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Abstract 
Synthetic biology has played a pivotal role in accomplishing the production of high value 

commodities, pharmaceuticals, and bulk chemicals. Fueled by the breakthrough of 

synthetic biology and metabolic engineering, Saccharomyces cerevisiae and various other 

yeasts (such as Yarrowia lipolytica, Pichia pastoris) have been proven to be promising 

microbial cell factories and are frequently used in scientific studies. However, the cellular 

metabolism and physiological properties for most of the yeast species have not been 

characterized in detail. To address these knowledge gaps, this thesis aims to leverage the 

large amounts of data available for yeast species and use state-of-the-art machine learning 

techniques and comparative genomic analysis to gain a deeper insight into yeast traits and 

metabolism. 

 

In this thesis, machine learning was applied to various unresolved biological problems on 

yeasts, i.e., gene essentiality, enzyme turnover number (kcat), and protein production. In the 

first part of the work, machine learning approaches were employed to predict gene 

essentiality based on sequence features and evolutionary features. It was demonstrated that 

the essential gene prediction could be substantially improved by integrating evolution-

based features. Secondly, a high-quality deep learning model DLKcat was developed to 

predict kcat values by combining a graph neural network for substrates and a convolutional 

neural network for proteins. By predicting kcat profiles for 343 yeast/fungi species, enzyme-

constrained models were reconstructed and used to further elucidate the cellular 

metabolism on a large scale. Lastly, a random forest algorithm was adopted to investigate 

feature importance analysis on protein production, it was found that post-translational 

modifications (PTMs) have a relatively higher impact on protein production compared 

with amino acid composition.  

 

In comparative genomics, a comprehensive toolbox HGTphyloDetect was developed to 

facilitate the identification of horizontal gene transfer (HGT) events. Case studies on some 

yeast species demonstrated the ability of HGTphyloDetect to identify horizontally 

acquired genes with high accuracy. In addition, through systematic evolution analysis (e.g., 

HGT, gene family expansion) and genome-scale metabolic model simulation, the 

underlying mechanisms for substrate utilization were further probed across large-scale 

yeast species. 

 

Keywords: machine learning, deep learning, gene essentiality, enzyme turnover number, 

horizontal gene transfer, yeast species
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1. Background 
 

1.1 Synthetic biology and metabolic engineering 
Synthetic biology is an interdisciplinary field that focuses on the design and development 

of living organisms and living systems. It integrates principles from computer science, 

biology, chemistry, material science and engineering. The aim is to create biological parts, 

devices as well as biological systems to empower current biotechnology and drive 

innovation [1, 2]. Metabolic engineering is a related field that involves the manipulation 

of cellular regulatory, enzymatic and transport processes to increase the yield of specific 

products or enable the production of new products [3, 4]. By optimizing industrial 

fermentation processes, metabolic engineering has become a powerful tool for producing 

high-value commodities, pharmaceuticals, and bulk chemicals [5, 6]. Together, synthetic 

biology and metabolic engineering offer promising approaches for developing novel 

biological technologies and products. 

 

 
Figure 1 Overview of synthetic biology and metabolic engineering. Synthetic biology and metabolic engineering have 

been widely applied into various fields, such as pharmaceuticals, foods, agriculture and environment. They provide great 

potential for biotechnology development and life science research, which could be very useful for the advancement of a 

sustainable society. 

 

Synthetic biology and metabolic engineering show great promise in addressing global 

challenges related to sustainable biomanufacturing and renewable energy by developing 

biotechnological solutions [2, 4]. Synthetic biology and metabolic engineering have been 

very successful in various domains [7], e.g., food science, drug development, chemical 

engineering, agriculture, material science and environmental remediation (Figure 1). In 

food science, antioxidant food ingredients and natural preservatives have been able to be 

produced with the advent of microbial cell factories [8, 9]. This approach based on 
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microorganisms provides a more viable alternative to previous methods based on chemical 

synthesis and solvent extraction, which are often time-consuming, expensive, and 

environmentally harmful. In drug development, synthetic biologists have harnessed 

microbes to synthesize complex natural products of pharmaceutical interest, e.g., 

immunosuppressants, antibiotics and anti-cancer drugs [4, 10]. In chemical engineering, 

synthetic biology and metabolic engineering have been instrumental in the production of 

biofuels and cellulosic ethanol, which could potentially displace fossil fuels used in heavy 

vehicles that result in significant carbon emissions [11-14]. In agriculture, plants have been 

widely used as if they were bioreactors, to produce essential oils and volatile organic 

compounds with properties as insecticides, fungicides and bactericides [15]. Recent 

development of genome engineering tools and genome-wide functional genomics can 

improve the ability to engineer microbes for biofertilization, as well as enhanced crop 

productivity [16]. In material science, microorganisms have been utilized for industrial 

scale production of biodegradable polymers, such as polyhydroxyalkanoates (PHAs) [17-

19]. In environmental remediation, synthetic biology could contribute by reducing the 

massive use of harmful industrial chemicals through providing biologically-based 

alternatives [20].  

 

While synthetic biology and metabolic engineering have proven successful in various 

domains, their applications could be further enhanced by the holistic perspective that 

systems biology provides [21]. The quantitative analysis and modeling techniques 

employed in systems biology can enable the optimization of metabolic pathways and the 

identification of novel targets for metabolic engineering. Systems biology can thus offer a 

valuable framework for synthetic biology and metabolic engineering, providing insights 

into the behavior of biological systems and guiding the design and optimization of 

synthetic biological systems. 

 

1.2 Systems biology 
What is systems biology? Systems biology is another interdisciplinary field that seeks to 

understand biological systems as a whole, rather than only investigating individual 

components [22]. In systems biology, there mainly exist two different approaches: 1) top-

down systems biology generally relies on omics data and integration of these datasets with 

mathematical models to elucidate the cellular functions; and 2) bottom-up systems biology 

involves the formulation of mathematical models based on accumulated knowledge [23]. 

In most cases, the goal of systems biology is to create a quantitative description for the 

biological systems, which is usually achieved through the development of mathematical 

models. The ultimate aim of systems biology is to gain a deeper understanding of the 

biological systems and use the models to make predictions on how the system will behave 

under different conditions. Besides, systems biology can be particular useful for 

investigating cellular metabolic networks, which can help to explore how the phenotype is 

generated from the genotype and how evolution has crafted the phenotype [24].  
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In recent years, advances in high-throughput analytical methodologies have enabled the 

comprehensive analysis of  cellular processes in organisms, providing a wealth of data that 

can be analyzed using systems biology approaches [25]. These advances are very valuable 

for the top-down systems biology, as they allow for the study of complex biological 

systems in detail that was previously impossible. The high-throughput techniques can 

generate large amounts of data, including genomics, transcriptomics, proteomics, and 

metabolomics data. These data can be further analyzed using computational and 

mathematical models, which is particularly supportive of the top-down systems biology. 

In the bottom-up systems biology, the system is reconstructed based on existing biological 

knowledge, with the aim of combining individual models into a holistic model describing 

the biological systems as a whole [21]. By taking the bottom-up approach, researchers can 

gain a deeper understanding of emergent properties, which are behaviors of the system that 

cannot be understood by examining the individual parts in isolation, but only become 

apparent when the whole system is functioning together. 

 

1.3 Yeast species 
For the above-mentioned synthetic biology and metabolic engineering (section 1.1) and 

systems biology (section 1.2), yeasts are widely used as model organisms in these fields. 

Yeasts are eukaryotic, unicellular microorganisms that are classified as members of the 

fungus kingdom [26]. One of the typical and well-known yeast species is the bakers’ yeast, 

Saccharomyces cerevisiae. It has become an indispensable model system for 

understanding eukaryotic biology at the cellular, molecular and genomic levels [27]. S. 

cerevisiae is a model organism for eukaryotic cells, which is particularly useful for 

studying biological process in eukaryotes. The insights gained from studying S. cerevisiae 

can be applied to other eukaryotes, including human. For instance, S. cerevisiae has been 

used as a model organism to investigate the cell cycle and human diseases such as 

Parkinson’s and Alzheimer’s [28, 29].  

 

Moreover, S. cerevisiae has been widely used in industry because it is a generally 

recognized as safe (GRAS) organism, which makes this species very suitable for large-

scale production of specific products [30]. As a model organism, the yeast S. cerevisiae 

has been widely applied in traditionally wine, bread and beer making. More recently, this 

yeast has also served as a cell factory for producing various bulk chemicals, fuels and 

pharmaceuticals through metabolic engineering [31]. Meanwhile, several non-

conventional yeast species, including Yarrowia lipolytica, Pichia pastoris (Komagataella 

phaffii) and Hansenula polymorpha, have recently gained more interest as microbial hosts 

to produce recombinant proteins and various value-added natural products due to their 

specific physiological properties [32, 33]. 

 

With the rapid development of high-throughput sequencing technologies, researchers have 

been able to deeply sequence 1,011 natural S. cerevisiae isolates from a broad array of 

human-associated biotopes [34]. Furthermore, the whole genomes of 332 different yeast 
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species have already been sequenced and are now publicly available, covering nearly one 

third of all known budding yeasts [35]. Through comparative genomic analysis of different 

yeast strains and species, researchers can delve deeper into the genetic factors that 

contribute to specific traits or phenotypes, e.g., stress tolerance, pathogenicity and 

fermentation efficiency [36, 37]. Additionally, the availability of genomes from a wide 

range of yeast species can aid in understanding yeast biodiversity, evolution and adaptation 

[38]. These valuable resources provide a unique opportunity to gain novel insights into 

genotype-phenotype relationships in eukaryotic biology. 

 

1.4 Big data 
In the current era of data explosion, big data has played a significant role in both systems 

and synthetic biology [39]. Not only does experimental data continue to accumulate, but 

the rate of data generation is even rapidly increasing. In an attempt to leverage the 

knowledge contained in this data for synthetic biology, a plethora of databases have been 

developed that are being applied to various levels of biosynthesis research. These levels 

include molecules, reactions, pathways, and enzymes. The development and application of 

these open-source databases have significantly accelerated synthetic biology and is 

expected to continue to do so as more experimental data are generated and integrated into 

these resources. 

 

At the molecular level, several integrated databases are available to provide valuable 

information on chemical structures, molecular properties, and biological activities. 

PubChem is one of the most widely used databases maintained by the National Center for 

Biotechnology Information (NCBI) [40]. It is a comprehensive resource for chemical 

information and has amassed data from over 750 sources, containing more than 111 million 

chemical structures, more than 303 million biological activity data points and over 37 

million scientific publications [40]. As a result of its extensive coverage, PubChem has 

served as an indispensable chemical information platform in many fields, such as 

cheminformatics, synthetic biology and chemical biology. ChEBI, the Chemical Entities 

of Biological Interest, is a freely available database and ontology that includes over 46,000 

manually curated entries mainly focusing on small chemical compounds [41]. Each entry 

is classified within the ontology and annotated with multiple relevant information, such as 

chemical structures, chemical synonyms, database cross-references and literature citations. 

DrugBank is a unique web resource that provides comprehensive information about drugs 

approved by the Food and Drug Administration (FDA), as well as experimental drugs 

undergoing FDA certification [42]. This database contains detailed information about 

drugs, including their mechanisms of action, drug-drug interactions, and drug-target 

interactions. In addition, DrugBank provides valuable information on drug metabolism, 

pharmacology, and pharmaceutical formulation.  
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Figure 2 A global map of KEGG metabolic pathways for S. cerevisiae. KEGG is a database that contains a collection 

of manually drawn graphical diagrams for various pathways. The source of this comprehensive map for S. cerevisiae: 

https://www.genome.jp/pathway/sce01100. 

 

At the reaction and pathway level, there are also various open-access databases that can be 

used to obtain information on biochemical reactions and pathways. One such database is 

KEGG, which contains manually curated pathway maps, representing molecular 

interaction and reaction networks for various organisms [43]. This comprehensive database 

provides a global view of different biological processes, e.g., metabolism, genetic 

information processing, signaling, cellular processes and environmental information 

processing. A specific example for S. cerevisiae is shown in Figure 2. Thus, KEGG is a 

valuable resource in many fields, including bioinformatics, systems biology and synthetic 

biology. Another knowledgebase of biosynthetic reactions is Rhea, where the reaction data 

is carefully curated from the scientific literature by expert biochemists, with support from 

natural language processing tools [44]. Additionally, Rhea provides programmatic access 

to all data, queries and tools available through the Rhea website via RESTful URLs. The 

current release of Rhea contains 15,572 reactions with 13,038 unique chemical compounds 

from 17,313 unique references, making it a valuable resource for researchers interested in 

studying biosynthetic reactions and pathways. MetaCyc is another highly curated database 

of metabolism that provides a comprehensive and integrated view of metabolic pathways 

from all domains of life [45]. The database contains information about chemical 

compounds, reactions, enzymes and metabolic pathways that have been experimentally 

validated and reported in the scientific literature. MetaCyc is constantly being updated and 

currently contains 3,105 pathways, 18,566 reactions and 18,973 metabolites. The data in 

MetaCyc is manually curated by a team of experts to ensure its accuracy and completeness.  

https://www.genome.jp/pathway/sce01100
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At the enzyme level, Uniprot, Protein Data Bank (PDB), BRENDA and Sabio-RK are 

some of the valuable resources that provide information on enzyme function, structure and 

kinetics. Uniprot is dedicated to providing the scientific community with a freely available, 

high-quality dataset of protein sequences annotated with detailed functional information 

[46]. The Uniprot database, UniprotKB, includes both reviewed entries and unreviewed 

entries. The reviewed UniProtKB/Swiss-Prot entries contain data added by their expert 

biocuration team, while the unreviewed UniProtKB/TrEMBL entries are annotated by 

automated systems. PDB is a comprehensive repository established in 1971 that stores a 

vast amount of structure data of proteins, nucleic acids, and complex assemblies [47]. The 

extensive collection of protein structures in PDB allows users to analyze structures of 

interest, identify structural motifs, and design experiments to explore protein function. It 

has become an essential resource enabling the development of education and research in 

biomedicine, biochemistry, and fundamental biology. BRENDA is an exceptional database 

that offers a comprehensive view of enzymes and their ligand interactions [48]. The 

information in BRENDA encompasses details on enzyme names, structures, stability, 

localization, specific activity, and kinetics parameters, among other features. Through 

ongoing curation and updates of classified enzymes, BRENDA currently holds over 5 

million data entries for approximately 90,000 enzymes from around 13,000 organisms, 

which is manually extracted from roughly 157,000 primary literature references, with the 

aid of text mining. Sabio-RK is a manually curated database that focuses primarily on 

enzyme kinetics [49]. It contains approximately 57,000 data entries, including around 

42,000 entries for wildtype enzymes and 13,000 entries for mutant enzymes. Each data 

entry in Sabio-RK provides enzyme kinetics data for a single enzymatic reaction in one 

organism under specific environmental conditions. 

 

1.5 Machine learning techniques 
With the emergence of big data at various levels (as shown in the above section), coupled 

with the rapid advancements in cloud computing, machine learning (ML), deep learning 

(DL) and artificial intelligence (AI), there is immense potential for these technologies to 

be adopted to better understand various yeast species and significantly promote the 

development of yeast systems biology. ML is one such technique that has gained popularity 

in recent years, in part due to the rise of big data. In face of big data, ML has found a broad 

range of applications, including but not limited to e-commerce and banking, transportation, 

medicine discovery, and beyond (Figure 3). 

 

ML, DL and AI have become some of the most popular and widely discussed technologies 

in the world today. In particular, ChatGPT, an AI chatbot developed by OpenAI, has 

recently captured considerable public attention across various domains [50]. In terms of 

their relationship, DL is a subfield of ML, and ML is a subfield of AI. DL involves 

advanced algorithms that mainly develop artificial neural networks (similar to neurons 

present in the human brain) to automatically learn and extract features from data, as well 
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as create models and predictions accordingly. ML is a broader field that encompasses a 

range of algorithms that enable computers to learn from data without being explicitly 

programmed. AI refers to the broad field of computer science that includes not only ML 

and DL, but also robotics, natural language processing, expert systems and computer 

vision, among others. 

 

 
Figure 3 The combination and applications of big data and machine learning. In the area of big data, machine 

learning has been widely applied to various fields, e.g., e-commerce and banking, airlines, communication systems, 

manufacturing, medical science, and more. 

 

ML is primarily categorized into three types: supervised learning, unsupervised learning, 

and reinforcement learning [51]. Supervised learning is one of the fundamental types of 

machine learning, in which the algorithms are trained based on labelled data [52]. There 

are two basic types of supervised learning: classification and regression algorithms. The 

main difference between both is that classification algorithms are used to classify different 

classes or labels, such as high or low, true or false, while regression algorithms are used to 

predict continuous numerical values. In contrast, unsupervised learning involves training 

models on data that has not been labeled. This type of learning is particularly useful for 

exploratory data analysis, as it helps to explore the underlying trends and patterns from 

raw data or cluster similar data into a specific number of groups [53]. Reinforcement 

learning is another type of ML, where an agent interacts with an environment by sensing 

its state and learns to take actions that maximize long-term reward [54]. It is goal-oriented, 

and the agent aims to learn sequences of actions by exploitation in an uncertain 

environment to maximize future rewards. Unlike supervised learning, reinforcement 

learning does not require labeled data because it learns by interacting with the environment. 

Reinforcement learning has numerous practical applications, such as self-driving cars, 

robotics, and adaptive controls.  
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1.5.1 Classical machine learning algorithms 

Random forest (RF) is a versatile and powerful ML algorithm that is commonly utilized 

for both classification and regression problems [55]. It is an ensemble learning approach 

that works by creating multiple decision trees and combining their outputs to generate a 

final prediction. Each decision tree in the RF model is built using a random subset of the 

training dataset. This kind of randomness can help to prevent overfitting and enhance the 

model’s precision. For classification tasks, the RF algorithm selects the class that is 

predicted by the majority of the decision trees. For regression tasks, the algorithm 

generates the mean prediction of all the trees as the output. RF has numerous advantages 

over other classical ML algorithms. It is user-friendly and does not require extensive hyper-

parameter tuning. Moreover, the RF algorithm can provide estimates of feature 

importance, allowing for easier interpretation and understanding of the ML model’s 

predictions.  

 

Support vector machine (SVM) is another prevalent supervised learning algorithm, which 

can also be used for classification as well as regression problems. SVM was originally 

developed for classification, and its basic idea is to find the best hyperplane or boundary 

that separates data points based on predefined classes or labels [56]. SVM is not only 

effective for linear datasets, but it can also work with non-linear datasets using kernel 

functions. Compared to other ML algorithms, SVM is particularly effective in high-

dimensional spaces, and it can handle complex datasets with many features. SVM has been 

validated its usefulness in a wide variety of biological applications, such as the prediction 

of chronic kidney disease [57], protein fold recognition [58], and the identification of 

anticancer peptides [59]. 

 

K-nearest neighbors (KNN) is a frequently employed and straightforward ML algorithm 

that can be used for both classification and regression problems, but it is more commonly 

used for classification [60]. The KNN classifier operates by identifying the k nearest 

neighbors to a given data point and then using the majority vote of their labels to classify 

the data point. In the case of regression, the algorithm calculates the average of the labels 

and returns it as the output value. Since KNN does not make any assumptions about the 

underlying data, it is considered as a non-parametric learning algorithm. For the KNN 

algorithm, selecting an appropriate value of k is crucial for preventing both underfitting 

and overfitting of the ML model. Cross-validation can be used to determine the optimal 

value of k for the KNN algorithm, which can improve its performance.  

 

1.5.2 Deep learning algorithms 

DL is a type of advanced ML that utilizes neural networks to perform intricate 

computations and predictions based on large amounts of data [61]. Similar to the human 

brain, neural networks consist of artificial neurons or nodes that are arranged in three layers, 

i.e., input layer, one or more hidden layers and output layer. Here is how a neural network 

operates: (i) Data feeds input information to each node. (ii) After multiplying the inputs 
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with random weights and adding bias, the node computes the output. (iii) Nonlinear 

functions, also as activation functions, are mathematical functions that are applied to the 

output of each node or neuron in a neural network. These functions introduce nonlinearity 

to the network, allowing it to model and learn complex relationships between inputs and 

outputs. Without these nonlinear functions, the neural network would be limited to only 

modeling linear relationships. Consequently, DL can automatically extract features or 

representations from data without relying on data pre-processing. DL encompasses various 

architectures that are widely used in different domains, such as Convolutional Neural 

Network (CNN), Graph Neural Network (GNN), Generative Adversarial Network (GAN), 

and more. 

 

CNN is a typical DL algorithm that consists of three essential building blocks: 

convolutional layers, pooling layers, and fully connected layers [62]. The convolutional 

layer is the core building block of a CNN that extracts basic features from the input dataset. 

This layer uses a set of filters or kernels to perform convolution operations on the input 

and produce a new output feature map. The size and number of filters can be adjusted 

depending on the complexity of the input data. The pooling layer, also known as a 

downsampling method, helps to reduce the number of parameters and increase the 

efficiency of the network. Similar to the convolutional layer, the pooling operation sweeps 

a filter across the entire input. There are two main types of pooling, i.e., max pooling and 

average pooling, which help to reduce complexity and improve the network’s ability to 

generalize to new data. Finally, the output of the pooling layer is fed into one or more fully 

connected layers, performing the specific task based on the features extracted from 

previous layers and their different filters. Each neuron in the fully connected layers is 

connected to every neuron in the previous layer, allowing the network to learn complex 

non-linear relationships between the input data and the target output. 

 

GNN is a powerful algorithm for processing and analyzing structured data that can be 

represented in the form of graphs [63]. In a GNN, a graph is a data structure consisting of 

two main components: nodes and edges. The nodes and edges of a graph are transitioned 

to vectors or matrices, which are used as input to a neural network. The main idea of GNN 

is based on message passing, where each node in the graph sends messages to its 

neighboring nodes and updates its own state according to the received messages. One of 

the advantages of this DL architecture is that it allows researchers to work directly on 

natural input representations of compounds or materials, which are chemical graphs with 

nodes described as atoms and edges described as chemical bonds. Thus, GNN can learn 

complex representations of chemicals that are very useful for specific tasks, such as 

predicting molecular properties [64], de novo drug design [65], and protein-protein 

interaction prediction [66]. 

 

GAN was introduced in 2014 by lan Goodfellow and his colleges as a framework for 

unsupervised learning tasks in DL [67]. GAN has become an increasingly popular 

framework in recent years due to its ability to generate high-quality and realistic data in 
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various areas. The GAN architecture consists of two neural network models - a generator 

and a discriminator. The generator model is typically designed to learn how to generate 

synthetic data that closely resembles real data, while the discriminator model is tasked with 

distinguishing between the generator’s synthetic data and real data. This architecture is 

adversarial because the generator and the discriminator work against each other with 

opposing objectives – the generator tries to mimic reality while the discriminator tries to 

identify fake data. These two models are trained simultaneously, and they improve their 

capabilities over time through an iterative process. 

 

1.6 Comparative genomics and evolution 
As described in the above section, ML has shown great potential in various areas. 

However, one of the challenges of ML is its weakness in interpretation, especially in 

investigating complex biological problems, such as evolution. ML models are often 

referred to as black-box models, meaning that their decision-making process is difficult to 

interpret and understand. This is where comparative genomics can be especially valuable. 

Comparative genomics is a field of biological study that aims to compare the genomic 

characteristics of different species or individuals to identify similarities and differences 

[68]. By analyzing these similarities and differences, comparative genomics and its related 

evolutionary analyses contribute to our understanding of how new species or new traits 

emerge and shed light on various biological mechanisms [68]. One essential aspect of study 

in comparative genomics is the analysis of evolutionary changes that occur in the genome 

over time. Three common areas of study within this field that are also topics addressed in 

this thesis include dN/dS analysis, horizontal gene transfer (HGT), and gene family 

expansion and contraction. These approaches allow us to identify functional changes in 

genes, as well as to explore the underlying mechanisms that contribute to genetic diversity 

and evolution. 

 

The dN/dS ratio is a common metric used in comparative genomics to quantify selection 

pressures acting on protein-coding regions. It represents the ratio of non-synonymous (dN) 

to synonymous (dS) substitutions. Non-synonymous mutations result in changes to the 

amino acid sequence of a protein, while synonymous mutations do not [69]. Therefore, the 

dN/dS ratio can provide insight into whether a gene has undergone positive selection, 

neutral selection, or purifying selection. A dN/dS ratio greater than one suggests positive 

selection, meaning that non-synonymous mutations that change the protein sequence are 

being favored. Conversely, a ratio value less than one indicates purifying selection, where 

synonymous mutations are being favored to maintain the protein’s function [70]. 

 

HGT is the process by which genetic material moves between different species across the 

tree of life, beyond the transmission of DNA from parent to offspring [71]. HGT is of great 

interest because it can drive functional innovation by introducing novel genes or pathways 

[72]. Moreover, it has been recognized as a significant contributor to niche specification, 

disease emergence and the shift in metabolic capabilities [35, 73, 74]. Transformation is a 
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crucial mechanism for HGT, which involves the active uptake and integration of 

extracellular naked DNA that can be inherited [75]. Prokaryotes, in particular, exhibit a 

high frequency of HGT events, representing one of the primary mechanisms that drive 

genetic variation and microbial evolution in these organisms [76]. Although HGT occurs 

less frequently in eukaryotes than in prokaryotes, it still plays a vital role in the evolution 

of eukaryotic genomes by enabling the acquisition of adaptive functions [72].  

 

Gene family expansion and contraction are dynamic processes that involve changes in the 

number of genes within a family over time. A gene family is a group of homologous genes 

that are likely to have highly similar functions [77]. Gene family expansion can occur 

through gene duplication events, which result in the creation of new genes that are similar 

in sequence and function to existing ones [78]. In contrast, gene family contraction may 

occur due to gene loss or deletion events, resulting in a reduction in the number of genes 

within the family [77]. The expansion or contraction of gene families can have significant 

implications for species differentiation, phenotypic diversification, and adaptation to 

environmental changes [79]. For instance, gene family expansion can lead to the 

emergence of new functions or adaptations, while gene family contraction may result in 

the loss of important traits.  
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1.7 Aims and significance 
Yeasts, including Saccharomyces cerevisiae, Yarrowia lipolytica, Pichia pastoris, etc., 

have emerged as promising microbial cell factories due to the advanced synthetic biology 

and metabolic engineering technologies. However, the cellular metabolism and 

physiological properties of most yeast species remain poorly understood. This thesis aims 

to address the knowledge gap by utilizing large amounts of data and applying state-of-the-

art ML techniques and comparative genomic analysis to gain a deeper understanding of 

yeast traits and metabolism. 

 

ML is a powerful tool with wide applicability in the prediction of various biology-related 

problems, e.g., gene expression, EC numbers and enzyme catalytic temperature optima 

[80-83]. In this thesis, I harnessed the power of advanced ML techniques to drive the 

development of yeast systems biology. In Paper I, I utilized two ML algorithms that 

leveraged both sequence features and evolution-based features to predict essential genes. 

Notably, the inclusion of evolutionary features led to a marked improvement in the 

accuracy of gene essentiality prediction. Then I used an SVM pipeline to annotate essential 

genes for large-scale yeast/fungi species, providing a valuable resource for the yeast 

community. In Paper II, I developed a high-quality deep learning model called DLKcat, 

which predicted kcat values by combining a graph neural network for substrates and a 

convolutional neural network for proteins. Through the prediction of kcat profiles for large-

scale yeast/fungi species, enzyme-constrained models were reconstructed, allowing for  a 

more comprehensive exploration of cellular metabolism on a large scale. In Paper III, an 

investigation was conducted on the impact of different features on protein production using 

a RF algorithm, the findings revealed that post-translational modifications (PTMs) have a 

higher influence on protein production in comparison to amino acid composition. 

 

Comparative genomics plays an important role in understanding evolutionary relationships 

and identifying genetic changes that occur between different species. In Paper IV, I 

developed the HGTphyloDetect toolbox, a comprehensive tool for the identification of 

HGT events, regardless of whether the acquired genes are from distantly related species or 

closely related species, highlighting its versatility. Using case studies on several yeast 

species, HGTphyloDetect was shown to accurately identify horizontally acquired genes. 

More importantly, the HGTphyloDetect toolbox facilitates the generation of high-quality 

phylogenetic trees, which can aid in the navigation of potential donors and elucidate 

feasible paths of gene transmission in detail. In addition, through systematic evolution 

analysis (e.g., HGT, gene family expansion and contraction) and genome-scale metabolic 

model (GEM) simulation in Paper I, I probed the underlying mechanisms for substrate 

utilization across large-scale yeast species. revealing that gene family expansion and 

enzyme promiscuity are prominent mechanisms for metabolic trait gains. 

 

Overall, my thesis leveraged advanced ML and DL techniques to shed light on various 

aspects of yeast systems biology, spanning gene essentiality, enzyme kinetics, and protein 
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production. Furthermore, the development of the comprehensive HGTphyloDetect toolbox 

enabled the identification of HGT events and the construction of high-quality phylogenetic 

trees. Moreover, the investigation of substrate utilization mechanisms through systematic 

evolution analysis and GEM simulation provided insights into the genetic and biochemical 

factors underlying metabolic trait gains in large-scale yeast species. 

 

These findings of this thesis have significant implications for the broader fields of synthetic 

biology and evolutionary biology, providing valuable resources and knowledge for the 

yeast community. The insights gained through these analyses can further lead to the 

development of novel therapeutic and biotechnological applications. The successful 

integration of advanced ML and DL techniques with comparative genomics and metabolic 

modeling approaches has opened up new avenues for exploring the intricate complexities 

of biological systems and has the potential to transform our understanding of various 

biological processes. 
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2. Development and applications of ML and DL approaches 
As outlined in the background section, ML and DL techniques have enormous potential to 

enhance our understanding of a wide range of biological problems when combined with 

big data. In this chapter, I present three studies that demonstrate the applications of ML 

and DL methods in advancing systems biology of yeast. The first study (Paper I) 

investigates the role of ML in the prediction of gene essentiality. The second study (Paper 

II) utilizes deep neural networks to predict enzyme turnover number and applies the DL 

model to large-scale yeast species. Finally, the third study (Paper III) explores the impact 

of different features on protein production, both positively and negatively. 

 

2.1 ML on gene essentiality (Paper I) 
Essential genes are those genes that are necessary for the survival of an organism [84]. 

Identifying essential genes is important for discovering new drug targets, exploring disease 

genes, and understanding the minimal requirements of an organism [85]. Although it has 

been shown that high-throughput experimental methods can be applied to identify gene 

essentiality, particularly in organisms like S. cerevisiae [86], they can be prohibitively 

expensive, time-consuming, and labor-intensive. Given the availability of large-scale 

annotation of gene essentiality data for certain yeast organisms, I developed ML 

approaches to predict essential genes by incorporating sequence features and evolution-

based features. 

 

2.1.1 Software used in the pipeline 

Various ML methods were employed to predict essential genes in a computational way 

that integrated several open-source software packages. The NumPy version 1.17.2 

(https://numpy.org/) and SciPy version 1.3.1 (https://www.scipy.org/) packages were 

utilized for handling data arrays. The data visualizations were generated using the 

matplotlib version 3.1.2 (https://matplotlib.org/) and seaborn version 0.9.0 

(https://seaborn.pydata.org/) packages. The ML algorithms were implemented using the 

scikit-learn version 0.22.1 (https://scikit-learn.org/stable/) library, which is based on the 

Python programming language. 

 

2.1.2 Data collection 

To develop the ML models for predicting essential genes, I collected datasets of reported 

essential genes for five yeast/fungi species (Table 1), namely S. cerevisiae, Y. lipolytica, 

P. pastoris, Schizosaccharomyces pombe, and Candida albicans. Gene and protein 

sequence FASTA files for S. cerevisiae, C. albicans, and S. pombe were sourced from the 

SGD database [87], the CGD database [88], and the PomBase database [89], respectively. 

Furthermore, the gene and protein sequence data for P. pastoris and Y. lipolytica were 

retrieved from the NCBI RefSeq database [90]. 
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Table 1. Essential gene data collected from literature reports. 

Organism Essential genes 
Non-essential 

genes 
Reference 

S. cerevisiae 1037 4543 Chen, et al. 2012 [91] 

S. pombe 1346 3689 Chen, et al. 2012 [91] 

C. albicans 633 1714 O’Meara, et al. 2015 [92] 

P. pastoris 144 465 Cankorur‐Cetinkaya, et al. 2017 [93] 

Y. lipolytica 108 534 Wei, et al. 2017 [94] 

 

2.1.3 ML workflow for the prediction of essential genes 

Gene essentiality can be predicted by ML based on sequence-derived properties [95]. Upon 

obtaining a high-quality dataset for gene essentiality, the dataset was randomly divided 

into a training dataset and a test dataset at a ratio of 80:20, respectively. The gene sequences 

were then utilized to calculate sequence features such as Di-Nucleotide Composition 

(DNC) and codon frequency represented by Kmer. They can be calculated by the following 

mathematical formulas: 

 

𝐷𝑁𝐶(𝑟, 𝑠) =
𝑁𝑟𝑠

𝑁 − 1
 𝑟, 𝑠 ∈ {𝐴, 𝐶, 𝐺, 𝑇} (1) 

𝐾𝑚𝑒𝑟(𝑡) =
𝑁 (𝑡)

𝑁
 𝑡 ∈ {𝐴𝐴𝐴, 𝐴𝐴𝐶, 𝐴𝐴𝐺, … , 𝑇𝑇𝑇} (2) 

In these calculations, Nrs represents the number of combinations of any two nucleic acid r 

and s, N(t) is the number of type t, and N is the length of the nucleotide sequence. 

 

In addition to sequence features, evolutionary information has been hypothesized to 

improve gene essentiality prediction by leveraging the possible fact that essential genes 

are more conserved than non-essential genes. This is because mutations in essential genes 

can be detrimental to the organism's survival, leading to stronger purifying selection 

pressure [96]. To incorporate evolutionary information, several features were calculated 

for each gene based on its ortholog information, including protein conservation score, 

dN/dS, number of gene occurrence across species, and average paralog number (Figure 

4A). Since each gene could be mapped with an ortholog group (OG) across multiple 

species, it was possible to calculate these evolution-based features for each gene. 

 

In a previous research, genome sequences of 343 yeast/fungi species along with their 

comprehensive genome annotations were made publicly available [35]. As part of the 

annotation process, each gene in the dataset was assigned to an ortholog group (OG) 

spanning multiple species. To compute the conservation score, this study used the Jensen-

Shannon divergence (JSD) [97], where js_divergence was used as an estimation method 
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for estimation. The JSD software was utilized to compare the distribution of amino acids 

at each position in a protein alignment to a background distribution of amino acids. The 

resulting JSD value for each position was then transformed into a conservation score, with 

higher scores indicating greater conservation. The dN/dS ratios at the gene level were 

determined for pairs of orthologous genes across a set of 343 species using yn00 from 

PAML v4.7 on their respective gene sequences [98], in which yn00 is a program 

specifically designed to estimate the synonymous (dS) and nonsynonymous (dN) 

substitution rates between pairs of protein-coding sequences. This computational 

framework takes single-copy OGs as input and extracts gene-level dN/dS values from 

PAML output files as output. Moreover, the number of gene occurrence can be directly 

obtained from the annotation data, while the average paralog number was calculated by 

dividing the number of sequences in one OG by the total number of unique species in that 

OG.  

 

 
Figure 4 A schematic workflow illustrating essential gene prediction using ML methods and feature analysis 

between essential and non-essential genes. (A) An overview of gene essentiality prediction based on ML approaches. 

(B) Evolutionary feature analysis by comparing essential and non-essential genes across various yeast species. Statistical 

significance was denoted using symbols: ∗ for P value <= 0.05, ∗∗ for P value <= 0.01, and ∗∗∗ for P value <= 0.001. 

The following species with experimental data were included in the analysis: S. cerevisiae (sce), S. pombe (spo), C. 

albicans (cal), Y. lipolytica (yli), and K. pastoris (ppa). Only values within the range of 1-1.8 for the average number of 

paralogs were displayed. 

 

Through a comparison of available evolutionary features between essential and non-

essential genes across several yeast species, it was discovered that these features can indeed 

be utilized to differentiate between the two types of genes (see Figure 4B). For example, 
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when comparing the gene occurrence number across five species, the median value of 

essential genes was indeed significantly higher than that for non-essential genes, with a P 

value that was statistically significant. 

 

After computing all sequence-based and evolution-based features, two libraries were 

generated: one for the training dataset and another for the testing dataset. Each library 

contained input and label data for multiple gene lists. The input data comprised various 

features, including sequence-based and evolution-based features, while the label data 

represented the gene essentiality status. Essential genes were assigned a label of ‘1’, while 

non-essential genes were assigned a label of ‘0’. Using the Python-based package, an SVM 

and RF model were trained using the datasets to classify essential and non-essential genes 

based on their patterns (Figure 4A). 

 

2.1.4 Evaluation of the ML model performance 

To assess the predictive capabilities of different ML models, a five-fold cross validation 

approach was employed, and the receiver operating characteristic (ROC) curve was 

utilized. The ROC curve was generated by plotting the true positive rate (TPR) on the y-

axis against the false positive rate (FPR) on the x-axis. The area under the ROC curve 

(AUC) was then computed, with a higher value indicating better performance of the ML 

model in gene essentiality prediction. 

 

 
Figure 5 Improved essential gene prediction by integrating evolutionary parameters. The SVM algorithm (A) and 

the RF algorithm (B) both showed improved accuracy for predicting essential genes on the testing dataset when 

evolutionary parameters were incorporated, as evidenced by the higher AUC values of the ROC curves. (C) The 

importance scores of features that contribute to essential gene prediction were determined using the chi-square test 

method, and the two features Kmer-TGA and Kmer-GAA correspond to specific 3-nucleotide sequence fragments. Only 

features with high importance scores are shown, while those with lower scores are excluded. 
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For TPR and FPR, they were calculated as follows: 

 

True Positive Rate (or Sensitivity)  =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
    (3) 

  Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                (4) 

False Positive Rate = 1 − Specificity                        (5) 

 

where TP, TN, FP, FN denote true positive, true negative, false positive and false negative, 

respectively. In other words, TP is the number of essential genes (based on their 

annotations in the gathered datasets) that were predicted as essential genes, TN is the 

number of non-essential genes predicted as non-essential genes, FP is the number of non-

essential genes predicted as essential genes and FN is the number of essential genes 

predicted as non-essential genes. 

 

In the comparison of gene essentiality prediction using sequence features alone and in 

combination with evolution-based features, it was observed that the AUC values for 

essential gene prediction on the testing dataset were improved from 0.65 to 0.81 and 0.65 

to 0.80 for the SVM and RF algorithms, respectively (Figure 5A-B). These findings 

suggest that integrating evolution-based features can indeed lead to a substantial 

improvement in gene essentiality prediction. This is consistent with previous observations 

that essential genes tend to be more conserved across species than non-essential genes 

(Figure 4B), and that evolutionary information can thus be used to improve gene 

essentiality prediction. 

 

One example of an evolution-based feature that can improve gene essentiality prediction 

is the gene occurrence number. This feature provides insights into the functional 

importance and conservation of genes across evolutionary time. Essential genes are 

typically more conserved across different species, as they play fundamental roles in 

cellular processes that are necessary for the survival of the organism, such as DNA 

replication, protein translation, and metabolism [99]. As a result, essential genes are more 

likely to occur in a greater number of species compared to non-essential genes. Another 

example is dN/dS, which measures the ratio of nonsynonymous substitutions (dN) to 

synonymous substitutions (dS) in protein-coding genes. Essential genes have evolved to 

fulfill essential functions that require a specific amino acid sequence, and thus too many 

nonsynonymous sites would affect these essential functions. 

 

To analyze the detailed contribution of individual features, all features were included as 

input in the ML model, and a chi-square test [100] was conducted to rank them based on 

their contribution to gene essentiality prediction (Figure 5C). The results revealed that 

evolution-based features, such as gene occurrence number, dN/dS, and protein-level 

conservation score, were the top three important features. Gene occurrence number was 
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identified as the most influential feature. Specifically, two Kmer (indicating gene 

frequencies) features, Kmer-TGA and Kmer-GAA, were found to have a relatively higher 

contribution to gene essentiality prediction. This suggests that genes containing these two 

sequence fragments are more likely to be essential genes compared to genes containing 

other sequence fragments. 

 

Following the model evaluation and training process using the SVM algorithm, an ML 

model was generated and applied to predict essential genes for 338 out of 343 fungal 

species without experimental data. In paper I, these predictions are made publicly available 

via the Figshare platform, providing a valuable resource for future research in the yeast or 

fungi community. 

 

2.2 DL on enzyme turnover number (Paper II) 
Enzyme turnover number, also known as kcat, refers to the maximum number of substrate 

molecules that can be converted to product per active site per unit time when the enzyme 

is saturated with substrate [101]. This crucial parameter of enzyme kinetics, which 

signifies how fast or efficient an enzyme functions, is necessary for understanding the 

growth rate, proteome composition, and physiology of organisms [102, 103]. However, 

obtaining experimental data on kcat is time-consuming and labour-intensive, and for most 

enzymes, this information is unknown due to the vast array of existing organisms. Despite 

this challenge, Heckmann et al. previously built predictive ML models by compiling a 

diverse set of features, including network properties, enzyme structural properties, 

biochemical information, and assay conditions [104]. Nevertheless, acquiring such 

features is typically difficult and labour-intensive, limiting this approach to only well-

studied organisms like E. coli. To overcome this limitation, a DL approach called DLKcat 

was developed in this study, which utilizes substrate structures and protein sequences as 

inputs and has demonstrated its ability to predict kcat values on a large scale for various 

organisms. 

 

2.2.1 Data preparation for the DL model 

To collect the kcat data, customized scripts were used to extract the dataset for the DL model 

construction from the BRENDA [48] and SABIO-RK [49] databases via their respective 

application programming interfaces (API). During this process, several rounds of data 

cleaning were performed to ensure data quality (Figure 6). The substrate simplified 

molecular input line entry system (SMILES), which is a string notation used to represent 

the substrate structure, was extracted using the substrate name to query the PubChem 

compound database [40]. Two approaches were employed to query protein sequences: for 

entries with UniProt ID information, the amino acid sequences were obtained using the 

UniProt API [46] and Biopython v.1.78 (https://biopython.org/), while for entries without 

UniProt ID, the amino acid sequences were acquired from the UniProt and BRENDA 

databases based on their EC number and organism information. In this study, kcat values 

from both wildtype and mutated enzymes were considered. For wildtype enzymes, the 
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sequences of entries were directly mapped. For mutated enzymes, the sequences of those 

entries were altered based on the mutated sites. 

 

 
Figure 6 Dataset collection and pre-processing steps involved in constructing the DL model. 

 

The dataset used for the DL model construction includes substrate name, organism 

information, EC number, protein identifier (UniProt ID), enzyme type, and kcat values. For 

the majority of data entries, the assay conditions (pH, temperature) were not specified. 

Including pH and temperature as features would filter out a large part of the dataset and 

significantly reduce the diversity of enzymes. Therefore, pH and temperature were not 

included as features in the collected dataset. The final dataset consisted of 16,838 unique 

entries catalyzed by 7,822 unique protein sequences from 851 organisms and involving 

2,672 unique substrates (Figure 7A-C). 
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Figure 7 Analysis of in vitro kcat values from the BRENDA and SABIO-RK databases after several rounds of data 

pre-processing and cleaning. (A) Data distribution of in vitro kcat values. (B) In vitro kcat values classification by the 

first digit of the EC number. (C) In vitro kcat values classification by species. 

 

2.2.2 Construction of the DL model pipeline 

The DL approach for in vitro kcat value prediction was developed by integrating a GNN for 

substrates and a CNN for proteins (Figure 8). The combination of GNN and CNN is 

particularly effective for processing pairs of data with varying structures, such as molecular 

graphs and protein sequences. The molecular graphs used to represent substrates consist 

of vertices that represent atoms and edges that represent chemical bonds, while the protein 

sequences comprise a string of characters representing amino acids. 

 

Since substrates typically consist of a limited range of chemical atoms and bonds, 

additional learning parameters were required. To accomplish this, r-radius subgraphs were 

used to obtain vector representations, which were induced by neighbouring vertices and 

edges within a given radius r from a vertex [105]. To begin, the substrate SMILES 

information was transformed into a molecular graph using RDKit v.2020.09.1 

(https://www.rdkit.org). Next, the GNN updated each atom vector and its neighbouring 

atom vectors, which were transformed by the neural network using a nonlinear function 

(i.e., ReLU [61]). Additionally, two transitions were implemented in the GNN: vertex 

transitions and edge transitions. These transitions were designed to ensure that local vertex 

and edge information was propagated throughout the graph by iteratively processing and 

summing neighbouring embeddings. Ultimately, the output of the GNN was a set of real-

valued molecular vector representations for substrates. 

 

To obtain the protein sequences representations, the CNN framework was utilized to scan 

protein sequences. The neural network transformed the protein sequences through a 

nonlinear function (i.e., ReLU), to generate the vector representations. To apply the CNN 

to proteins, "words" were defined in the protein sequence, and the sequence was split into 

overlapping n-grams of amino acids with n set to 1, 2, or 3 to prevent low-frequency words 

in the learning representations [106]. The protein sequences were then translated into 
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various word embeddings, and the CNN used a filter function with a weight matrix to 

compute hidden vectors from the input word embeddings. Subsequently, a set of hidden 

vectors for the split subsequences was obtained based on the n-gram amino acid splitting. 

 

 
Figure 8 Schematic overview of the DL approach developed to predict kcat values by integrating a GNN for 

substrates and a CNN for proteins.  

 

After obtaining the substrate representations and protein sequence representations, they 

were concatenated along with an output vector (kcat value) to train the DL model based on 

the neural attention mechanism [105]. During training, the total dataset was shuffled before 

being randomly split into a training dataset, validation dataset, and test dataset in an 

80:10:10 ratio. The objective of the training process was to minimize the loss function 

using the substrate-protein pairs and kcat values in the training dataset. PyTorch software 

package was utilized for building and training models, accessed through the Python 

package interface under the CUDA environment. 

 

2.2.3 DL model performance for kcat prediction 

The DL model training architecture presented in the above section includes various 

hyperparameters that should be tuned to optimize the model performance. Specifically, I 

explored different values for the r-radius (0, 1, or 2), the n-gram (1, 2, or 3), the vector 

dimensionality (5, 10, or 20), the number of layers in GNN (2, 3, or 4), and the number of 

layers in CNN (2, 3, or 4) to identify the optimal settings that would influence the DL 

model performance (Figure 9A-C), where the vector dimensionality refers to the number 

of input neurons in the neural network. After hyperparameter tuning, the optimal 
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hyperparameter settings were found to be an r-radius of 2, n-gram of 3, vector 

dimensionality of 20, 3 layers in GNN, and 3 layers in CNN. Using these settings, the DL 

model was trained for its optimal performance. 

 

 
Figure 9 Hyperparameter tuning on the validation dataset. (A) Learning curves for various r-radius subgraphs and 

n-gram amino acids. (B) Learning curves for different vector dimensionality. (C) Learning curves for varying numbers 

of layers in GNN and CNN. 

 

Once the DL model was trained using the optimal hyperparameter settings, the resulting 

model was further evaluated to determine its detailed performance. The final model's 

performance was initially checked on the entire dataset (including the training, validation, 

and test datasets). The results showed that the DL model had an excellent performance, as 

evidenced by a high Pearson's r value of 0.88 and a P value of 0 (Figure 10A). Moreover, 

the model demonstrated high predictive accuracy when it was tested on the test dataset, as 

indicated by a Pearson's r value of 0.71 and a P value of 1.5e-262 (Figure 10B). The model 

also performed well on the subset of the test dataset where at least either the substrate or 

enzyme was not present in the training dataset, with a Pearson's r value of 0.70 and a P 

value of 8.0e-88  (Figure 10C). The success of the DL model is mainly attributed to two 

critical factors: the large size and high quality of the dataset used in this work, and the use 

of complex models by combining GNN and CNN. 

 

Apart from the conventional performance evaluation on the test dataset, the DL model in 

this study was also evaluated based on its ability to predict kcat values in different metabolic 

contexts. To explore the metabolic contexts of all wildtype enzymes in the entire dataset, 

the enzymes were categorized into four modules based on the KEGG database [43]. These 

modules include primary metabolism-CE (carbohydrate and energy), which encompasses 

the main carbon and energy metabolism pathways such as glycolysis/gluconeogenesis, 

TCA cycle, and pentose phosphate pathway; primary metabolism-AFN (amino acids, fatty 

acids, and nucleotides); intermediate metabolism, related to the biosynthesis and 

degradation of cellular components, such as coenzymes and cofactors; and secondary 

metabolism, which is associated with metabolites produced in specific cells or tissues, e.g., 

flavonoid biosynthesis, caffeine metabolism, bile acid biosynthesis, etc. Based on the 

trained DL model, it was found that enzymes associated with primary-CE metabolism on 

average exhibited a higher predicted kcat value than those of primary-AFN, secondary, and 

A B C
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intermediate metabolism (Figure 10D). Additionally, enzymes associated with 

intermediate metabolism exhibited a slightly lower kcat value on average compared to those 

of primary-AFN and secondary metabolism (Figure 10D). These results are highly 

consistent with previous reported findings that enzyme-substrate pairs from central carbon 

metabolism tend to have relatively higher kcat values than secondary and intermediate 

metabolism [107]. 

 

 
Figure 10 Performance evaluation of DLKcat. Performance of the final DL model on (A) the entire dataset; (B) the 

test dataset; and (C) a subset of the test dataset where either the protein sequence or the substrate was not present in the 

training dataset. The correlation between predicted kcat values and experimental kcat values was evaluated, with the 

temperature of the color representing the density of data points. Student’s t-test was used to calculate the P value for 

Pearson’s correlation. (D) Cumulative distribution of DL-based kcat values for enzyme-substrate pairs belonging to 

different metabolic contexts. CE: carbohydrate and energy; AFN: amino acids, fatty acids, and nucleotides. (E) Enzyme 

promiscuity analysis on the test dataset. For enzymes with multiple substrates, the substrates were divided into preferred 

and alternative based on their experimental measured kcat values, and then used the predicted kcat values for this boxplot. 

The random substrates were chosen randomly from the compound dataset in the training data, except for the documented 

substrates and products for the tested enzyme. (F) Comparison of predicted kcat values for native substrates and 

underground substrates with the human aldo–keto reductase enzyme as a case study. In each box plot (E and F), the 

central band represents the median value, the box represents the upper and lower quartiles, and the whiskers extend up 

to 1.5 times the interquartile range beyond the box range. A two-sided Wilcoxon rank sum test was used to calculate the 

P values (E and F). 

 

Enzyme promiscuity refers to the capability of an enzyme to catalyze multiple reactions or 

substrates. Understanding enzyme promiscuity and related underground metabolism is a 

crucial topic in evolutionary biology [108], with potential implications for protein and 

metabolic engineering. Enzyme promiscuity is an important factor in enzyme evolution 

and can be harnessed to generate novel enzymes with desired catalytic properties and 

broader substrate ranges, aiding in the development of new industrial applications [109]. 

In this regard, I validated the performance of the DL model in predicting enzyme 
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promiscuity. To achieve this, a compound dataset was created using compound names and 

SMILES based on the substrate information in the training data. For enzymes that had kcat 

values reported from different substrates, the substrates were categorized into preferred 

and alternative based on their experimentally measured kcat values. The substrates that were 

not documented as substrates or products in the training data were randomly selected as 

the random substrates. Through a comparison of the predicted kcat values for preferred 

substrates, alternative substrates, and random substrates of promiscuous enzymes (Figure 

10E), it was found that the DL model was capable of predicting that enzymes indeed have 

a higher kcat value for the preferred substrates in comparison to the alternative substrates 

(P value = 0.01). Moreover, the DL model was able to predict that enzymes have a higher 

kcat value for the alternative substrates compared with the random substrates (P value = 

0.02). These findings validate the predictive power of the DL model in identifying 

preferred substrates in enzyme promiscuity.  

 

The evaluation of native and underground metabolism can be illustrated through the 

analysis of kcat data for the human aldo-keto reductase and its multiple substrates [110]. In 

this study, the substrates with the top 10% catalytic ability (experimental kcat value) were 

defined as native substrates (n = 6), while those with the last 10% catalytic ability 

(experimental kcat value) were considered underground substrates (n = 6), as defined in the 

reference [110]. The predicted kcat values by DLKcat revealed a significant difference (P 

= 0.0039) between the native substrates (top 10% of kcat values with a median of 2.22 s^-

1) and the underground substrates (bottom 10% of kcat values with a median of 0.04 s^-1) 

(Figure 10F). 

 

2.2.4 Prediction of kcat values for mutated enzymes 

 
Figure 11 Prediction performance for wildtype and mutated enzymes on the test dataset. (A) Cumulative 

distribution of experimentally measured kcat values for wildtype and mutated enzymes. (B-C) Prediction performance of 

kcat values for (B) all wildtype enzymes and (C) all mutated enzymes via the DL model. The temperature of the color 

represents the density of data points. Student’s t test was performed to calculate the P value for Pearson’s correlation in 

B-C. 

 

In addition to its overall good performance for predicting kcat values, the next thing that I 

explored is whether the DL model could capture more details, such as the effects of amino 

acid substitutions on kcat values of individual enzymes. To explore this, the original 
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annotated dataset was divided into two categories: one containing wildtype enzymes and 

the other containing mutated enzymes with amino acid substitutions. It can be observed 

that the median kcat value of mutant enzymes is lower than that for wildtype enzymes 

(Figure 11A). Moreover, the DL model was found to be a good predictor of kcat values for 

both wildtype enzymes (Pearson’s r = 0.65) and mutated enzymes (Pearson’s r = 0.78) 

when evaluating its performance on the test dataset (Figure 11B-C). These results suggest 

that the DL model can be a reliable tool for predicting kcat values of both wildtype and 

mutated enzymes. 

 

 
Figure 12 Comparison of predicted kcat values on several mutated enzyme-substrate pairs. Two categories were 

used for comparison: enzymes with wildtype-like kcat and enzymes with decreased kcat. Enzyme abbreviations used are 

DHFR (dihydrofolate reductase), PGDH (D-3-phosphoglycerate dehydrogenase), AKIII (aspartokinase III), DAOCS 

(deacetoxycephalosporin C synthase), PNP (purine nucleoside phosphorylase), and GGPPs (geranylgeranyl 

pyrophosphate synthase). Substrate abbreviations used are G3P (glycerate 3-phosphate), L-Asp (L-Aspartate), and IPP 

(isopentenyl diphosphate). Significance levels are indicated as follows: P value < 0.05 (*), P value < 0.01 (**) and P 

value < 0.001 (***). A two-sided Wilcoxon rank sum test was used to calculate the P value for the two-group 

comparisons in this analysis. In the boxplot, the central band represents the median value, the box represents the upper 

and lower quartiles, and the whiskers extend up to 1.5 times the interquartile range beyond the box range. 

 

Next, several extensively investigated enzyme-substrate pairs were collected from 

literature and open-access databases where each enzyme-substrate pair had kcat values 

reported for multiple amino acid substitutions. The entries for each enzyme-substrate pair 

were subsequently divided into two groups based on their experimentally measured kcat 

values: (i) wildtype-like kcat group, where kcat values were within 0.5-2.0 fold change of 

the wildtype kcat value; or (ii) decreased kcat group, where kcat values were less than 0.5 fold 

change of the wildtype kcat value.  Scarcity of mutated enzymes with kcat values over 2-fold 

of wildtype kcat precluded defining the increased kcat group. After that, by using the DL-

predicted kcat values, it was validated that enzymes from the decreased kcat group indeed 

showed significantly lower kcat values compared to those of enzymes from the wildtype-

like kcat group for all of the enzyme-substrate pairs (Figure 12). Therefore, the DL model 

can effectively capture the effects of minor changes in protein sequences on the activities 

of individual enzymes. 

 

2.2.5 Interpretation of the DL model 

Unraveling the black box of DL is a great challenge for DL-based applications in biology 

and chemistry [111]. One approach to investigate which subsequences in a protein are more 
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important for the substrate is to integrate a neural attention mechanism that assigns 

attention weights to each subsequence [105]. This neural attention mechanism traces 

important signals from the output of the neural network to the input, with the input being 

a molecular vector and a set of vectors of subsequences in one protein produced by the 

substrate and the protein, respectively, and the output being the attention weight assigned 

to each subsequence. 

 

 
Figure 13 Interpretation of the DL model using the purine nucleoside phosphorylase (PNP) enzyme as a case 

study. (A) Attention weight of sequence position in the wildtype PNP enzyme, using inosine as the substrate. The 

mutated residues in each of the mutated enzymes (both wildtype-like kcat and decreased kcat) were marked on the curve 

according to their mutated residue. The dot size indicates the number of mutated enzymes occurring in that mutated 

position. (B) Boxplot comparing the overall attention weight for the PNP-Inosine pair between enzymes with wildtype-

like kcat and decreased kcat. The P value was calculated using a two-sided Wilcoxon rank sum test. In this boxplot, the 

central band represents the median value, the box represents the upper and lower quartiles, and the whiskers extend up 

to 1.5 times the interquartile range beyond the box range. 

 

In the case of the wildtype purine nucleoside phosphorylase (PNP) on the substrate inosine, 

which is an important enzyme of Homo sapiens with rich experimental mutagenesis data 

and rich mutation sites data, DL can capture which sequence position or residue is more 

important for the enzyme's catalytic capability through the output-attention weight (Figure 

13A). Enzymes from the decreased kcat group in this enzyme-substrate pair presented a 

significantly higher attention weight compared to those of enzymes from the wildtype-like 

kcat group (Figure 13B). By marking these enzymes from both the decreased kcat group and 

the wildtype-like kcat group into the curve based on the mutated position, it was found that 

residues that were mutated in the decreased kcat group had significantly higher attention 

weights (Figure 13A). This indicates that the calculation of attention weights from the DL 

model has the potential to identify amino acid residues whose mutation would likely have 

a more substantial effect on enzyme activity. 

 

2.2.6 Biological insights gained with the aid of the DL model 

Enzyme-constrained genome-scale metabolic models (ecGEMs) are computational tools 

used in systems biology to study the metabolic capabilities and functions of organisms at 

a genome-scale level [103, 112]. The distinctive feature of ecGEMs is that they incorporate 

enzyme kinetics information to constrain the metabolic fluxes and predict the metabolic 
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behavior of the organism under different conditions. This property allows for a more 

realistic representation of the metabolic network and more accurate predictions of the 

organism's phenotypes. In addition, the ecGEMs have played a critical role in accurately 

simulating maximum growth abilities, metabolic shifts, and proteome allocations, as the 

whole-cell metabolic network in ecGEMs is constrained by enzyme catalytic capacities.  

 

The ecGEMs rely heavily on genome-scale kcat values, making the enzyme kcat parameter 

one of the most significant factors that affect their reconstruction. Previously, GEMs were 

reconstructed for 332 yeast species and 11 outgroup fungi [34], but only 14 of those GEMs 

were successfully expanded with enzyme constraints using an ecGEM reconstruction 

pipeline. This pipeline was customized and relied solely on kcat values reported in the 

BRENDA database, as DL tools or other related algorithms were unavailable at the time. 

The limited availability of kcat values has prevented the reconstruction of ecGEMs for more 

species [113] [36]. As the DL model developed in this study allows prediction of almost 

all kcat values for metabolic enzymes against any substrates for any species (except for 

enzyme-substrate pairs with generic substrates lacking detailed SMILES information), this 

enabled generation of ecGEMs for all 343 yeast and fungi species. Finally, through using 

the metabolite and enzyme information extracted from the 343 GEMs as the input of the 

DL model for kcat prediction, I predicted kcat values for around three million protein-

substrate pairs in 343 yeast/fungi species. 

 

 
Figure 14 Analysis of the evolutionary patterns in predicted kcat values for 343 yeast/fungi species. (A) The enzyme 

kcat values associated with generalist and specialist metabolism were evaluated for all 343 species. (B) The relationship 

between enzyme kcat values and the ratio of non-synonymous to synonymous substitutions (dN/dS) for all 343 species. 

The x-axis shows the genus-level phylogeny for 332 yeast species, divided into 12 major clades, with 11 outgroup species 

included. The cutoff of 0.15 was set according to the distribution of dN/dS values in these species. Statistical significance 

was indicated by *** (P value < 0.001). The P value was calculated using a two-sided Wilcoxon rank sum test. In each 

boxplot, the central band represents the median value, the box represents the upper and lower quartiles, and the whiskers 

extend up to 1.5 times the interquartile range beyond the box range. 
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Furthermore, comprehensive analysis of these predicted kcat values revealed a global trend 

showing that specialist enzymes with narrow substrate specificity exhibited higher kcat 

values than generalist enzymes that catalyze multiple reactions (Figure 14A). This trend 

aligns with the hypothesis that ancestral enzymes with broad substrate specificity and low 

catalytic efficiency improved their kcat values as they evolved into specialists through 

mutation, gene duplication and HGT [114]. These findings also hold true for fungi and are 

consistent with those reported for E. coli [114]. In addition, the potential link between 

enzyme kcat values and dN/dS was further evaluated based on these predicted kcat values 

(Figure 14B). It can be observed that conserved enzymes with lower dN/dS values have 

significantly higher kcat values compared to relatively less conserved enzymes with high 

dN/dS. This implies that conserved yeast and fungi enzymes under evolutionary pressure 

are adapted to have higher kcat values. 

 

 
Figure 15 Comparison of three different ecGEM modelling pipelines, namely original-ecGEM, DL-ecGEM, and 

posterior-mean-ecGEM, in their ability to predict quantitative proteome. Four species with known absolute 

proteome data were assessed in this evaluation. The x-axis represents various proteome datasets, which are available on 

the GitHub repository (https://github.com/SysBioChalmers/DLKcat). The evaluated species were S. cerevisiae (sce), 

Kluyveromyces lactis (kla), Kluyveromyces marxianus (kmx), and Y. lipolytica (yli). 

 

The efficacy of the DLKcat computational tool in predicting phenotypes was also assessed 

through proteome predictions with ecGEMs. To do this, three types of ecGEMs were 

reconstructed: Original-ecGEMs, which were built using kcat profiles extracted from the 

BRENDA and SABIO-RK databases; DL-ecGEMs, which were reconstructed using kcat 

profiles predicted by DLKcat; and posterior-mean-ecGEMs, which were parameterized 

with mean kcat values from 100 posterior datasets after the Bayesian training process. These 

three models were used to predict protein abundances and were compared with published 

quantitative proteomics data from four species under different carbon sources, culture 

modes, and medium setups. Regarding the protein abundance simulation, the medium was 

set to match the experimental condition. In the case of the chemostat condition, the growth 

rate was fixed to the dilution rate, and the carbon source uptake rate was minimized, which 

is a standard configuration for simulating chemostat conditions. On the other hand, in the 

batch condition, the growth rate maximization was used as the objective. The simulated 
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protein abundances, which could be extracted from the fluxes, were then compared with 

those in collected proteome datasets. 

 

By comparison, posterior-mean-ecGEMs generally had the lowest root mean square error 

(RMSE), indicating the best performance in predicting proteome data, while DL-ecGEMs 

reduced RMSE by 30% compared to Original-ecGEMs (Figure 15). These results 

demonstrate the potential value of DLKcat-predicted kcat profiles in ecGEM reconstruction, 

as it can serve as a useful tool for connecting genotype and phenotype. 

 

2.3 ML on protein production (Paper III) 
Since the emergence of the commercial recombinant human insulin production by 

Escherichia coli in 1982, the biopharmaceutical industry has grown rapidly [115]. 

Nowadays, biotechnology-based pharmaceutical production has formed a global 

biopharmaceutical market. With the development of advanced synthetic biology and 

metabolic engineering tools, the production of recombinant proteins by yeast has become 

crucial in the biopharmaceutical industry, and the development of yeast platform strains 

capable of overproducing various biopharmaceutical proteins is highly desirable [116]. 

However, achieving this requires a fundamental understanding of the cellular machinery, 

particularly the protein secretory pathway. The secretory pathway spans several different 

organelles that carry out peptide translocation, folding, Endoplasmic reticulum (ER)-

associated protein degradation (ERAD), sorting processes, as well as different post-

translational modifications (PTMs) to ensure proper protein functionality [117]. In this 

study, a proteome-constrained genome-scale protein secretory model of yeast S. cerevisiae 

(pcSecYeast) was reconstructed, which allows simulating and explaining phenotypes 

related to the secretory capacity. The model was then used to simulate the production of 

eight different recombinant proteins, and a ML approach was integrated to analyze feature 

importance towards the production of recombinant proteins. 

 

2.3.1 Simulation of the production of recombinant proteins in yeast 

Recombinant proteins are transported and modified by various components of the secretory 

pathway in the yeast S. cerevisiae, depending on their amino acid composition and PTMs. 

In order to determine the factors that affect the levels of secreted proteins, the pcSecYeast 

model was enhanced to describe the production of eight different recombinant proteins by 

incorporating the corresponding recombinant protein production and secretion reactions, 

respectively. Subsequently, eight specific models were generated to simulate the maximum 

secretion of each of the eight recombinant proteins under varying growth rates. These 

proteins possess varying sizes and PTMs (Figure 16A), and their specific PTM profile 

dictates the combination of multiple processes required for their efficient production and 

secretion. As such, the secretory pathway can be seen as a complex production line. This 

provided an excellent opportunity to investigate how these factors affect the levels of 

secreted proteins. 
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Figure 16 Feature importance analysis for recombinant protein production using ML. (A) Overview of protein 

features for eight recombinant proteins produced by S. cerevisiae. (B) Feature importance analysis towards recombinant 

protein production based on the built-in function in the random forest (RF) algorithm. (C) Feature importance analysis 

towards recombinant protein production by combining SHapley Additive exPlanations (SHAP) and RF. Abbreviations 

used: OG O-glycosylation site, NG N-glycosylation site, DSB disulfide bond number, Trans transmembrane domain, 

single letters stand for specific amino acids, abbr.: abbreviation. 

 

2.3.2 ML for feature importance analysis towards protein production 

To determine the protein features with the greatest impact on recombinant protein 

production, I integrated a ML approach to score the importance of factors. In this approach, 

various factors (PTMs, amino acid compositions) were used as input features and the 

maximum recombinant protein production rate from the pcSecYeast model simulation was 

used as the target label. The dataset was randomly divided into a training dataset, which 

constituted 80% of the total data, and a testing dataset, which constituted 20% of the data. 

A random forest (RF) regressor with 10 estimators was then used to train the ML model. 

Two techniques were utilized to compute the feature importance scores. The first method 

involved using the built-in feature_importances_ attribute of the RF model to obtain 

feature importance scores directly. The second method involved using the SHapley 

Additive exPlanations (SHAP) interpretation [118], which is based on game theory 

principles and estimates the contribution of each feature to the prediction. 

 

The built-in feature_importances_ attribute in the RF model revealed that O-glycosylation 

and N-glycosylation are the two most influential features affecting recombinant protein 

production. In contrast, the frequencies of specific amino acids had a relatively minor 

impact on protein production (Figure 16B). This suggests that PTMs have a greater 

influence on protein production than amino acid composition. However, the built-in 
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function in RF only identifies which features have more or less influence and cannot 

indicate whether the influence is positive or negative. 

 

To investigate the directionality of feature influence, the SHAP framework was applied to 

calculate feature importance scores from the RF algorithm. A higher SHAP value indicates 

a greater contribution to protein production. The correlations between the target protein 

production and various factors were visualized using color coding, where the red color 

indicates a positive effect on protein production, and the orange color indicates a negative 

effect. The analysis results revealed that O-glycosylation and N-glycosylation had a large 

negative impact on recombinant protein production (Figure 16C). 

 

In addition, the significance of the feature importance analysis for protein production was 

further evaluated by performing five-fold cross validation on the training dataset (Figure 

17). The dataset was partitioned randomly into five subsets of equal size, with four subsets 

used for training and the remaining subset for testing in each fold. This procedure was 

repeated five times, and each subset served as the testing set once. The feature importance 

scores were then visualized, and it was found that PTMs had a significantly greater impact 

on protein production than amino acid compositions. Specifically, the negative impact of 

O-glycosylation and N-glycosylation on protein production was further consolidated, 

suggesting that having more glycosylation sites may increase the burden on the cell. 

 

 
Figure 17 Assessment of the feature importance scores based on five-fold cross validation. 
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3. Development and applications of comparative genomics 

tools on yeasts 
As introduced in the background section, comparative genomics can provide meaningful 

insights into the genetic basis of complex traits and is widely employed in diverse fields, 

such as evolutionary biology, systems biology, and biomedical research. This chapter 

consists of two sections focusing on the design and applications of comparative genomics 

tools on yeasts. The first study (Paper IV) introduces the construction of HGTphyloDetect, 

a computational toolbox aimed at facilitating the identification and phylogenetic analysis 

of horizontal gene transfer (HGT) events. The second study (Paper I) presents a 

comprehensive analysis on large-scale yeast species by combining HGT analysis, gene 

family expansion and contraction and GEM simulation, aiming to explore the underlying 

mechanisms of substrate utilization. 

 

3.1 HGTphyloDetect - Detection of horizontal gene transfer (Paper 

IV) 
As described in the section 1.6, HGT is a crucial factor in shaping genome evolution and 

facilitating gain-of-function abilities, as well as metabolic adaptation to different 

environmental niches. With the rapid expansion of genomic data, it has become 

increasingly feasible to identify putative HGT events on a genome-wide scale.  

 

Despite significant advancements in this field, there are only a limited number of 

computational approaches available for predicting HGT events. One such method, 

HGTector, utilizes sequence homology search hit distribution statistics to detect HGT 

events on a genome-wide scale. However, it lacks the ability to provide a detailed 

phylogeny analysis to understand the underlying mechanisms of HGT [119]. Although 

HGT-Finder can determine the horizontal transfer index and probability value for each 

queried gene using phyletic distribution, this software is regrettably unavailable for 

download [120], necessitating the exploration of alternative tools. AvP is another 

technique that uses a phylogenetic framework to automate the identification of potential 

HGT events [121], but the quality of the produced phylogenetic trees is not particularly 

high. Additionally, it remains unclear whether AvP can detect HGT events involving 

evolutionarily closely related species.  

 

To overcome these limitations, I have developed HGTphyloDetect, an open-source 

computational toolbox that combines high-throughput analysis with phylogenetic 

inference, to analyze HGT events. High throughput algorithms were employed to detect 

HGT events, irrespective of the evolutionary distance between the donors and the 

horizontally acquired genes. This emphasizes the versatility of HGTphyloDetect in 

detecting HGT events among genes from both closely and distantly related species. 
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3.1.1 Detecting horizontal gene transfer from phylogenetically distant organisms 

In order to detect HGT events from phylogenetically distant organisms, such as 

prokaryotes to eukaryotes, a reliable and phylogeny-based workflow was developed as 

shown in Figure 18. 

 

The first step in this workflow involves using the BLASTP algorithm to search for one 

particular gene or multiple genes of interest against the NCBI non-redundant (nr) protein 

database. After obtaining the BLASTP hits, taxonomic information associated with them 

is extracted from the NCBI taxonomy database using the ETE v3 toolkit [122]. Together 

with this information, the Alien Index scores are computed based on bbhG and bbhO as 

illustrated in Figure 18. In this context, bbhG and bbhO denote the E-values of the top 

BLAST hit in the ingroup and outgroup lineages, respectively. The ingroup lineage refers 

to the species within the kingdom, but outside of the subphylum. Conversely, the outgroup 

lineage comprises all species outside of the kingdom. The mathematical formula for the 

Alien Index used here was originally introduced in a notable study by Gladyshev et al 

[123]. In their work, they established that an Alien Index value of 45 or higher is a reliable 

indication of foreign origin. 

 

 
Figure 18 Overview of the HGTphyloDetect workflow for automated detection of HGT events from distantly 

related organisms (e.g., prokaryotes to eukaryotes) 

 

Furthermore, in order to eliminate erroneous results in the detection of HGT, 

HGTphyloDetect computes the percentage of outgroup hits with distinct taxonomic 

species names for each gene, as illustrated in Figure 18. Finally, genes that meet both the 
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criteria of an Alien Index value ≥ 45 and out_pct ≥ 90% are considered probable HGT 

events from distantly related species [35, 123]. The threshold value for out_pct was 

established based on a significant study by Shen et al., in which the parameter was assessed 

for its effectiveness in eliminating erroneous HGT events [35]. With HGTphyloDetect, 

users can easily adjust their predictions by defining customized values for the AI and 

out_pct parameters, in addition to using the default settings. 

 

3.1.2 Detecting horizontal gene transfer from closely related organisms 

While the above-described workflow is effective in detecting HGT events from organisms 

that are distantly related evolutionarily, a complementary workflow has been developed 

for the automated detection of HGT events from more closely related organisms (Figure 

19), such as eukaryote-to-eukaryote transfers. This expands the versatility of the 

computational toolbox to include a wider range of HGT detection capabilities. Unlike the 

previous workflow that required defining the recipient, ingroup, and outgroup lineage, it 

is difficult to define them in detecting HGT events from closely related organisms if using 

the same approach. 

 

 
Figure 19 HGTphyloDetect workflow for automated detection of HGT events from closely related organisms (e.g., 

eukaryote-to-eukaryote transfers). 

 

The workflow depicted in Figure 19 involves several steps aiming at identifying potential 

horizontally acquired genes acquired from closely related organisms. Firstly, a set of genes 

is used as input for a BLASTP process against the NCBI nr protein database, with 

taxonomic information retrieved for each gene hit. In the first round of screening, genes 

with a best hit in the kingdom lineage (excluding the recipient subphylum lineage) and a 

bitscore of at least 100 are selected. The HGT index (also known as comparative similarity 

Run BLAST against the NCBI non-redundant (nr) protein database and retrieve
taxonomy information for each BLAST hit

Preliminary screening: calculation of the bitscore of a best hit in potential donor and
HGT index

Calculation of the percentage of species from potential donor, if this is ≥ 80%, then the 
gene is retained

Homologs and their sequences are obtained based on the top 300 BLAST hits for each
candidate gene

Execute multiple sequence alignment (MSA), and poorly aligned regions are removed

Phylogenetic analysis to identify the potential donor and the gene flow process
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index) is then calculated by dividing the bitscore of the best hit in a potential donor (i.e., a 

species inside the kingdom but outside the subphylum) by the bitscore of the best hit in the 

recipient (i.e., a species inside the subphylum). Genes with an HGT index of at least 50% 

are retained, indicating a strong match to genes in potential donors. Next, for each gene, 

the percentage of species from potential donors that have distinct taxonomic species names 

is determined. If this value is greater than or equal to 80%, the gene is retained. These 

threshold values were selected based on previous studies [36, 124, 125], but users may 

adjust these parameters as needed to optimize their analysis. Finally, the remaining genes 

are considered to be horizontally acquired genes from closely related organisms. 

 

3.1.3 Basic usage and applications of the HGTphyloDetect toolbox 

HGTphyloDetect, an open-source and user-friendly tool, can be downloaded from 

https://github.com/SysBioChalmers/HGTphyloDetect. Using the tool is straightforward - 

users simply need to provide a FASTA file containing both the protein identifier and 

sequence as input. By accessing the large NCBI nr protein and taxonomy databases 

remotely on demand, HGTphyloDetect eliminates the need to download these large 

databases locally. The installation process is simple and requires only a few dependencies. 

Moreover, a detailed user tutorial is provided in the GitHub repository to help users 

navigate the tool with ease. 

 

Additionally, HGTphyloDetect is a versatile tool for HGT detection, offering users the 

ability to adjust parameter threshold values to customize their analyses. With a user-

friendly example, the tool demonstrates its ability to identify potential donors and HGT 

events for one gene or all genes in a single species, or even for hundreds of species. The 

output of HGTphyloDetect provides detailed information on the potential donors of 

horizontally transferred genes, which can shed light on the evolutionary history of the 

organisms being studied. HGTphyloDetect is not limited to prokaryotes; it can also be 

applied to eukaryotes, enabling large-scale genome wide HGT analyses in both types of 

genomes. This scalability allows HGTphyloDetect to be seamlessly integrated into larger 

analytical workflows, making it a flexible and valuable tool for HGT detection in diverse 

research contexts. 

 

3.1.4 Testing the performance of the HGTphyloDetect toolbox 

To assess the predictive capability of the HGTphyloDetect tool, this toolbox was applied 

to two species (S. cerevisiae and C. versatilis) that have been previously shown to have 

horizontally acquired genes in manually curated studies [35, 126]. This benchmark 

evaluation allows for a comparison of the performance of HGTphyloDetect with 

previously published approaches. 

 

Previous studies have identified 10 horizontally acquired genes transferred from bacteria 

in S. cerevisiae [126]. To comprehensively detect HGT events in S. cerevisiae, 

HGTphyloDetect was then applied to analyze all 6,000+ genes using default parameters. 
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As a result, 23 HGT gene candidates from bacteria were predicted, of which 8 candidates 

were previously reported (Figure 20A): YNR058W (BIO3), YDR540C, YJL217W, 

YKL216W (URA1), YFR055W, YOL164W (BDS1), YMR090W, and YNR057C (BIO4). 

The remaining 15 genes identified by HGTphyloDetect were not previously associated 

with HGT, indicating that they may have been overlooked in previous studies due to a lack 

of sufficient data and appropriate computational methods. However, HGTphyloDetect 

provided strong evidence for their bacterial origin, as demonstrated by their Alien Index 

values, out_pct, and E-values. Moreover, HGTphyloDetect demonstrated a high degree of 

accuracy in identifying HGT events in S. cerevisiae (Figure 20A). 

 

 
Figure 20 Evaluation of the HGTphyloDetect computational toolbox by two case studies. (A) Comparison of the 

number of horizontally acquired genes in S. cerevisiae as identified by HGTphyloDetect with those reported by 

previously published work. (B) Comparison of the number of horizontally acquired genes in C. versatilis as identified 

by HGTphyloDetect with those reported by previously published work. 

 

Also, HGTphyloDetect revealed that 27 genes in S. cerevisiae were possibly obtained 

through horizontal transfer from fungal species that are more closely related to it. It is 

noteworthy that, among the 27 genes identified, only five were anticipated to have 

originated from the Taphrinomycotina, Ustilaginomycotina, and Agaricomycotina 

lineages, while the remaining 22 genes were probably acquired through horizontal transfer 

from the Pezizomycotina subphylum, which comprises numerous filamentous species, 

further suggesting that these species from the Pezizomycotina subphylum have relatively 

close interaction with S. cerevisiae. It should also be highlighted that this study has 
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systematically predicted HGT events between eukaryotes in the widely studied S. 

cerevisiae. This is quite meaningful since existing computational tools for detecting HGT 

events were unable to achieve this task. 

 

Regarding C. versatilis, it has been reported to have a larger number of horizontally 

acquired genes (169 in total) [35], making it a suitable candidate for further testing of 

HGTphyloDetect. To evaluate this, the high-throughput pipeline was applied to all of the 

genes in C. versatilis (over 5,000 genes in total) using default parameters. This analysis 

identified that 148 out of the 169 genes in C. versatilis were horizontally acquired (Figure 

20B). Afterward, HGTphyloDetect's prediction performance was evaluated using various 

standard evaluation metrics such as sensitivity, specificity, and accuracy, which were 

based on true positive, true negative, false positive, and false negative. For example, true 

positive refers to the situation where HGTphyloDetect correctly predicted a horizontally 

acquired gene that had been previously curated as such in peer-reviewed literature. Upon 

calculation, HGTphyloDetect's accuracy, sensitivity, and specificity were found to be 

98.16%, 87.57%, and 98.49%, respectively (Figure 20B). This outcome demonstrates that 

HGTphyloDetect accurately predicts HGT gene candidates in C. versatilis, with high-

quality performance that matches well with previous reports in the literature. 

 

3.1.5 Comparison with other existing approaches for HGT detection 

HGTphyloDetect was further compared with other existing computational tools, such as 

the HGTector toolbox [119], which is also capable of detecting HGT events in a high-

throughput manner.  

 

 
Figure 21 Comparison of the HGT detection performance between HGTphyloDetect and HGTector. 
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To explore this, I employed the benchmark dataset previously published by the Rokas 

group [35]. This dataset contains a comprehensive analysis of HGT events across a wide 

range of over 300 yeast species, which were systematically evaluated and manually 

inspected. Due to the computational requirements of HGT identification, three yeast 

species (Lipomyces kononenkoae, Kluyveromyces lactis, Lachancea fermentati) were 

randomly selected from this dataset for which HGT events had been identified, totaling 

over 15,000 unique genes. HGT detection workflows in HGTphyloDetect and HGTector 

were then executed on all these genes, and their performance was evaluated using various 

metrics, including accuracy, sensitivity, specificity, and others. The final results revealed 

that HGTphyloDetect outperformed HGTector in terms of accuracy and specificity (as 

shown in Figure 21). However, the most notable difference was the considerable increase 

in sensitivity, Matthews correlation coefficient (MCC), and F1-score achieved by 

HGTphyloDetect compared to HGTector (Figure 21). As sensitivity means how much 

HGT events can be detected by the software in this case, this indicates the great power of 

HGTphyloDetect in identifying HGT events. 

 

3.1.6 Phylogenetic analysis via HGTphyloDetect 

The most precise and widely accepted method for identifying horizontally acquired genes 

is gene-by-gene phylogenetic analysis [127]. This approach involves comparing the 

phylogeny of the target gene with similar genes from other species. Therefore, for 

additional validation of the HGT gene identification by HGTphyloDetect, a phylogenetic 

analysis pipeline was integrated into the whole workflow in detecting HGT events from 

phylogenetically distant organisms or closely related organisms. Firstly, the query genes 

of great interest were subjected to BLASTP against the NCBI nr protein database, and for 

each gene, the top 300 homologs with different taxonomic species names were selected. 

These homologs were aligned using MAFFT v7.310 [128] with default settings for 

multiple sequence alignment (MSA), and any ambiguously aligned regions were removed 

using the ‘-automated1’ option of trimAl v1.4 [129]. To ensure the reliability and high 

quality of the resulting phylogenetic trees, the alignments were used to construct the trees 

using IQ-TREE v1.6.12 [130] with 1000 ultrafast bootstrapping replicates. The internal 

branch bootstrap scores were calculated based on IQ-TREE v1.6.12. Next, each 

phylogenetic tree was then rooted at the midpoint with the help of  R packages: ape v5.4-

1 [131] and phangorn v2.5.5 [132]. Finally, iTol v5 (https://itol.embl.de/) [127] was 

utilized to visualize the resulting phylogenies and evaluate the mode of transmission of 

each gene. 

 

As an example of the phylogenetic analysis conducted with the help of HGTphyloDetect, 

the maximum likelihood phylogeny of YOL164W in S. cerevisiae was examined in this 

study. This protein is thought to have acquired alkyl sulfatase and arylsulfatase activity 

through HGT [127]. In order to gain insights into the evolutionary history of YOL164W 

and its possible origins, the wrapped pipeline in HGTphyloDetect as shown above was 

utilized to construct a detailed phylogenetic tree. This involved using the protein sequence 
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of YOL164W as a query to obtain the top homolog hits, which were then used to 

reconstruct the maximum likelihood phylogeny. The resulting tree, generated with ease, 

was reliable and of high quality (Figure 22A), clearly suggesting that the protein was 

horizontally acquired from a bacterial species. By examining the pruned phylogenetic tree, 

it was feasible to identify the bacterial donor and explore the phylogenetic relationship 

between this protein and its close relatives from proteobacteria. Notably, all internal 

branches proximal to the query protein had bootstrap scores exceeding 95%, underscoring 

the accuracy of the HGT event detection by HGTphyloDetect (Figure 22B). The case 

study presented here demonstrates the utility of the phylogenetic analysis with 

HGTphyloDetect in elucidating the mechanism of gene transfer for suspected HGT events. 

 

 
Figure 22 Phylogenetic analysis example of an HGT event from prokaryote to eukaryote via HGTphyloDetect. 

(A) The maximum likelihood phylogeny of a protein YOL164W in S. cerevisiae, with branches having bootstrap support 

greater than 80% indicated by a star. (B) A pruned maximum-likelihood phylogeny showing the relationship between 

this protein and its closely related homologs from other bacterial species, providing evidence for a prokaryotic origin of 

the HGT gene. 
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3.2 Substrate utilization analysis on large-scale yeast species 

(Paper I) 
Substrate utilization in yeast refers to the process of metabolizing and utilizing various 

sources for energy and growth. Yeasts are known for their versatile substrate utilization 

abilities, allowing them to survive and thrive in a wide range of environments, including 

soil, plant surfaces, and animal tissues. Yeast cells utilize different substrates through a 

complex network of genes and pathways, which are responsive to changes in  the 

environment and nutritional conditions [133]. Thus, understanding the mechanism of 

substrate utilization in yeasts is of great significance. 

 

In this study (Paper I), the evolutionary mechanisms that underlie the trait diversity in 

substrate utilization across 332 yeast species were explored. This was accomplished by 

combining several analytical approaches, including HGT analysis (the pipeline has been 

shown in the above section), gene family expansion and contraction analysis, and GEMs 

simulations. These analyses were used to identify the genetic and metabolic features 

associated with substrate utilization in yeast, providing insights into the molecular and 

evolutionary mechanisms that underlie this trait. 

 

3.2.1 Gain of new traits in substrate utilization occurring in yeast species 

To investigate the mechanism of how yeasts gain new traits, the experimental evidence on 

substrate usage for 332 yeast species was firstly obtained from various literature sources 

[35, 134]. The substrate utilization dataset of each species was then compared with their 

ancestral budding yeast common ancestor (BYCA) phenotype to determine the number of 

gain and loss events in substrate utilization. The posterior probability of ancestral state in 

BYCA for each metabolic trait was obtained from a previous study [35]. For this analysis, 

a posterior probability of 0.85 was used as a cut-off for the threshold to indicate the 

existence of a phenotype in BYCA, while a probability lower than 0.15 was interpreted as 

non-existence. As a result, among the 32 traits in substrate utilization that could be linked 

to the metabolites in GEMs, five traits exhibited a gain of new function in utilizing carbon 

(2-Keto-D-gluconate, D-arabinose, D-ribose, methanol) and nitrogen (nitrite) sources. 

 

3.2.2 Gene family expansion and contraction analysis 

Gene family expansion and contraction analysis across large-scale yeast species were 

investigated using CAFÉ v4.2.1 [135] with default parameters. The software CAFÉ uses a 

birth and death process to model the evolution of gene family sizes by a phylogenetic tree, 

in which gene family sizes were obtained by a customized script based on the ortholog 

group (OG) defined in a previous study [35]. CAFÉ generated a family-wide P value along 

specific species or branches for each gene family, with a P value below 0.05 considered 

statistically significant, indicating a possible gene family expansion and contraction event. 

By analyzing the number of gene families that have undergone expansion and contraction 

at the species level and the clade level, it was demonstrated that there was a higher 

likelihood of gene family contraction rather than expansion across various yeast species 
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(Figure 23A-B), which aligns with a previous finding that suggests reductive evolution is 

the predominant mode of evolutionary diversification [35]. 

 

 
Figure 23 Gene family expansion and contraction analysis across large-scale yeast species. (A) Comparison between 

the number of gene families that have undergone expansion and contraction at the species level. (B) The number of gene 

families that have experienced expansion (upper number) and contraction (bottom number) within each clade. 

 

3.2.3  Evolutionary mechanisms underlying the trait diversity in substrate utilization 

To investigate the underlying mechanisms associated with substrate utilization, the 

substrate utilization of each species was compared with the inferred traits of the BYCA 

[35], and the gains and losses of these metabolic traits were identified (Figure 24A). Next, 

I performed systematic evolution analyses at the gene level and the clade level, including 

HGT analysis, gene family expansion and contraction analysis, as described in the 

preceding section. Subsequently, for each change in substrate utilization, the reason was 

explored to know whether this was brought about by HGT, expansion of a gene family, or 

a promiscuous enzyme. Finally, the results suggested that HGT plays a relatively minor 

role in the gains or losses of metabolic traits (Figure 24A), and many genes acquired from 

HGT events were found to be transporters or extracellular substrate degradation enzymes 

(Figure 24B), suggesting that they may have contributed to the expansion of substrate 

usage in yeast. 

 

Besides, the main donor of HGT events is other fungi, rather than bacterial species (Figure 

24C), indicating that there is a more frequent gene flow between these yeast species and 

other fungal species. Also, there exist obvious differences in these HGT events involved 

in substrate usage among various clades (Figure 24A). In the Wickerhamiella/Starmerella 

clade and its phylogenetically close relatives, such as Dipodascaceae/ Trichomonascaceae, 

Trigonopsidaceae and Lipomycetaceae, there are relatively more HGT events. This is 

likely due to the fact that the vast majority of species in these clades are ecologically 
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associated with other fungal species or eukaryotes [136]. On the other hand, there are very 

few or even zero HGT events related to substrate usage in the CUG group and its relatives 

(e.g., CUG-Ser1, CUG-Ser2, Phaffomycetaceae), indicating that genetic code alteration 

may act as a barrier to HGT [137]. 

 

By further analyzing the evolutionary events involved in substrate gain and substrate loss 

at a holistic level, it was found that the expansion of gene families and promiscuous 

enzymes are predominant factors driving substrate gain (Figure 24D). In contrast, highly 

correlated and non-highly correlated reactions were found to be the primary driving force 

of substrate loss (Figure 24E). Highly correlated reactions indicate consistency between 

the presence of a reaction and the phenotype of substrate utilization, while non-highly 

correlated reactions may not show the same consistency. Interestingly, non-highly 

correlated reactions had a strong effect on substrate loss, suggesting that the loss of 

metabolic traits does not always correspond to the loss of the same reactions across various 

yeast species. 

 

 
Figure 24 Exploration of the evolutionary mechanisms underlying the trait diversity in substrate utilization across 

332 yeast species. (A) Comparison of the number of substrate traits, gain and loss of substrate utilization, as well as 

HGT events associated with substrate utilization, expanded genes associated with substrate utilization, and promiscuous 

enzymes in the substrate utilization pathway. The y-axis shows the genus-level phylogeny for 332 yeast species, divided 

into 12 major clades. (B) HGT classification for those genes associated with substrate utilization based on compartmental 

annotation. (C) Classification of donors for those HGT events in substrate utilization. (D) Proportions of various 

evolutionary processes linked to the gain of substrate utilization. (E) Ratios of evolutionary events occurring in substrate 

loss. Highly correlated and non-highly correlated reactions refer to whether it is consistent between reaction existence 

with the substrate utilization phenotype existence. Downstream pathway is defined as when all enzymes and reactions 

are included in the original substrate utilization pathway, but specific enzymes are absent in a distantly related pathway. 
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4. Conclusions 
In this thesis, I have integrated state-of-the-art ML and DL approaches to enhance the 

understanding of yeast species in various dimensions, i.e., essential genes, kcat and protein 

production. In the first study (Paper I), I developed ML approaches to predict gene 

essentiality and applied the tool to 343 yeast/fungi species. Interestingly, evolution-based 

features were found to be important factors that can substantially improve essential gene 

prediction. In the second study (Paper II), I constructed a high-quality DL model named 

DLKcat for the prediction of kcat by combining a GNN for substrates and a CNN for 

proteins. This model can potentially identify amino acid residues that may have a more 

influential effect on enzyme activity. Since kcat is an important enzyme kinetics parameter 

in reconstructing ecGEMs, DLKcat was further applied for the reconstruction of ecGEMs 

for 332 yeast species, enabling the elucidation of cellular metabolism systematically. In 

the third study (Paper III), ML was employed to explore the feature importance on 

recombinant protein production, and it was observed that PTMs can have a greater impact 

than amino acid compositions. 

 

Furthermore, I utilized comparative genomics techniques to investigate the evolution of 

yeast species. In Paper IV, I developed a novel computational tool called 

HGTphyloDetect for the identification of HGT events by integrating phylogenetic analysis. 

HGTphyloDetect can be used to identify HGT events from both phylogenetically distant 

and closely related species. Case studies on S. cerevisiae and C. versatilis indicate the high 

accuracy of HGTphyloDetect in the detection of HGT events. Additionally, 

HGTphyloDetect allows users to explore the gene flow process with the aid of 

phylogenetic analysis. Last but not least, I investigated the underlying mechanisms for 

substrate utilization by performing a comprehensive analysis on large-scale yeast species 

(Paper I). It was found that gene family expansion and enzyme promiscuity are prominent 

mechanisms for substrate trait gains, while HGT plays a relatively minor role in substrate 

gains. 

 

Taken together, the ML and comparative genomics tools and techniques implemented in 

this study represent a significant contribution to the development of yeast systems biology. 

These findings are not only valuable for the yeast community, but also have the potential 

for broader applications in biotechnology. 
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5. Future perspectives 
In the first part of my thesis, I utilized ML approaches to predict essential genes by 

integrating sequence features and evolution-based features. However, the gene essentiality 

data used for model training only included information from five species, which limited 

the dataset and impacted the model's performance. Currently, the model's AUC value on 

the testing dataset is around 0.8, indicating that there is still room for improvement. To 

improve the model's performance, I plan to explore advanced DL frameworks such as CNN, 

transformers, etc. These frameworks can help capture complex features or embeddings that 

may be missed by traditional ML algorithms adopted in the study. Additionally, to improve 

the performance of the model, I intend to acquire more data from various sources to 

increase the dataset's size and diversity. By incorporating data from more species and 

optimizing the model's architecture, I believe that the prediction performance of the model 

could be further enhanced. Furthermore, the hypothesis that evolutionary information is 

beneficial for essential gene prediction, which was proposed and validated in this work, 

may also be applicable to other gene-related or enzyme-related problems, such as enzyme 

affinity prediction. 

  

DLKcat is a powerful approach for estimating kcat values based on DL that is further used 

to reconstruct ecGEMs for more than 300 yeast species [101]. In addition to predicting kcat 

values, DLKcat has the advantage of calculating attention weights derived from the neural 

network to identify sequence residues that have an influential effect on enzyme catalytic 

activity. Although DLKcat performs well in kcat prediction, challenges still remain, such 

as not considering environmental conditions like temperature and pH. However, 

combining DLKcat with other emerging ML tools, such as the model for predicting 

enzyme optimal temperature [82], can enable the investigation of the impact of 

environmental parameters on enzyme activities. As more and more experimental data on 

kcat values become available, the DL model can be retrained to improve the performance. 

The future version of DLKcat could further incorporate representations obtained from 

protein 3D structures with the aid of AlphaFold [138], which would enhance the model's 

interpretability and may improve its performance. Additionally, integrating pre-trained 

language models in the future version of DLKcat may also contribute to improving the 

model's performance. 

 

With the rapidly increasing amount of newly sequenced genome data, HGTphyloDetect 

has proven to be an effective toolbox that can meet the growing demand for biological 

applications across various fields. It can be used to help interpret pathogen phenotypes in 

fungi [139], analyze antibiotic resistance determinants in bacteria [140], and explore new 

functionalities in the gut microbiome [141]. With HGTphyloDetect, it is now possible to 

investigate these different phenotypes on a large scale and determine which genes are 

likely acquired through HGT, and whether these HGT genes are involved in the generation 

of these important phenotypes. Although HGTphyloDetect is already enabling novel 
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analyses, there is still room for improvement in terms of performance. Enhancements to 

computation speed could make it even more suitable for large-scale analyses in the future. 

 

ML has become increasingly popular in biology due to its ability to analyze large datasets 

and extract meaningful insights that may not be apparent through other traditional 

analytical approaches. However, there are several challenges that ML may not be able to 

solve. One of the major challenges is the limited availability of large and diverse datasets, 

which are essential for training accurate models. Without a sufficient amount of data, ML 

models may not be able to generate accurate or reliable predictions. For another thing, ML 

models are often seen as black boxes, making it difficult to understand how the models 

make predictions. This can limit the interpretability of the results and hinder further 

investigations into the underlying mechanisms behind the predictions. Although ML has 

demonstrated its great potential in biology, it is not a panacea for all biological problems. 

ML is a powerful tool that can help generate hypotheses and facilitate data-driven 

discoveries, but it cannot replace the need for experiments. The combination of 

experimental data with ML-based analyses can help accelerate progress in the field of 

systems biology and synthetic biology. 
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