810 research outputs found

    Specular Reflection Image Enhancement Based on a Dark Channel Prior

    Get PDF

    Reflection Decomposition In Single Images Using An Optimum Thresholding-based Method

    Get PDF
    Traditional methods of separating reflection components have been developed based on multiple images. There are only few methods which are able to use a single image. However, their applicability is limited due to offline setting of its arbitrary parameter. In this study, we propose an effective method to separate specular components using a single image which based on an optimum thresholding-based technique. This method employs modified specular-free image and selects an optimum value for the offset parameter. In contrast to prior method, the proposed method processes all the steps automatically and produces better performance. Experimental results for inhomogeneous objects demonstrate the promising applicability for real-time implementation. However, this method is unsuitable for objects with strong specular reflection. An extension is suggested to include the specular lobe reflectance into Shafer dichromatic model

    Effectiveness of specularity removal from hyperspectral images on the quality of spectral signatures of food products

    Get PDF
    Specularity or highlight problem exists widely in hyperspectral images, provokes reflectance deviation from its true value, and can hide major defects in food objects or detecting spurious false defects causing failure of inspection and detection processes. In this study, a new non-iterative method based on the dichromatic reflection model and principle component analysis (PCA) was proposed to detect and remove specular highlight components from hyperspectral images acquired by various imaging modes and under different configurations for numerous agro-food products. To demonstrate the effectiveness of this approach, the details of the proposed method were described and the experimental results on various spectral images were presented. The results revealed that the method worked well on all hyperspectral and multispectral images examined in this study, effectively reduced the specularity and significantly improves the quality of the extracted spectral data. Besides the spectral images from available databases, the robustness of this approach was further validated with real captured hyperspectral images of different food materials. By using qualitative and quantitative evaluation based on running time and peak signal to noise ratio (PSNR), the experimental results showed that the proposed method outperforms other specularity removal methods over the datasets of hyperspectral and multispectral images.info:eu-repo/semantics/acceptedVersio

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided
    corecore