25,723 research outputs found

    Polyhedral Computations for the Simple Graph Partitioning Problem

    Get PDF
    The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each containing no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we present a branch-and-cut algorithm for the problem that uses several classes of facet-defining inequalities as cuttingplanes. These are b-tree, clique, cycle with ear, multistar, and S, Tinequalities. Descriptions of the separation procedures that are used for these inequality classes are also given. In order to evaluate the usefulness of the inequalities and the overall performance of the branch-and-cut algorithm several computational experiments are conducted. We present some of the results of these experiments.Branch-and-cut algorithm; Facets; Graph partitioning; Multicuts; Separation procedures

    A cutting-plane approach to the edge-weighted maximal clique problem

    Get PDF
    We investigated the computational performance of a cutting-plane algorithm for the problem of determining a maximal subclique in an edge-weighted complete graph. Our numerical results are contrasted with reports on closely related problems for which cutting-plane approaches perform well in instances of moderate size. Somewhat surprisingly, we find that our approach already in the case of n = 15 or N = 25 nodes in the underlying graph typically neither produces an integral solution nor yields a good approximation to the true optimal objective function value. This result seems to shed some doubt on the universal applicability of cuttingplane approaches as an efficient means to solve linear (0, 1)-programming problems of moderate size

    A Fast Exact Algorithm for the Optimum Cooperation Problem

    Get PDF
    Given a graph G=(V,E) with real edge weights, the optimum cooperation problem consists in determining a partition of the graph that maximizes the sum of weights of the edges having nodes in the same partition plus the number of resulting partitions. The problem is also known in the literature as the optimum attack problem in networks. It occurs as a subproblem in the separation of partition inequalities. Furthermore, a relevant physics application exists. Solution algorithms known in the literature require at least |V|-1 minimum cut computations in a corresponding network. In this work, we present a fast exact algorithm for the optimum cooperation problem. By graph-theoretic considerations and appropriately designed heuristics, we considerably reduce the number of minimum cut computations that are necessary in practice. We show the effectiveness of our method by comparing the performance of our algorithm with that of the fastest previously known method on instances coming from the physics application
    corecore