
A Fast Exact Algorithm for the Optimum Cooperation
Problem ?

Diana Fanghänel and Frauke Liers

Universität zu Köln, Institut für Informatik, Pohligstrasse 1, 50969 Köln, Germany

Abstract. Given a graph G = (V, E) with edge weights we ∈ R, the optimum coop-
eration problem consists in determining a partition of the graph that maximizes the sum
of weights of the edges having nodes in the same partition plus the number of resulting
partitions. The problem is also known in the literature as the optimum attack problem in
networks. It occurs as a subproblem in the separation of partition inequalities. Further-
more, a relevant physics application exists.
Solution algorithms known in the literature require at least |V | − 1 minimum cut com-
putations in a corresponding network. In this work, we present a fast exact algorithm for
the optimum cooperation problem. By graph-theoretic considerations and appropriately
designed heuristics, we considerably reduce the number of minimum cut computations
that are necessary in practice. We show the effectiveness of our method by comparing
the performance of our algorithm with that of the fastest previously known method on
instances coming from the physics application.

Key words: optimum attack problem, submodular function minimization, mini-
mum cut problem, partition inequalities, Potts glass with many states

1 Introduction

In this work, we will deal with the following optimization problem. Suppose the benefit
of cooperation between two people, say, researchers, is represented by some number.
Furthermore, there is a unit gain for each group working on, say, a research project.
We search for an optimal cooperation, i.e., want to decide which researchers should
collaborate in order to maximize the total benefit, see [1].

In graph-theoretic terms, the problem can be stated as follows. Let a graph G =
(V,E) with edge weights we ∈ R for the edges e ∈ E be given. Vertices represent the
researchers, edge weights correspond to the benefit of cooperation. We want to solve
the problem

max{cG(A) + w(A) : A ⊆ E}, (1.1)

where w(A) =
∑

e∈A we and cG(A) is the number of connected components of the
induced graph G(A) = (V,A).

The problem was first studied by Cunningham in the context of determining op-
timum attacks in networks [5]. In this application, the weight we can be interpreted
as a measure for the effort required by an attacker to destroy edge e. The task is to
minimize the difference between the effort of destroying a set of edges and the number
of newly generated components of the graph.

? Supported by the German Science Foundation under contract Li 1675/1. Partly supported by the Marie
Curie RTN Adonet 504438 funded by the EU.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Another relevant application is the separation of partition inequalities, as intro-
duced by Baı̈ou, Barahona and Mahjoub [2]. Given a partition {S1, . . . , Sp} of the
node set V , we denote by δ(S1, . . . , Sp) the set of all edges having endnodes in
different sets of the partition. Then, for given real numbers a and b, the inequality
w(δ(S1, . . . , Sp)) ≤ ap + b is called partition inequality. The latter arise as valid
inequalities for a number of combinatorial problems. In order to use them inside a cut-
ting plane algorithm, we need to solve the separation problem that, given edge weigths
we ≥ 0, returns a partition violating the inequality, if it exists. Baı̈ou et al. show that
the separation problem can be solved by computing an optimal solution of (1.1).

An important model in statistical physics is the so-called Potts model [12]. It has
been introduced as a generalization of the so-called Ising model to describe several
physical systems. It is a model on a graph where the vertices represent magnetic spins.
They are assigned variables that each can take values between {1, . . . , q}. Interactions
between pairs of spins may be present. The aim is to compute the so-called partition
function that encodes the physics of the system. For many relevant physics systems,
computing the partition function is a difficult task. However, as pointed out by Juhasz,
Rieger, Iglói [13] and Anglès d’Auriac, Iglói, Preissmann and Sebö [1], for big num-
bers q, determining the dominant contribution in the Potts partition function amounts
to solving a problem of type (1.1).

Several solution algorithms for determining optimum cooperations or optimum
attacks have been presented in the literature. As it is not hard to see that the function to
be maximized is supermodular, any algorithm for submodular function minimization
could be used to solve the problem. By now several polynomial algorithms [4, 8] are
known to solve this task. However, the specific properties of the problem allow the
usage of algorithms with better worst-case asymptotic running time.

Cunningham [5] developed the first combinatorial algorithm for the optimum at-
tack problem that is based on |E|minimum cut computations in an associated network.
Thereafter, the worst-case running time of the algorithm was decreased to |V |−1 mini-
mum cut computations by Baı̈ou, Barahona and Mahjoub, and Barahona [2, 3]. Anglès
d’Auriac et al. [1] built upon the existing work and presented an algorithm that also
needs |V | − 1 minimum cut computations but is easier to implement. They presented
some experimental results for instances coming from the physics application.

In this article we present an algorithm that is based on the one of Anglès d’Auriac
et al. but has a better average running time, as by graph-theoretic considerations only
a fraction of the minimum cut computations are necessary in practice. In Section 2 we
define the necessary concepts. We also provide optimality conditions and theoretical
results that prove the correctness of our algorithm. We give the proofs of the lemmas in
the Appendix. In Section 3 we explain the algorithm of Anglès d’Auriac et al. There-
after, we propose a modification yielding better performance. In Section 4, we explain
details of the implementation and present experimental results on instances coming
from the physics applications. Furthermore, we compare our algorithm with the orig-
inal method of Anglès d’Auriac et al. It turns out that for many instances the running
times can be reduced considerably.

3

2 Definitions and Theoretical Concepts

Let a graph G = (V,E) with edge weights we ∈ R for all edges e ∈ E(G) be given.
Then

max

{
fG,w(A) = cG(A) +

∑
e∈A

we : A ⊆ E(G)

}
(2.2)

is called Potts problem and fG,w Potts function.
Obviously, deleting edges from G with nonpositive weights yields an equivalent

problem. Analoguously, for an edge e ∈ E(G) with we ≥ 1, there always exists an
optimal solution containing e. Thus, we obtain an equivalent problem by contracting
all edges with weight at least 1. Therefore, w.l.o.g., we assume we ∈ (0, 1) for all
edges e ∈ E(G).

It is not hard to see that the Potts function is supermodular [1]. A function f is
called supermodular if for all subsets A1, A2 ⊆ E the inequality f(A1∪A2)+f(A1∩
A2) ≥ f(A1) + f(A2) is valid. If (−f) is supermodular, f is called submodular.
Submodular function minimization occurs in a huge number of different applications,
see, e.g., [4]. Whereas it was already known for some time that the problem itself can
be solved in polynomial time [9, 10], only recently, strongly polynomial combinatorial
algorithms could be designed [4, 8, 7, 17]. Therefore, we could use any algorithm for
minimizing submodular functions for solving (2.2). However, exploiting the structure
of the Potts function yields a solution algorithm with better asymptotic running time.
In order to do this, we need to investigate the Potts problem more intensively.
Let A∗ be an optimal solution of the latter. It is easy to see that each connected compo-
nent of G(A∗) contains all edges of G it induces. In fact, let X1, . . . , Xk ⊆ V (G) be
the vertex sets of the connected components of the induced graph G(A∗) = (V,A∗).
If there is an edge e = (u, v) ∈ E(G)\A∗ with both u, v contained in the same set
Xi, adding e to A∗ increases the value of the Potts function, in contradiction to the
optimality of A∗. Therefore, it is possible to consider node partitions instead of edge
sets.

Definition 2.1. Let PG denote the set of all partitions of the node set V . Then a par-
tition is called optimal if it solves the problem

max {FG,w(P) = |P|+ w(P) : P ∈ PG} , (2.3)

where |P| denotes the number of classes and w(P) the weight of all edges with
endnodes in the same class of P .

Obviously, if for a class X of a partition P the induced subgraph G(X) is not con-
nected, then the partition P is not optimal. Thus, there is a one-to-one correspondence
between the optimal solutions of the Potts problem and the optimal partitions, i.e., the
problems (2.2) and (2.3) are equivalent.

In the following, we will either speak of edge sets or of the corresponding parti-
tion, whatever is more natural in the context. In order to be able to design an efficient
solution algorithm, we explain in the next section under which conditions the problem
can either be decomposed or shrunk into smaller problems of the same type.

4

2.1 Decomposing the Problem and Shrinking Subgraphs

Because of the submodularity of the Potts function, there exists an optimum solution
on G containing edge sets which are optimum for its induced subgraphs. This is stated
in the next lemma which is a generalization from a lemma given in [1].

Lemma 2.1. Let be given a graph G = (V,E) and a vertex set U ⊂ V (G) with
∅ 6= U . Suppose further that A1 ⊆ E(G1) resp. A2 ⊆ E(G2) are optimal solutions
of (2.2) for the induced subgraphs G1 = G(U) and G2 = G(V \U), respectively.
Then there exists an optimal solution A∗ ⊆ E(G) of the Potts problem for G with
A∗ ⊇ A1 ∪A2.

Thus, we can obtain an optimal solution for G by a divide-and-conquer approach
in which we first solve the problem for the smaller graphs G(U) and G(V \U) and add
further edges to the union of the optima for the smaller graphs. A special case is the
choice of node sets having cardinality 1 for which Lemma 2.1 was proven in [1].

In order to formulate Lemma 2.1 using node partitions, let X1, . . . , Xk be the
vertex sets of the connected components of G(A1) and Y1, . . . , Yl the vertex sets of the
connected components of G(A2). Then P = {X1, . . . , Xk, Y1, . . . , Yl} is a partition
of V (G). Lemma 2.1 says that in an optimal solution A∗ for G the vertex sets of the
components of G(A∗) are either classes or the union of classes of P .

Knowing this decomposition lemma, we are interested in possible choices of the
sets U . It turns out that sets defining cuts of small weight are important.

Lemma 2.2. Let a set U ⊆ V (G) with cut δ(U) := {(v1, v2) ∈ E(G) : v1 ∈
U, v2 /∈ U} be given. Assume that the weight w(δ(U)) of the cut is w(δ(U)) ≤ 1.
Then there exists an optimal solution A∗ of the Potts problem (2.2) with δ(U)∩A∗ = ∅.

Therefore, whenever we find a partition of the nodes of G into sets U and V \
U with cut weight at most 1, we can decompose the problem into two problems of
the same type, one defined on G(U) and the other on G(V \U), that can be solved
independently. An optimal solution for G then consists of the union of the edge sets
that are optimum for G(U) and G(V \U).

Apart from decomposing the problem, it is also possible to contract certain sub-
graphs of G. As a preprocessing step, we already proposed to contract edges e ∈ E(G)
with weight at least 1 before starting a solution algorithm. We now will generalize this
procedure to the contraction of subgraphs of G.

In our context, contracting a subgraph G(U) means replacing U by a supernode
vU . For all nodes v ∈ V \U , we replace the set of all edges (v, u) with u ∈ U by a
single edge e = (v, vU) with weight we :=

∑
(v,u):u∈U w(v,u). Edges (u1, u2) with

u1, u2 ∈ U are deleted.
Contracting an edge set E′ ⊆ E(G) means contracting the set of all incident

vertices of these edges to a supernode and dealing with loops and multiple edges as
before. G/U resp. G/E′ denote the graphs generated by contracting the vertex set
U ⊆ V (G) resp. the edge set E′ ⊆ E(G) in G. In the next lemma we state the
condition under which a subgraph can be contracted.

Lemma 2.3. Let a partition P = {P1, . . . , Pk} of V (G) be given. Furthermore, let
U ⊆ Pk be chosen such that P̃ = {U} is optimal for G(U). Then P is an optimal
partition for G if and only if P ′ = {P1, . . . , Pk−1, Pk/U} is optimal for G/U .

5

Lemma 2.3 can be used for the computation of an optimal partition as follows:
If we find a subset U ⊆ V (G) such that {U} is optimum on G(U), we proceed by
solving the problem on G/U instead of G. G/U has a smaller number of vertices than
G. Furthermore, some edge weights are increased by the contraction. As soon as they
exceed the value 1, they can be contracted. In the next lemma, we give contraction
criteria for some special graph structures.

Lemma 2.4. 1. Let a cycle Cn with n ≥ 3 vertices and edge weights we ∈ (0, 1)
for all e ∈ E(Cn) be given. If

∑
e∈E(Cn) we ≥ n − 1, the edge set E(Cn) is an

optimal solution of (2.2).
2. Let F2 denote a cycle C4 consisting of four edges with a chord e0 inducing two

triangles with edge sets {e0, e1, e2} and {e0, e3, e4}, resp. Let we ∈ (0, 1) for all
e ∈ E(F2). Then, {V (F2)} is an optimal partition for F2 if the weights satisfy
we0 + we1 + we2 + we3 + we4 ≥ 3, we1 + we2 ≥ 1 and we3 + we4 ≥ 1.

3. {V (Kn)} is an optimal partition for the complete graph Kn with n nodes if the
weights satisfy we ≥ 2/n for all edges e ∈ E(Kn).

In general, the subgraphs we find in a graph are often not induced ones. In the
following lemma we show that this fact does not cause problems.

Lemma 2.5. Let U ⊆ V (G) be given and {U} an optimal partition for G(U) with
edges weights w′

e for all edges e ∈ E(G). Then {U} is also optimal for G(U) with
edges weights we chosen as we ≥ w′

e for all edges e ∈ E(G).

This lemma can be used as follows. Assume G contains a subgraph G′ with V =
V (G′) and {V (G′)} is optimal for G′. Then the consideration of G′ equals that of G,
where the weights are chosen as w′

e := we for all e ∈ E(G′) and w′
e := 0 for the

edges e ∈ E(G)\E(G′). Then Lemma 2.5 states that {V (G)} is an optimal partition
of V (G).

Given these statements, a subgraph satisfying one of the above-mentioned condi-
tions can be contracted using Lemma 2.3.

2.2 Optimality conditions

In this subsection we investigate optimality conditions for the Potts problem. We
closely follow the considerations in [1, 12] and generalize some results from [1].

Let U ⊆ V (G) be a vertex set such that P ′ = {U} is an optimal partition for
G(U), and letP ′′ = {X1, . . . , Xk} be optimal for G(V \U). ThenP = {X1, . . . , Xk, U}
is a partition for the graph G. It turns out that we can obtain an optimal partition for
G from the latter by merging the set U with classes of P . In the next lemma we state
how such a union of classes changes the value of a partition.

Lemma 2.6 ([1]). Let P and P∗ be two partitions of G with P∗ = (P\W)∪{{
⋃

Xi :
Xi ∈ W}} for a set W ⊆ P . Then fG,w(P∗) = fG,w(P) − |W| + 1 + w(E(W)),
where E(W) is the set of all edges between the vertex sets Xi, Xj ∈ W , i 6= j.

It follows that a partition P is optimal if and only if the inequality |W| − 1 −
w(E(W)) ≥ 0 is valid for all W ⊆ P , where G(

⋃
Xi∈W Xi) is connected.

6

Lemma 2.7. Let U ⊆ V (G) be chosen such that {U} is optimal for G(U). Fur-
thermore, let P ′ be an optimal partition for G′ = G(V \U) with induced edge set
A∗ ⊆ E(G′). Then, forW ⊆ P ′ that attains the minimal value of |W|−w(E(W∪U)),
the edge set A∗ ∪ E(W ∪ U) is an optimal solution of the Potts problem for G.

The optimality conditions from Lemma 2.7 are proven in [1] for the special case
of U = {v} for some node v ∈ V (G).

3 Exact Algorithms

In this section we present an exact algorithm for solving the Potts problem (2.2). As it
is based on that of Anglès d’Auriac et al., we first introduce the latter. Subsequently, we
propose algorithmic modifications using the above-mentioned graph-theoretic results
in order to decrease the running time on practical instances.

3.1 The Basic Exact Algorithm

The optimal cooperation algorithm proposed in [1] uses the optimality conditions
given in Lemma 2.7, applied to node sets of cardinality 1.

It starts with a trivial solution for a subgraph G(U) with |U | = 1. Iteratively, nodes
are added to U one after one. In each step of the algorithm, an optimum solution on
G(U) is known. After having added a new node to U , an optimum solution on the new
induced graph is computed from the former optimum by calculating a minimum s− t
cut in an associated network. If U = V , the solution at hand is optimum for the whole
graph G.

Let us assume that problem (2.2) has been solved on G(U) with U ⊂ V (G),
yielding PU = {X1, . . . , Xk} as optimal partition. Let v ∈ V (G)\U . For maintaining
optimality, we have to compute a set W ⊆ U ∪ {v}, v ∈ W , that solves the problem

min{b(W) : W ⊆ U ∪ {v}, v ∈ W}. (3.4)

In [1] it was shown that such a set W can be determined by the computation of
a minimum cut in an associated directed network DU,v. As the value of b(W) does
not depend on the sets X1, . . . , Xk, the size of the network can be kept small by first
contracting X1, . . . , Xk in G and constructing the network from the shrunk graph.

The flow of the original optimal cooperation algorithm proposed in [1] is displayed
in Algorithm 3.1.

Algorithm 3.1. (optimal cooperation algorithm from [1])

Input: A graph G = (V,E) with edge weights we ∈ (0, 1) for all edges e ∈ E(G).
Output: An optimal partition P for G.

1. Set U := ∅ and P := ∅.
2. Choose a vertex v ∈ V \U .
3. Determine W ⊆ U ∪ {v} that solves (3.4) by computing a minimum s − t cut in

DU,v.
4. Set U := U ∪ {v} and construct the new optimal partition P .
5. Shrink the vertex set W in G and set U := U/W .

7

6. If U 6= V (G) go to Step 2.; else output the optimum partition P and STOP.

In Algorithm 3.1 |V (G)| − 1 minimum cut problems are solved on graphs with
|U | + 3 vertices and at most 2(|E(G(U ∪ {v})| + |U | + 3) many arcs. If, e.g., the
Goldberg-Tarjan algorithm [6] is used for the computation of the minimum s− t cuts,
the algorithm has a worst case running time of O(|V (DU,v)|2

√
|E(DU,v)|) in each of

the |V (G)| − 1 iterations. Thus, Algorithm 3.1 has polynomial running time. How-
ever, its performance depends strongly on the size of the directed graphs DU,v and the
number of minimum cut computations.

In the following subsection we present ideas for improving the performance of the
algorithm, using the results of the previous sections.

3.2 Enhancement of the Basic Exact Algorithm

The results from the previous sections can be compiled to an improved algorithm that
we present in Algorithm 3.2.

In Lemma 2.2 we have shown that there exists an optimum solution that does
not contain an edge from a cut with weight at most 1. In the physics application, the
edge weights are chosen randomly between 0 and 1, and the cardinality of the sets U
defining these cuts tends to be small in practice. Moreover, often these node sets will
contain one node only. Therefore, we determine all vertices v ∈ V (G) with w(δ(v)) ≤
1 and save them in a set notU . Subsequently, we apply the exact algorithm to the
graph G\notU . According to our experience, this reduces the number of minimum cut
computations and the size of the networks DU,v considerably, leading to low running
times.

Assume some v ∈ V (G)\U has been chosen in Step 2. If w({(u, v) ∈ E(G) :
u ∈ U}) ≤ 1, an optimal solution of the Potts problem consists of W = {v}. Thus,
we do not have to determine the corresponding minimum s− t cut and can skip Steps
3. and 4. of the Algorithm 3.1.

Furthermore, subgraphs like cycles, cliques etc., satisfying the conditions from
Lemma 2.4 are contracted. In order to be able to reconstruct the optimum partition
from the shrunk graph, we assign a set S(v) to the vertices v ∈ V that save the original
nodes shrunk into supernode v. These sets are updated throughout the algorithm.

Algorithm 3.2. (improved algorithm)

Input: A graph G = (V,E) with edge weights we ∈ (0, 1) for all edges e ∈ E(G).
1. Compute the set notU and delete all vertices v ∈ notU from G.
2. Set U := ∅ and P := ∅.
3. Choose v ∈ V \U and set S(v) := {v}.
4. If w({(u, v) ∈ E(G) : u ∈ U}) ≤ 1, set U := U ∪ {v} and P := P ∪ {S(v)}

and proceed with Step 3.
5. While a subset W ⊆ U ∪ {v}, |W | > 1, is found with v ∈ W such that {W} is an

optimal partition for G(W), do the following:
Set U := U\W and P := P\

⋃
u∈(W\{v}) S(u). Contract W in G to a supernode

vW and set S(vW) :=
⋃

u∈W S(u). Identify v := vW .
6. Construct DU,v and determine W ⊆ U ∪ {v} that solves (3.4) by computing a

minimum s− t cut in DU,v.
Then, update U , P , the graph G, and v, analoguously to Step 5.

8

7. While there exists an edge e = (u, v) ∈ E(G) with we ≥ 1 do:
If u /∈ U , shrink e in G and set S(v) := S(V) ∪ {u}. If u ∈ U , set W := {u, v}
and update U , P , G, and v, analoguously to Step 5.

8. If in Step 7. an edge e = (u, v) was found with u /∈ U , proceed with Step 4; else
set U := U ∪ {v}, P := P ∪ {S(v)}, and proceed with Step 9.

9. If U 6= V (G), go to Step 3.
10. Output: The optimum partition P := P ∪ {{v} : v ∈ notU}.

Why is Step 8. of the improved algorithm important? Assume W has been deter-
mined by computing a minimum s − t cut in the network DU,v. Then there possibly
exist edges e = (v, u) in G/W with we = 1 and u ∈ U . In this case, the partition
we obtain after shrinking these edges is still optimal for the graph G(U ∪ {v}). How-
ever, there possibly exist edges e = (v, u) in G/W with we ≥ 1 and u /∈ U . Then,
after contracting these edges, in general P ∪ {S(v)} is not an optimal partition for
G(U ∪ {v}). Therefore, we have to repeat the iteration by using vertex v.

In Step 5. of the Algorithm 3.2 we search iteratively for a subset W ⊆ U ∪ {v}
with |W | > 1 and v ∈ W such that {W} is optimal for G(W). This also includes
the search for edges with a weight larger or equal one. In the following, we focus on
cycles and subgraphs F2. If we succeed in our search, contracting the corresponding
set decreases the size of the networks and the number of minimum cut computations
in the subsequent iterations.

Next we answer the question, how to find a cycle C = (VC , EC) in a graph G sat-
isfying

∑
e∈EC

we ≥ |VC |−1 algorithmically. Let G− denote a copy of G, where edge
weights are chosen as w−

e := 1−we for all e ∈ E(G). Then the condition to be satis-
fied can be expressed as

∑
e∈EC

w−
e ≤ 1. Cycles satisfying the latter can be computed

by shortest-path calculations in G− as follows. For each edge e = (v, u) ∈ E(G), we
temporarily delete e from G− and search for a shortest path P = (VP , EP) in G− from
v to u. If the weight of the path does not exceed 1 − w−

e , P together with e forms a
cycle satisfying the condition. Then VP is contracted in Step 5. of Algorithm 3.2. This
method is an exact cycle search, i.e., if there exists a cycle satisfying the condition, the
algorithm finds it. In addition to this, we also use fast heuristics. In practice it turned
out that heuristics and simple enumerative checks for triangles in the graph suffice to
find candidate cycles.

In the next section we present some experimental results and compare the perfor-
mance of the basic with that of the improved algorithm.

4 Computational Results

We implemented both the original algorithm by Anglès d’Auriac et al. and our modifi-
cations within the same framework, using the OGDF library [15]. For the minimum cut
computations, we used a fast implementation of the Goldberg-Tarjan algorithm [16].
The runs were performed on an Intel Celeron machine with 1.86 GHz.

Before starting Algorithm 3.2, we ran a heuristic for the computation of problem
(1.1). This heuristic is constructed simply by skipping the minimum cut computations
in Step 6. of Algorithm 3.2. In order to solve the problem exactly, the heuristics is
followed by the improved exact algorithm. Furthermore, in Step 5. of the latter, we
used fast heuristics for the cycle search and an enumerative algorithm for the F2 =

9

G(W) subgraphs consisting of two triangles sharing an edge for which {W} is optimal
for F2.

As we are not aware of other experimental results presented in the literature, we
focused on the physics application. For the latter, instances defined on regular grid
graphs in d dimensions with weights chosen according to some probability distribu-
tion are very relevant. In order to be able to compare our results with the algorithm
implemented in [1], we used the same test bed. We studied two-dimensional square
grid graphs with randomly chosen weights that can take only two different values,
w1 6= w2, where p% of the edges have weight w1. Furthermore, the weights satisfy
w1 + w2 = 1. We vary the size L of the L × L grid, w1 and p. As the weights are
randomly chosen, we always report averages over 20 different instances of the same
class.

We compare the behaviour of the different algorithms for L = 128 and different
values of w1 and p in Table 1 and Table 2. We report the CPU times in seconds,
the number of minimum cut computations, and the maximum size of U , for which a
minimum cut is computed. For the choice of w1 = 0.2, the cycle search heuristics

p Improved Method Algorithm 3.1
mincut comp. maximal U CPU time # mincut comp. maximal U CPU time

80 6.30 64.55 0.48 16383 16301.80 138.06
70 210.65 1566.00 4.50 16383 15979.70 145.93
60 1765.30 9983.85 19.07 16383 14979.65 153.05
50 2364.10 5738.45 19.03 16383 7635.80 115.61
40 265.05 183.70 4.93 16383 907.30 21.43
30 3.90 13.55 3.15 16383 218.45 14.10
20 0.25 0.55 2.14 16383 133.40 12.50

Table 1. Results for L = 128 and w1 = 0.2. CPU times are given in seconds.

is very often successful. Moreover, the heuristic for large p often solves the problem
exactly. Also for smaller p the heuristic helps reducing the running time. We note that
the basic Algorithm 3.1 always computes |V | − 1 minimum cuts, independently of the
distribution of the edge weights. In contrast, in the improved algorithm the number
depends on the choice of w1 and p.

For w1 = 0.4, the heuristic has only a running time of about 0.2 seconds, but it
is never successful in reducing the size of the graph. Furthermore, the cycle search
algorithms contribute less than for w1 = 0.2. However, for w1 = 0.4 the search
for the subgraphs F2 and Step 4. of Algorithm 3.2 are often successful. We compare
the running times in seconds in Table 2. Clearly, the running times can drastically be
reduced by the above-mentioned graph-theoretic considerations.

p 80 70 60 50 40 30 20
Improved Method 9.24 17.26 28.55 74.95 8.09 3.38 2.89

Algorithm 3.1 142.64 149.96 150.52 279.99 15.08 13.09 12.82
Table 2. Solution times in seconds for L = 128 and w1 = 0.4

10

In 2002, Anglès d’Auriac et al. presented average running times for L × L grid
graphs [1] with w1 + w2 = 1, using a Pentium III processor with 800 MHz. Their
program needed on average 1.5 hours for a 1282 grid and one day of CPU time for
a grid of size 2562. Our implementation of the basic algorithm needs roughly half an
hour on average for L = 256, whereas the improved method only takes ca. 6 minutes.
We note that the machine we used is considerably faster, and so we cannot easily
compare our running times with those reported in [1].

5 Conclusions

In this work, we presented a fast algorithm for the problem of optimum cooperation.
By an intensive study of the underlying graph-theoretic problem, the running time of
the solution algorithm can considerably be reduced. It appears plausible that this trend
can be further strengthened by investing knowledge on further graph structures, in the
flavor of Lemma 2.4.

Acknowledgments

We are grateful to Andrea Wagner for significant help with the implementation of the
algorithm. We thank Heiko Rieger for valuable remarks on the physics aspects of the
problem.

References

1. J.-Ch. Anglès d’Auriac, F. Iglói, M. Preissmann, and A. Sebö, Optimal cooperation and submodu-
larity for computing Potts’ partition functions with a large number of states, J. Phys. A: Math. Gen.
35 (2002) pp. 6973-6983

2. M. Baı̈ou, F. Barahona, R. Mahjoub, Separation of partition inequalities, Math. of Operations Re-
search, vol. 25, no. 2 (2000) pp. 243-254

3. F. Barahona, Separating from the dominant of the spanning tree polytope, Operations Research Let-
ters, vol. 12 (1992) pp. 201-203

4. S. T. McCormick, Submodular Function Minimization, In: K. Aardal et al., Eds.,Discrete Optimiza-
tion: Handbooks in Operations Research and Management Science, vol.12 , Elsevier (2005) pp.
321-391

5. W. H. Cunningham, Optimal Attack and Reinforcement of a Network, Journal of the Association for
Computing Machinery, vol. 32, no. 3 (1985) pp. 549-561

6. A.V. Goldberg, R. E. Tarjan, A new approach to the maximum-flow problem, Journal of the ACM,
vol 35, no. 4 (1988), pp. 921-940.

7. S. Iwata, L. Fleischer, and S. Fujishige, A combinatorial strongly polynomial algorithm for minimiz-
ing submodular functions, Journal of the ACM 48 No. 4, 761-777 (2001).

8. S. Fujishige, Submodular Functions and Optimization, Annals of Discrete Mathematics Vol.58, El-
sevier, Amsterdam, 2005

9. M. Grötschel, L. Lovász, A. Schrijver, The ellipsoid method and its consequences in combinatorial
optimization, Combinatorica, 169-197 (1981).

10. M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization,
Springer Verlag (1988).

11. A.K. Hartmann, H. Rieger, Optimization Algorithms in Physics, Wiley-VHC, Berlin, 2002
12. A. K. Hartmann, H. Rieger, New Optimization Algorithms in Physics, Wiley-VHC, Berlin, 2004
13. R. Juhasz, H. Rieger, F. Iglói, The random-bond Potts model in the large-q limit, Phys. Rev. E, 64,

056122 (2001).
14. M. Preissmann, A. Sebö, Graphic submodular function minimization: an graphic approach and

applications , unpublished

11

15. Open Graph Drawing Framework, www.ogdf.net
16. M. Jünger, G. Rinaldi, S. Thienel, Practical Performance of Efficient Minimum Cut Algorithms,

Algorithmica, 26, 172-195, (2000).
17. A. Schrijver, J. Combinatorial Theory, B 80, A Combinatorial Algorithm Minimizing Submodular

Functions in Strongly Polynomial Time 346–355 (2000).

12

Appendix

In this appendix, we state the most relevant proofs that we omitted in the extended
abstract due to space restrictions.

Proof (Lemma 2.1). The supermodularity of the Potts function implies

fG,w(A ∪A1) ≥ fG,w(A) + fG,w(A1)− fG,w(A ∩A1) (5.5)

for all edge sets A ⊆ E(G). Furthermore, since A1 and A1 ∩ A are subsets of E(G1)
it holds

fG,w(A1) = fG1,w(A1) + |U | ≥ fG1,w(A1 ∩A) + |U | = fG,w(A ∩A1). (5.6)

These inequalities imply fG,w(A∪A1) ≥ fG,w(A) for all edge sets A ⊆ E(G). Thus,
there exists some optimum solution A∗

1 with A∗
1 ⊇ A1.

Similarly, there exists some optimum solution A∗
2 with A∗

2 ⊇ A2. Using the equal-
ity fG,w(A∗

1) = fG,w(A∗
2) and the supermodularity of the Potts function fG,w, it is easy

to prove that A∗ = A∗
1∪A∗

2 is an optimal solution for G. The inclusion A∗ ⊇ A1∪A2

is obvious. ut

Proof (Lemma 2.2). Let be given an optimal solution A ⊆ E(G) of the Potts problem
with A ∩ δ(U) 6= ∅. Then it holds cG(A\δ(U)) ≥ cG(A) + 1. Furthermore, w(A ∩
δ(U)) ≤ w(δ(U)) ≤ 1. Hence, it holds

fG,w(A\δ(U)) = cG(A\δ(U)) + w(A)− w(A ∩ δ(U))
≥ cG(A) + w(A) + 1− w(A ∩ δ(U))
≥ fG,w(A), (5.7)

i.e., A∗ := A\δ(U) is also optimal and δ(U) ∩A∗ = ∅. ut

Proof (Lemma 2.3). Let P resp. P∗ be optimal partitions for G resp. G/U . Then it
holds FG/U,w(P∗) ≥ FG/U,w(P ′). Decontracting the set U inP∗, we obtain a partition
P∗∗ for G with

FG,w(P∗∗) = FG/U,w(P∗) + w(U) ≥ FG/U,w(P ′) + w(U) = FG,w(P). (5.8)

Consequently, the optimality of P implies FG/U,w(P∗) = FG/U,w(P ′), i.e., P ′ is an
optimal partition for G/U .

Now we assume that P ′ an optimal partition for G/U . Then Lemma 2.1 and the
optimality of P̃ = {U} for G(U) imply that there exists an optimal partition P∗∗ =
{P ∗∗

1 , . . . , P ∗∗
l } of G with U ⊆ P ∗∗

l . Hence, P∗ = {P ∗∗
1 , . . . , P ∗∗

l−1, P
∗∗
l /U} is a

partition of G/U . Using the optimality of P ′ we obtain

FG,w(P∗∗) = FG/U,w(P∗) + w(U) ≤ FG/U,w(P ′) + w(U) = FG,w(P), (5.9)

i.e., P is optimal for G. ut

Before we can proceed with the proof of Lemma 2.4 we need to prove the following
lemma.

13

Lemma 5.1. Let G be a graph with an optimal partition P = {X1, . . . , Xk}. Further,
let I ⊂ {1, . . . , k} be a nonempty index set inducing a subgraph G′ = G(

⋃
i∈I Xi) of

G. Then the partition P ′ = {Xi : i ∈ I} is optimal for G′.

Proof (Lemma 5.1). Assume that the lemma is not valid. Then there exists a partition
P̄ for G′ with FG′,w(P̄) > FG′,w(P ′). Consequently,

FG,w(P) = |P|+
k∑

i=1

∑
x,y∈Xi

w(x, y) = (k − |I|) +
∑
i/∈I

∑
x,y∈Xi

w(x, y) + FG′,w(P ′)

< (k − |I|) +
∑
i/∈I

∑
x,y∈Xi

w(x, y) + FG′,w(P̄) = FG,w(P ′′) (5.10)

with the partition P ′′ = {Xi : i /∈ I} ∪ P̄ for G, which is a contradiction to the
optimality of P . ut

Proof (Lemma 2.4). We will prove Lemma 2.4 in detail only for cycles. For complete
graphs the lemma can be proven using induction and Lemma 5.1. The criterion for the
graph F2 results from Lemma 5.1 and considerations for forests and triangles.

Before we can start with the investigation of cycles, we consider forests. We first
prove the following statement:

Let G = (V,E) be a forest with edge weights we ∈ (0, 1) for all edges e ∈ E(G).
Then A∗ = ∅ is the unique optimal solution of the Potts problem.

In fact, if G is a forest, for each nonempty sets A ⊆ E(G) it holds

fG,w(A) = cG(A) +
∑
e∈A

we︸︷︷︸
<1

< cG(A) + |A| = |V (G)| = fG,w(∅), (5.11)

since for each subset A ⊆ E(G) the graph G(A) = (V,A) is a forest with |V (G)|
vertices. Consequently, A∗ = ∅ is an optimal solution for G.

Now, let us consider cycles. Let A∗ ⊆ E(Cn) be an optimal solution of the Potts
problem (2.2). Assume it is 0 < |A∗| < n. Then Lemma 5.1 implies that A∗ is also
an optimal solution for the subgraph G′ = G(A∗). The graph G′ = G(A∗) is a forest
because of |A∗| < n. But then 0 < |A∗| is a contradiction to the previous result on
forests.

Thus it holds A∗ = ∅ or A∗ = E(Cn). This implies the statement of the lemma
since the inequality

∑
e∈E(Cn)

we ≥ n− 1 is equivalent to the inequality

fCn,w(∅) = n ≤
∑

e∈E(Cn)

w(e) + 1 = fCn,w(E(Cn)). (5.12)

ut

Proof (Lemma 2.5). Assume that P∗ = {U} is not optimal for G′ = G(U) with edge
weigths we chosen as we ≥ w′

e for all edges e ∈ E(G), i.e., an optimal partition
P = {P1, . . . , Pk} of G′ = G(U) exists with FG′,w(P) > FG′,w(P∗). Then it holds
E(P) ⊆ E(P∗). Let E′ = E(P∗)\E(P). Then FG′,w(P) > FG′,w(P∗) implies

w(P∗) + 1 < w(P) + k (5.13)

w′(E′) ≤ w(E′) = w(P∗)− w(P) < k − 1 (5.14)

FG′,w′(P∗) = w′(P∗) + 1 < w(P) + k = FG′,w′(P∗). (5.15)

14

This is a contradiction to the optimality of P∗ for the edge weights w′
e. ut

Proof (Lemma 2.7). Let U ⊆ V (G). Let {U} resp. P ′ = {X1, . . . , Xk} be optimal
for G(U) resp. G′ = G(V \U). Because of Lemma 2.6 there exists a set W∗ ⊆ P
with P = {X1, . . . , Xk, U} such that (P\W∗) ∪ {{∪X : X ∈ W∗}} is an optimal
partition for G. It induces an edge set A∗∪E(W∗). We only have to prove that w.l.o.g.
U ∈ W∗ can be assumed.

Suppose U /∈ W∗. Then it holds |W∗| − 1 − w(E(W∗)) ≥ 0 because of the
optimality of P ′ for G(V \U). Using the optimality of (P\W∗) ∪ {{∪Xi : Xi ∈
W∗}} for G and Lemma 2.6 we obtain |W∗| − 1− w(E(W∗)) = 0. But then we can
also choose W∗ = {U} to obtain an optimal partition. ut

