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ABSTRACT 

A gene is considered essential if its function is indispensable for the viability or reproductive success of 
a cell or an organism. Distinguishing essential genes from non-essential ones is a fundamental question 
in genetics, and it is key to understanding the minimal set of functional requirements of an organism. 
Knowledge of the set of essential genes is also crucial in drug discovery. Several reports in the literature 
show that the gene location in a protein-protein interaction network is correlated with the target gene’s 
essentiality. Here, we ask whether the node embeddings of a protein-protein interaction (PPI) network 
can help predict gene essentiality. Our results on predicting human gene essentiality show that node 
embeddings alone can achieve up to 88% AUC score, which is better than using topological features to 
characterize gene properties and other previous work’s results. We also show that, when combined with 
homology information across species, this performance reaches 89% AUC.  Our work shows that node 
embeddings of a protein in the PPI network capture the network connectivity patterns of the proteins 
and improve the gene essentiality predictions. 
 
Keywords: Graph representations, Node embeddings, Gene essentiality, Network topological features, 
Protein-protein interaction network 
 
 

GEGE: Çizge Gömülümleriyle Gen Esaslılığını Tahmin Etme 
 

ÖZET 
İşlevi, bir hücrenin veya organizmanın hayatta kalabilmesi veya üreme başarısı için vazgeçilmez olan 
genler, esaslı genler olarak kabul edilir. Esaslı genleri esaslı olmayanlardan ayırt etmek, bir 
organizmanın minimum fonksiyonel gereksinimlerinin anlaşılabilmesi için genetikte kilit bir sorudur. 
Esaslı genler küme bilgisi, ilaç tasarlanmasında da çok önemlidir. Literatürdeki, bir protein-protein 
etkileşim ağındaki gen konumunun, gen esaslılığı ile ilişkili olduğunu göstermiştir. Burada, bir protein-
protein etkileşimi (PPI) ağının düğüm yerleştirmelerinin gen gerekliliğini tahmin etmeye yardımcı olup 
olamayacağını soruyoruz. İnsan geninin esaslığını tahmin etme konusundaki sonuçlarımız, düğüm 
gömülümlerinin tek başına %88'e kadar AUC skoruna ulaşabileceğini göstermektedir. Bu skor, gen 
özelliklerini karakterize etmek için topolojik özellikleri kullanılan modellerin başarımından ve önceki 
çalışma sonuçlarından daha iyidir. Ayrıca, türler arası homoloji bilgisi ile birleştiğinde, bu performansın 
%89 AUC skoruna ulaştığını gösteriyoruz. Çalışmamız, PPI ağındaki bir proteinin düğüm 
gömülümlerinin, proteinlerin ağ bağlantı modellerini yakaladığını ve gen esaslılık tahminlerini 
geliştirdiğini gösteriyor. 
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I. INTRODUCTION 

 
A gene is considered essential if its function is indispensable for the viability or reproductive success of 
a cell or an organism [1]. Identifying essential genes is critical for understanding the minimal functional 
requirements of an organism or a cell [2], [4]. The knowledge of essential genes also has practical 
significance for drug target identification.  The essential genes of a pathogen constitute potential drug 
targets for infectious diseases [5.], [6]. Similarly, a gene that is essential for a cancer cell but non-
essential for a normal cell reveals a vulnerable point in cancer cells that can be targeted by drugs [7], 
[8]. 
 
Assessing the essentiality of a gene requires assessing the viability of the living system that entirely 
lacks that gene or in which the expression or function of that gene has been significantly compromised. 
There are small-scale experimental techniques for single gene knockouts [9]. To find all the essential 
genes in a cell requires disrupting the genes one at a time and assessing their individual effects on the 
target cell’s viability. Single-gene knockout experiments [10], RNAi screens [11], and more recently 
CRISPR/Cas9 genome editing technologies [12] have been used for this purpose. While experimental 
methods provide powerful results, they are laborsome, time-consuming, and costly. Also, the results are 
highly dependent on the experimental conditions [13]. Computational tools enable predictions that are 
not otherwise attainable through experimental studies and shed light on the question of what makes a 
gene essential. 
 
The earliest gene essentiality methods transferred gene essentiality annotations from bacterial species 
by using homology information [3]. Later, as the list of essential genes accumulated for model 
organisms, machine learning approaches were used for predicting the gene essentially. Diverse 
biological information compiled from experimental data or the properties of the genes can be used as 
features to predict gene essentiality. There exist various methods that make use of properties of the 
genes, such as gene sequence [14], [16], gene expressions [17], and functional annotation such as gene 
ontology [18]. 
 
With the availability of protein interaction data at a large scale, it is now possible to ask whether the 
positioning of a gene in the PPI has a relation to the essentiality of the gene coding that protein. Several 
studies in the literature report that topological network properties of a gene in the PPI network are related 
to gene essentiality [19], [27]. Towards this aim, centrality measures are explored. Among them, the 
local centrality quantifies the local connectivity patterns of a node, whereas betweenness centrality 
indicates whether a node is a key connector of different parts of the network.  Early network analysis 
pointed out that there is a correlation between lethality and the degree of a node, where highly connected 
proteins in PPI networks tend to be essential [19].  Although others [28], [29] challenged this idea, 
several other studies that examined datasets in different organisms supported the original idea that 
proteins with high local centrality are correlated to gene essentiality [20], [22].  
 
Hwang et al. [23] reported correlation with clustering coefficient, defined as the ratio of the 
number of edges connecting the neighbors of a node to the maximum number of possible edges 
among them. Other work reported that nodes with high betweenness centrality are likely to be 
essential [32], [33]. In the search to find the proper centrality measures related to gene essentiality, 
several other studies interrogated the relationship of gene essentiality with a series of centrality measures 
[24]. Additionally, studies in the literature have integrated the topological information with additional 
information to predict essential genes in a binary classification framework in a supervised learning 
setting [25], [27]. Another relevant work is ProtRank [28]. To arrive at a global topological measure for 
proteins in the PPI network, ProtRank uses Google’s PageRank algorithm [29], which is based on 
random walks. ProtRank of a protein is computed by conducting random walks on the PPI network and 
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measuring the amount of time the random walker spends on the protein in the PPI network. In this work, 
the performance of the ProtRank measure is evaluated on the essential yeast genes by computing the 
ratio of the essential genes found in the top-k ranked genes when the ProtRank measure ranks genes. 
The author showed differences compared to local topological features such as degree and betweenness 
centrality.   
 
In this work, we ask whether node embeddings learned in a deep learning framework can represent the 
topological properties of a protein in the PPI better than the network node properties and help 
discriminate essential genes from non-essential genes. For this purpose, we learned the node embeddings 
of the genes in the human PPI network. We used this low-dimensional representation of the genes as 
features to train a binary classifier.  Our results show that the deep graph embedding methods help find 
good features representations instead of pre-selected topological features. Additionally, we show that 
information on gene conservation across species improves adds value to these predictions. 
 
 

II. METHODS 
 

A. GEGE FRAMEWORK  
In this study, we set out to predict the essentiality of genes by formulating this problem as a classification 
task over the nodes of a protein-protein interaction (PPI) network.  We denote this dataset as D = {xi, 
yi}i=1:N , where N is the number of examples, xi is a multi-dimensional numeric representation of the 
gene i and yi ∈ {−1, 1} is the class label for gene i.  Here, 1 indicates the essential gene class and −1 
indicates the non-essential gene class. The node classification task involves predicting the most probable 
label for the node. 
 
The GEGE framework comprises two main steps:  representing each gene with feature vectors based 
on node embeddings and building a classifier based on the learned representations of the genes. This 
feature vector can be augmented with additional information on the genes.  Figure 1 summarizes this 
idea.  In the following sections, we detail the methodology and data sources. 
 
B. REPRESENTING GENES WITH NODE EMBEDDINGS 
We represent the PPI network as a graph, G = (V, E), where V is the set of vertices representing the 
genes coding for the proteins, and E denotes an edge between two such genes.  The feature vector for a 
gene, xi, is created based on the node embeddings which we learn on G. 
 
A graph embedding of node v returns a feature representation of this node in a d-dimensional space such 
that the local structures and the similarities between the nodes are conserved in this new feature space.  
This representation is learned based on the relationship of the nodes with each other; thus, the topology 
of the graph. In this representation, highly connected nodes belong to the same communities due to the 
homophily principle, and they are expected to be embedded closely.  Additionally, the nodes that are 
not necessarily close in the network but have similar structural nodes (e.g., hubs) shall have similar 
embeddings.  In short, these methods operate with homophily [34] and structural equivalence [35] 
principles. 
 
We experiment with two different node embedding methods in the current study: DeepWalk [36] and 
node2vec [37]. Both methods derive an embedding based on the neighborhood of a node, wherein the 
neighborhood is based on random walks on a graph. They both aim to minimize the differences between 
the graph representation and the embedding representation. Random walks centered on a vertex v are 
used to derive a neighborhood of a given vertex vi.  In the literature, random walk approaches have been 
used for similarity measures and describing the local community information of a graph [38], [39]. On 
the other hand, using random walks to capture the local structures of a graph is a reasonable choice 
because it requires less computational power than the approaches that use the whole graph [36]. 
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Figure 1. Schematic describing how the feature vectors are created based on node embeddings.  Input is the PPI 
network, and the output is a latent low-dimensional representation of nodes in the network. Additional features 

about the genes can be concatenated to the node embedding vectors. 
 
C. NETWORK TOPOLOGY MEASURES 
 
An alternative to the PPI network representation is to use a set of network topology measures to describe 
each node. Several centrality measures are known to be correlated with gene essentiality [17], [19], [20], 
[23], [32], [33], [40]. In the current study, we select four mostly used topological features, which are 
closeness centrality, degree centrality, betweenness centrality, and clustering coefficient. We use the 
SNAP library [41] to calculate each of these topology metrics. 
 
D. SUPERVISED CLASSIFICATION 
 
After representing each gene with a low-dimensional feature vector, a Support Vector Machine 
(SVM) classifier is used in the second step of our framework. We use SVM because of its 
effectiveness in a variety of tasks. The SVM model parameters, embedding size of the node 
embeddings, the number of walks, walk length, p and q parameters are tuned via grid search 
strategy in 10-fold cross-validation. We report the area under the curve (AUC), F1, and average 
precision (AP) scores. 
 
E. DATASET 
 
E. 1. Gene Essentiality Data 
The information of whether a gene is essential or not is obtained from [16].  The origin of the data is 
from the DEG (http://tubic.tju.edu.cn/deg/)  database, which compiled datasets from three different 
studies [12, 42, 43]. Guo et al. [16] obtain 11 different gene essentiality sets along with corresponding 
cell lines. They mark a gene as positive (essential) if it is reported as essential in more than half of the 
cell lines. The final dataset contains 12,015 genes. Among these 12,015 genes, 1,516 of them are 
essential.  More details on the criteria of deciding which genes are essential can be found in [16]. 
 
E. 2. Protein Interaction Data 
The protein-protein interaction network is obtained from InbioMap, which is publicly available at 
https://www.intomics.com/inbio/map.html. InbioMap specifies a confidence score for each edge, which 
represents the support of the interaction in the literature. The interactions that have lower than 0.1 
confidence cut-off are eliminated from the network to remove noisy edges. The remaining network 
includes 17,653 genes and 625,641 interactions between these genes. Among the 12,015 genes that have 
information on their gene essentiality, 10,579 are in the PPI network. Of the 10,579 genes that are present 
in the PPI network genes, 1,514 genes are essential, which constitute the positive class in our data, while 
the remaining 9,065 genes are not essential, and they constitute the negative class. 
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E. 3. Homology Information 
 
Homology information is obtained from the HGNC Comparison of Orthology Predictions (HCOP) 
database (https://www.genenames.org/cgi-bin/hcop). The data contain homologous gene information of 
human genes with other 19 species. 
 
 

II. RESULTS AND DISCUSSION 
 
This section presents the results of predicting gene essentiality using a different representation of gene 
topology in the PPI network. 

 
A. PREDICTIVE PERFORMANCE 

 
In these experiments, we apply the node2vec and the DeepWalk algorithms to generate gene node 
embeddings on the PPI network. We compare these results with the alternate representation of different 
topological features. Additionally, we counted the number of organisms in which a gene is conserved 
for each human gene and used this as an additional feature. 
 
Table 1 shows the best performances for different feature settings and when SVM is run with linear or 
RBF kernels. When features are derived from conventional topological features that describe the gene’s 
connectivity pattern in the PPI network, the best result obtained with SVM using the RBF kernel is 0.831 
AUC score. Adding the homology feature improves the results slightly up to 0.846.  These results are 
surpassed by the models that use node2vec and DeepWalk embeddings to represent network nodes. 
Node2vec alone reaches 0.850 AUC, and when homology information is added, it can achieve 0.868 
AUC. DeepWalk representation is the one that yields the highest performance metrics. The node 
embedding features obtained from DeepWalk results with a 0.874 AUC score and addition of the 
homology feature raise this to 0.884.  These results also hold when models are compared with accuracy, 
F1, and average precision (Table 1). 
 
One interesting observation is that using a non-linear kernel instead of a linear kernel yields different 
predictive performance gains in models trained with network topological features and models trained 
with graph embedding features. Comparing linear vs. RBF kernel results, we observe that the use of 
non-linear kernels improves the network topology-based methods’ performance drastically. F1 score 
increases from 0.395 to 0.62, and similar increases are observed in other performance metrics (Table 1). 
In contrast, the gain in performance with a non-linear kernel for graph-based feature representation is 
modest. This may be related to the fact that graph embedding methods can extract relevant non-linear 
features during model training; as a result, there is no additional benefit obtained using a non-linear 
kernel. On the other hand, the network topology-based features cannot capture this non-linearity. 
 
To assess the robustness of our approach, we evaluate the configuration of our best performance with 
100 random bootstrap samples.  We randomly split our dataset into a test (20%) and trained (80%) 100 
times. Our best performance in 10-fold cross-validation produces 0.884 mean AUC, 0.687 F1, and 0.514 
average precision (AP), and we use the same parameters with the configuration of these results in 100 
random bootstrapped samples. This experiment finds 0.881 mean AUC, 0.683 mean F1, and 0.508 AP.  
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Table 1. Gene essentiality prediction performances when different features are input to the SVM classifier, and 
the kernel of choice is varied. 

 
Embeddings Kernel ACC AUC F1 AP 

DeepWalk 
Linear 0.856 0.867 0.637 0.457 
RBF 0.871 0.874 0.661 0.483 

DeepWalk + homology 
Linear 0.875 0.883 0.672 0.497 
RBF 0.885 0.884 0.687 0.514 

node2vec 
Linear 0.856 0.840 0.588 0.405 
RBF 0.856 0.850 0.625 0.442 

node2vec + homology 
Linear 0.853 0.860 0.629 0.448 
RBF 0.880 0.868 0.669 0.491 

Topological Features 
Linear 0.584 0.736 0.395 0.244 
RBF 0.847 0.831 0.602 0.416 

Topological Features 
+ homology 

Linear 0.802 0.824 0.553 0.371 
RBF 0.844 0.846 0.609 0.426 

Guo et al. [16] Linear NA 0.845 NA NA 
 
These results are close to the 10-fold cross-validation results. Therefore, we claim that our framework 
is robust against test dataset selection. 
 
Results with the additional homology feature reach 0.884 mean AUC, 0.687 mean F1, and 0.514 mean 
AP scores for DeepWalk embeddings with RBF kernel. These results are better than those reported in 
[16], who used the same gene essentiality dataset for their predictions and used nucleotide sequence 
features. The best performing model achieves 0.845 mean AUC in 5-fold cross-validation. Their 5-fold 
cross-validation results achieved a 0.885 mean AUC score with a feature selection. They applied a 
similar strategy to our bootstrap experiment. Therein, they randomly split the data into test and train 
with a 20% ratio and found 0.854 mean AUC across 100 samples. To sum up, our results indicate that 
node embeddings are highly predictive of gene essentiality. 
 

 
 

Figure 2. Performance change obtained when node2vec and DeepWalk methods are run with varying 
embedding sizes. The black portion of the bar indicates the performance gain due to the homology feature. F1, 

AUC, and Average Precision metrics are provided. 
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Node embedding methods have a number of parameters to control the trade-off between overfitting and 
overgeneralization. The dimension of the embedding space is the most important parameter.   Node 
embedding methods return a feature representation in Rd where d is the dimension of embedding.  In 
this experiment, we explored the effect of the embedding size on the DeepWalk and node2vec 
performances.  We varied the embedding sizes while we fixed the other parameters to their best values.  
Therefore, we show the effect of embedding size on average performance under 10-fold cross-
validation.  Figure 2 shows how the performance changes when different embedding sizes are used.  We 
find the best result as 0.884 mean AUC score among the 10-folds. The patterns from the figures reveal 
that DeepWalk embeddings perform better than node2vec embeddings in the adopted settings. For the 
kernel parameter of SVM, the RBF kernel gives about 1 % higher performance compared to the linear 
kernel.  We find the best AUC score for the linear kernel with DeepWalk embeddings as 0.867 and 
0.874 mean AUC score for the RBF kernel when the embedding size d is set to 256. The node2vec 
embeddings give their best performance when the embedding size d is set to 64 with RBF SVM, and it 
leads to 0.85 AUC score while the best performance with linear kernel achieves 0.84 AUC score. Nearly 
in all embedding sizes, DeepWalk embeddings consistently outperform node2vec embeddings. 
 
C. PERFORMANCE WITH ADDITIONAL HOMOLOG GENES 
 
We calculate the number of organisms that maintain genes homologous with the target gene, and we 
call this feature the homology feature. We add this feature to our graph embeddings for each node and 
apply the same procedure for assessing the essentiality.  As shown in Table 1 and further evidenced in 
Figure 2, where we vary the embedding sizes and summarize the best overall results, homology brings 
complementary information and improves the results by about 2% in accuracy in all configurations. The 
DeepWalk algorithm’s best performance with RBF SVM improves from 0.874 to 0.884, and the best 
performance with Linear SVM improves from 0.867 to 0.883. Similarly, node2vec’s best performance 
with the RBF kernel improves from 0.850 to 0.868, while the best performance with the linear kernel 
improves from 0.84 to 0.86. 
 
D. EXPLORING CONSISTENTLY MISCLASSIFIED AS ESSENTIAL 

 
We examine the genes labeled as non-essential in the dataset but are consistently predicted as essential 
genes in our repeated bootstrap experiments. These constitute the false positive predictions of the 
classifier. As the experimental datasets are incomplete, these genes could indeed be essential genes in 
reality. We calculate the counts of false positive predictions in 100 bootstrap experiments for each gene. 
We refer to this fraction as the false positive rate. We examine the genes whose false positive rates are 
greater than 0.50. Among these genes, we find that some of the genes are actually reported as 
conditionally essential genes.  In a given context, the gene is important for the organism’s viability. For 
example, SERPINE1, AIMP1, FIGF, RPS6KA6, and PDK4 genes are listed as non-essential in our 
benchmark dataset.  However, we find that [44] reports that these genes as essential. A study in [45] 
labels the DAZ2 gene as essential, while [46] labels KIAA0408 and ZCCHC13 genes as essential. These 
outcomes show that relations among the protein-protein interaction network may provide potential 
information about the essentiality of a gene. Current non-essential genes may be labeled as essential in 
future experiments, and interactions between proteins may lead to discoveries of new essential genes. 
 
 

IV. CONCLUSION 
 

In this study, we propose a framework called GEGE, which predicts gene essentiality based on node 
embeddings of the genes in the PPI. We learn a latent lower-dimensional representation of the nodes in 
the PPI network with two different graph embedding methods, DeepWalk [36] and node2vec [37]. By 
applying machine learning algorithms to this new representation of the genes, we show that the gene 
essentiality can be predicted with high success. We compare our predictions with a previously reported 
work that reports results on the same dataset, GEGE, which overperforms this method by 4%. We also 
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compare our results to the alternative of representing each node with topological node features. Graph 
embeddings achieve significant improvements in all settings.  
 
In our experiments, when compared to node2vec, DeepWalk embeddings achieve the best performance, 
but their results are very close.  The framework also allows for the addition of other gene features. When 
we augment the node embeddings with homology information, we observe performance improvements 
in all settings. We perform a robustness analysis with 100 random bootstrap samples, which shows that 
the results are not affected by the selection of random test genes.  We also investigate the genes whose 
true labels are in the benchmark dataset but are repeatedly predicted as essential genes in the 100 
bootstrap samples. Some of these genes are reported to be conditionally essential genes; they can be 
conditional depending on the context. This work can be extended in different directions: (i) The gene 
essentiality predictions can be tested for other organisms, and (ii) other relevant features, in addition to 
homology information, can be incorporated into this framework. 
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