
REGENERATOR PLACEMENT IN OPTICAL
NETWORKS

a thesis

submitted to the department of industrial engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Onur Özkök

January, 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52939795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Oya Ekin Karaşan (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Osman Oǧuz

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Bahar Yetiş Kara

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute Engineering and Science

ii

ABSTRACT

REGENERATOR PLACEMENT IN OPTICAL
NETWORKS

Onur Özkök

M.S. in Industrial Engineering

Supervisor: Assist. Prof. Dr. Oya Ekin Karaşan

January, 2004

Increase in the number of users and resources consumed by modern applications

results in an explosive growth in the traffic on the Internet. Optical networks

with higher bandwidths offer faster and more reliable transmission of data and

allows transmission of more data. Fiber optical cables have these advantages over

the traditional copper wires. So it is expected that optical networks will have a

wide application area.

However, there are some physical impairments and optical layer constraints

in optical networks. One of these is signal degradation which limits the range of

optical signals. Signals are degraded during transmission and below a threshold

the signals become useless. In order to prevent this, regenerators which are

capable of re-amplifying optical signals are used. Since regeneration is a costly

process, it is important to decrease the number of regenerators used in an optical

network.

To increase the reliability of the network, two edge-disjoint paths between

each terminal on the network are to be constructed. So the second path could

be used in case of a failure in transmitting data on an edge of the first path.

Considering these requirements, selecting the nodes on which regenerators are to

be placed is an important decision.

In this thesis, we discuss the problem of placing signal regenerators on optical

networks with restoration. An integer linear program is formulated for this prob-

lem. Due to the huge size and other problems of the formulation, it is impractical

to use it on large networks. For this reason, a fast heuristic algorithm is proposed

to solve this problem. Three methods are proposed to check the feasibility when

a fixed set of regenerators are placed on specific nodes. Additionally, a branch

and bound algorithm which employs the proposed heuristic is developed to find

iii

iv

the optimal solution of our problem. Performance of both the heuristics and

the branch and bound method are evaluated in terms of number of regenerators

placed and solution times of the algorithms.

Keywords: optical networks, regenerator placement, branch and bound algorithm,

working and restoration path design.

ÖZET

OPTİK AĞLARDA REJENERATÖR
KONUMLANDIRILMASI

Onur Özkök

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Oya Ekin Karaşan

Ocak, 2004

Kullanıcı sayısındaki ve modern uygulamaların kullandığı kaynaklardaki artış,

internet üzerindeki trafikte hızlı bir büyümeye yol açmıştır. Optik ağlar, daha

çok veriyi, daha hızlı ve daha güvenli şekilde iletme imkanı sunmaktadır. Fiber

optik kabloların, geleneksel bakır tellere göre bu avantajları vardır. Bu nedenle

optik ağların geniş bir uygulama alanı bulması beklenmektedir.

Ancak, optik ağlarda bazı fiziksel uyumsuzluklar ve optik katman kısıtları

vardır. Bunlardan biri, optik sinyallerin menzilini kısıtlayan sinyal zayıflamasıdır.

Sinyaller iletim sırasında zayıflamakta ve belli bir eşik değerinin altında

kullanılmaz hale gelmektedir. Bunu önlemek için optik sinyalleri yeniden

güçlendirebilen rejeneratörler kullanılmaktadır. Sinyal rejenerasyonu maliyetli

bir işlem olduğundan, optik ağlarda kullanılan rejeneratör sayısını azaltmak

önemlidir.

Ağın güvenilirliğini artırmak için, ağ uzerindeki her düğüm çifti arasında iki

ayrık yol bulunmalıdır. Böylece, çalışan yol üzerindeki bir ayrıt veri iletiminde

başarısız olursa, onarım yolu kullanılarak veri hedefine iletilebilinir. Bütün bu

gereklilikleri göz önüne alarak hangi düğümlere rejeneratör yerleştireleceğini be-

lirlemek önemli bir karardır.

Bu tez çalşmasında, onarımlı optik ağlarda sinyal rejeneratörleri konum-

landırılması problemi üzerinde çalışmaktayız. Bu problem için bir tamsayılı

doğrusal karar modeli geliştirilmiştir. Ancak modelin boyutunun çok büyük ol-

ması ve modeldeki başka sorunlar nedeniyle, modelin büyük ağlarda kullanılması

pratik değildir. Bu nedenle, problemin çözümü için hızlı çalışan sezgisel bir al-

goritma önerilmiştir. Belirli düğümlere rejeneratör yerleştirilmesini içeren bir

çözüm kümesinin olurluğunu kontrol eden üç farklı yöntem önerilmiştir. İlaveten,

v

vi

önerilen sezgisel algoritmayı da kullanarak eniyi çözümü bulan bir dal-sınır al-

goritması geliştirilmiştir. Hem sezgisel algoritmaların, hem de dal-sınır algorit-

masının performansları, konumlandırılan rejeneratör sayısı ve çözüm zamanları

açısından değerlendirilmiştir.

Anahtar sözcükler : optik ağlar, rejeneratör konumlandırılması, dal-sınır algorit-

ması, aktif ve onarım yolları tasarımı.

Acknowledgement

First and foremost, I wish to express my thanks to Dr. Oya Ekin Karaşan

for introducing me to this interesting and challenging subject and her guidance

throughout the development of this thesis. I would also like to thank her for her

considerable encouragement and tolerance during my graduate study. Without

her support it would not have been possible for me to complete my graduate

study. I would also like to thank Dr. Osman Oğuz and Dr. Bahar Yetiş Kara for

their comments and helpful suggestions for the preparation of this text.

I would like to express my gratitude to Dr. İmdat Kara for his support

and encouragement during my graduate study. I am grateful to my roommates

Demiralp Hatipoğlu for helping me to draw the figures and Tolga Bektaş for his

comments. Thanks to Onur Aköz, Ergün Eraslan, Yazgı Tütüncü and Buğra

Çamlıca for their patience, understanding and encouraging support.

I would also like to express my deepest gratitude to my family and my friend

Sezen Altınova and appreciate their endless support throughout my education

and life.

vii

Contents

1 Introduction 1

1.1 Problem Definition . 7

1.2 Organization of the Thesis . 9

2 Related Work 10

2.1 Network Reliability and Regenerator Placement 10

2.2 Regenerator Placement . 11

2.3 Network Reliability . 13

3 Difficulties in Modelling the Problem 16

3.1 Integer Linear Program For the Entire Graph 17

3.2 Integer Linear Program For a Specific Pair 20

3.3 Problem With the Integer Linear Program 21

3.4 Solution Approach to the Problem in Model2 24

3.4.1 Modified Integer Linear Program 25

3.5 Mathematical Program in Practice 34

viii

CONTENTS ix

4 Feasibility of an Instance 37

4.1 Using Model2 . 37

4.2 Exact Feasibility . 38

4.3 Approximate Feasibility . 44

5 Heuristic Solutions 47

5.1 Proposed Heuristic Algorithm . 47

5.2 Computational Analysis . 50

6 Finding an Optimal Solution 52

6.1 Lower Bound of the Problem . 52

6.2 Branch and Bound Algorithm . 53

6.2.1 Adaptation of the Branch and Bound Algorithm 54

6.3 Computational Analysis . 58

7 Conclusion 60

List of Figures

1.1 Transparent and Translucent Lightpaths 4

1.2 Restoration Methods . 6

3.1 14-node network . 20

3.2 A small example . 22

3.3 a)Original Graph b)Modified Graph (EC=2) 25

3.4 Rings in a path . 27

3.5 Visiting a vertex more than twice 33

3.6 Network topology used in experiments 35

4.1 Path matchings . 45

6.1 Branch and Bound Tree . 55

6.2 Branch and Bound Tree- Eliminated 56

x

List of Tables

3.1 Path lengths. 23

3.2 Modified Graph with EC=2. 24

3.3 Rings in a path. 29

3.4 Some of the paths which represent P1 30

3.5 Optimality Ranges. 32

3.6 Multi visited vertices. 33

4.1 Running Times For Feasibility Check. 38

4.2 Path Alternatives. 42

4.3 Number of Path Alternatives. 43

5.1 Heuristic Solutions for 32 node network. 50

5.2 Heuristic Solutions for 50 node network. 50

6.1 Optimal and Heuristic Solutions for the 32 node network. 59

6.2 Optimal and Heuristic Solutions for the 50 node network. 59

xi

To My Family. . .

xii

Chapter 1

Introduction

Since the initial deployment of the original ARPANET which was developed by

Advanced Research Projects Agency (ARPA) and became the basis for the Inter-

net, Internet architecture has evolved in response to technological progress and

user needs. The explosive growth in traffic fed by the increase in the number of

users and resources consumed by modern applications has put an ever increas-

ing load on the Internet. A report from the U.S Department of Commerce [3]

suggests that the rate at which the Internet has been adopted has surpassed

all other technologies preceding it, including radio, television, and the personal

computer. A common expectation is the convergence of voice, video, and data

communications to happen over the Internet. With this rising of the Internet

there have arisen corresponding requirements for network reliability, efficiency,

and Quality of Service (QoS) [4]. There are different definitions about QoS. In a

general context, QoS is a set of methods and processes which a service based or-

ganization implements to maintain a specific level of quality. It is also the ability

for an application to obtain the network service it requires for successful oper-

ation. To respond to this challenge, Internet service providers (ISPs) examine

their operational environment to scale their networks and optimize performance.

ISPs employ three complementary technical instruments:

Network architecture It is the abstract structure of the network. It involves

1

CHAPTER 1. INTRODUCTION 2

the components or object classes of the network, their functions and the

relations between them.

Capacity expansion This is employed as a response to the traffic growth by

the large ISPs.

Traffic engineering This is used to address the Internet growth, and has at-

tracted significant attention at recent times.

Development of Optical Transport Networks is seen as an important step in the

evolution of data transmission. Fiber optic cables are used in the optical networks

and the paths through which data are transmitted are referred to as lightpaths.

These optical networks have emerged as an alternative to traditional copper wire

or wireless networks, because they can transfer more data at higher speeds than

copper wire. Optical networks could handle the increasing traffic on the Internet

since multiple signals can be sent simultaneously. Copper wires, on the other

hand, can send only one signal at a much slower speed. It is expected that the

amount of information carried on computer and telecommunication networks will

grow very rapidly in the future, therefore optical networks are likely to play an

important role.

However, optical networks have some disadvantages, in addition to their ben-

eficial properties. Some transmission impairments make some signal routes unus-

able in optical networks. These impairments are discussed in [13]. One of these

impairments is the degradation of the signal. An optical signal has a signal-

to-noise (SNR) ratio, which may be considered as the quality of the signal. In

optical networks, signals are degraded during emission from a node [13]. Below

a threshold value, the signal cannot be used. So an acceptable SNR level, which

depends on the properties of the optical network, needs to be maintained at the

receiver [13].

The amount of the degradation depends on the length of the fiber optic cable.

For this reason, with current technology at hand, the physical layer constraints

limit the maximum transmission range for optical signals. Beyond this length,

the optical signals are degraded, and the SNR becomes too low to be usable.

CHAPTER 1. INTRODUCTION 3

In such cases the optical signal must be regenerated to increase the transmission

range of the optical network. This regeneration process is called 3R Regeneration,

which refers to re-amplification, re-shaping and re-timing of optical signals [23].

Since it is possible to transmit data along the fibers, optical networks are

represented using undirected graphs. The vertices (nodes) of the graph represent

the receivers and the edges of the graph are used to represent the fiber connections

of the network.

The nodes on optical networks are called optical cross connects (OXC). There

are two types of optical nodes in an optical network. The first one is transparent

node and the second is opaque node. Transparent nodes receive and send the

optical signal to another node, whereas the opaque nodes receive, regenerate and

send the optical signal to its destination. How the opaque nodes regenerate the

optical signals is beyond the scope of this work and will not be discussed.

Optical networks can be classified into three main classes according to the

regeneration functions of their nodes [18].

Transparent A network is referred to as transparent if its nodes are optical

cross connects without any regeneration function.

Opaque When regeneration is available at every node, the network is called an

opaque network.

Translucent If regeneration is available on some nodes of the network, then it

is called a translucent network.

Each type of network has its advantages and disadvantages. We will briefly men-

tion them. In a transparent network, it is required that lightpaths can reach any

destination with required signal-to-noise ratios (SNRs) because payload regener-

ation is not available en route. Consequently, in such a network there is a critical

diameter above which it cannot extend with given optical transmission technol-

ogy. Opaque networks do not have this drawback, on the other hand cost, space,

power and reliability implications prevent using these networks widely [18].

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Transparent and Translucent Lightpaths

Translucent networks lie between these two extreme cases. To establish a

connection under optical impairments, it is necessary to divide some lightpaths

into two or more fragments using regenerators [15]. Therefore in a translucent

network, there are two types of lightpaths. A lightpath is called translucent

lightpath if there are some opaque nodes en route, otherwise it is called transparent

lightpath. Note that the path segments between two opaque nodes are transparent

lightpaths [18, 23]. Transparent and translucent lightpaths can be seen in Figure

(1.1).

There is strong interest in implementing transparent all-optical networks due

to significant cost saving in not regenerating optical signals in transit nodes.

Unfortunately, those impairments mentioned above limit the transparent length

of a transparent lightpath. At present and in the foreseeable future, regeneration

is necessary to establish a lengthy end-to-end lightpath [23].

Using networks of transparent islands is another way of getting benefits of

both transparent and opaque networks. In such networks, the optical network

is divided into islands (domains) each of which is a transparent network itself.

CHAPTER 1. INTRODUCTION 5

Regenerators are placed on the boundaries of the islands. In an island, signals

reach destinations without regeneration. However, for communication between

different islands, signals are regenerated on the boundaries [18].

It is known that translucent networks are superior to opaque networks in

the sense of cost structure. Performance, however, is another important aspect.

Experiments showed that about 20% of regeneration nodes are needed to achieve

a performance close to an opaque network [22]. Therefore, translucent networks

could be used instead of opaque networks without a decrease in the performance

of the network. However, placing the regenerators on the network such that

we achieve the performance of an opaque network using the minimum number

of regenerators is a challenging problem [15]. Although the necessity of signal

regeneration is discussed, efficient regenerator placement problem is not dealt

with widely.

Connectivity is the major concern of the network routing protocols deployed

today. An important component of Quality of Service (QoS) is the ability of the

network to transport data reliably and efficiently.

Connections of the network may be subject to failure [1]. In case of a failure,

we need to respond to this failure and transport the data somehow to its desti-

nation. For this reason, some techniques are needed to recover the failure and

these techniques are called Recovery Methods. When a lightpath is broken due

to a failed connection of the network, another lightpath must be established in

order to transport the signal to its destination. Recovering the failure in fact is

constructing this new lightpath, rather than to repair the failed connection.

Recovery methods can be classified based on the scope of the recovery action.

Some methods are explained in [18, 24]. Local Repair, also known as Span-based

Restoration, aims to protect against single link or node failures. In this case,

failure detection and restoration are carried out between the two terminating

nodes of the failed connection. So, the recovery path shares overlapping portions

with the working path. Global Repair which is also known as Path Restoration

or Path-based Restoration aims to protect against any link or node failure on the

working path. In many cases the restoration path may be selected to be link

CHAPTER 1. INTRODUCTION 6

Figure 1.2: Restoration Methods

or node disjoint from the working path to protect against all link and/or node

failures on the working path [18, 24]. In a span-restorable network, the failure

detection and restoration are carried out between the two terminating nodes of

a failed span [18]. Since the response is local, span-restoration is thought of

as being fast but with relatively lower space capacity efficiency. In contrast, a

path-restorable network is more efficient in spare capacity but often has a slower

restoration speed [18]. Examples of span-based and path-based restoration can

be seen in Figure (1.2).

The networks, in which path-based restoration is preferred, should be de-

signed such that there is a restoration-path disjoint from the working-path in the

network. Diversity is a relationship between ligthpaths. Two lightpaths are said

to be diverse if they have no single point of failure. Diversity is often equated to

routing two lightpaths between a single pair of points, or different pair of points,

so that no single failure will disrupt them both [13].

For this reason, the networks must be designed such that in case of a failure

the network should still remain active. This problem is called survivable network

CHAPTER 1. INTRODUCTION 7

design problem (SDNP). This problem has applications to the design of survivable

telecommunication networks [10]. With the introduction of optic technology in

telecommunication, designing a minimum cost survivable network has become

a major objective in the telecommunication industry [12]. In optical networks,

2-edge connected networks in which there are at least two edge disjoint paths

between each pair of terminals have shown to be cost effective and provide an

adequate level of survivability [10]. The 2-edge connected subgraph problem, a

special case of SDNP, is known to be NP-hard [14].

Next step in network survivability is the Two edge-disjoint Hop-constrained

Paths Problem (THPP). Regarding the reliability of a telecommunication net-

work, having two edge-disjoint paths is often insufficient [12]. The alternative

path (restoration path) could be too long to guarantee an effective routing, which

may result in degradation of the signal. In such cases, L-path requirement guar-

antees exactly the needed quality for the paths [12]. L-path requirement means

that there can be at most L nodes in a path.

In this thesis, an optical network which is assumed to transmit data between

two terminal nodes will be designed. In the design problem, a given transparent

network will be transformed into a survivable translucent network to gain the

range of an opaque network with minimum cost. Since the cost of regenerator

nodes is the dominant factor, deciding on where to place regenerator nodes is an

important problem. In this thesis, an effective method is proposed for placing

the regenerator nodes and routing the signals through two-edge disjoint paths.

1.1 Problem Definition

Having defined optical networks and their physical impairments, we want to state

the problem for which we will propose solution methods in this study.

Let G(V, E) be an undirected graph with n vertices (nodes) and m edges, and

c(E) be the vector representing the lengths of the edges in G. Assume that this

graph represents an optical network and edge lengths stand for the amount of

CHAPTER 1. INTRODUCTION 8

attenuation the signal degrades through the edge. Our aim is to send a signal

from each vertex to all other vertices within the prespecified degradation limit.

Assume that, path-based restoration as explained before in this chapter, is to

be incorporated in this optical network. Therefore, we need to find alternative

ways to send the signal. The more number of disjoint paths we have, the more

reliable the network is. Nevertheless, as the number of disjoint paths increases,

it becomes harder to find these paths. Finding the number of disjoint paths to

make the network reliable enough is beyond the scope of this work. Generally, two

disjoints paths are assumed to be sufficient in the literature [10] and we adopt this

assumption. By this way, the reliability of the network is increased. Therefore,

we are going to find two edge-disjoint paths between all pairs of vertices of G.

The second point is the degradation limit. As explained before, a signal

attenuates in time after it is sent from a vertex and after a period it will be

completely lost. This amount of degradation (threshold value) after which the

signal becomes useless is called the degradation limit. Therefore the signal must

arrive at its destination within the degradation limit otherwise it would be lost.

This means, the lengths of the paths we find through which the signal is sent

must be within the degradation limit. There is no problem if we can find paths

that have reasonable lengths. What can be done if there are not such paths? In

such cases, a device called regenerator could be used to regenerate the signals.

Regenerators are devices that receive and resend the signal in order to realize

the regeneration process mentioned in this chapter. By this way, the signal will

be recovered and will not be lost until degradation limit is reached. Think of a

path that passes through a vertex on which there is a regenerator. We can divide

this path into two, from the vertex with regenerator. First part starts from the

source vertex and ends at the regenerator vertex, and the second part starts from

regenerator vertex and ends at the terminal vertex. Each part of the path between

neighboring opaque nodes will be referred to as sub-paths. Remember that these

sub-paths are the same with the transparent path-segments described previously

in this chapter. Having defined what a sub-path is, it can easily be seen that

a path could have more sub-paths than two. The number of sub-paths depends

on the number of regenerators that the path passes through. If there is one

CHAPTER 1. INTRODUCTION 9

regenerator, then there are two sub-paths. With four regenerators, for example,

there will be five sub-paths. Using regenerators, we can relax the degradation

limit constraint. Now, it is not necessary for the paths as wholes to be within the

degradation limit, it is sufficient if each sub-path is within the degradation limit.

It is assumed that there are two edge-disjoint paths between all pairs of the

graph. This means that using sufficient number of regenerators, paths that satisfy

degradation constraint could be constructed. The regenerator, however, is an

expensive device so we want to minimize the total number of regenerators placed

on the network. Therefore, our problem is to determine the minimum number of

regenerators that would be sufficient to satisfy the degradation constraint and to

decide where the regenerators should be placed.

1.2 Organization of the Thesis

In this thesis, we formulate the regenerator placement problem as an integer

linear program. Since the solution of this problem, due to its size, is very hard, we

develop and implement a heuristic approach. After this, we propose a branch and

bound algorithm which employs the heuristic, to find the optimal solution. We

obtain numerical results for these approaches on sample networks and compare

their results and efficiencies with those of the solution methods which have been

proposed in [24, 25].

The thesis is organized as follows: Chapter 2 summarizes the studies in the

literature on network reliability and regenerator placement and on finding edge-

disjoint paths. In Chapter 3, an integer linear formulation of this problem, the

difficulties in modelling and solving the problem are discussed. Chapter 4 includes

the methods to check the feasibility of a fixed set of regenerators placed at specific

vertices and explains why even the feasibility check is a difficult problem. In

Chapter 5, a heuristic algorithm is proposed and numerical results are obtained.

Another method which finds the optimal solution of the problem is developed in

Chapter 6. Numerical results are also provided in this chapter. Finally, Chapter

7 concludes the thesis.

Chapter 2

Related Work

As stated in Section (1.1) our problem has two main aspects. The first one

is network reliability and the second one is respecting the degradation limit i.e.

regenerator placement. Both subjects have been studied and research about them

could be found in the literature. In this chapter, we will give the research about

these subjects. These two subjects seem to be independent but in fact they are

inter-related. Therefore we want to discuss the literature in which both problems

are studied together first, and then we will look at the studies in which these

subjects are examined individually.

2.1 Network Reliability and Regenerator Place-

ment

Our problem consists of two main components, the first one is network reliability

and the second one is deciding on the places of regenerators. In our problem,

survivable networks are designed according to path-restoration technique, hence

two edge-disjoint paths are to be found between each pair (s, t) ∈ V of the graph.

Related work about this subject is given in Section (2.3). The work done about

the second part of the problem, regenerator placement, is given in Section (2.2).

10

CHAPTER 2. RELATED WORK 11

In these works, only one part of our problem is studied separately, however, both

parts are closely related in our analysis. Works that take both components into

account are given in this section. Unfortunately this subject has not been widely

studied. We have found only two published work on this problem.

Capacities of the fiber links are also important since data cannot be trans-

mitted if the capacity of a link is exceeded. For this reason, the traffic flow

on the network should be controlled to prevent exceeding the capacities in data

transmission. This control process is called traffic engineering.

Yetginer, who mainly focused on traffic engineering, partially studied regen-

erator placement in [24]. In a closely related article [25], the same subject is

investigated. In both studies, traffic engineering is the main focus. They have

introduced a nonlinear integer program to solve the problem. However, due to its

size, they could not solve the program. Two heuristic algorithms are proposed

but they have not discussed the efficiency of their solutions. Besides, their non-

linear integer program may fail to find the optimal solution even if its size were

reasonable. To overcome this, authors in [24, 25] bring in an additional assump-

tion to restrict the solution space. This will be fully discussed in Chapter 3. Our

analysis, however, will relax this assumption.

2.2 Regenerator Placement

In [18], there is a different approach to optical signal recovery, where regener-

ators (opaque nodes) are used to detect failures. Two basic restoration tech-

niques, path-based and span-based restoration, were described in Chapter (1).

The approach in [18] is an intermediate and more general option, called segment-

based survivability. Segment-based survivability schemes carry out restoration

of a failed path segment between the opaque nodes upstream and downstream

of the actual span failure. Remember, this segment is the transparent fragment

(sub-path) in other words signals are not regenerated except from the source

and terminating nodes of the sub-path. Based on segment-based survivability,

CHAPTER 2. RELATED WORK 12

opaque node (regenerator) placement problem is solved using a heuristic algo-

rithm in [18]. A method to find the optimal solution and alternative optima is

described and implemented. However the optimal solution technique is nothing

but complete enumeration. There is not any intelligent search technique em-

ployed to traverse the solution space. Therefore this method is not efficient. The

optimal and heuristic solutions are compared. Although the heuristic solutions

are worse than the optimal solution, the running times of the heuristic are very

effective.

Routing and wavelength assignments are considered jointly in [23]. Although,

this study considers the need for regeneration, it uses a different approach. In-

stead of adding regenerator nodes to the network, some nodes that have spare

capacity, are used as regenerators. We are not interested in the mechanism of

using ordinary nodes as regenerator nodes. The nodes which will be used as re-

generators are determined using two different algorithms. These algorithms take

the blocking probability of the signal due to wavelength unavailability into ac-

count. After deciding on the places of the regenerator nodes, routing algorithms

are employed. Survivability of the network is not considered in this study [23].

Kim and Seo [15] studied regenerator problem which is similar to the problem

in [23]. They did not consider network survivability, but included another factor

which is the blocking of the lightpaths throughout the network. They used two

approaches to the problem, the first one being a minimal-cost placement which

minimizes the blocking of lightpaths using dynamic programming, the second be-

ing a heuristic for locating the signal regeneration nodes. A comparison between

these two algorithms and other ones proposed in different studies is also given in

[15].

In the research done by Yang and Ramamurthy [22], regenerator placement

problem is examined. In this study, regenerator placement problem is solved

offline, i.e. at the design phase of the network. Routing algorithms are used

after regenerator places are determined and fixed. They have solved the problem

using two heuristic methods and measured the performance of the system with

simulation models. Again survivability of the network is not considered.

CHAPTER 2. RELATED WORK 13

2.3 Network Reliability

Network reliability is an important concept in network design problems especially

in communication networks. The problem of network reliability arises from the

fact that the edges may be subject to failure [1]. A signal is sent from a vertex

to another via some set of edges and vertices. A network reliability problem is to

compute the probability that the specified node pair can communicate at a given

time i.e. no arc on the path fails to transmit data. Given the probabilities of

the edges, the aim is to design more reliable networks. Most network reliability

problems are NP-hard [1]. A survey of this problem can be found in [1]. Since

we are not interested in probability of communication, we will not go into details

here.

The concept of network reliability or network survivability is a bit different

in our problem. No matter how reliable a path between a node pair is, the path

may fail to transport data from source to the terminal. If a failure occurs, there

is a need for a responding strategy about transporting the data from the source

to its destination. The responding strategies have been mentioned in Chapter

(1). In our problem, path restoration strategy is preferred. Therefore, we need to

establish a restoration path in the designing phase of the network. That is to say

two paths are to be constructed between a node pair, one as the working path

and the other as the restoration path. These two paths can share some edges or

can be either edge-disjoint or vertex-disjoint. In our problem edge-disjoint paths

are preferred. For this reason, two edge-disjoint paths, lengths of which should

be within degradation limit, must be constructed.

Network reliability and survivability are improved if disjoint paths are used

between source and terminal nodes in the network [9]. Assuming that the edges

and nodes of a network have known reliability, the reliability of a path between

two nodes can be computed. The number of edges in a path and the number of

disjoint paths are given as an input. In [9], an algorithm is proposed to identify

the set of K-most reliable paths. This algorithm calculates the reliability of the

paths and outputs them in the decreasing order.

CHAPTER 2. RELATED WORK 14

Survivable network design problem (SNDP) is an important and widely studied

problem. In SNDP problems, a sub-graph of the main graph is formed such that

there are two disjoint paths between each pair of the graph. Usually the aim is to

minimize the total cost of the subgraph and this resulting problem is NP-hard [11].

Given a graph which is 2-edge connected, a spanning subgraph with minimum

number of edges is found. Huh proposed an algorithm is to find the subgraph

in [11]. Huygens et al. [12] has also studied such a problem. They try to find a

subgraph where the number of the edges in the disjoint paths are constrained. An

integer program is formulated and facets of the problem polyhedron are defined.

Different versions of this problem in which length of the paths are also constrained

could be found in the literature. Kerivin and Mahjoub [14] are also interested in

the polyhedron of a special SNDP. Partition inequalities are used in this study

and they showed that this problem can be solved in polynomial time in special

type of graphs.

Without degradation limit, the problem of finding edge-disjoint paths is widely

studied. There are two major kinds of disjoint paths in the literature. In the first

type, disjoint paths are found between different pairs of nodes. Such a problem

arises in the telecommunication area. Connections interfere with each other if

the paths share some edges. The question of how many connections can be

made simultaneously could be answered by solving this problem. Most of these

problems are NP-complete and an example could be found in [16]. This problem,

however is not closely related with our problem.

The second type of problem is to find disjoint paths between a single pair

of nodes. Different studies on this problem could be found. Vygen discussed

some edge-disjoint problems in his work and showed that they are NP-complete

[21]. Brandes et al. developed a software package which includes algorithms for

different disjoint problems in planar graphs in [6]. Coupry studied a maximum

cardinality set of edge-disjoint paths problem. In this problem, the graph is

non-weighted and the aim is to find maximum flow between two nodes where

each edge has unit capacity. He proposed a linear algorithm for this problem in

[8]. Conforti, Hassin and Ravi used a different approach to this problem. They

studied the problem of constructing edge-disjoint paths using previously found

CHAPTER 2. RELATED WORK 15

edge-disjoint paths. Assume that, we look for edge-disjoint paths for the pair

(s, t) and say we already know edge-disjoint paths between pairs (s, r) and (r, t).

These known paths are combined to solve the problem which is equivalent to the

stable matching problem [7].

The problems mentioned above often do not have objective functions. When

an objective function, such as minimizing the cost or weighted cost of disjoint

paths etc., is inserted to the problem, it gets even harder. It is shown in [17]

that the problem of finding two edge-disjoint paths and minimizing the length of

the longer one is strongly NP-complete. The underlying network of this problem

can be directed or undirected. This problem is of great interest to us, since it

is closely related to our problem. Remember the impairments we have discussed

in Chapter 1. We have overcome the impairments using regenerator nodes in

networks. Assume that we do not want to use regenerator nodes and want to

know which pairs can communicate without regeneration. Since two paths are to

be established, one working and one restoration path, we should solve the problem

stated above. If the length of the longer path is within the degradation limit given,

then we can conclude that the pair can communicate without regenerators.

A similar problem to this one, is to find a pair of disjoint paths, shortest pair,

so as to minimize the total length of the two paths. Solution techniques to this

problem could be found in the literature. For example, Suurballe proposed an

algorithm to solve both node disjoint and edge-disjoint versions of the problem

[19]. Suurballe and Tarjan improved the algorithm in [19]. They again tried

to minimize the total length of the paths, but this time they found the paths

between a single source and each possible sink nodes [20]. Banerjee et al. [5] has

proposed a parallel algorithm for the two problems, which are single sink and

multi sink versions. They used Dijsktra’s shortest path algorithm [2] iteratively

to find the shortest pair of disjoint paths. In all problems, the underlying graphs

are directed.

Chapter 3

Difficulties in Modelling the

Problem

Our problem, as defined in Section (1.1) is to establish two edge-disjoint paths,

one working path and one restoration path, between each pair of vertices of the

graph such that the lengths of the paths have to be within the given degradation

limit. Remember that our optical network is represented by the undirected graph,

G(V, E). If paths with such lengths cannot be found, regenerators will be placed

on some nodes of the graph. In this case, the paths will be divided into fragments

and length of each fragment must be within the pre-specified degradation limit.

Here we want to define the length of a path. Although length of a path is a well

known term, it is a bit different here, since we are interested in not only the entire

path but also the path fragments. Say L(P) denotes the length of path P and li

denotes the length of path fragment i. Then the length of path P , in which there

are k path segments will be, L(P) = max{l1, l2, . . . lk}

In order to find the optimal solution of our problem, we have attempted to

formulate an integer linear program to solve it. Hereafter, this integer linear

program will be denoted by Model1. Model1 in its simplest form may fail to find

the optimal solution. We have developed a technique to overcome this problem.

In this chapter we will introduce Model1, discuss its drawbacks and show how

16

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 17

to use it iteratively to find the optimal solution. Although G is an undirected

graph, directions are important in signal transportation. For this reason, we

transform G(V, E) into a directed network Ĝ(N, A). To do this, each undirected

edge {i, j} ∈ E is replaced by two directed arcs (i, j) and (j, i), both with cost

c({i, j}) [2]. Therefore, the directed network Ĝ which will be used in formulating

Model1 and other integer linear programs (ILPs) has n nodes and 2m directed

arcs.

3.1 Integer Linear Program For the Entire

Graph

To find the optimal solution to this problem a mathematical program is formu-

lated. This model shows some similarities with the one introduced in [24, 25],

however, the latter one is not linear. The model is to find the nodes where

the regenerators should be placed and simultaneously decide on a working and a

restoration path between any pair of vertices. Definitions of the decision variables

and explanations of the constraints used in the model are given below:

Objective:

Minimize
∑

i∈N

ri (3.1)

Subject to:

∑

j:(i,j)∈A

xst
ijk −

∑

j:(j,i)∈A

xst
jik =





1, i=s ;

−1, i=t ;

0, i 6= s,t ;

∀i ∈ N, ∀k, ∀(s, t)s < t(3.2)

wst−
jk ≥ wst+

ik −M(1− xst
ijk) + cijx

st
ijk, ∀(i, j) ∈ A, ∀k, ∀(s, t)s < t(3.3)

wst+
ik ≥ wst−

ik −Mri, ∀i ∈ N, ∀k, ∀(s, t)s < t(3.4)

wst−
ik ≤ Rmax, ∀i ∈ N, ∀k, ∀(s, t)s < t(3.5)

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 18

xst
ij1 + xst

ij2 ≤ 1

xst
ij1 + xst

ji2 ≤ 1
, ∀(i, j) ∈ A(3.6)

wst−
sk = wst+

sk = 0, ∀k, ∀(s, t)s < t

xst
ijk ∈ {0, 1}, ri ∈ {0, 1}

all variables ≥ 0

Here xst
ijk, ri, wst+

ik , wst−
ik are the decision variables and cij is a parameter of

Model1. They are explained below:

In this formulation k takes values of 1 and 2, k equals to 1 represents the

working path and k equals to 2 represents the restoration path.

xst
ijk =





1, if kth path for pair (s, t) includes arc (i, j)

0, otherwise

ri =





1, if a regenerator is placed on node i

0, otherwise

The length of arc (i,j) is given by cij. wst−
ik and wst+

ik denote the path lengths

for kth path from s to t into and out of node i, respectively. Rmax is the maximum

allowable length (attenuation) of a path segment. M is a large number and it is

sufficient to set M equal to Rmax.

Explanation of the constraints:

• Only the number of regenerators placed is included in the objective function

(3.1) of Model1, since we want to make the communication possible with

minimum number of regenerators.

• Constraints (3.2) are the flow conservation constraints from node s to node

t for both paths.

• The distance (attenuation) travelled up to a node i on path k from s to t is

denoted by variable wst−
ik and called length of inflow. Length of the inflow

into node i is equal to the sum of length of the outflow from node j which

precedes node i in the path and length of arc (i, j). If arc (i, j) is on kth

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 19

path, constraint (3.3) calculates the length of inflow into node i. Otherwise,

no additional constraint is placed on the inflow value for that node.

• Variable wst+
ik denotes the length of the outflow from node i, i.e. the amount

of attenuation of the signal. Constraint (3.4) calculates the length of the

outflow. If regeneration occurs at that node then the length is reset to zero

and only the length of the path after that node will be taken into account.

• Constraint (3.5) enforces that the length travelled up to any node in a

path is within the given limit. By this way, only the paths that satisfy our

degradation limit or length constraint are taken into account.

• We need to find two edge-disjoint paths, so an edge cannot be on both paths.

Constraint set (3.6) forces the paths to be edge-disjoint. These constraints

are formed for both arc (i, j) and arc (j, i), resulting in four constraints.

For example for arcs (1,2) and (2,1) we have

x121 + x122 ≤ 1

x121 + x212 ≤ 1

x211 + x122 ≤ 1

x211 + x212 ≤ 1

According to these constraints if arc (1,2) is used in the working path arc

(1,2) or arc (2,1) cannot be used in the restoration path, but arc (2,1) can

be used in the working path since when x121 = 1, x122 = 0 and x212 = 0 we

have x211 ≤ 1

However, size of Model1 is very large, growing in the order of O(mn2), hence

this approach is not applicable except for very small networks. For example,

Model1 is formulated for a sample network topology (Figure (3.1)), obtained

from [18], with 14 nodes and 21 edges. The optimal solution of this problem

could not be found in 24 hours. Therefore we are going to examine if Model1

could be used for only one pair of vertices rather than for the entire graph.

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 20

Figure 3.1: 14-node network

3.2 Integer Linear Program For a Specific Pair

In Section (3.1), we have given Model1 to solve the problem for the entire graph

and have seen that the size of Model1 is too large to be of practical use. Our

experimentation has also confirmed that we can’t go beyond n ≥ 10. Here, we

are going to formulate another ILP for a specific starting node s and terminating

node t and will try to use it to find the optimal solution. New ILP will be referred

to as Model2.

Objective:

Minimize
∑

i∈N

ri

Subject to:

∑

j:(i,j)∈A

xijk −
∑

j:(j,i)∈A

xjik =





1, i=s ;

−1, i=t ;

0, i 6= s,t ;

∀i ∈ N, ∀k

w−
jk ≥ w+

ik −M(1− xijk) + cijxijk, ∀(i, j) ∈ A,∀k
w+

ik ≥ w−
ik −Mri, ∀i ∈ N, ∀k

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 21

w−
ik ≤ Rmax, ∀i ∈ N, ∀k

xij1 + xij2 ≤ 1

xij1 + xji2 ≤ 1
, ∀(i, j) ∈ A

w−
sk = w+

sk = 0, ∀k
xijk ∈ {0, 1}, ri ∈ {0, 1}

all variables ≥ 0

For a graph with n nodes and m edges, Model2, which includes only a specific

pair, has 5n+4m variables and 6n+8m constraints. For example, in a graph with

32 nodes and 50 edges, Model2 would have 368 variables and 608 constraints. Al-

though these numbers do not seem excessively large, our experimentation showed

that Model2 is hard to solve and needs long solution times. Besides, restricting

our attention to a pair of nodes at a time constitutes a major restraint for our

problem. It is interesting to note that though the pairs are independent from each

other, they are inter-related at the same time. Since an arc included in a path for

pair (s1, t1) can also be used in a path for pair (s2, t2), the pairs are independent.

However, if a regenerator is placed on node i for pair (s1, t1), it can be used for

regeneration for pair (s2, t2), too. For this reason, the pairs cannot be considered

separately, otherwise the solution for the entire graph may be sub-optimal, even

though each solution for specific pairs is optimal.

We might still employ this formulation to find near optimal solutions nonethe-

less. However, there is another major drawback of this model apart from its size

and long solution times. This drawback will be explained in Section (3.3).

3.3 Problem With the Integer Linear Program

Let us look at the graph given in Figure (3.2). Say this graph represents a

communication network with a degradation limit of 7, and we want to solve our

problem on this network. Since the graph is very small, we can use Model1 to

solve the problem.

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 22

Figure 3.2: A small example

Solution of Model1 tells us to place three regenerators on nodes 1, 2 and 3.

In addition, Model2 can be used to solve the problem for the pair (1,4) and in

the solution two regenerators are placed on nodes 2 and 3. Here one can see that

there is a problem with the solutions of both Model1 and Model2. One and two

regenerators are sufficient for the pair and for the entire network, respectively.

For example, for pair (1,4) 1 → 3 → 4 could be selected as working path and

1 → 2 → 3 → 2 → 4 as the restoration path. With a regenerator placed on node

3, lengths of both paths will be within the degradation limit. In other words our

models might end up in suboptimal solutions.

A critical point is that, both Model1 and Model2 will result in simple paths

i.e. no vertices are repeated. Looking at constraints (3.3) and (3.4), it can be seen

that if a path passes a node more than once, w+
ik and w−

ik variables would have

different values to take and they will take the largest value. This seems normal

at first. Since the signal attenuates at every edge it passes, it is not logical to use

a vertex or edge more than once. However, things get more complicated once we

start thinking about regenerators on the paths.

Notice that, the restoration path in the optimal solution is a non-simple path.

Since the signal is regenerated at node 3, it is better to select this non-simple

path, which is longer than the simple path, rather than to place an additional

regenerator on node 2.

We want to discuss the reason of the problem in detail.

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 23

Table 3.1: Path lengths.

Path Name Path Length
P1 1–2–4 9
P2 1–2–3–2–4 max{6, 7} = 7
P3 1–2–3–4 max{6, 4} = 6
P4 1–3–2–4 max{4, 7} = 7
P5 1–3–4 max{4, 4} = 4
P6 1–3–2–3–4 max{4, 8} = 8

In the graph given in Figure (3.2) there are six different paths between pair

(1,4). Assuming there is a regenerator on node 3, lengths of the alternatives are

calculated. The paths and their lengths are given in Table (3.1).

With a degradation limit of 7, it is seen from Table (3.1) that all paths but P1

and P6 are feasible paths. This shows us that the paths in the feasible solutions

do not have to be simple paths. Assuming, P2 is selected; some of the constraints

of Model2 for this graph would be realized as follows.

r3 = 1 w+
3 = 0

w+
1 = 0 w−

2 ≥ 4

w+
2 ≥ w−

2 w−
3 ≥ w+

2 + 2

w+
3 = 0 w−

2 ≥ 2

w+
4 ≥ w−

4 w−
4 ≥ w+

2 + 5

These constraints imply that

w+
2 ≥ w−

2 ≥ 4

w−
4 ≥ 9

This means that, the length of P2 is 9 units, which is equal to the length of P1. In

fact, it is smaller as seen from Table (3.1). But, Model2 has treated P2 as P1 and

ignored the benefit we gained using the regenerator. This shows that Model2 is

not appropriate to work with paths that are not simple. However, as just argued,

there may be paths which are not simple but feasible. In addition, it may be

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 24

Table 3.2: Modified Graph with EC=2.

Original Graph Modified Graph
Vertices V = {1, 2, ..., n} V ′ = {1, 2, ..., n, n + 1, ..., 2n}
Edges E = (i, j) E ′ = (i, j) ∪ (i, j + n) ∪ (i + n, j) ∪ (i + n, j + n)

necessary to use those paths to find an optimal solution. Therefore, the model

must be modified in order to handle non-simple paths.

3.4 Solution Approach to the Problem in

Model2

Since the model can examine only simple paths, we could try to modify the

graph so that the paths that are not simple could be treated as simple paths.

Our proposed modification is in fact, forming replicas of nodes and edges. The

number of replicas we form is called; the expanding coefficient, which will be

denoted as EC. For example, if we have two replicas along with the original node

in the modified graph, then the expanding coefficient will be three.

First we want to study the case in which the expanding coefficient is two,

which means we duplicate each node. The solution idea is that, if we duplicate

each node, some non-simple paths will become simple paths since the path will

visit the original node and then its duplicate node. This definition will be used

later. By this way, each node is visited only once in the modified graph, although

some nodes on the original graph are visited twice. If the nodes are duplicated, the

edges must also be multiplied. We will represent the modified graph as G′(V ′, E ′)

and the corresponding directed network as Ĝ′(N ′, A′). The vertices and edges of

the original and the modified graph are shown in Table (3.2).

As it is seen from Table (3.2), we have an additional vertex for each vertex in

V . Since there are n vertices in V , vertices i and i + n represent the same vertex

in the modified graph, Ĝ′. For simplicity, we will show the duplicate of vertex i

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 25

Figure 3.3: a)Original Graph b)Modified Graph (EC=2)

with i′. In addition, to simplify our representation, we assume that (i′)′ is i, in

fact. This assumption is used to define the domains of the constraints. Similarly,

we have four edges in the modified graph, instead of one original edge. By this

way, using the modified graph as the input, the model we constructed is able

to evaluate the paths in which some vertices are visited twice. Unfortunately,

the size of the graph grows very fast. Now we have 2n vertices and 4m edges

instead of n and m, respectively. To show how this modification changes a graph,

original and modified versions of a simple graph are provided in Figure (3.3). As

it is seen, although the original graph is very small, it becomes very complex after

the modification.

3.4.1 Modified Integer Linear Program

ILP of the modified graph, which will be referred to as Model3 is very similar to

Model2. The domains of the constraints and objective function are changed ac-

cording to the modified graph. In addition, new constraints are added to Model2.

Model3 is given and the new constraints are explained below:

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 26

Objective:

Minimize
∑

i∈N ′
ri

Subject to:

∑

j:(i,j)∈A′
xijk −

∑

j:(j,i)∈A′
xjik =





1, i=s ;

−1, i=s ;

0, i 6= s,t ;

∀i ∈ N ′,∀k

w−
ik ≥ w+

ik −M(1− xij) + cijxij, ∀(i, j) ∈ A′,∀k
w+

ik ≥ w−
ik −Mri, ∀i ∈ N ′,∀k

w−
ik ≤ Rmax, ∀i ∈ N ′,∀k

xij1 + xji1 + xij2 + xji2 ≤ 1

xij1 + xji1 + xij′2 + xj′i2 ≤ 1

xij1 + xji1 + xi′j2 + xji′2 ≤ 1

xij1 + xji1 + xi′j′2 + xj′i′2 ≤ 1

, ∀(i, j) ∈ A′ (3.7)

w−
sk = w+

sk = 0, ∀k
ri = ri′ , ∀i ∈ N (3.8)

xijk ∈ {0, 1}, ri ∈ {0, 1}
all variables ≥ 0

In this formulation:

• Constraint (3.7) is a bit different from constraint (3.6). Since we have

expanded the graph, there is no need to use an edge of E ′ more than once

in a path. Instead, we use the duplicate of that edge if necessary. Notice

that the number of constraints used for disjoint paths gets bigger as EC

increases.

• Constraint (3.8) is added to Model3. Since we have duplicated nodes, we

have now two nodes representing the same node. Therefore, if we have

placed a regenerator on a node, this means we also have a regenerator on

its duplicate node.

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 27

Figure 3.4: Rings in a path

Model3 has 10n + 16m variables and 17n + 48m constraints, in other words,

its size is more than twice of the size of Model2. We have stated that, solving

Model2 takes long time, naturally Model3 is harder to solve. For this reason, we

have tried to find additional constraints to make the feasible area of the linear

programming relaxation smaller without omitting integer feasible solutions. But

before giving the constraints we will propose a theorem which will make the

constraints valid.

Here, we want to make some definitions which will be used in the following

theorems. The first one is the preference concept. Say there are two paths P1

and P2. If L(P1) ≤ L(P2) we say that P1 is preferred to P2 and show this with

P1 Â P2. The second one is the ring in a path. If each edge appears exactly once

in the cycle portion of a non-simple path, then this portion is called a ring and

the path is said to have a ring. For example, in the path f1∪f2∪f3∪f4 of Figure

(3.4) the cycle portion f2 ∪ f3 forms a ring. But the cycle portion f2 ∪ f2 of the

path f1 ∪ f2 ∪ f2 ∪ f4 is not a ring.

It is obvious that a cycle in a path only occurs if there is a regenerator on

the cycle. It seems it is possible to eliminate the rings of a path. In a ring, the

path goes to the regenerator node through a sub-path, and comes back through

another sub-path. It seems reasonable to use the same sub-path to go and come

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 28

back. This will be shown formally in the following Lemma.

Lemma 1 If there is a feasible s− t path P that has a ring, then there is always

another feasible s− t path P ′ free of rings which is preferred to P .

Proof Look at the graph given in Figure (3.4). In this graph, s and t are the

terminal vertices, j is the regenerator vertex and i is the vertex which is visited

more than once. f1, f2, f3 and f4 are the path fragments between the vertices.

The possible paths between pair (s, t) and their lengths are given in Table (3.3).

There are four possible cases:

1.
L(P4) = lf1 + lf2

L(P2) = lf1 + lf2

⇒ L(P2) ≤ L(P4) ⇒ P2 Â P4

2.

L(P4) = lf1 + lf2 ⇒ lf1 + lf2 > lf3 + lf4

L(P2) = lf2 + lf4 ⇒ lf4 > lf1 ⇒ L(P3) = lf3 + lf4

L(P3) ≤ L(P4) ⇒ P3 Â P4

3.
L(P4) = lf3 + lf4

L(P3) = lf3 + lf4

⇒ L(P3) ≤ L(P4) ⇒ P3 Â P4

4.

L(P4) = lf3 + lf4 ⇒ lf4 + lf4 > lf1 + lf2

L(P3) = lf1 + lf3 ⇒ lf1 > lf4 ⇒ L(P2) = lf1 + lf2

L(P2) ≤ L(P4) ⇒ P2 Â P4

Enumerating all possibilities, we see that there is always a path free of rings (P2

or P3) which is preferred to the one with rings (P4). With this Lemma we are

able to eliminate paths with rings.2

Hence the following list of constraints can be incorporated into our model

without eliminating the optimal solution.

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 29

Table 3.3: Rings in a path.

Path Name Path Path Length
P1 f1 ∪ f4 L(P1) = lf1 + lf4

P2 f1 ∪ f2 ∪ f2 ∪ f4 L(P2) = max{lf1 + lf2 , lf2 + lf4}
P3 f1 ∪ f3 ∪ f3 ∪ f4 L(P3) = max{lf1 + lf3 , lf3 + lf4}
P4 f1 ∪ f2 ∪ f3 ∪ f4 L(P4) = max{lf1 + lf2 , lf3 + lf4}

Additional Constraints:

xijk ≥ xji′k, ∀(i, j) ∈ A (3.9)

xijk + xji′k ≤ rj + 1, ∀(i, j) ∈ A (3.10)
∑

a:(a,j)∈A′a 6=i′
xajk ≥ xi′j′k, ∀(i, j) ∈ A (3.11)

There are many alternative feasible paths in the modified graph. Although

they are different in the modified graph, they represent the same path in the

original graph. For example, for the graph given in Figure (3.2) assume that the

working path, P1 is as follows, 1 → 2 → 3 → 2 → 4. Some of the paths which

represent P1 in G′ are given in Table (3.4). In Table (3.4) there are five different

paths, each of which represent the same path, P1 in fact. Besides, more paths,

representing P1, could be found. It is obvious that, there is no need to allow

this multi-representation case. It would be fine to prevent these additional paths,

because omitting these additional paths will not result in losing feasible solutions

for the original graph.

The arcs which are duplicates of the original arc are listed below and they are

examined to identify which arcs can be selected under which conditions. The arc

selection rules are as follows:

i → j This is the original arc of the graph. Therefore we prefer to use this arc,

if possible.

i → j′ This arc is a duplicate, so we use the arc if only node j is used before.

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 30

Table 3.4: Some of the paths which represent P1

P1 Representation in modified graph
1 → 2 → 3 → 2′ → 4
1 → 2 → 3 → 2′ → 4′

1 → 2 → 3 → 2 → 4 1 → 2 → 3′ → 2′ → 4
1 → 2 → 3′ → 2′ → 4′

1 → 2′ → 3 → 2 → 4

i′ → j According to the preferences given above, a path visits a duplicate node

if the original node is visited before. Therefore, this arc can be used only if

the path comes to node i′. In this case, we again prefer to go to the original

node using this arc.

i′ → j′ This arc goes from a duplicate node to another duplicate node. Therefore,

this arc is not used if arc (i′, j) or (i, j′) is available.

An edge can be on the simple part of the path which means this edge is used

only once in the path or it can be on the cycle portion of the path meaning that

the corresponding edge on the original graph is used twice. Edges used in a path

on the modified graph can be divided into three types. If an edge is on the simple

part then it is a type-I edge. Arc (i, j) is used if the edge is a type-I edge. If an

edge is on the cycle portion of the path and if one of its terminating nodes is the

regenerator node then this edge is a type-II edge. Type-II edges are used twice

and used pair of arcs are (i, j) and (j, i′). If an arc is on the cycle portion and

does not have an end on the regenerator node then this arc is a type-III arc. In

type-III edges, arcs (i, j) and (j′, i′) are used. Having defined the edge types, the

paths to be omitted are identified according to the following rules;

• Model3 is formulated for a specific pair of nodes. There is no need to

send the initial signal from duplicate of the source node instead of original

source. This statement is valid for terminating node, too. Therefore, it

is not necessary to duplicate starting and terminating nodes and related

edges.

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 31

• Constraint (3.9) is used for type-I edges. If an edge on the path is type-I

edge then only arc (i, j) could be used to represent this edge.

• Constraint (3.10) is used for type-II edges. Both arc (i, j) and arc (j, i′) can

be used only if the edge is a type-II edge. This constraint uses variable ri

to identify whether the edge is a type-II edge or not.

• Constraint (3.11) is used for type-III edges. Arc (i′, j′) is used if edge {i′, j′}
is a type-III edge. If there is another entrance to node j′, which means the

node is visited more than once resulting in the edge is a type-III edge.

Notice that we do not omit any feasible solutions from the original integer

solution set using these additional constraints.

As it is said before, we are examining a special case where EC=2. Therefore

solution of Model3 will be optimal only if all the feasible paths visit each node

twice at the most. Otherwise, some feasible solutions and possibly the optimal

solution might be ignored. This means, if there is a node which is visited three

or more times in a feasible path, there would be a problem again. Now we want

to discuss the optimality of solutions of Model3 for different EC values, first.

A node is visited more than once only if there are regenerators placed on the

graph. To be more exact, it can be said that a signal visits a node twice if there is

one regenerator, visits three times if there are two regenerators etc. . . Otherwise,

there is no need to visit those nodes more than once. Therefore an optimality

range can be defined here, and we can say that a solution for a given EC value

is optimal if the solution is in related optimality range. Optimality ranges are

given in Table (3.5).

Having defined the optimality range, we can explain the procedure to find

optimal solution for a given pair using ILP formulation. First, Model2 is formu-

lated for EC=1 and solved. If the result is in optimality range, it is optimal.

Otherwise, increase EC by one, solve again. Continue this procedure until the

solution is within the optimality range.

This is a demanding process, so we want to find a simpler way. If we can show

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 32

Table 3.5: Optimality Ranges.

Expanding Coefficient Optimality Range
1 0–1
2 1–2
3 2–3
x (x− 1)− x

that, whenever a node is to be visited three or more times in a feasible path P ,

there is always another path P ′ that can be preferred to P and on which each

node is visited at most twice, we can conclude that EC=2 case does not ignore

the optimal solution.

Theorem 3.4.1 If there is a feasible s − t path P that visits a node more than

twice in a graph G, then there is always another feasible s− t path P ′ which visits

a node at most twice and is preferable to P .

Proof Look at the graph given in Figure (3.5). In this graph, s and t are the

terminal vertices, j and k are the regenerator vertices and i is the vertex which

is visited more than twice. f1, f2, f3 and f4 are the path fragments between the

vertices. The possible paths between pair (s, t) and their lengths are given in

Table (3.6). Notice that, using Lemma (1), some other possible paths with rings

can be discarded.

There are three possible cases and in each case there are two more possibilities

for the lengths of the path fragments:

1. L(P3) = lf1 + lf2 ⇒
lf1 > lf3

lf1 + lf2 > lf3 + lf4

(a) L(P1) = lf1 + lf2 ⇒ P1 Â P3

(b) L(P1) = lf2 + lf4 ⇒ lf4 > lf1 ⇒ L(P2) = lf3 + lf4 ⇒ P2 Â P3

2. L(P3) = lf2 + lf3 ⇒
lf3 > lf1

lf2 > lf4

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 33

Figure 3.5: Visiting a vertex more than twice

Table 3.6: Multi visited vertices.

Path Name Path Path Length
P1 f1 ∪ f2 ∪ f2 ∪ f4 L(P1) = max{lf1 + lf2 , lf2 + lf4}
P2 f1 ∪ f3 ∪ f3 ∪ f4 L(P1) = max{lf2 + lf3 , lf3 + lf4}
P3 f1 ∪ f2 ∪ f2 ∪ f3 ∪ f3 ∪ f4 L(P3) = max{lf1 + lf2 , lf2 + lf3 , lf3 + lf4}
P4 f1 ∪ f3 ∪ f3 ∪ f2 ∪ f2 ∪ f4 L(P4) = max{lf1 + lf3 , lf3 + lf2 , lf2 + lf4}

(a) L(P1) = lf1 + lf2 ⇒ P1 Â P3

(b) L(P1) = lf2 + lf4 ⇒ lf4 > lf1 ⇒ L(P2) = lf3 + lf4 ⇒ P2 Â P3

3. L(P3) = lf3 + lf4 ⇒
lf4 > lf2

lf3 + lf4 > lf1 + lf2

(a) L(P1) = lf1 + lf2 ⇒ P1 Â P3

(b) L(P1) = lf2 + lf4 ⇒ lf4 > lf1 ⇒ L(P2) = lf3 + lf4 ⇒ P2 Â P3

According to Theorem (3.4.1), we can conclude that modification of the graph

with EC=2 is sufficient to solve the problem. 2

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 34

3.5 Mathematical Program in Practice

The mathematical program can be used to find an optimal solution in theory.

We will try to discuss whether the model is usable in practice or not. So we will

make an assumption, which will be relaxed later. Our assumption is that, the

original graph i.e. EC = 1 and Model2 are sufficient to find the optimal solution

for a pair of vertices. In other words, we assume that restricting our attention to

simple paths will not exclude optimal solutions from the feasible sets.

Model2 given above is constructed for only one pair of nodes. However, there

are n(n − 1) pairs in an n node network. Because the graph is undirected, the

number of pairs reduces to n(n−1)
2

. If the model were solved for just one pair, we

would probably get a sub-optimal solution. Therefore, the constraints for each

pair must be included in the ILP as it is done in Section (3.1), since each pair

is independent. However, the number of pairs that needs to be included in the

model is too high and the size of Model1 (number of constraints and number of

variables) grows too fast. For this reason, using Model1, to solve the problem

and find a global optimum, is not suitable in practice. Smaller models, including

less number of pairs, could be used. However, this may result in local optimal

solutions, as well. The solution will be optimal for only pairs included in the

model. When another pair is added to the model, the optimal solution may or

may not change. So it can be said that the solution found using some pairs, can

deviate from the global optimum.

Besides, the integer program is not useful even if it is formed for only one pair.

Solution times could be too long since the size of the branch and bound tree grows

too large very quickly. Another weakness of the mathematical program is its weak

lp relaxation. When we solve the linear relaxation of the model we get zero as the

solution value. This value does not give any idea about how many regenerators

are needed in the network. In addition to this, we have another drawback that

even if the model finds the optimal solution for the integer program, it fails to

prove that this solution is optimal until all the branch and bound tree is evaluated.

This causes long solution times. For example, for the graph given in Figure (3.6),

we have formulated Model2 for the pair (1,32) and set the degradation limit to

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 35

Figure 3.6: Network topology used in experiments

1500. This graph has 32 vertices and 50 edges. Model2 is solved using CPLEX

8.1.0 and it takes 10955 seconds which is approximately 3 hours. Thinking there

are many other pairs to be solved, this methodology is way too long as a solution

procedure.

It is obviously seen that the mathematical program could not be used to find

a global optimum even with our assumption, that the solution set consists only

of simple paths.

It may seem unnecessary to spend this much effort on formulating three integer

programs, finding inequalities to shrink the feasible area of the lp relaxation

since we argued that all three models are not useful in practice even for medium

size graphs. However, remember the transparency islands mentioned in Chapter

(1). Some partitions called transparency islands are formed in optical networks.

In these islands, signals are transmitted without regeneration and signals are

regenerated on the boundaries of the islands if they are transmitted outside the

island. In a large optical network, if some transparency islands are formed they

CHAPTER 3. DIFFICULTIES IN MODELLING THE PROBLEM 36

can be represented with just a node. This can be considered as a generalized

version of this problem. Forming a few islands can reduce the size of the network

significantly. With this new relatively small network the mathematical models

described in this chapter could be used to find the optimal solution without the

need for any other algorithms.

Chapter 4

Feasibility of an Instance

In the previous chapter it was concluded that the ILP models are not appropriate

to solve this problem. This justifies us in employing some heuristic algorithms to

find solutions to the problem. These heuristic ideas are usually based on checking

whether a solution, a fixed set of regenerators, is feasible or not. By this way,

the solution with the best objective function value can be selected. Therefore we

need a method that could check feasibility of a given solution.

4.1 Using Model2

We could not use Model2 to find the optimal solution. However, our formulation

would be useful if it can be incorporated in heuristic algorithms. A solution

set is a fixed set of regenerators placed on specific vertices. After a solution set

(instance) is determined, Model2 is formulated according to this solution set.

Solving Model2, one can see if the instance is feasible. This technique was also

used in [25, 24]. This method does not give satisfactory results, however. Solution

times are not very short even for feasibility check. Running times of some solution

instances are shown in Table (4.1). The graph used in these experiments, has 32

vertices and 52 edges and can be seen in Figure (3.6). Degradation limit is set

to 2300. Model2 is solved first for pair (2,32) and some solution instances are

37

CHAPTER 4. FEASIBILITY OF AN INSTANCE 38

Table 4.1: Running Times For Feasibility Check.

Solution Instance Solution Time (seconds) Solution Status
{10,11} 372 optimal
{10} 552 infeasible
{11,12} 186 infeasible
{10,11,12} 42 feasible
{15,17,19,20} 32 infeasible

checked for feasibility using Model2.

It is interesting that, finding the optimal solution for the pair sometimes takes

less time than finding if a solution instance is feasible. Here, do not forget the

problem in Model2 discussed in Section (3.3). The solution {10,11} may not be

optimal. Model3 should be used since the result is not in the optimality range

for EC = 1. This is also valid for the other solution sets. Placing a regenerator

only on vertices 10 and 11 may be a feasible solution. To understand that,

Model3 must be used, however, in that case solution times will increase. Besides,

feasibility of an instance is determined for only one pair, not for the entire graph.

This means that the solution must be checked for feasibility for n(n−1)
2

pairs.

So the model is not very useful for a feasibility check. For this reason, a new

technique is developed, and a model was formulated to check feasibility.

4.2 Exact Feasibility

We propose a method to find whether a solution is feasible or not. The term exact

feasibility means that, using this method one can find if a solution is feasible.

The exact differentiation is important because we will propose another method

in Section (4.3) by which we can in most instances understand if a solution is

feasible. Second method runs very quickly, however, it sometimes gives false

results. Some feasible solutions can be treated as infeasible. Hence, we need to

make a differentiation such as exact and approximate feasibility.

CHAPTER 4. FEASIBILITY OF AN INSTANCE 39

This technique is based on linear programming formulation of shortest path

problem. The model given below is the well-known shortest path formulation

between a given pair of vertices s and t.

Objective:

Minimize
∑

i

∑

j

cijxij

Subject to:

∑

j

xij −
∑

j

xji =





1, i=s ;

−1, i=t ;

0, i 6= s,t ;

∀i

xij ∈ {0, 1}

We are going to modify this formulation in order to use it in checking feasi-

bility. Modified formulation is given below.

Objective:

Minimize a (4.1)

Subject to:

∑

j:(i,j)∈A

xijk −
∑

j:(j,i)∈A

xjik =





1, i=s ;

−1, i=t ;

0, i 6= s,t ;

∀i ∈ N, ∀k (4.2)

∑

(i,j)∈A

cijxijk ≤ Rmax,∀k (4.3)

∑

k

(xijk + xjik) ≤ 1,∀(i, j) ∈ A (4.4)

xijk ∈ {0, 1} (4.5)

There is one decision variable as follows:

xijk =





1, if kth path includes arc (i, j)

0, otherwise

CHAPTER 4. FEASIBILITY OF AN INSTANCE 40

In this formulation, we want to find out if there are two feasible edge-disjoint

paths between a given pair of nodes. In this solution instance there are not any

regenerators.

• The objective function (4.1)is trivial, variable a is simply a constant, in

fact. Since we want to know whether there is a feasible solution without

any regenerators, we do not need an objective function. Objective function

is used just to complete the linear program.

• (4.2) defines flow balance constraints.

• Left hand side of constraint (4.3) represents the length of a path. We make

sure that both the path lengths are within the degradation limit by these

constraints.

• We also want the two paths be disjoint, therefore we include constraints

(4.4). Notice that, in (4.4) we force the paths be simple. This is logical

since there are not any regenerators placed on the network.

If this model has a feasible solution, this means that there are two edge-disjoint

paths that satisfy the degradation limit constraint without using any regenerators.

Unfortunately, the model does not give any other information such as how many

regenerators we need or where to place them. However, with a little modification,

we can still employ this model in checking feasibility. Remember the sub-paths

defined in the previous chapter. The paths can be divided into sub-paths when

they pass through regenerators. Assume that there is a regenerator on node k

and we search for paths between node s and node t. Hereafter, first path will

be referred to as the working-path and the second one as the restoration-path.

Let node k lie on the working-path and say the restoration-path does not include

node k. Then working-path can be divided into two sub-paths. First one is from

node s to node k and the second part is from node k to node t. Now we have two

sub-paths for working-path and a simple restoration-path. According to these

paths we can modify the above model. In this modified model, we use xijk for

the working-path and yij for the restoration path.

CHAPTER 4. FEASIBILITY OF AN INSTANCE 41

xijk =





1, if kth sub-path of working path includes arc (i, j)

0, otherwise

yij =





1, if the restoration path includes arc (i, j)

0, otherwise

Objective:

Minimize a

Subject to:

∑

j:(i,j)∈A

xij1 −
∑

j:(j,i)∈A

xji1 =





1, i=s ;

−1, i=k ;

0, i 6= s,k ;

∀i ∈ N

∑

j:(i,j)∈A

xij2 −
∑

j:(j,i)∈A

xji2 =





1, i=k ;

−1, i=t ;

0, i 6= k,t ;

∀i ∈ N

∑

(i,j)∈A

cijxij1 ≤ Rmax

∑

(i,j)∈A

cijxij2 ≤ Rmax

∑

j:(i,j)∈A

yij −
∑

j:(j,i)∈A

yji =





1, i=s ;

−1, i=t ;

0, i 6= s,t ;

∀i ∈ N

∑

(i,j)∈A

cijyij ≤ Rmax

xij1 + xji1 + yij + yji ≤ 1

xij2 + xji2 + yij + yji ≤ 1
, ∀(i, j) ∈ A

xijk ∈ {0, 1} yij ∈ {0, 1}
all variables ≥ 0

This mathematical model is both compact and easy to solve. Starting and

terminating nodes of the sub-paths are determined and the model is constructed

using flow balance and path length constraints. These can be considered as

CHAPTER 4. FEASIBILITY OF AN INSTANCE 42

Table 4.2: Path Alternatives.

of Regs in working-path w-path # of Regs in restoration path r-path
2 s-k-l-t 0 s-t
2 s-k-l-t 1 s-k-t
2 s-k-l-t 1 s-l-t
2 s-k-l-t 2 s-k-l-t
2 s-k-l-t 2 s-l-k-t
2 s-l-k-t 0 s-t
2 s-l-k-t 1 s-k-t
2 s-l-k-t 1 s-l-t
2 s-l-k-t 2 s-k-l-t
2 s-l-k-t 2 s-l-k-t

parameters of the problem. What can we do if we do not know these parameters?

Or how do we find these parameters? We will try to answer these questions step

by step, going from simpler to more complex cases.

Assume that we have one regenerator placed on the network and are search-

ing for paths satisfying the constraints. In this case, determining the sub-paths

is quite simple. Both working-path and restoration-path can be simple, both

paths may include the regenerator node, working-path can be simple and the

restoration-path can include regenerator node or vice versa. We have four al-

ternatives with one regenerator placed on the network. When there are two

regenerators on nodes k and l and assuming that the working-path is passing

through both regenerators, the alternatives for the paths are given in the Table

(4.2). There are ten different possible ways to form feasible paths and it cannot

be seen easily before solving the feasibility models whether they are feasible or

not.

The question of how many alternatives there will be can be answered if finding

the possible alternatives is systematically examined. When there are n regener-

ators on the graph and r of them are used, there are P (n, r) alternatives. Here,

P (n, r) shows the permutation of n elements with r selections. We use permuta-

tions to calculate the number of alternatives since not only the selection of the

CHAPTER 4. FEASIBILITY OF AN INSTANCE 43

Table 4.3: Number of Path Alternatives.

of Regs # of Alternatives for one path Total # of Alternatives
1 2 4
2 5 25
3 16 256
5 326 106276
10 9864101 —

regenerators is important but also the order of the selected regenerators is also

important. How can one determine if a solution is feasible using these alterna-

tives? One alternative is selected for the working-path and one for the restoration

path. ILPs are formed according to these selections and are solved.

• The solution is infeasible if models formed according to all alternatives are

infeasible

• The solution is feasible if at least one model formed using the alternatives

is feasible

This permutation gives the number of alternatives for fixed n and r. The num-

ber of possibilities can be calculated by
∑n

r=0 P (n, r). Since these alternatives are

valid for both working-path and restoration-path, the total number of alterna-

tives is (
∑n

r=0 P (n, r))2. Total number of alternatives is calculated for different

number of regenerators and is given in Table (4.3).

As it can be seen from the table, the number of alternatives grows exponen-

tially fast. So it is too hard to understand if a solution is feasible if the number of

regenerators is not small. Besides, all this work is done for only one pair, not for

the entire graph. Since it is hard to find a solution by checking the feasibility of

an instance by this method, we need to find an easier way to check the feasibility

of a solution.

CHAPTER 4. FEASIBILITY OF AN INSTANCE 44

4.3 Approximate Feasibility

In section (4.2) we have proposed a method to understand whether a solution

is feasible or not. However, that method can be very demanding if the size of

the instance is not small. Therefore we will propose another method in this

section. The technique explained here requires a little pre-processing. In this

pre-processing, shortest-2-paths are computed and the arcs used in those paths

are recorded for later use. We need to define here, what shortest-2-path means.

We want to find two edge-disjoint paths, where, typically one of them will be

longer. If the length of the longer path is smaller than delay limit, then there is

no need for regenerators for this pair.

We use an integer linear program to find the paths and their lengths. Using

this program, we minimize the length of the longer path. Paths found by this

integer linear program are called shortest-2-paths.

Approximate feasibility technique is based on dividing the paths between the

pairs into two — before and after regenerator. In this technique, we store the

states of the pairs. State of a pair shows whether a solution is found for that

pair or not. The philosophy of this method is quite different from that of exact

feasibility algorithm. Approximate feasibility technique is very efficient and ef-

fective in identifying the feasibility of the solution not only for a pair but also

for the entire graph, whereas exact feasibility can only deal with pairs separately.

Assume that there is a regenerator on node r and we are searching for paths from

node s to node t. This method has four main steps, which are described below.

1. It is determined, if it is possible to find paths satisfying delay limit con-

straint. The criterion used here is that, we look at the states of pairs (s, r)

and (r, t). If states of both pairs are positive (there are two paths already

found) then pair (s, t) may communicate, too, and carry on to step 2. Oth-

erwise,the solution is infeasible for pair (s, t) and stop.

2. We form 4 sets using the data gathered from pre-processing. We call these

sets as α, β, γ and θ. The arcs used in working-path of pair (s, r) are stored

CHAPTER 4. FEASIBILITY OF AN INSTANCE 45

Figure 4.1: Path matchings

in set α, arcs of restoration-path are stored in set β. Similarly, arcs used in

working-path of pair (r, t) are stored in set γ, arcs of restoration-path are

stored in set θ. After forming the sets, two new sets A and B are formed

such as

A = α ∪ γ B = β ∪ θ

Sets A and B represent paths for pair (s, t). These two could be seen in

Figure (4.1). Since there is a regenerator on node r they already satisfy the

time constraint. If A∩B = Ø then they are edge-disjoint, too and solution

is feasible for this pair. If A ∩ B 6= Ø then we change the sets A and B

slightly.

A = α ∪ θ B = β ∪ γ

If A ∩B = Ø then solution is feasible for this pair.

If solution is feasible stop, else go to step 3.

3. From pre-processing we know how the signal came from node s to node r.

We search for simple paths from node r to node t using an integer linear

program. If we can find edge-disjoint paths, solution is feasible. Otherwise

go to step 4.

4. From pre-processing we know how the signal goes from node r to node t.

We search for simple paths from node s to node r using a an integer linear

program. If we can find edge-disjoint paths, solution is feasible. Otherwise

solution is infeasible.

CHAPTER 4. FEASIBILITY OF AN INSTANCE 46

This technique has a very important advantage. No matter how many regen-

erators are placed on the graph, this method is interested in only one regenerator

placed on node r. Assume that there are 4 regenerator nodes on the network and

we are placing a new one. In order to check the feasibility of this new solution set,

other methods try to construct feasible paths using all of the regenerator nodes

on the network. This requires trying a large number of possible alternatives if

there are many regenerators on the network. However, the approximate feasi-

bility method does not try to use all regenerators. It assumes previously placed

regenerators are already used and it divides the problem into two smaller parts.

The first part is the problem of pair (s, r) and the second part is the problem

of pair (r, t). Since these two problems are already solved, problem turns into a

matching problem. Hence the algorithm is very efficient. It does not deal with

the alternative paths we have defined in section (4.2).

The algorithm has a disadvantage, however. It forces both paths to pass

through node r which is not always necessary. For this reason, this algorithm may

give wrong results sometimes. However, these wrong results are only pessimistic

in nature, since the algorithm can declare some feasible solutions as infeasible

but not vice versa. Besides, our experimentation shows that the algorithm gives

correct results about %90 of the time. Therefore, it is effective at the same time.

Now we have proposed two methods to check feasibility of solution instances.

One gives exact results but takes long time to find solutions if the size of the

instance is not small. The other is efficient and fast, however, it can give false

results. Both methods will be used and we will explain how they are incorporated

in our solution methodology in the succeeding chapters.

Chapter 5

Heuristic Solutions

In the previous chapters, we have formulated ILPs to find the optimal solution to

this problem. Unfortunately, that approach has failed and we wanted to employ

some heuristics. So two methods have been proposed to check the feasibility

of a candidate solution. In this chapter, a heuristic algorithm which solves the

problem is proposed and evaluated.

Heuristic algorithms can be classified into two main types. One type is iter-

ative algorithms. These algorithms start from an initial solution and search for

better solutions by going to neighbor solutions of the initial solutions. Second

type is constructive algorithms. These type algorithms directly aim at construct-

ing good solutions. The algorithm proposed here is a constructive algorithm.

5.1 Proposed Heuristic Algorithm

As stated before, a constructive type algorithm is developed in this section. We

begin with an empty solution set and add a node to this set at each iteration to

make the solution set feasible for the entire graph.

We need two things for this algorithm to give good results. First we need

to decide at each iteration which node is selected to place a regenerator on. We

47

CHAPTER 5. HEURISTIC SOLUTIONS 48

define marginal utility of a node to help us make this decision. Selecting a node to

place a regenerator is very important, since if a node whose marginal utility to the

system is low; this may result in worse solutions, i.e. high number of regenerators.

We need to define what we mean with marginal utility here. Marginal utility of a

node is the number of pairs that start communicating after placing a regenerator

on that node. We say that a pair of nodes are communicating or reached if two

edge-disjoint paths with lengths within the degradation limit can be constructed.

But there is a serious problem here, how can we compute the marginal utilities

of the nodes? Unfortunately, this is a demanding and time consuming problem.

However, we can make an approximation to the marginal utilities. Take node s

and node t, for example. Assume that they cannot communicate currently. Let r

be the candidate node for placing a regenerator. If node s can communicate with

node r and node t can communicate with node r then there is a possibility that

node s can communicate with node t through node r. In this case, we increase

the marginal utility of node r. This method gives us a rough idea about the

marginal utility of the candidate node. Do not forget, there is a possibility that

(s, t) pair cannot communicate although this rule says they can since we also have

an additional requirement on edge disjointness.

Second, we need a technique to find if a solution set is feasible for pairs,

consequently for the entire graph. Two methods have been developed and given

in the previous chapter. Here we will incorporate them.

We want to give the main steps of the heuristic algorithm first and then

explain it.

Algorithm:

1. Initialize the problem.

2. Determine the pairs which were not reached.

3. If there is a pair not solved go to step (4), else end.

4. Select a node to place a regenerator.

5. Examine the non-solved pairs and find out if they are feasible.

CHAPTER 5. HEURISTIC SOLUTIONS 49

6. Go to step (2)

As it is seen the algorithm is quite simple and straightforward. Now we want

to explain what is done in each step.

• In step (1) we examine each pair, and find the minimum lengths of the paths

between them. The shortest path lengths and shortest-2-path (as explained

before) lengths are recorded in a file to be used later. The arcs used in the

paths are also recorded. This step can be considered as a pre-processing

step.

• We also keep the status of each pair. This status tells us whether or not

the pair can communicate. At the beginning of the algorithm, only the

pairs whose shortest-2-path length is smaller than the degradation limit

can communicate while others cannot. In step (2) we determine which

pairs cannot communicate yet.

• In step (4), we want to find the node with the largest marginal utility and

place a regenerator on it. The candidate node whose marginal utility is the

largest is selected and a regenerator is placed on it.

• After adding a new regenerator to the system, we want to find which pairs

become able to communicate. This analysis is performed in step (5). In

Chapter (4) we have proposed three methods to check feasibility. Here one

of those methods can be used. Each one has advantages and disadvantages.

If exact feasibility method is used, it is expected to get better results as this

method gives correct results, but the solution times get longer. Model2 can

also be used, however the solution times are also long in this method and it

might be necessary to use Model3 to get correct results. We prefer to use

the last method, approximate feasibility, since it runs very fast and often

gives correct results.

CHAPTER 5. HEURISTIC SOLUTIONS 50

Table 5.1: Heuristic Solutions for 32 node network.

Degradation Limit Number of Regenerators Solution Time
Placed (seconds)

2500 2 1
2200 4 2
2000 5 5
1800 5 3

Table 5.2: Heuristic Solutions for 50 node network.

Degradation Limit Number of Regenerators Solution Time
Placed (seconds)

1500 3 11
1400 3 12
1300 3 16
1200 5 23
1100 6 13

5.2 Computational Analysis

In the previous section a heuristic algorithm is proposed to solve our problem. It

is used to solve different problems with different network topologies and different

degradation limits. Two different topologies are used for analysis. The first

topology is obtained from [25] and has 32 nodes and 50 edges. This network is

given in Figure (3.6). The second network is randomly generated with 50 nodes

and 108 edges. The solutions we found using the heuristic algorithm and running

times of the algorithm are tabulated in Table (5.1) and Table (5.2). The algorithm

is implemented using C programming language and CPLEX 6.0 optimization

software package is used to solve mathematical programs. The algorithm is run

on a computer with 1 gigabyte memory and PIII 733 Mhz processor.

From the solutions we can say that as the range of the optical signals (degra-

dation limit) decrease the number of regenerators increase, as expected. These

solutions are expected to be good solutions but we cannot tell how good they

CHAPTER 5. HEURISTIC SOLUTIONS 51

are. A lower bound for our problem is needed to evaluate the heuristic solutions.

Finding the lower bound of the problem is discussed in Section (6.1). The major

advantage of the heuristic algorithm is the running times. From the tables it is

seen that the solution times are very small which means that the heuristic algo-

rithm is very fast. This property of the heuristic algorithm can be used to bound

the optimal solution to our problem. A method to find the optimal solution is

developed in the next chapter.

Chapter 6

Finding an Optimal Solution

In the previous chapter we have proposed an algorithm and with the algorithms

of [24, 25] there are three proposed solution techniques at hand. All three are

heuristic algorithms so we cannot guarantee that the solutions we get using them

are optimal solutions. However, we need to show that the solutions are reasonable

solutions. Since we do not know the optimal solutions of the problems there is

only one way to show whether of not the solutions we found are good enough.

6.1 Lower Bound of the Problem

Comparing the solutions with a lower bound is a common and useful way to

evaluate how good a solution is. By this way, one can compute the deviations

from the lower bound and this would be a good measure. Therefore, we need to

find a lower bound for the problem, so that we can see how good the proposed

solution is. Naturally, it is better to have tight lower bounds. A good lower

bound means a tight lower bound.

Generally, a lower bound can be found solving the linear relaxation of the

integer program of the problem. Unfortunately, we could not find good lower

bounds for the problem using this technique. In previous chapters, we have

52

CHAPTER 6. FINDING AN OPTIMAL SOLUTION 53

remarked that this approach gives us zero as relaxed value. This value does not

tell us anything. So we have employed another method to find a lower bound.

This method is very straightforward. In the pre-processing (initialization)

step of the heuristic algorithm, we have calculated shortest path lengths and

shortest-2-path lengths between the pairs. We take the largest length and find a

lower bound using this value. Think of an example, where the degradation limit

is 10 and the largest shortest-2-path length is 25. It can be seen that length of

each sub-path must be smaller or equal to 10. In this case, in the longest path

there must be at least three sub-paths, which means that we need at least 2

regenerators to solve the problem.

Let L show the length of the longest path found in the pre-processing step.

Then the lower bound can be found using the formula lb ≥ b L
delaylimit

c . Since

the division may result in a fraction, the lower bound is rounded to the greatest

integer lower or equal to this fraction.

It is obvious that this lower bound is also rough and does not tell us much.

After some experiments it is seen that the gap between the lower bound and the

solution found from the heuristic is relatively large.

So we have two alternatives, we should find either a tighter lower bound or a

better solution to make this gap smaller.

6.2 Branch and Bound Algorithm

We have preferred to find a better solution, optimal if possible instead of finding a

tighter lower bound. As it is said before, we do not have a mathematical program

or another way to find a globally optimal solution for the problem. So we have to

explicitly search for the global optimum and evaluate all possible solutions and

find out if they are feasible. By this way, the best solution among the feasible

solutions could be selected as the optimal solution. There are too many solutions,

however, to evaluate and too many feasibility-checking operations are needed for

CHAPTER 6. FINDING AN OPTIMAL SOLUTION 54

each solution. So there is a need for an effective method, which can search

the solution space efficiently and evaluate the solutions for feasibility easily. To

achieve this, a branch and bound algorithm is employed.

6.2.1 Adaptation of the Branch and Bound Algorithm

Branch and bound is a well known algorithm that provides us with a method

that creates sub-problems or solutions according to previously evaluated solu-

tions (branching part) and evaluate newly created sub-problems by comparing

with current upper-bound and lower-bound values (bounding part). Actually

branch and bound is a routine used to solve integer programs. Using the idea of

this technique, branch and bound based algorithms can be develeoped to solve

different problems. Although it takes long time to solve, its major advantage is

that branch and bound algorithm gives optimal solutions. Though, the philos-

ophy is the same, the methods used to solve the sub-problems and to calculate

the lower and upper bounds can be different in different branch and bound based

algorithms which are applied to different areas. In order to apply branch and

bound algorithm to our problem, we make some modifications and definitions.

These are explained below. Firstly, we want to give our notation.

Ui shows the upper bound of the solution represented by node i.

Li shows the lower bound of the solution represented by node i.

Lb represents a lower bound of the problem, found as described previously.

cutoff shows the value of the current solution

(r1 . . . rk) This representation means we have k regenerators placed on nodes

r1, r2 . . . rk respectively in this order.

Each node of the branch and bound tree represents a possible solution set of

the problem. For instance, node (1,2) means that nodes 1 and 2 are opaque and

the other nodes are transparent nodes.

CHAPTER 6. FINDING AN OPTIMAL SOLUTION 55

Figure 6.1: Branch and Bound Tree

Now suppose that we have a graph with 3 nodes. The branch and bound tree

will be as follows:

There are 16 possible solutions for the problem and each solution is represented

by a node in the branch and bound tree. The number of possible solutions is

expected to be very large for larger problems and it would take too much time

to evaluate all nodes. In fact branch and bound algorithm is a kind of implicit

enumeration. The advantage of this algorithm is that it prevents evaluation of

all nodes by cutting them using a methodology. Observing the tree, one can

easily notice that some of the nodes represent the same solutions. For example,

(1, 2) and (2, 1) or (3, 1, 2) and (1, 2, 3) are the same. We have said that the

order of the regenerators used is as important as the selected regenerators. Is

there a conflict between these two facts? Actually no, because we use feasibility

approach to evaluate the nodes, so we indirectly take the order of the regenerators

into account. Therefore, the order is not important in solutions and we can and

should prevent the evaluation of a solution more than once. We have setup a rule

to do this. In a solution, selected nodes may occur in ascending order i.e. we can

have (2, 3) but not (3, 2) or we can have (1, 2, 3) but not (3, 1, 2) etc. Applying

this rule to the branch and bound tree in Figure (6.1), we get a new tree given

in Figure (6.2).

CHAPTER 6. FINDING AN OPTIMAL SOLUTION 56

Figure 6.2: Branch and Bound Tree- Eliminated

Now we have 8 nodes in branch and bound tree and number of nodes reduced

to half of the number of nodes in the original tree. This reduction is very beneficial

but the number of possible solutions might still be too many in large problems.

It would be beneficial if we can find other rules that would help us disregard some

nodes without disregarding the optimal solution. These rules are our bounding

rules.

Suppose that we have a feasible solution for the problem. The objective value

of this solution is our cutoff value. Cutoff means that we already have a solution

and we do not need to search the nodes whose lower bound is greater or equal

than the cutoff value. The lower bound of nodes will be explained later.

Before applying the branch and bound algorithm, we can easily find an initial

solution using the heuristics explained in Section (5.1). Having this solution we

can fathom some nodes.

By this way, we can reduce the number of the nodes that will be evaluated.

Suppose that we used the heuristic and found (1, 2) as the solution. This means

we have a solution with two regenerators. Therefore, we do not have to search

(1, 2, 3) or (2, 3) or any other solutions which use at least 2 regenerators, since we

cannot find a better solution from such nodes. In our example, if we have (1, 2)

as the solution, we can prune (1, 3), (2, 3) and (1, 2, 3).

CHAPTER 6. FINDING AN OPTIMAL SOLUTION 57

Three lower bound values are calculated for each node using different tech-

niques and the largest one is used as the lower bound of the node. First one is the

number of regenerators in the solution. If there are 2 regenerators in a solution

we cannot find a solution with better objective value than 2, from that node or

branch. Second one is slightly different; from preprocessing step of the heuristic

algorithm we know how many regenerators are required to make communication

possible between a pair. Suppose that we are on the node, (1, 2), and we know

that we need 2 regenerators for pair (1, i) for example. This means that we need

at least 2 regenerators other the regenerator placed on node 1, because the regen-

erator on node 1 does not have any effect on the communication between node

1 and node i. Therefore, we can say that we need at least 3 regenerators in this

solution. Starting with this combination we cannot find a better solution. To

find a lower bound according to this rule, we need to look at all the pairs for

which one of the nodes is present in the solution and we take the largest of them.

The way we compute the third lower bound is very similar to the second one.

Here we take two nodes with regenerators instead of one, and look at the number

of regenerator requirements. We take the largest of them again. Remember our

example, we are at node (1, 2), and we need 3 regenerators for pair (1, 2), then

our lower bound is 5. After calculating these, we have three numbers, maximum

of these is the lower bound of the node. If the lower bound of the node is greater

or equal to the cutoff value, we can prune that node.

Another property of a node is its upper bound. This is related with our

definition of the branch and bound tree. Since we setup a rule to prevent creating

same solutions on different nodes we will not have a node such as (3, 2) or (2, 1)

etc. . . Remember our example with three nodes. Let one node be (1), branching

from this node we can create other nodes. The nodes we will have are (1, 2), (1, 3)

and (1, 2, 3). The node with largest number of regenerators has 3 regenerators.

If we branch from node (2), we will get nodes (2, 3) only. From here we can say

that the upper bound of node (1) is 3, where the upper bound of node (2) is 2.

Formally, the upper bound of a node (r1, . . . rk) is calculated as Ui = n− rk + k.

Here n shows the number of nodes in the graph, k is the number of regenerators

in the node and rk shows the largest element of the node.

CHAPTER 6. FINDING AN OPTIMAL SOLUTION 58

Using the upper bound we can cut additional nodes. If the upper bound of a

node is smaller than its lower bound then we can prune it, because in this case we

cannot create a node with enough regenerators branching from that node. Also

if the upper bound of the node is smaller than the lower bound of the problem

we can prune that node, too.

The conditions in which we can fathom a node are listed below:

• If the lower bound of a node is greater or equal to the cutoff value

• If the upper bound of a node is smaller than its lower bound

• If the upper bound of a node is smaller than the lower bound of the problem

There is yet another condition. If the size of the node (number of regenerators

in the solution) is smaller than the lower bound of the problem or lower bound

of itself, then we do not need to evaluate this node for feasibility since it is

obvious that that node (solution will not be feasible). However, it would not be

pruned, otherwise a candidate optimal solution may be ignored. Although, it

is not necessary to evaluate such nodes, we prefer to evaluate them to use the

information attained from this evaluation in evaluating the succeeding nodes.

6.3 Computational Analysis

In Section (5.2), different problems were solved using the proposed heuristic al-

gorithm. In this section, the same problems are solved using the branch and

bound algorithm to find the optimal solutions. By this way, we can compare

both heuristic and optimal solutions and consequently we can tell how good the

heuristic solutions are. Heuristic and optimal solutions and the running times of

the branch and bound algorithm are given in Table (6.1) and in Table (6.2). The

branch and bound algorithm is coded in C programming language and run on

the same computer with configuration described in Section (5.2).

CHAPTER 6. FINDING AN OPTIMAL SOLUTION 59

Table 6.1: Optimal and Heuristic Solutions for the 32 node network.

Degradation Heuristic Optimal Solution Time
Limit Solution Solution (seconds)
2500 2 2 3
2200 4 3 186
2000 5 4 1524

Table 6.2: Optimal and Heuristic Solutions for the 50 node network.

Degradation Heuristic Optimal Solution Time
Limit Solution Solution (seconds)
1500 3 2 44
1400 3 2 51
1300 3 3 890
1200 5 4 3200

Branch and bound algorithm finds the optimal solutions in reasonable times, if

the number of regenerators in the optimal solution is small. Besides it is observed

that the branch and bound algorithm runs very fast for medium size networks

with about 50 nodes and relatively large degradation limits. However, running

time of the algorithm increases as the number of regenerator nodes placed on the

network increases since the number of nodes in the branch and bound tree gets

larger.

The important point here is the difference between the heuristic and optimal

solutions. The number of regenerators placed on the network do not differ much.

The heuristic algorithm finds near optimal solutions. From here, we can conclude

that for hard problems, which have large number of nodes and small degradation

limits, proposed heuristic algorithm could be used to find good solutions.

Chapter 7

Conclusion

The explosive growth in the number of users and the volume of traffic carried in

the Internet put an ever increasing load on the networks. Since Internet is used

for carrying real-time and high-priority data, QoS and reliability have become

crucial issues.

Optical Transport Networks are seen as an important step in the evolution of

data transmission. Optical networks have emerged as an alternative to traditional

networks as they can transfer more data at higher speeds than copper wire. In

this context, optical networks offer solutions to respond to the explosive growth

in the traffic on the Internet, which makes the capacity expansion inevitable. For

this reason, it is expected that the optical networks will be used widely as the

optical data transmission technology develops.

However, the optical layer constraints such as optical signal degradation limit

the range of optical networks necessitating optical signal regeneration which is a

costly process. Therefore, the problem of placing regenerator nodes on optical

networks arises. Besides, there is a requirement for restoration in the networks

in case of transmission failures. For path-based restoration, two edge disjoint

paths should be established between source and destination pairs of the networks.

Although regenerator placement problem is studied, the problem of regenerator

placement on a network with path-restoration has not been widely studied in the

60

CHAPTER 7. CONCLUSION 61

literature.

Our contribution in this thesis is the development of the method which finds

the optimal solution of our problem. An integer linear program is formulated

for this problem. But the huge size of the program necessitates the need for

other solution techniques. For this reason, two heuristic algorithms are developed

and numerical results are obtained for different degradation limits and different

topologies. It is observed that the two heuristics often give the same solutions but

one is faster and computationally more efficient than the other. Three methods

to check the feasibility of a solution instance, when a fixed set of regenerators are

placed on specific nodes, are proposed. It is also observed that, it gets harder

to check the feasibility of a solution instance, as the size of the solution set, the

number of regenerators placed, increases. This increase is also observed in the

running times of the heuristic algorithms. To understand how good the results

of the heuristic algorithms are, a branch and bound algorithm is developed to

find optimal solutions of the problem. It is observed that the branch and bound

algorithm runs very fast for medium size networks and relatively large degradation

limits. The running time of the algorithm increases as the number of regenerator

nodes placed on the network increases since the number of nodes in the branch and

bound tree gets larger. However, optimal solutions could be found for medium

sized networks, having less than 50 nodes, in reasonable amount of time. As

this is a design problem, the same problem will not be solved frequently. For

this reason, longer solution times are reasonable to find the optimal solution

since regeneration is a costly process. Besides the deviations of the results of

the heuristic algorithms are small when compared with the optimal solutions.

Therefore, it expected that using heuristic algorithms to solve the problem in

large networks gives satisfactory solutions.

Bibliography

[1] A. Agrawal and R. E. Barlow. A survey of network reliability and domination

theory. Operations Research, 32(3):478–492, May-June 1984.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algo-

rithms and Applications. Prentice-Hall, 1993.

[3] D.O. Awduche. Mpls and traffic engineering in ip networks. IEEE Commu-

nications Magazine, 37:42–47, December 1999.

[4] D.O. Awduche and B. Jabbari. Internet traffic engineering using multi-

protocol label switching (mpls). Computer Networks, 40:111–129, 2002.

[5] S. Banerjee and A.P.K. Reddy. Parallel algorithm for shortest pairs of edge-

disjoint paths. Journal Of Parallel and Distributed Computing, 33:165–171,

1996.

[6] U. Brandes, W. Schlickenrieder, G. Neyer, D. Wagner, and K. Weihe. A

software packagwe of algorithms and heuristics for disjoint paths in planar

networks. Discrete Applied Mathematics, 92:91–110, 1999.

[7] M. Conforti, R. Hassin, and R. Ravi. Reconstructing edge-disjoint paths.

Operations Research Letters, 31:273–276, 2003.

[8] L. Coupry. A simple linear algorithm for the edge-disjoint (s,t)-path problem

in undirected planar graphs. Information Processing Letters, 64:83–86, 1997.

[9] T. Gomes, J. Craveirinha, L. Martins, E. Martins, and M. Pascoal. An

algorithm for calculating the k most reliable disjoint paths with a maximum

62

BIBLIOGRAPHY 63

number of arcs. In Proceedings of the European Conference on Safety and

Reliability, pages 1659–1666, 2001.

[10] M. Grtschel, C.L. Monma, and M. Stoer. Design of survivable networks. In

M.O. Ball et al., editor, Handbooks in OR & MS, volume 7, pages 617–671.

1995.

[11] W. T. Huh. Finding 2-edge connected spanning subgraphs. Operations

Research Letters, 32:212–216, 2004.

[12] D. Huygens, A. R. Mahjoub, and P. Pesneau. Two edge-disjoint hop-

constrained paths and polyhedra.

[13] J.Strand, A.L. Chiu, and Tkach R. Issues for routing in the optical layer.

IEEE Communications Magazine, 39:81–87, February 2001.

[14] H. Kerivin and A.R. Mahjoub. Separation of partition inequalities for

the (1,2)-survivable network design problem. Operations Research Letters,

30:265–268, 2002.

[15] S.W. Kim and S.W. Seo. Regenerator placement algorithms for connection

establishment in all-optical networks. IEE Proceedings Commun., 148(1):25–

30, February 2001.

[16] J. Kleinberg and E. Tardos. Approximations for the disjoint paths problem in

high-diameter planar networks. Journal of Computer and System Sciences,

57:61–73, 1998.

[17] C. LI, S. T. McCormick, and D. Simchi-Levi. The complexity of finding two

disjoint paths with min-max objective function. Discrete Applied Mathemat-

ics, 26:105–115, 1990.

[18] G. Shen and W. D. Grover. Segment-based approaches to survivable translu-

cent network design under vaious ultra-long-haul system reach capabilities.

Journal of Optical Networking, 3(1):1–24, January 2004.

[19] J. W. Suurballe. Disjoint paths in a network. Networks, 4:125–145, 1974.

BIBLIOGRAPHY 64

[20] J. W. Suurballe and R. E. Tarjan. A quick method for finding shortest pairs

of disjoint paths. Networks, 14:325–336, 1984.

[21] J. Vygen. Np-completeness of some edge-disjoint path problems. Discrete

Applied Mathematics, 61:83–90, 1995.

[22] X. Yang and B. Ramamurthy. Dynamic routing in translucent wdm optical

networks. In Proceedings of IEEE ICC’2002, New York,NY, 2002.

[23] Y. Ye, T.H. Cheng, and C. Lu. Routing and wavelength assignment algo-

rithms for translucent optical networks. Optics Communications, 229:233–

239, 2004.

[24] E. Yetginer. Traffic engineering and regenerator placement in mpls and gmpls

networks with restoration. Master’s thesis, Bilkent University, 2002.

[25] E. Yetginer and E. Karas.an. Regenerator placement and traffic engineering

with restoration in gmpls networks. Photonic Network Communications,

6(2):139–149, 2003.

