194 research outputs found

    Prediction of protein-protein interactions using one-class classification methods and integrating diverse data

    Get PDF
    This research addresses the problem of prediction of protein-protein interactions (PPI) when integrating diverse kinds of biological information. This task has been commonly viewed as a binary classification problem (whether any two proteins do or do not interact) and several different machine learning techniques have been employed to solve this task. However the nature of the data creates two major problems which can affect results. These are firstly imbalanced class problems due to the number of positive examples (pairs of proteins which really interact) being much smaller than the number of negative ones. Secondly the selection of negative examples can be based on some unreliable assumptions which could introduce some bias in the classification results. Here we propose the use of one-class classification (OCC) methods to deal with the task of prediction of PPI. OCC methods utilise examples of just one class to generate a predictive model which consequently is independent of the kind of negative examples selected; additionally these approaches are known to cope with imbalanced class problems. We have designed and carried out a performance evaluation study of several OCC methods for this task, and have found that the Parzen density estimation approach outperforms the rest. We also undertook a comparative performance evaluation between the Parzen OCC method and several conventional learning techniques, considering different scenarios, for example varying the number of negative examples used for training purposes. We found that the Parzen OCC method in general performs competitively with traditional approaches and in many situations outperforms them. Finally we evaluated the ability of the Parzen OCC approach to predict new potential PPI targets, and validated these results by searching for biological evidence in the literature

    GEGE: Predicting Gene Essentiality with Graph Embeddings

    Get PDF
    A gene is considered essential if its function is indispensable for the viability or reproductive success of a cell or an organism. Distinguishing essential genes from non-essential ones is a fundamental question in genetics, and it is key to understanding the minimal set of functional requirements of an organism. Knowledge of the set of essential genes is also crucial in drug discovery. Several reports in the literature show that the gene location in a protein-protein interaction network is correlated with the target gene’s essentiality. Here, we ask whether the node embeddings of a protein-protein interaction (PPI) network can help predict gene essentiality. Our results on predicting human gene essentiality show that node embeddings alone can achieve up to 88% AUC score, which is better than using topological features to characterize gene properties and other previous work’s results. We also show that, when combined with homology information across species, this performance reaches 89% AUC. Our work shows that node embeddings of a protein in the PPI network capture the network connectivity patterns of the proteins and improve the gene essentiality predictions

    Reconstruction and Validation of RefRec: A Global Model for the Yeast Molecular Interaction Network

    Get PDF
    Molecular interaction networks establish all cell biological processes. The networks are under intensive research that is facilitated by new high-throughput measurement techniques for the detection, quantification, and characterization of molecules and their physical interactions. For the common model organism yeast Saccharomyces cerevisiae, public databases store a significant part of the accumulated information and, on the way to better understanding of the cellular processes, there is a need to integrate this information into a consistent reconstruction of the molecular interaction network. This work presents and validates RefRec, the most comprehensive molecular interaction network reconstruction currently available for yeast. The reconstruction integrates protein synthesis pathways, a metabolic network, and a protein-protein interaction network from major biological databases. The core of the reconstruction is based on a reference object approach in which genes, transcripts, and proteins are identified using their primary sequences. This enables their unambiguous identification and non-redundant integration. The obtained total number of different molecular species and their connecting interactions is ∼67,000. In order to demonstrate the capacity of RefRec for functional predictions, it was used for simulating the gene knockout damage propagation in the molecular interaction network in ∼590,000 experimentally validated mutant strains. Based on the simulation results, a statistical classifier was subsequently able to correctly predict the viability of most of the strains. The results also showed that the usage of different types of molecular species in the reconstruction is important for accurate phenotype prediction. In general, the findings demonstrate the benefits of global reconstructions of molecular interaction networks. With all the molecular species and their physical interactions explicitly modeled, our reconstruction is able to serve as a valuable resource in additional analyses involving objects from multiple molecular -omes. For that purpose, RefRec is freely available in the Systems Biology Markup Language format

    Advancing systems biology of yeast through machine learning and comparative genomics

    Get PDF
    Synthetic biology has played a pivotal role in accomplishing the production of high value commodities, pharmaceuticals, and bulk chemicals. Fueled by the breakthrough of synthetic biology and metabolic engineering, Saccharomyces cerevisiae and various other yeasts (such as Yarrowia lipolytica, Pichia pastoris) have been proven to be promising microbial cell factories and are frequently used in scientific studies. However, the cellular metabolism and physiological properties for most of the yeast species have not been characterized in detail. To address these knowledge gaps, this thesis aims to leverage the large amounts of data available for yeast species and use state-of-the-art machine learning techniques and comparative genomic analysis to gain a deeper insight into yeast traits and metabolism.In this thesis, machine learning was applied to various unresolved biological problems on yeasts, i.e., gene essentiality, enzyme turnover number (kcat), and protein production. In the first part of the work, machine learning approaches were employed to predict gene essentiality based on sequence features and evolutionary features. It was demonstrated that the essential gene prediction could be substantially improved by integrating evolution-based features. Secondly, a high-quality deep learning model DLKcat was developed to predict kcat\ua0values by combining a graph neural network for substrates and a convolutional neural network for proteins. By predicting kcat profiles for 343 yeast/fungi species, enzyme-constrained models were reconstructed and used to further elucidate the cellular metabolism on a large scale. Lastly, a random forest algorithm was adopted to investigate feature importance analysis on protein production, it was found that post-translational modifications (PTMs) have a relatively higher impact on protein production compared with amino acid composition. In comparative genomics, a comprehensive toolbox HGTphyloDetect was developed to facilitate the identification of horizontal gene transfer (HGT) events. Case studies on some yeast species demonstrated the ability of HGTphyloDetect to identify horizontally acquired genes with high accuracy. In addition, through systematic evolution analysis (e.g., HGT, gene family expansion) and genome-scale metabolic model simulation, the underlying mechanisms for substrate utilization were further probed across large-scale yeast species

    Pan-cancer detection of driver genes at the single-patient resolution

    Get PDF
    BACKGROUND: Identifying the complete repertoire of genes that drive cancer in individual patients is crucial for precision oncology. Most established methods identify driver genes that are recurrently altered across patient cohorts. However, mapping these genes back to patients leaves a sizeable fraction with few or no drivers, hindering our understanding of cancer mechanisms and limiting the choice of therapeutic interventions. RESULTS: We present sysSVM2, a machine learning software that integrates cancer genetic alterations with gene systems-level properties to predict drivers in individual patients. Using simulated pan-cancer data, we optimise sysSVM2 for application to any cancer type. We benchmark its performance on real cancer data and validate its applicability to a rare cancer type with few known driver genes. We show that drivers predicted by sysSVM2 have a low false-positive rate, are stable and disrupt well-known cancer-related pathways. CONCLUSIONS: sysSVM2 can be used to identify driver alterations in patients lacking sufficient canonical drivers or belonging to rare cancer types for which assembling a large enough cohort is challenging, furthering the goals of precision oncology. As resources for the community, we provide the code to implement sysSVM2 and the pre-trained models in all TCGA cancer types ( https://github.com/ciccalab/sysSVM2 )

    Design and development of learning model for compression and processing of deoxyribonucleic acid genome sequence

    Get PDF
    Owing to the substantial volume of human genome sequence data files (from 30-200 GB exposed) Genomic data compression has received considerable traction and storage costs are one of the major problems faced by genomics laboratories. This involves a modern technology of data compression that reduces not only the storage but also the reliability of the operation. There were few attempts to solve this problem independently of both hardware and software. A systematic analysis of associations between genes provides techniques for the recognition of operative connections among genes and their respective yields, as well as understandings into essential biological events that are most important for knowing health and disease phenotypes. This research proposes a reliable and efficient deep learning system for learning embedded projections to combine gene interactions and gene expression in prediction comparison of deep embeddings to strong baselines. In this paper we preform data processing operations and predict gene function, along with gene ontology reconstruction and predict the gene interaction. The three major steps of genomic data compression are extraction of data, storage of data, and retrieval of the data. Hence, we propose a deep learning based on computational optimization techniques which will be efficient in all the three stages of data compression
    corecore