105 research outputs found

    A closed-form solution to estimate uncertainty in non-rigid structure from motion

    Full text link
    Semi-Definite Programming (SDP) with low-rank prior has been widely applied in Non-Rigid Structure from Motion (NRSfM). Based on a low-rank constraint, it avoids the inherent ambiguity of basis number selection in conventional base-shape or base-trajectory methods. Despite the efficiency in deformable shape reconstruction, it remains unclear how to assess the uncertainty of the recovered shape from the SDP process. In this paper, we present a statistical inference on the element-wise uncertainty quantification of the estimated deforming 3D shape points in the case of the exact low-rank SDP problem. A closed-form uncertainty quantification method is proposed and tested. Moreover, we extend the exact low-rank uncertainty quantification to the approximate low-rank scenario with a numerical optimal rank selection method, which enables solving practical application in SDP based NRSfM scenario. The proposed method provides an independent module to the SDP method and only requires the statistic information of the input 2D tracked points. Extensive experiments prove that the output 3D points have identical normal distribution to the 2D trackings, the proposed method and quantify the uncertainty accurately, and supports that it has desirable effects on routinely SDP low-rank based NRSfM solver.Comment: 9 pages, 2 figure

    Piecewise BĂ©zier space: recovering 3D dynamic motion from video

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper we address the problem of jointly retrieving a 3D dynamic shape, camera motion, and deformation grouping from partial 2D point trajectories in a monocular video. To this end, we introduce a union of piecewise Bézier subspaces with enforcing continuities to model 3D motion. We show that formulating the problem in terms of piecewise curves, allows for a better physical interpretation of the resulting priors and a more accurate representation of the motion. An energy-based formulation is presented to solve the problem in an unsupervised, unified, accurate and efficient manner, by means of the use of augmented Lagrange multipliers. We thoroughly validate the approach on a wide variety of human video sequences, including those cases with noisy and missing observations, and providing more accurate joint estimations than state-of-the-art approaches.This work has been partially supported by the Spanish Ministry of Science and Innovation under project HuMoUR TIN2017-90086-R, by the ERA-Net Chistera project IPALM PCI2019-103386, and the María de Maeztu Seal of Excellence to IRI MDM-2016-0656Peer ReviewedPostprint (author's final draft

    Spline human motion recovery

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Simultaneous camera pose, 4D reconstruction of an object and deformation clustering from incomplete 2D point tracks in a video is a challenging problem. To solve it, in this work we introduce a union of piecewise subspaces to encode the 4D shape, where two modalities based on B-splines and Catmull-Rom curves are considered. We demonstrate that formulating the problem in terms of B-spline or Catmull-Rom functions, allows for a better physical interpretation of the resulting priors while C1 and C2 continuities are automatically imposed without needing any additional constraint. An optimization framework is proposed to sort out the problem in a unified, accurate, unsupervised and efficient manner. We extensively validate our claims on a wide range of human motions, including articulated and continuous deformations as well as those cases with noisy and missing measurements where our approach provides competing joint solutions.Peer ReviewedPostprint (author's final draft

    Multi-body Non-rigid Structure-from-Motion

    Get PDF
    Conventional structure-from-motion (SFM) research is primarily concerned with the 3D reconstruction of a single, rigidly moving object seen by a static camera, or a static and rigid scene observed by a moving camera --in both cases there are only one relative rigid motion involved. Recent progress have extended SFM to the areas of {multi-body SFM} (where there are {multiple rigid} relative motions in the scene), as well as {non-rigid SFM} (where there is a single non-rigid, deformable object or scene). Along this line of thinking, there is apparently a missing gap of "multi-body non-rigid SFM", in which the task would be to jointly reconstruct and segment multiple 3D structures of the multiple, non-rigid objects or deformable scenes from images. Such a multi-body non-rigid scenario is common in reality (e.g. two persons shaking hands, multi-person social event), and how to solve it represents a natural {next-step} in SFM research. By leveraging recent results of subspace clustering, this paper proposes, for the first time, an effective framework for multi-body NRSFM, which simultaneously reconstructs and segments each 3D trajectory into their respective low-dimensional subspace. Under our formulation, 3D trajectories for each non-rigid structure can be well approximated with a sparse affine combination of other 3D trajectories from the same structure (self-expressiveness). We solve the resultant optimization with the alternating direction method of multipliers (ADMM). We demonstrate the efficacy of the proposed framework through extensive experiments on both synthetic and real data sequences. Our method clearly outperforms other alternative methods, such as first clustering the 2D feature tracks to groups and then doing non-rigid reconstruction in each group or first conducting 3D reconstruction by using single subspace assumption and then clustering the 3D trajectories into groups.Comment: 21 pages, 16 figure

    A scalable, efficient, and accurate solution to non-rigid structure from motion

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Most Non-Rigid Structure from Motion (NRSfM) solutions are based on factorization approaches that allow reconstructing objects parameterized by a sparse set of 3D points. These solutions, however, are low resolution and generally, they do not scale well to more than a few tens of points. While there have been recent attempts at bringing NRSfM to a dense domain, using for instance variational formulations, these are computationally demanding alternatives which require certain spatial continuity of the data, preventing their use for articulated shapes with large deformations or situations with multiple discontinuous objects. In this paper, we propose incorporating existing point trajectory low-rank models into a probabilistic framework for matrix normal distributions. With this formalism, we can then simultaneously learn shape and pose parameters using expectation maximization, and easily exploit additional priors such as known point correlations. While similar frameworks have been used before to model distributions over shapes, here we show that formulating the problem in terms of distributions over trajectories brings remarkable improvements, especially in generality and efficiency. We evaluate the proposed approach in a variety of scenarios including one or multiple objects, sparse or dense reconstructions, missing observations, mild or sharp deformations, and in all cases, with minimal prior knowledge and low computational cost.Peer ReviewedPostprint (author's final draft
    • …
    corecore