 13.43 

s9234 8.70 9.40 8.38 12.10 9.84 12.41 10.12 12.31 12.17 12.48 

s13207 3.33 3.52 20.43 19.44 8.20 14.96 11.39 29.98 8.71 21.85 

s15850 6.18 6.64 4.58 5.27 3.90 6.01 3.69 6.09 3.96 6.09 

s35932 718.52 679.33 533.90 688.56 130.34 625.89 68.53 625.89 72.62 644.29 

s38417 50.22 56.74 34.50 50.07 26.02 40.14 18.85 33.50 14.31 29.62 

s38584 41.03 47.48 32.64 56.83 27.41 51.73 26.24 50.95 29.24 50.66 

Average 1.00 1.10 1.00 1.41 1.00 1.89 1.00 2.49 1.00 2.45 

Circuit 
n=2 n=4 n=6 n=8 n=10 

PODEM SAT PODEM SAT PODEM SAT PODEM SAT PODEM SAT 

s5378 1:12 0:23 1:17 0:19 1:23 0:21 2:14 0:28 2:20 0:35 

s9234 4:36 2:50 6:07 2:04 4:07 2:13 7:49 2:56 13:37 3:38 

s13207 5:52 4:28 2:39 1:35 2:28 1:02 1:34 0:36 1:53 0:32 

s15850 4:54 3:28 12:16 4:02 18:51 5:12 29:53 7:03 38:28 9:06 

s35932 23:58 20:53 40:24 25:56 2:04:14 40:44 4:02:59 54:37 5:12:16 1:12:29 

s38417 4:26:02 32:49 9:54:13 1:19:10 11:00:21 2:08:14 13:42:00 3:15:21 16:42:38 4:38:01 

s38584 28:49 18:18 51:07 25:55 1:06:54 32:29 1:20:17 43:42 1:13:05 57:40 

Average 1.00 0.38 1.00 0.31 1.00 0.32 1.00 0.28 1.00 0.28 
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Table 3 compares the compaction ratios of CodGen with PODEM and MiniSat 

for the case of K=5. For n=2, on average with MiniSat the compaction ratios are 

improved by 10%. The improvement increases with increasing number of time frames. 

The total CodGen runtimes with PODEM and MiniSat are compared in Table 4 

for the case of K=5. With MiniSat, on average CodGen is sped up by 60~70% compared 

with PODEM. 
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3. TECHNIQUES TO IMPROVE SAT EFFICIENCY 

 

3.1 Dynamic SAT Solving 

Dynamic SAT Solving (DSS) is based on the observation that to test the path 

delay faults through a particular target line (fault site), only those gates within the 

transitive fan-in of the fan-out cone of the target line are involved. This region is shown 

in Figure 16, as the two shaded areas. For most target lines, this region (called the fault 

region henceforth) is a small fraction of the entire circuit. This is particularly true for 

large industrial circuits. 

 

Figure 16. Transitive fan-in cone of targeted fault site 

 
 

To reduce SAT solution time, the internal data structure of MiniSat has been 

modified such that CNF clauses can be dynamically turned on (for those clauses in the 

fault region) and off (for those clauses of the unshaded region). MiniSat uses optimized 

Boolean Constraint Propagation (BCP) [36] to evaluate CNF clauses and assign values 
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to Boolean variables. The basic idea of optimized BCP is to “watch” no more than two 

literals of each CNF clause at any time. Whenever there is only one undecided literal left 

in the CNF clause, MiniSat assigns a value to the corresponding undecided Boolean 

variable and propagates the newly assigned value to other clauses as an implication. To 

dynamically disable the evaluation of a particular CNF clause, this clause has to be 

removed from all the watch lists. This is the key observation used in DSS. Adding the 

CNF clause back to the watch lists of its literals will enable the evaluation of this clause. 

With this technique, as delay tests are generated for a particular line, first the fault region 

is calculated by breadth-first search. Only those gates inside the resulting region are 

enabled for SAT solving. We call this new technique Dynamic SAT Solving (DSS). A 

similar approach of speeding up MiniSat based ATPG has been reported in [52].  

 

Table 5. Results of dynamic SAT solving (DSS) (n=2, K=5) 

Circuit CPU Time 

(hh:mm:ss) 

Path Count Pattern Count Compaction 

Ratio Original 

 

DSS 

 

Original DSS Original 

 

DSS 

 

Original 

 

DSS 

 
s5378 0:00:53 0:00:27 5225 5226 493 466 10.60 11.21 
s9234 0:04:18 0:03:18 6869 7043 785 749 8.75 9.40 

s13207 0:06:01 0:05:14 6911 6945 2068 1971 3.34 3.52 
s15850 0:06:28 0:04:52 7054 7073 1068 1065 6.60 6.64 
s35932 0:51:41 0:26:41 22418 22418 34 33 659.35 679.33 
s38417 1:30:21 0:52:45 50618 50949 952 898 53.17 56.74 
s38584 0:34:53 0:24:57 17557 18518 398 390 44.11 47.48 

b14 

 

5:45:56 5:26:17 52156 52747 27683 26500 1.88 1.99 
b15 

 

7:12:17 9:46:49 22345 33065 7797 11288 2.87 2.93 
b17 

 

48:54:43 48:22:06 91055 117737 10739 10251 8.48 11.49 
b20 

 

8:09:00 7:37:49 109709 110140 31231 24064 3.51 4.58 
b21 

 

9:39:33 10:58:07 111476 111966 31132 23806 3.58 4.70 
b22 38:38:51 38:41:16 162019 163400 37206 26825 4.35 6.09 

STC 7:25:54 4:00:56 67861 70872 2762 2558 24.57 27.71 
tex1 60:00:21 37:36:47 158521 158750 2258 1802 70.20 88.10 

Average 1.000 0.817 1.000 1.063 1.000 0.939 1.000 1.147 
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The effectiveness of DSS has been proven with ISCAS89 and ITC99 

benchmarks. ITC99 benchmarks are larger than ISCAS89 benchmarks. The results for 

n=2, K=5 are shown in Table 5. As expected, DSS significantly reduces CPU time. 

Speedups of up to 2 times are observed. In most cases, the compaction ratios are 

significantly improved due to the smaller problem sizes to be solved. On average, DSS is 

going to reduce CodGen runtime by 18.3% and improve compaction ratio by 14.7%. 

3.2 Circuit Observability Don’t Cares 

 

Figure 17. Example of Cir-ODC 

 
 

Another approach to speed up SAT performance is to use Circuit Observability 

Don’t Cares (Cir-ODCs). The definition of Observability Don’t Care (ODC) is as 

follows: under certain logic conditions C, if one signal S in the design does not affect 

any output of the design, then C is the ODC of S. An example of Cir-ODCs is shown in 

Figure 17. In this example, B=0 is the Cir-ODC of those gates inside the fan-in cone of 

C. 
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In [53], the authors described an algorithm to quickly calculate Cir-ODCs. This 

algorithm has been implemented in CodGen to evaluate the effectiveness of using Cir-

ODCs in path delay test generation. Cir-ODCs can be used in path justification and 

dynamic compaction based on the observation that no matter how many time frames 

there are in the delay test, all the gates along the path have to be observable in the last 

frame, in order to propagate the transition along the path, therefore their Cir-ODCs must 

be false. One advantage of the algorithm in [53] is that the Cir-ODCs calculated are in 

the form of sum of single literals, so they can be directly used as assumptions 

(restrictions on Boolean variable values) when SAT is invoked. 

 

Table 6. Results of delay test generation with Cir-ODC (n=2, K=5) 

Circuit 

 

CPU Time 

(hh:mm:ss) 

Path Count Pattern Count Compaction Ratio 
Original 

 

Cir-ODC 

 

 

 

 

Original Cir-ODC 

 

Original 

 

Cir-ODC 

 

Original 

 

Cir-ODC 

 

 

s5378 0:00:53 0:00:48 5225 5225 493 493 10.60 10.60 
s9234 0:04:18 0:03:55 6869 6869 785 785 8.75 8.73 

s13207 0:06:01 0:06:15 6911 6911 2068 2068 3.34 3.34 
s15850 0:06:28 0:06:32 7054 7054 1068 1067 6.60 6.55 
s35932 0:51:41 0:48:25 22418 22418 34 34 659.35 659.35 
s38417 1:30:21 1:27:31 50618 50618 952 952 53.17 53.17 
s38584 0:34:53 0:36:18 17557 17557 398 405 44.11 42.82 

b14 

 

5:45:56 6:01:16 52156 52156 27683 27683 1.88 1.88 
b15 

 

7:12:17 4:53:47 22345 22345 7797 7797 2.87 2.87 
b17 

 

48:54:43 51:20:23 91055 91055 10739 10722 8.48 8.49 
b20 

 

8:09:00 7:33:24 109709 109709 31231 31205 3.51 3.51 
b21 

 

9:39:33 9:43:26 111476 111476 31132 31111 3.58 3.58 
b22 38:38:51 43:18:08 162019 162019 37206 37216 4.35 4.35 

STC 7:25:54 7:58:19 
 

67861 67842 2762 2763 
 

24.57 24.56 
 tex1 60:00:21 59:12:22 

 
158521 157916 2258 2258 70.20 70.20 

 
Average 1.000 0.946 1.000 1.000 1.000 1.001 1.000 0.997 
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The effects of reducing total runtime with Cir-ODCs is demonstrated in Table 6 

for the case of n=2, K=5. Both ISCAS89 and ITC99 benchmarks along with a couple of 

industry designs are also used to measure the effects of Cir-ODCs. It is shown that in 

some ITC99 test cases such as b15, Cir-ODCs can reduce the total SAT time by up to 

30%. 

3.3 SAT Based Static Learning 

Learnt clauses generated with static learning based on circuit structure can be 

used to guide the operation of the SAT solver. MiniSat itself can be used to implement 

efficient recursive learning [54]. Assume there are two nodes A and B in the circuit and 

their corresponding values cannot be decided with direct implication. Then we can set 

the values of A and B and use the values as the assumption in calling MiniSat. Learnt 

clause can be generated if a certain combination of the assigned values is determined to 

be invalid. For example, as shown in Figure 18, if we set A=0 and B=1, after calling 

MiniSat, it is determined that this is an invalid state of the circuit and the corresponding 

learnt clause can be generated accordingly. In this particular example, the generated 

learnt clause has the form A+ ̅.  

 

Figure 18. Example of SAT based static learning 
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SAT based recursive learning is performed at the beginning of the CodGen run 

and the generated learnt clauses are added to the CNF instance to guide the SAT solver 

in justification and dynamic compaction. Since these learnt clauses will prune the search 

space of the SAT solver, it is expected that the SAT solver will run more efficiently. 

 

Table 7. Results of SAT based static learning (n=2, K=5) 

Circuit 

 

CPU Time 

(hh:mm:ss) 

Path Count Pattern Count Compaction Ratio 
Original 

 

D=2 

 

Original D=2 

 

 

Original 

 

D=2 

 

 

Original 

 

D=2 

 

 

 

s5378 0:00:53 0:00:52 5225 5225 493 493 10.60 10.60 
s9234 0:04:18 0:04:21 6869 6869 785 785 8.75 8.75 

s13207 0:06:01 0:06:08 6911 6911 2068 2068 3.34 3.34 
s15850 0:06:28 0:06:18 7054 7054 1068 1068 6.60 6.60 
s35932 0:51:41 0:37:24 22418 22418 34 34 659.35 659.35 
s38417 1:30:21 1:32:26 50618 50618 952 952 53.17 53.17 
s38584 0:34:53 0:35:28 17557 17557 398 398 44.11 44.11 

b14 

 

5:45:56 6:10:47 
 

52156 52156 27683 27683 
 
 

1.88 1.88 
b15 

 

7:12:17 6:48:35 22345 22349 7797 7797 2.87 2.87 
b17 

 

48:54:43 48:37:28 
 

91055 91055 10739 10739 
 
 

8.48 8.48 
b20 

 

8:09:00 7:57:46 109709 109709 31231 31231 3.51 3.51 
b21 

 

9:39:33 9:38:07 111476 111476 31132 31132 3.58 3.58 
b22 38:38:51 38:56:09 

 
162019 162019 37206 37206 

 
4.35 4.35 

STC 7:25:54 7:31:56 67861 67861 2762 2762 24.57 24.57 
tex1 60:00:21 58:10:12 158521 158521 2258 2258 70.20 70.20 

Average 1.000 0.982 1.000 1.000 1.000 1.000 1.000 1.000 

 

The results of running delay test generation with SAT based static learning are 

summarized in Table 7. In this table, the results of running the benchmarks with two 

level SAT based static learning (D=2) are compared with the results without any static 

learning. Here the depth of static learning D is defined as the number of multiple input 

combinational gates passed through when backtracking from the targeted node in the 

circuit. It can be shown that the average runtime of path delay test generation can be 
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reduced with SAT based static learning, while the average number of test patterns and 

average compaction ratio remain almost the same. 

3.4 Dynamic Learnt Clause Management 

MiniSat generates learnt clauses during the SAT solving process. Several 

strategies to dynamically manage learnt clauses for better performance have been 

explored [55]. Generally speaking, MiniSat generates many learnt clauses. This increases 

memory usage and may slow down its operation. Therefore the dynamically generated 

learnt clauses have to be purged regularly. The difference between learnt clause 

management strategies is the criteria to decide which clauses to purge. These criteria are 

based on the activity factors of the learnt clauses (which reflect whether a particular 

learnt clause has been evaluated recently) or simply based on the length of the learnt 

clause, or both. 

By default, MiniSat manages its learnt clauses based on both the activity factors 

and lengths of those learnt clauses. Whenever the learnt clause management function is 

triggered inside MiniSat, it reduces the number of learnt clauses based on the following 

criteria:  

 Always keep learnt clauses of length are less than 3 

 Reduce other learnt clauses based on their activity factor until the total 

number of dynamic generated learnt clauses drops to half of the original 

value before the management function is called. 

Other dynamic learnt clause management policies based on the length or activity 

factor of the learnt clauses are implemented in CodGen for the purpose of determining 
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the best learnt clause management strategy. The results of running ISCAS89 and ITC 99 

benchmarks and industrial circuits with different learnt clause management policies are 

summarized in Table 8. In the experiment, learnt clause management function is call 

whenever the total number of learnt clauses reaches the 1% of the size of the CNF being 

solved. This threshold is intentionally set to be low such that the function can be called 

in all the benchmarks and therefore the effects of different learnt clause management 

policies can be compared. The five policies compared in Table 8 are as follows: 

 Policy 1: Default MiniSat learnt clause management policy described above 

 Policy 2: This policy is only based on activity factor of the learnt clauses and 

each time the function is called, only ¼ of the most used learnt clauses are 

kept and the other ¾ are removed. 

 Policy 3: This policy is only based on the length of the learnt clauses. Each 

time the function is called, only those learnt clauses whose length is less than 

or equal to 3 are kept. 

 Policy 4: In this policy, the nodes in the circuit are levelized before the run. 

For each generated learnt clause, calculate the average span parameter which 

is defined as (maxLevel – minLevel + 1) / size, where maxLevel and minLevel 

are the maximum and minimum levels of all the literals inside the learnt 

clause and size is the number of literals in the clause. Sort all the learnt 

clauses based on this parameter and remove half of the learnt clauses with 

smaller values of average span parameter.   
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 Policy 5: This policy is quite similar with Policy 4, but instead of using 

average span, Policy 5 uses absolute span which is defined as (masLevel – 

minLevel + 1). 

 

Table 8. Results of dynamic learnt clause management (n=6, K=5) 

Circuit 

Circuit 

 

SAT Time (s) 
Policy 1 

 

Policy 2 

 

Policy 3 Policy 4 Policy 5 
s5378 49.6 56 55.2 48.4 55.7 
s9234 284.5 306.5 330.7 283.2 594.3 

s13207 197.4 204 209.2 177.8 489.3 
s15850 533.6 578 572.8 534.9 747.5 
s35932 8708.2 8626.1 8442.23 8239.2 94643.3 
s38417 13666.9 14999.3 14541.3 13300.2 278444 
s38584 3623.9 3774.7 3831.1 3309.4 6199.1 

Average 1.000 1.065 1.071 0.958 5.721 

 

It can be concluded from Table 8 that the effect of each of the learnt clause 

management policies varies from one circuit to the other. In some benchmarks such as 

s9234 and s35932, Policies 2 and 3 run better than the default learnt clause management 

policy of MiniSat, while in the other cases, CodGen gets better results with the default 

policy. It is believe that MiniSat developers must have optimized their default dynamic 

learnt clause management policy such that the performance can’t be easily improved by 

simply modifying some parameters as done in Policy 2 and 3. As shown in Policy 4, the 

runtime performance indeed can be improved by introducing the knowledge of circuit 

structure, but this has to be done in the correct way. As shown in Policy 5, if there is 

something wrong with the dynamic learnt clause management policy, the runtime 

performance can be significantly degraded. The problem with Policy 5 is that this policy 
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is going to favor longer learnt clauses and at the end make the SAT solving process more 

and more complex. 

Mathematically dynamic learnt clause management can be represented with an 

optimization problem with multiple parameters such as the threshold to trigger the 

dynamic learnt clause management function, limits of clause length and activity factor 

used in reducing the learnt clauses, and other clause characteristics used in their 

selection. In practice, the actual effect of each management policy depends on the 

characteristics of the circuit. We have implemented several built-in learnt clause 

management policies in CodGen and give the users options to choose from them, so that 

they can tune CodGen to their problems. 

3.5 Buffer Reduction 

Buffer insertion has been widely used in physical design to reduce interconnect 

delay, adjust timing and minimize power consumption of the circuit. [56][57][58] It is 

estimated that greater than 70% of a VLSI IC in the 32nm technology node will 

comprise of buffers. [59] But too many buffers in the circuit will increase the complexity 

of ATPG, especially in the case of path delay test generation where the longest paths are 

the targets of test generation. Buffer reduction has been implemented in SAT based 

CodGen to reduce the complexity of the circuit and therefore the runtime of path delay 

test generation. The two scenarios of buffer reduction are illustrated in Figure 19. In the 

first case shown in Figure 19(a), a chain of buffers, inverters or any combination of them 

can be reduced to a single buffer (or inverter) depending on the polarity of the entire 

chain. In the second case shown in Figure 19(b), a single buffer or inverter driven by a 
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combinational gate can be reduced into a single combinational gate. The polarity of the 

combinational gate has to be reversed in the case where the reduced gate drives an 

inverter. In both cases, the delay of the resulting gate has to be adjusted to reflect the 

combined delay of the original gates. 

 

Figure 19. Buffer reduction. (a) Reduce buf/inv chains to single buf/inv; (b) reduce combinational 

gate and buf/inv to single combinational gate 

 
 

Table 9. Results of buffer reduction (n=2, K=5) 

Circuit 

 

CPU Time 

(hh:mm:ss) 

Path Count Pattern Count No of Clauses 

Original Reduction Original Reduction Original Reduction Original Reduction 
s5378 0:00:53 0:00:40 5225 5200 493 510 14698 10614 
s9234 0:04:18 0:02:32 6869 6676 785 802 27980 18084 

s13207 0:06:01 0:02:58 6911 6595 2068 1969 40784 24456 
s15850 0:06:28 0:03:31 7054 6945 1068 1035 48970 29858 
s35932 0:51:41 0:44:50 22418 22450 34 33 95580 86148 
s38417 1:30:21 0:50:41 50618 44045 952 873 114958 79478 
s38584 0:34:53 0:29:58 17557 17012 398 398 109722 98762 

b14 

 

5:45:56 6:10:22 52156 52156 27683 27681 58348 58340 
b15 

 

7:12:17 7:20:50 22345 22346 7797 7795 53018 52998 
b17 

 

48:54:43 50:07:50 91055 91051 10739 10768 190784 190708 
b20 

 

8:09:00 8:24:40 109709 109709 31231 31211 117750 117746 
b21 

 

9:39:33 9:57:30 111476 111476 31132 31114 120000 119992 
b22 38:38:51 39:25:27 162019 162019 37206 37198 174786 174774 

STC 7:25:54 7:12:58 67861 67654 2762 2746 231180 225180 
tex1 60:00:21 44:45:19 158521 146374 2258 2018 1548504 1326872 

Average 1.000 0.839 1.000 0.978 1.000 0.984 1.000 0.860 
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A two-pass buffer reduction algorithm has been implemented in CodGen in 

which each pass handles one of the scenarios shown in Figure 19. The effectiveness of 

buffer reduction has been proven with ISCAS 89 and ITC 99 benchmarks and several 

industry designs. It can be shown that in the case where there are large numbers of 

buffer/inverters, the buffer reduction mechanism reduces the total number of gates in the 

design by up to 47% and test generation times are also reduced accordingly. The 

benchmark results are summarized in Table 9. 

3.6 Cross Time Frame Learning 

There are multiple time frames in delay test, especially when Pseudo Functional 

Test (PFT) is used. Learnt clauses generated in one time frame can be reused in later 

time frames. One possible enhancement to increase MiniSat performance is to copy 

learnt clauses from one time frame to later ones. This may save MiniSat’s effort to 

generate the same learnt clause for each of the time frames. But this could also slow 

down MiniSat’s performance by introducing too many learnt clauses. So the benefit of 

doing this has to be explored.  

Cross Time Frame Learning has been implemented in CodGen where every 

dynamically generated learnt clause is immediately copied to later time frames in the 

hope that the duplicated learnt clauses used in their time frames and the effort of 

generating the same learnt clauses there can be amortized. The results are tested with 

ISCAS 89 benchmarks. The benchmark results are summarized in Table 10. The 

conclusion is that in some test cases, such as s15850 and s38584, cross time frame 
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learning can be used to reduce the runtime, while in the others the runtime slightly 

increases. Therefore, the effect of cross time frame learning depends on the 

characteristics of the design. It is also shown that the effectiveness of cross time frame 

learning is dependent on the depth of learning D, which is defined as the maximum 

number of time frames the generated learnt clause will be copied. The results in Table 10 

shows that on average, the best results can be achieved by setting D = 4. 

 

Table 10. Results of cross time frame learning (n=6, K=5) 

Circuit 

Circuit 

 

SAT Time (s) 
Original 

 

D=1 

 

D=2 D=3 D=4 No Limit 
s5378 49.6 48.1 51.3 49.3 47 49.7 
s9234 284.5 298.5 284.9 298.1 282.2 289.4 

s13207 197.4 188.5 194.9 185 185 194.7 
s15850 533.6 538.9 522 525.2 516.1 554.9 
s35932 8708.2 8622.6 8277.9 8008.3 8011.4 8141.9 
S38417 13666.9 12239.1 13412.3 12609.4 12109.2 13515.1 
s38584 3623.9 3535.8 3776.1 3495.7 3298.9 3566.2 

Average 1.000 0.978 0.997 0.967 0.937 0.993 

 

3.7 SAT Based Approximate Observability Don’t Cares (AODC) Calculation 

One of the operations in logic optimization of a multi-level Boolean network is 

the calculation of multi-level Observability Don’t Cares (ODCs) of the nodes in the 

network. ODCs are powerful tools in logic optimization, but the minimization of one 

node with respect to its ODCs can potentially change the ODCs of other nodes in the 

network. As a result, Compatible ODCs (CODCs) are used in actual optimization. 

Compared with ODCs, CODCs have the following property - if one node is minimized 

with respect to its CODC, the CODCs of all the other nodes are still valid. The 
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calculation of exact CODCs in large circuits can be very time consuming. In [60], the 

authors described an efficient algorithm for calculating approximate CODCs (ACODCs) 

using BDDs.  

ACODCs are more accurate compared with the Cir-ODCs described in [20]. But 

normally a BDD software package, such as CUDD, [61] must be used to calculate 

ACODCs and extra CNF clauses must be added to the SAT instance to represent the 

effects of the CODCs. One important observation is that in the scenario of ATPG, it is 

not necessary to use CODCs since the structure of the design can’t be modified as in the 

case of logic synthesis. Therefore, the idea similar to the one presented in [60] can be 

used to generate Approximate ODCs (AODCs) to be used later in path delay test 

generation. 

In CodGen, a SAT based approach of generating AODC has been implemented. 

The idea of SAT based AODC generation is shown in Figure 20. Since we are 

calculating approximate ODC (AODC), the input/output boundaries are not unique. The 

basic principle of SAT based AODC calculation is to launch a transition at the targeted 

fault site and test whether the propagation of this transition to the output boundary can 

be blocked by setting particular values on the input boundary. The algorithm for SAT 

based AODC calculation is as follows: 

1. Build CNF instance: Since there is a transition, there should be two time 

frames in this problem to be solved by the SAT solver. The CNF instance is 

built by first searching the output cone, starting from the fault site forward to 

the output boundary and then backward from each node in the output cone to 
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the input boundary. The depth D of the forward and backward traversals is 

limited to keep the computation tractable. Two Boolean variables are used for 

each node in the search except for the nodes on the output boundary. 

Additional CNF clauses are added to force a transition on the fault site. 

Suppose the Boolean variables for the targeted fault site are A and B in the 

two time frames. The CNF clauses to create a transition on the fault site are 

in the format of (A+B) ( ̅+ ̅).  

 

 

Figure 20. SAT based approximate ODC calculation 

 
 

2. Solve the CNF instance by calling SAT solver. If the result is UNSAT, there 

is no AODC for the current input/output boundaries. Otherwise, go to the 

next step. 

3. Figure out “don’t care” variables on the input boundary: Flip the Boolean 

value, which is assigned by SAT solver in last step, on one of the fixed nodes 

on input boundary and rerun SAT solver. If the result is still SAT, this node is 

a “don’t care” variable in the AODC clause and can be ignored in the 

calculated AODC, otherwise, restore the Boolean value on the node. 
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4. Attach the calculated AODC on the gate and use it later in delay test 

generation. Like Cir-ODC, when either justifying or compacting a path, each 

node along the path has to be observable in the last time frame and therefore 

its AODC has to be evaluated to false in that time frame. In this approach, 

AODC can be represented as the sum of single literals. If there is only one 

literal in the AODC clause, it can be directly applied as an assumption when 

calling SAT solver. Otherwise, the calculated AODC clause is attached to the 

node of the targeted fault site and the same mechanism developed for 

Dynamic SAT Solving (DSS) is used to dynamically turn on the AODC 

clause whenever the current path passes through the node where the AODC 

clause is attached. 

 

Table 11. Results of delay test generation with approximate ODC (AODC) (n=2, K=5) 

Circuit 

 

CPU Time 

(hh:mm:ss) 

Path Count Pattern Count Compaction Ratio 
Original 

 

AODC Original 

 

AODC Original 

 

AODC Original 

 

AODC 

s5378 0:00:53 0:00:27 5225 5155 493 462 10.60 11.16 
s9234 0:04:18 0:03:12 6869 7003 785 749 8.75 9.35 

s13207 0:06:01 0:05:04 6911 6864 2068 1968 3.34 3.49 
s15850 0:06:28 0:04:40 7054 6923 1068 985 6.60 7.03 
s35932 0:51:41 0:28:54 22418 22418 34 33 659.35 679.33 
s38417 1:30:21 0:53:13 50618 49168 952 845 53.17 58.19 
s38584 0:34:53 0:24:54 17557 18482 398 390 44.11 47.39 

b14 

 

5:45:56 5:03:47 52156 52747 27683 26500 1.88 1.99 
b15 

 

7:12:17 4:57:05 22345 33065 7797 11288 2.87 2.93 
b17 

 

48:54:43 40:35:45 
 

91055 117606 
 

10739 10275 
 

8.48 11.45 
b20 

 

8:09:00 6:08:36 109709 110140 31231 24064 3.51 4.58 
b21 

 

9:39:33 8:44:29 111476 111966 31132 23806 3.58 4.70 
b22 38:38:51 31:00:43 

 
162019 163400 

 
37206 26825 

 
4.35 6.09 

STC 7:25:54 4:03:22 67861 70487 2762 2568 24.57 27.45 
tex1 60:00:21 38:07:44 

 
158521 156829 

 
2258 1788 

 
70.20 87.71 

Average 1.000 0.714 1.000 1.056 1.000 0.930 1.000 1.150 
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The results of calculating Approximate ODC (AODC) and delay test generation 

with AODC are summarized in Table 11. These results are based on AODC calculation 

where both forward search depth and backtrack depth are set to 3. The benchmark results 

show that with AODC, path delay generation can be sped up by up to ~40%. On 

average, with calculated AODC clauses, CodGen is going to detect more sensitizable 

paths, reduce the total number of test vectors and therefore achieve better compaction 

ratios in most of the benchmarks. It can be concluded that AODC is one of the effective 

techniques to speed up SAT based ATPG. Applying AODC in path delay test generation 

may reduce the path count. For example, when using AODC, the total path count in 

s5378 is reduced from 5225 to 5155. This reduction is caused by the fact that the AODC 

is approximate, and some knowledge of circuit structure may be lost because of the input 

cut when calculating AODC. For example, if there are two inputs A and B in the cut set, 

and they are equivalent signals in the original circuit, then A=B. But after the cut is 

made, they appear independent and the SAT solver may assign them different values. In 

this case, the AODC may erroneously identify a line in the path as not observable, and 

the path is skipped. Using a larger depth for the cut line would reduce this error. 

3.8 Combined Techniques 

The results of running path delay test generation with DSS, buffer reduction and 

AODC combined together are summarized in Table 12. With all three speedup 

techniques working together, it can be shown that the process of path delay test 

generation can be sped up by more than 70%. And the improvement of runtime 
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performance is across the board. In every case of ISCAS 89 and ITC 99 benchmarks and 

industry designs tested, we see significant reduction in overall CPU time. This proves 

the overall effectiveness of the speedup techniques we have been exploring. Also, it is 

observed that combined together, these techniques improve the dynamic compaction 

ratio by 12% on average. 

 

Table 12. Results of delay test generation with DSS, buffer reduction and AODC (n=2, 

K=5) 
Circuit 

 

CPU Time 

(hh:mm:ss) 

Path Count Pattern Count Compaction Ratio 
Original 

 

Combined 

D

D

L

e

a

r

n

i

n

g 

Original 

 

Combined 

 

Original 

 

Combined 

 

Original 

 

Combined 

 

 
s5378 0:00:53 0:00:18 5225 5199 493 494 10.60 10.52 
s9234 0:04:18 0:01:40 6869 6831 785 757 8.75 9.02 

s13207 0:06:01 0:02:14 6911 6625 2068 1876 3.34 3.53 
s15850 0:06:28 0:02:25 7054 6952 1068 1029 6.60 6.76 
s35932 0:51:41 0:21:27 22418 22450 34 34 659.35 660.29 
s38417 1:30:21 0:26:19 50618 44297 952 797 53.17 55.58 
s38584 0:34:53 0:19:26 17557 17753 398 385 44.11 46.11 

b14 

 

5:45:56 5:07:21 52156 52747 27683 26513 1.88 1.99 
b15 

 

7:12:17 5:09:29 22345 33070 7797 11325 2.87 2.92 
b17 

 

48:54:43 37:23:24 91055 117734 10739 10314 8.48 11.41 
b20 

 

8:09:00 6:40:03 109709 110109 31231 24012 3.51 4.59 
b21 

 

9:39:33 8:42:21 111476 111956 31132 23801 3.58 4.70 
b22 38:38:51 32:00:39 162019 163393 37206 26855 4.35 6.08 

STC 7:25:54 3:49:35 67861 70675 2762 2556 24.57 27.65 
tex1 60:00:21 28:48:10 158521 146608 2258 1716 70.20 85.44 

Average 1.000 0.576 1.000 1.039 1.000 0.930 1.000 1.132 

 

The previous benchmark results show that these three techniques: DSS, buffer 

reduction and AODC are the most effective techniques in speeding up path delay test 

generation. On average, each of the three techniques can speed up CodGen by 18.3%, 

16.1% and 28.6% respectively. Combined together, these techniques can speed path 

delay test generation by 42%, which is much better compared with the results of 
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applying a single speedup technique. This is very important result since it shows the 

synergy of different speedup techniques when applied together correctly. In some cases, 

the path count for the combined techniques is less than the individual techniques. This is 

because the AODC is computed after buffer reduction, so the AODCs may be different 

than those identified for Table 11, and the different approximation may result in the loss 

of some paths. 

 

Table 13. Results of pseudo functional test generation with DSS, buffer reduction and 

AODC (n=6; K=5) 
   Circuit 

 

CPU Time (h:mm:ss) Path Count Pattern Count Compaction Ratio 
n=2 n=6 n=2 n=6 n=2 n=6 n=2 n=6 

s5378 0:00:18 0:00:16 5199 1912 494 203 10.52 9.42 
s9234 0:01:40 0:01:49 6831 4358 757 365 9.02 11.94 

s13207 0:02:14 0:01:17 6625 2586 1876 153 3.53 16.90 
s15850 0:02:25 0:04:13 6952 4964 1029 833 6.76 5.96 
s35932 0:21:27 1:01:35 22450 21889 34 36 660.29 608.03 
s38417 0:26:19 1:29:37 44297 34608 797 866 55.58 39.96 
s38584 0:19:26 0:43:13 17753 13838 385 270 46.11 51.25 

b14 

 

5:07:21 1:11:45 52747 16358 26513 2176 1.99 7.52 
b15 

 

5:09:29 0:02:05 33070 1924 11325 59 2.92 32.61 
b17 

 

37:23:24 0:24:16 117734 8136 10314 116 11.41 70.14 
b20 

 

6:40:03 9:06:47 110109 107504 24012 20362 4.59 5.28 
b21 

 

8:42:21 10:06:11 111956 109353 23801 22020 4.70 4.97 
b22 32:00:39 19:28:06 163393 157234 26855 22875 6.08 6.87 

STC 3:49:35 1:50:50 70675 22562 2556 1720 27.65 13.12 
tex1 28:48:10 84:50:18 146608 115786 1716 2749 85.44 42.12 

Average 1.000 1.308 1.000 0.607 1.000 0.642 1.000 2.403 

 

As mentioned earlier, one purpose of using SAT based delay test generation is to 

speed up the process of generating test patterns for Pseudo Functional Test (PFT), where 

more than 2 time frames are used in the delay test. To judge the effectiveness of those 

speedup techniques in the case of PFT, we also ran benchmarks and industry designs for 
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the case of n=6 and K=5. The results are summarized in Table 13. It is shown that 

compared with the cases of n=2, on average the test generation times are increased by 

31%. This result is better than expected since in theory the runtime can increase 

exponentially with the number of time frames. Part of the reason is that in some ITC99 

benchmarks, the numbers of sensitizable paths drop significantly when n=6. It is also 

noticed that when n=6, the average compaction ratio is increased by 140% compared 

with the case of n=2. 

The results shown in Table 13 indicate that SAT based approach, along with the 

speedup techniques developed in this section, should be very powerful in improving the 

efficiency of path delay test generation, especially when Pseudo Functional Test (PFT)  

and dynamic compaction are used. In SAT based PFT, with increasing number of time 

frames (n), the runtime of delay test generation grows asymptotically slower than the 

linear functions of n. Meantime, the compaction ratio improves with increasing number 

of time frames. Compared to the original PODEM implementation, the SAT 

implementation combined with speedup techniques provides almost an order of 

magnitude speedup. The results in Table 4 were run on a different machine, so cannot be 

directly compared. 

As mentioned in Section 2.1, the motivation of this research is to improve both 

the efficiency and the accuracy of path delay test generation in the scenario of using PFT 

and dynamic compaction. It can be concluded from the results shown in Table 12 and 13 

that SAT based approach, along with advanced speedup techniques, is the correct 

solution to address the problems raised in Section 2.1. 
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4. CODGEN ENHANCEMENTS 

 

4.1 Configure File 

A configure file is a normal input used by Electronic Design Automation (EDA) 

tools to enhance their usability. By using a configure file, instead of specifying many 

parameters either on command line or interactively, the name of the configure file can 

become the only required input parameter to invoke the EDA tool and the software can 

process the parameters specified in the configure file automatically. The mechanism to 

support a configure file has been added to CodGen. Currently, the following parameters 

can be specified in the CodGen configure file: path of the working directory, design 

style, name of the scan file, name of the netlist, name of the dofile and name of the delay 

file. In the long run, all those parameters currently hardcoded in the CodGen can be 

included in configure file such that they can be easily configured. A sample CodGen 

configure file is shown in Figure 21. 

 

 

Figure 21. Sample CodGen configure file 
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4.2 LSSD Support 

Some industry designs used to evaluate SAT based CodGen use Level Sensitive 

Scan Designs (LSSD). [19][20] CodGen has been enhanced to support LSSD such that it 

can generate PFT KLPG tests for those industry designs. 

4.2.1 LSSD Design Styles 

LSSD based full-scan designs can be implemented in two styles, depending on 

which latch is used to drive the combinational logic as shown in Figure 22.  

 

 

 

Figure 22. LSSD design styles: (a) single-latch design, (b) double-latch design 
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In single latch design, Level 1 latches (L1) are used to drive the combinational 

logic of the design. In this scenario, the design must be split into two clock domains 

which are driven by two different system clocks C1 and C2 respectively. One of the 

design rules for single latch LSSD design is that the combinational logic driven by 

LSSD of system clock C1 has to be used to drive LSSDs of system clock C2, and vice 

versa. This is shown in Figure 22 (a). 

In double latch design, Level 2 latches (L2) are used to drive the combinational 

logic of the design. Since in this case, combinational logic is driven by L2 latches and 

the results are captured by L1 latches and the system clocks for L1 and L2 latches are 

nonoverlapping, the entire design can be implemented in single clock domain. This is 

shown in Figure 22 (b). 

4.2.2 CodGen Enhancements to Support LSSD 

Support for LSSD designs has been implemented in the CodGen for the purpose 

of running industrial designs from Advanced Micro Devices (AMD). These AMD test 

cases use full-scan design of the single latch design style. From the viewpoint of 

Automatic Test Pattern Generation (ATPG), delay tests of single latch LSSD designs can 

be generated with the same approach to generate delay tests for MUX-D flip-flop 

designs. But in the configure file, the design style has to be specified as LSSD so that the 

netlist of the scan chains can be processed correctly.  

Another feature of SAT based CodGen in processing LSSD designs is to justify 

the validity of the clock network. This feature requires the user specify the name of the 

clock pin in the configure file. Knowing the name of the clock pin, CodGen can build 
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the CNF instance corresponding to the clock network and then use the SAT solver to 

validate the correctness of the clock network. This is done by setting the Boolean value 

on the clock pin to be either 0 or 1 and then invoke the SAT solver to check whether the 

CNF can be satisfied. If the CNF can be satisfied in both cases, the clock network is 

valid. Meantime, the clock domain of each LSSD cell can be detected on the fly. After 

the CNF is satisfied, the LSSDs with clock signal C=0 belong to one clock domain while 

the LSSDs with C=1 belong to the other clock domain. This knowledge can be used later 

in delay test generation to generate the correct clock signal for the delay tests. 

The results of running LSSD based AMD test cases are summarized in Table 14. 

These results are generated on Server 2 which is described in Section 2.6. 

 

Table 14. Results of generating pseudo functional test for AMD test case 

Time Frame (n) CPU Time Path Count Pattern Count Memory (GB) 
2 19:10:12 66265 1079 3.0 
4 44:17:46 55800 1924 4.6 
6 72:18:31 52056 1688 6.2 
8 106:02:41 51854 1884 7.9 
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5. CONCLUSIONS 
 
 

This dissertation focuses on improving the accuracy and efficiency of path delay 

test generation with a Boolean satisfiability (SAT) solver. It is demonstrated with 

benchmark results that the performance of the path delay test generator can be 

significantly improved with the new mixed structural-functional approach where the 

KLPG algorithm was used in path search while path justification and dynamic 

compaction are handled with a SAT solver. The runtime of test generation was 

significantly reduced while more sensitizable paths were detected. The dynamic 

compaction ratio was also improved with SAT solver, so that fewer test patterns are 

generated.  

A series of advanced techniques to improve SAT performance with the 

knowledge of circuit structure were explored and the effectiveness of those techniques 

was justified with both ISCAS 89 and ITC99 benchmark suites. Dynamic SAT Solving 

(DSS) can be used to reduce the runtime of SAT based path delay test generation by up 

to 60%. Other techniques, including Cir-ODC, SAT based static learning, dynamic learnt 

clause management, AODC and cross time frame learning can also be used to improve 

the performance of path delay test generation by 10~30%. 

Several industrial designs from AMD and Texas Instruments were also used to 

justify the effectiveness of this research. 
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