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Figure 1: A nutshell of our framework. (a)-(c) Multi-body non-rigid structure from motion on the synthetic CMU MoCap dataset [2]. Our
approach is able to reconstruct and segment each action such as stretch(red), dance(cyan) and yoga(green) faithfully with 3D reconstruction
error of 0.0413 and 0 segmentation error. Here, different color corresponds to different segmentation, while dark and light color circles
show ground-truth and reconstructed 3D coordinates respectively. (d) Block diagonal matrix obtained by using our approach.

Abstract

In this paper, we present the first multi-body non-rigid
structure-from-motion (SFM) method, which simultane-
ously reconstructs and segments multiple objects that are
undergoing non-rigid deformation over time. Under our
formulation, 3D trajectories for each non-rigid object can
be well approximated with a sparse affine combination of
other 3D trajectories from the same object. The resultant
optimization is solved by the alternating direction method
of multipliers (ADMM). We demonstrate the efficacy of the
proposed method through extensive experiments on both
synthetic and real data sequences. Our method outperforms
other alternative methods, such as first clustering the 2D
feature tracks to groups and then doing non-rigid recon-
struction in each group or first conducting 3D reconstruc-
tion by using single subspace assumption and then cluster-
ing the 3D trajectories into groups.

1. Introduction

Structure-from-Motion (SFM) targets at recovering 3D
structure and camera motion from monocular 2D feature
tracks. Conventional SFM primarily concerns with the 3D
reconstruction of a single rigidly moving object seen by
a static camera, or a static and rigid scene observed by a

moving camera –in both cases there are only one relative
rigid motion involved. Recent progress have extended rigid
motion SFM to the areas of multi-body SFM [5][22] and
significant improvement have been made over single body
non-rigid SFM [3][21][2][6][9][4] (see Table.1). Along this
line of thinking, there is apparently a missing gap of “multi-
body non-rigid SFM”. Hence, this paper proposes for the
first time, an effective framework for multi-body NRSFM.

Most of the existing methods for NRSFM have implic-
itly assumed that there is only one deformable shape or ob-
ject. However, real world scenarios are much more compli-
cated involving multiple, independently deforming objects
in the scene. Multiple nonrigid objects are commonly en-
countered in our daily lives, for example, in motion capture,
multiple persons perform different activities with possible
interactions (see Fig. 1 for example); in human-computer
interaction, different users may conduct different gesture
commands; in traffic scene, multiple vehicles and walking
pedestrians create multi-body non-rigid deformations.

To handle such multiple non-rigid deformations in 3D
reconstruction, a natural idea would be to simply repre-
sent the multiple non-rigid deformations as a single (though
more complex) non-rigid deformation (with higher order or
higher rank), and then apply any state-of-the-art non-rigid
structure-from-motion methods such as [6][13]. However,
by this idea, the inherent structure of the problem has not
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been exploited, which may hinder the success of 3D recon-
struction. Even if the method succeeds in obtaining 3D re-
construction, it cannot tell meaningful segmentation of mul-
tiple non-rigid objects. Another choice would be to conduct
non-rigid motion segmentation [7] and non-rigid 3D recon-
struction [6] successively. In this way, the solution of each
sub-task does not benefit from the solution of the other sub-
task. Therefore, we would like to emphasize that since non-
rigid deformation originally occurs in 3D space, it’s more
intuitive to perform non-rigid motion segmentation and re-
construction simultaneously in 3D space than solving this
problem using two step process.

This paper introduces an approach to perform non-
rigid 3D reconstruction and motion segmentation simulta-
neously. Specifically, we represent multi-body non-rigid
motion as a union of 3D trajectory sub-spaces1. By us-
ing the self-expressiveness model in representing multiple
linear or affine subspace, where each 3D trajectory can be
expressed with other trajectories in the same subspace only,
enables us in compact representation of trajectories. In this
way, we are able to exploit the inherent grouping structure
in 3D trajectory space. For dense non-rigid reconstruc-
tion, we could further enforce the spatial coherence con-
straint. By contrast to existing methods, this endows us the
following benefits: (a) A compact representation for com-
ponent non-rigid deformation in 3D trajectory space. (b)
Joint reconstruction and motion segmentation of multiple
deformable objects. (c) Improved spatial regularity in 3D
non-rigid dense reconstruction (in contrast, a hard segmen-
tation of the 2D tracks may result in discontinuity at the
segmentation boundary).

Contributions: (1) This paper is first to model multiple
non-rigid deformations as points in the union of multiple
affine 3D trajectory subspace. This enables us to jointly
solve the non-rigid reconstruction and non-rigid motion
segmentation problems in 3D trajectory space; (2) Our for-
mulation can handle both sparse and dense multi-body non-
rigid reconstruction problems uniformly; (3) We propose an
efficient optimization procedure based on ADMM method.

2. Related Work

Ever since the seminal work by Bregler et al. [3] mod-
eling a non-rigid shape as lying in a “shape space” (a lin-
ear combination of basis shapes), considerable progress has
been made in the area of non-rigid 3D reconstruction. In
2004, Xiao et al. [21] showed the inherent ambiguity in

1Zhu et al. [24] used the union of sub-spaces representation (different
non-rigid deformations lie in different sub-spaces), where the subspace is
defined in shape space contrast to our trajectory space. As we will show
later, this difference provides uniqueness of our formulation in dealing with
multiple non-rigid deformation and in dealing with dense case.

modeling non-rigid shape and proposed a remedy of “ba-
sis constraints” to derive a closed-form solution. In 2008,
Akhter et al. [2] presented a dual approach by modeling 3D
trajectories, i.e. “trajectory space”. In 2009, Akhter et al.
[1] proved that even there is an ambiguity in shape bases
or trajectory bases, non-rigid shapes can still be solved
uniquely without any ambiguity. In 2012, Dai et al. [6]
proposed a “prior-free” method to recover camera motion
and 3D non-rigid deformation by exploiting low rank con-
straint only. Besides shape basis model and trajectory ba-
sis model, the shape-trajectory approach [11] combines two
models and formulates the problems as revealing trajectory
of the shape basis coefficients. Besides linear combination
model, Lee et al. [13] proposed a Procrustean Normal Dis-
tribution (PND) model, where 3D shapes are aligned and fit
into a normal distribution. Simon et al. [18] exploited the
Kronecker pattern in the shape-trajectory (spatial-temporal)
priors. Zhu and Lucey [25] applied the convolutional sparse
coding technique to NRSFM using point trajectories. How-
ever, the method requires to learn an over-complete basis of
3D trajectories, prior to performing 3D reconstruction.

Despite of the above success, NRSFM is still far be-
hind its rigid counterpart. This is mainly due to the diffi-
culty in modeling real world non-rigid deformation. Real
world non-rigid reconstruction generally requires the abil-
ity to handle long-term, complex and dense non-rigid shape
variations. Such complex and dense non-rigid motion not
only increases the computational complexity but also adds
difficulty in modeling various kinds of different motions.
Zhu et al. [24] proposed to represent long-term complex
non-rigid motion as lying in a union of shape sub-spaces
rather than sum of sub-spaces. Cho et al. [4] represented
complex shape variations probabilistically by a mixture of
primitive shape variations.

By contrast to the above methods dealing with sparse
NRSFM, dense NRSFM methods such as [16][9][10][17]
aim at achieving 3D reconstruction for each pixel in the
video sequence, where spatial constraint has been widely
used to regularize the problem. Garg et al. [9] presented
a variational formulation to dense non-rigid reconstruction
by exploiting the spatial smoothness in 3D shapes, which
in principle deals with single non-rigid deformation in con-
trast to our multiple non-rigid deformations. Fragkiadaki
et al. [8] solved the problem in sequel, namely, video seg-
mentation by multi-scale trajectory clustering, 2D trajectory
completion, rotation estimation and 3D reconstruction. Re-
cently, Yu et al. [23] bridges template based method and
feature track based method by proposing a dense template
based direct approach to deformable shape reconstruction
from monocular sequences.

Russell et al. [17] proposed to simultaneously segment
a complex dynamic scene containing a mixture of multi-
ple objects into constituent objects and reconstruct a 3D



Table 1: A classification of different SFM problems defined by the number of objects and the rigidity of each object. This paper aims to
fill in the currently missing work of Multi-body Non-rigid SFM shown in blue.

Single body Multi-body

Rigid
Single-body Rigid SFM [19]

W2F×P = R2F×3S3×P, rank(S) = 3
Multi-body Rigid SFM [5][22]

W2F×P = R2F×3FS3F×P, rank(S) = 3K

Non-rigid
Single-body Non-rigid SFM [3]

W2F×P = R2F×3FS3F×P, rank(S) = 3K

Multi-body Non-Rigid SFM
W2F×P = R2F×3FS3F×P, S = SC. i.e,

3D trajectory should lie in union of linear/affine subspace.

model of the scene by formulating the problem as hierarchi-
cal graph-cut based segmentation, where the whole scene is
decomposed into background and foreground objects and
the complex motion of non-rigid or articulated objects are
modeled as a set of overlapping rigid parts. Recently, piece-
wise rigid approach [15] for complex motion using con-
secutive images tried to solve this task in 3 consecutive
steps (motion segmentation, 3D reconstruction and relative
scale). Our method differs from these methods in the fol-
lowing aspects: 1) We provide a compact representation to
multiple non-rigid deformation problem; 2) We propose an
efficient and elegant optimization based on ADMM; 3) Our
method could deal with both sparse and dense scenarios.

3. Formulation
We seek to reconstruct 3D trajectories such that they sat-

isfy the union of affine subspace constraint (i.e. 3D trajecto-
ries lie in a union of affine subspaces) and non-rigid shape
constraints (low rank and spatial coherent).

Let us consider a monocular camera observing multiple
non-rigid objects. We use the orthographic cameramodel
and eliminate the translation component in camera motion
[3]. The image measurement wij = [uij , vij ]

T and 3D point
Sij on the non-rigid shape are related by the camera motion
Ri as: wij = RiSij , where Ri ∈ R2×3 denotes the first
two rows of the i-th camera rotation. Under this representa-
tion, stacking all the F frames of measurements and all the
P points in a matrix form will give us:

W = RS, (1)

where R = blkdiag(R1, · · · , RF ) ∈ R2F×3F denotes the
camera motion. NRSFM aims at recovering the camera mo-
tion R and 3D non-rigid reconstruction S ∈ R3F×P from the
2D measurement matrix W ∈ R2F×P such that W = RS.

3.1. Representing multi-body non-rigid structure as
a union of affine subspace

We assume that multiple non-rigid structures that corre-
spond to distinct motion lie in a union of affine subspace.
Here, the underlying assumption is that the trajectories be-
longing to different non-rigid objects span a distinct affine

subspace. Figure 2(b) clearly validates such assumption as
there are only connections within clusters and no connec-
tions between clusters or block diagonal structure.

Now, consider each trajectory Sj that corresponds to a
3F dimensional vector formed by stacking the 3D tracks of
feature point j across all frames.

Sj = [ST1j , S
T
2j , ...S

T
Fj ]

T ∈ R3F×1 (2)

where Sfj ∈ R3×1 with f varies from {1, 2, 3...F}. Un-
der the union of affine subspace representation for multi-
body non-rigid reconstruction, feature trajectories associ-
ated with each non-rigid motion lie in an affine subspace.
After taking P such 3F dimensional trajectory and stacking
into the column of a matrix we form S matrix ∈ R3F×P.
Mathematically, it implies that each column of S is drawn
from a union of n subspace in R3F. Therefore, each tra-
jectory in a union of affine subspace can be faithfully re-
constructed by combination of other trajectories in the same
subspace. This leads to the self -expressiveness of the 3D
trajectories. Concretely,

Sj = SCj , Cjj = 0. (3)

Here, Cj is P × 1 coefficient vector and Cjj = 0 takes care
of trivial solution. Stacking all such coefficient vectors we
form a C matrix ∈RP×P that captures the similarity between
different trajectories. Using the fact that any trajectory of S
in an affine subspace can be written as an affine combina-
tion of other trajectories from S and to cluster trajectories
that lies near to union of affine subspace, we arrive at the
following equation.

S = SC, 1T C = 1T ,diag(C) = 0. (4)

Figure 2 shows the affinity matrix A = |C| + |CT | obtained
for two objects that undergo non-rigid deformation. The
solution clearly shows that multi-body non-rigid structure
can be represented as union of affine subspace.

3.2. Representing multiple non-rigid deformations
in case of sparse feature tracks

To solve the problem of multi-body NRSFM in case of
sparse feature tracks, we propose the following optimiza-
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Figure 2: (a) Two subjects performing different non-rigid motion
that are dance and yoga. Red and green color shows the entire tra-
jectory of each objects over F frames. (b) Visualization of affinity
matrix obtained using our formulation. (c) Clean affinity matrix
obtained after incorporating spectral clustering. [14]. Best viewed
on screen.

tion framework for simultaneous reconstruction and seg-
mentation of objects that are undergoing non-rigid defor-
mation.

minimize
C,S,S]

1

2
‖W− RS‖2F + λ1‖C‖1 + λ2‖S]‖∗

subject to:

S] = g(S), S = SC, 1T C = 1T ,diag(C) = 0.

(5)

The first term in the above optimization is meant for pe-
nalizing re-projection error under orthographic projection.
Under single-body NRSFM configuration, 3D shape S can
be well characterized as lying in a single low dimensional
linear subspace. However, when there are multiple non-
rigid objects, each non-rigid object could be characterized
as lying in an affine subspace. One can argue that affine
subspace of dimension n can be considered as a subset of
(n + 1) dimension that includes origin. Nonetheless, such
representation may result in ambiguous solution while clus-
tering different subspace. The fact that the 3D trajectories
lie in a union of affine sub-spaces as argued previously §3.1
we put the Eq. 4 as our optimization constraints.

In addition to this, to reveal the intrinsic structure of
multi-body non-rigid structure-from-motion (NRSFM), we
seek for the sparsest solution of C ([7]). So, the second
term in Eq. (5) enforces l1 norm minimization of C matrix.
Lastly, we enforce a global shape constraint for compact
representation of multi-body non-rigid objects by penaliz-
ing the rank of entire non-rigid shape. Similar to [6] and
[9], we penalize the nuclear norm of the reshuffled shape
matrix S] ∈ RF×3P, this is because nuclear norm is known
as the convex envelope of the rank function. Here, g(S)
denotes the mapping from S ∈ R3F×P to S] ∈ RF×3P.

3.3. Representing multi-body non-rigid deforma-
tions in case of dense feature tracks

When per pixel feature tracks are available, we can en-
force spatial regularization (Markovian assumption) i.e

Figure 3: D matrix caters the neighboring trajectory relation. In
the above illustration P2, P4, P6, P8, are the 4 immediate neigh-
boring trajectories of P5. Therefore, corresponding elements of D
matrix has −1 entries, P5 has value 1 and the rest entries are 0.
Therefore, the corresponding coefficient column of C matrix now
rely on relations defined in the D matrix. Here, C and D are P × P

and P × 4P matrix respectively. Where, P is the number of total
feature tracks.

there will be a high correlation between neighboring fea-
tures. To exploit this property, the spatial smoothness can
be used as a regularization term to further constrain the non-
rigid reconstruction. Garg et al. [9] proposed to use the total
variation of the 3D shape ‖S‖TV . By contrast, we propose
to enforce the spatial smoothness constraint on the coeffi-
cient matrix C directly by using the L1 norm,∑

(i,j)∈N

‖Ci − Cj‖1, (6)

i.e., the total variation of C. This definition gives us the
benefit in solving the problem as proved later. In essence,
the total variations of C and S are correlated. However, it is
desirable that C matrix must cater the self-expressiveness of
the non-rigid shape deformation as compact as possible. So,
we incorporate spatial smoothness constraint on coefficient
matrix rather than on shape matrix S.

By introducing an appropriately defined matrix D encod-
ing the neighboring relation, Eq. (6) can be expressed as:

‖CD‖1 =
∑

(i,j)∈N

‖Ci − Cj‖1. (7)

In Fig.3, we illustrate the process of how to obtain the
matrix D. By incorporating this spatial constraint to the
optimization equation (5), that facilitates this neighboring
constraint, we reach the following optimization for dense
tracks:

minimize
C,S,S]

1

2
‖W− RS‖2F + λ1‖C‖1 + λ2‖CD‖1 + λ3‖S]‖∗

subject to:

S] = g(S), S = SC, 1T C = 1T ,diag(C) = 0.
(8)



4. Solution
Due to the bilinear term S = SC, the overall optimization

of Eq.-(8) is non-convex. We solve it via the ADMM, which
has a proven effectiveness for many non-convex problems
and is widely used in computer vision. The ADMM works
by decomposing the original optimization problem into sev-
eral sub-problems, where each sub-problem can be solved
efficiently. To this end, we seek to decompose Eq.-(8) into
several sub-problems.

First note that the two L1 terms ‖C‖1 and ‖CD‖1 can be
put together as ‖C[I D]‖1. Without loss of generality, we
still denote the new term as |CD|1, the only difference is, the
new dimension of D will be P × 5P, thus the cost function
becomes: 1

2‖W − RS‖2F + λ1‖CD‖1 + λ2‖S]‖∗. To further
decouple the constraint, we introduce an auxiliary variable
E = CD. With these operations, the optimization problem
Eq.-(8) can be reformulated as:

minimize
E,S,S],C

1

2
‖W− RS‖2F + λ1‖E‖1 + λ2‖S]‖∗

subject to:

S] = g(S), S = SC, CD = E, 1T C = 1T ,diag(C) = 0.

(9)

The Augmented Lagrangian formulation for Eq.-(9) is:

L(S, S], C, E, {Yi}4i=1) =
1

2
‖W− RS‖2F + λ1‖E‖1+

λ2‖S]‖∗+ < Y1, S
] − g(S) > +

β

2
‖S] − g(S)‖2F+

< Y2, S− SC > +
β

2
‖S− SC‖2F+ < Y3, CD− E > +

β

2
‖CD− E‖2F+ < Y4, 1

T C− 1T > +
β

2
‖1T C− 1T ‖2F .

where {Yi}4i=1 are the matrices of Lagrange multipliers
corresponding to the four equality constraints, and β is a
penalty parameter. We do not need to introduce a Lagrange
multiplier for the diagonal constraint of diag(C) = 0 as we
will enforce this constraint exactly in the solution of C.

The ADMM iteratively updates the individual variable
so as to minimize L while the other variables are fixed. In
our formulation variables S, S], E, C are solved using the fol-
lowing sub-problems. Kindly, refer to supplementary mate-
rial for detailed solution.

Si+1 = argmin
S
L(Si, S], C, E) (10)

S
]
i+1 = argmin

S]
L(S, S]i , C, E) (11)

Ei+1 = argmin
E
L(S, S], C, Ei) (12)

Ci+1 = argmin
C
L(S, S], Ci, E) (13)

Algorithm 1 Multi-body non-rigid structure-from-motion
and segmentation via the ADMM

Require:
2D feature track matrix W, camera motion R, λ1, λ2, ρ >
1, βm, ε;

Initialize: S(0), S](0), C(0), E(0), {Y(0)
i }4i=1 = 0, β(0);

while not converged do
1. Update (S, S], E, C) by Eq. (10), Eq. (11), Eq. (12),
Eq. (13) and Eq. (14);
2. Update {Yi}4i=1 and β by Eq. (15)-Eq. (17);
3. Check the convergence conditions ‖S] − g(S)‖∞ ≤
ε, ‖S − SC‖∞ ≤ ε, ‖1T C − 1T ‖∞ ≤ ε, and ‖CD −
E‖∞ ≤ ε;

end while

Ensure: C, S, S].
Form an affinity matrix A = |C|+|CT |, then apply spectral
clustering [14] to A.

Ci+1 = Ci − diag(Ci), (14)

Finally, the Lagrange multipliers {Yi}4i=1 and β are up-
dated as:

Y1 = Y1 + β(S] − g(S)), Y2 = Y2 + β(S− SC), (15)

Y3 = Y3 + β(CD− E), Y4 = Y4 + β(1T C− 1T ), (16)

β = min(βm, ρβ), (17)

4.1. Initialization

As our method tries to solve a non-convex optimization
problem (9), a proper initialization is needed. In this pa-
per, we initialize proper camera motion using Dai. et al
approach [6]. In our current implementation, we have fixed
the camera motion while updating the 3D non-rigid recon-
struction and segmentation. In future, we will put the update
of camera rotation in the loop. The initial structure S(0) was
initialized as pinv(R)* W. We kept β(0) = 1e−3 and ρ = 1.1
in all our experiments. Note : In the previous §4, we de-
rive the solution when dense track features were provided
as input. However, solution for sparse feature tracks case
could be viewed as a simplified form of the dense case by
removing the spatial constraint term ‖CD‖ directly.

5. Experiments
To evaluate the effectiveness of our approach for multi-

body non-rigid structure-from-motion, we conducted exten-
sive experiments on both synthetic data and real images, un-
der both sparse and dense scenarios.



(a) (b) (c)

Figure 4: Demonstrating the efficacy of our approach. The above plot shows the results on Dance + Yoga sequence. (a) Result obtained
by applying BMM method [6] to get 3D points and then use SSC [7] to segment 3D points. (b) Result obtained by applying SSC [7]
to 2D feature tracks and then use BMM [6] separately to each segment to get 3D reconstruction. (c) Result by applying simultaneous
reconstruction and segmentation framework (Our approach).

(a) (b) (c) (d) (e) (f)

Figure 5: 3D reconstruction and segmentation of different multi-body non-rigid motion sequences a) Face-Pickup Sequence; b) Shark-
Yoga Sequence; c) Stretch-Yoga Sequence; d) Dance-Yoga Sequence; e) p3 ball 1; f) p4 meet 12. (a)-(d) CMU MoCap dataset [2], (e)-(f)
UMPM dataset [20]. Dark small circles in the respective segments shows the Ground-Truth 3D points.

(a) (b) (c) (d) (e) (f)

Figure 6: 3D reconstruction and segmentation of different multi-body non-rigid motion sequences, when different objects intersect each
other. a) Dance-Yoga; b) Face-Yoga Sequence; c) Shark-Stretch Sequence; d) Shark-Yoga Sequence; e) Stretch-Yoga Sequence; f) Walking-
Yoga. (a)-(f) CMU MoCap dataset [2]. Dark small circles in the respective segments shows the Ground-Truth 3D points.

Table 2: Performance comparison between our method and the baseline methods, where 3D reconstruction error (e3D) and non-rigid
motion segmentation error (eMS) are used as error metrics.

Dataset BMM + SSC (3D) SSC(2D) + BMM Our Method
e3D eMS e3D eMS e3D eMS

Dance + Yoga 0.0456 0.0345 0.0588 0.0259 0.046 0.0
Drink + Walking 0.0745 0.0 0.0858 0.0 0.073 0.0
Shark + Stretch 0.0246 0.4015 0.0979 0.3939 0.025 0.0
Walking + Yoga 0.0702 0.0 0.0900 0.0 0.0702 0.0
Face + Pickup 0.0324 0.0988 0.0239 0.0988 0.025 0.0
Face + Yoga 0.0172 0.012 0.0332 0.012 0.019 0.0
Shark + Yoga 0.0356 0.4167 0.1049 0.4091 0.0371 0.0
Stretch + Yoga 0.0392 0.0 0.0557 0.0 0.0393 0.0



(a)

(b) (c)

Figure 7: Reconstruction results on the real and synthetic data-sets: (a) - (b) Real Face, Back and Heart (c) Synthetic Face Sequence. [9].

(a) (b) (c)

Figure 8: Experimental results on synthetic dense ”Face+Heart” sequence. (a) Input 2D tracks of Face+Heart Sequence. (b)-(c) seg-
mentation and reconstruction on the dense real sequence data-sets: (Face + Heart) Sequence [9]. Different color signature symbolizes the
corresponding class labels. (Best Viewed on Screen)

As our method jointly perform non-rigid 3D reconstruc-
tion and segmentation, we use the following criteria to mea-
sure the performances of the algorithm:
(i) Relative error in multi-body non-rigid 3D reconstruction

e3D = ‖Sest.f − SGT
f ‖F /‖SGT

f ‖F , (18)

(ii) Error in multi-body non-rigid motion segmentation,

eMS =
total number of incorrectly segmented trajectories

total number oftrajectories
.

(19)

5.1. Multi-body non-rigid data

To advocate the performance of our framework, we
tested it on both synthetic and real datasets. We synthe-
sized multiple non-rigid objects by using the CMU Mocap
dataset [2] and the UMPM dataset [20]. In Fig. 5, we illus-
trate six examples of multi-body NRSFM sequences and its
results.

5.2. Performance comparison on sparse NRSFM

In Table 3, we compared the segmentation results of our
approach with SSC [7] and EDSC [12] on multi-body non-



Table 3: Motion segmentation performance comparison with SSC
[7] and EDSC [12] over 2D feature tracks.

Dataset SSC (eMS) EDSC (eMS) Ours
Dance+Yoga 0.025 0.0345 0.0

Drink+Walking 0.0 0.01 0.0
Shark+Stretch 0.3939 0.0 0.0
Walking+Yoga 0.0 0.0 0.0
Face+Pickup 0.098 0.0 0.0
Face+Yoga 0.012 0.0 0.0
Shark+Yoga 0.41 0.0 0.0
Stretch+Yoga 0.0 0.0 0.0

rigid sequences over 2D feature tracks. It clearly demon-
strates that performing non-rigid motion segmentation in
3D space using our approach leads to remarkable results.
Since, our method jointly solves for 3D reconstruction and
multi-body non-rigid motion segmentation, we compare our
method with the two stage methods, namely

1) Baseline method 1: Single body NRSFM method (State-
of-the-art “block-matrix method” [6] was used) followed
by subspace clustering of the 3D trajectories (SSC [7]
was used), denoted as “BMM+SSC(3D)”;

2) Baseline method 2: Subspace clustering of the 2D fea-
ture tracks (2D trajectories) followed by single body
NRSFM for each cluster of 2D feature tracks, denoted
as “SSC(2D)+BMM”.

Table 2 provides experimental comparisons between our
method and the two baseline methods in dealing with multi-
body NRSFM. In all the sequences, our method achieves
zero multi-body non-rigid motion segmentation error and
comparable 3D non-rigid reconstruction performance.

Experimental results show that our 3D reconstruction
is very close to the accuracy of BMM [6] on almost all
datasets. However, the advantage of our framework is that
we can achieve robust segmentation along with better 3D re-
construction at the same time. Fig.4 shows the robustness of
our approach. Our method faithfully reconstructs and seg-
ments two different complex non-rigid motions. Extensive
experiments were performed on synthetic sparse data-sets
with different combination of non-rigid motion Fig. 5(a),
5(b), 5(c) and 5(d) show some of the results on these differ-
ent combinations of non-rigid motion on the CMU Mocap
dataset [2], where Fig. 5(e) and 5(f) present results on the
UMPM dataset [20]. Furthermore, we tested our approach
in scenarios where different non-rigid moving objects inter-
sect each other as shown in Figure 6(a)-6(f). Our method is
able to reconstruct and segment each intersecting object.

Table 4: Quantitative results on synthetic face sequence, without
and with neighboring constraints.

Dataset #Features e3d(only C) e3d(with CD )
Face Seq. 1 3275 0.0749 0.0745
Face Seq. 2 3275 0.0506 0.050
Face Seq. 3 3275 0.0384 0.0380
Face Seq. 4 3275 0.0446 0.0443

5.3. Analysis on dense NRSFM

To expeditiously evaluate the effectiveness of our imple-
mentation over available dense sequences, we tested our
method on uniformly sampled version of the original se-
quences for the sake of efficient implementation. We per-
formed experimentation on benchmark NRSFM synthetic
and real data-set sequence [9] introduced by Garg et al..
Table 4 reports the obtained 3D reconstruction error on
these synthetic sequences [9]. Figure 7(a)-7(c) provide vi-
sual insight of the resultant 3D shapes over real and syn-
thetic sequences. To test the segmentation of different struc-
tures on real dense dataset, we performed experiments by
combining two real dataset sequence (Face+Heart). Fig-
ure 8(b) and 8(c) show the segmentation and reconstruc-
tion of dense non-rigid feature tracks to their corresponding
classes. Note: For more analysis and experiment results,
please refer to supplementary material.

6. Conclusions

This paper has filled in a missing gap in the structure-
from-Motion family by proposing a new framework for
multi-body non-rigid-structure-from-motion. It achieves a
joint non-rigid reconstruction and non-rigid shape segmen-
tation of multiple deformable structures observed in a sin-
gle image sequence. Under our new multi-body NRSFM
framework, the solutions for motion segmentation and the
solutions for 3D reconstruction can better constrain each
other. We achieved superior performance in both 3D non-
rigid reconstruction and non-rigid motion segmentation,
compared with the alternative, two stage methods (first seg-
ment, then reconstruct or first reconstruct, then segment). In
future, we plan to investigate the scalability issue with our
current implementation and apply the new method to more
dense feature tracks in longer video sequences.
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Abstract

In the supplementary material, we provide a detailed
derivation of each sub-problems in the formulation. Be-
sides this, we also provide insight into convergence curve
and effect of noisy track features on the performance of our
algorithm.

1. Sub-problem derivation of the involved opti-
mization

minimize
C,S,S]

1

2
‖W− RS‖2F + λ1‖C‖1 + λ2‖CD‖1 + λ3‖S]‖∗

subject to:

S] = g(S), S = SC, 1T C = 1T ,diag(C) = 0.
(1)

To further decouple the constraint, we introduce an aux-
iliary variable E = CD. With these operations, the optimiza-
tion problem Eq.-(1) can be reformulated as:

minimize
E,S,S],C

1

2
‖W− RS‖2F + λ1‖E‖1 + λ2‖S]‖∗

subject to:

S] = g(S), S = SC, CD = E, 1T C = 1T ,diag(C) = 0.

(2)

The Augmented Lagrangian formulation for Eq.-(2) is:

L(S, S], C, E, {Yi}4i=1) =
1

2
‖W− RS‖2F + λ1‖E‖1+

λ2‖S]‖∗+ < Y1, S
] − g(S) > +

β

2
‖S] − g(S)‖2F+

< Y2, S− SC > +
β

2
‖S− SC‖2F+ < Y3, CD− E > +

β

2
‖CD− E‖2F+ < Y4, 1

T C− 1T > +
β

2
‖1T C− 1T ‖2F .

1.0.1 The solution of S:

S = arg minS
1
2‖W− RS‖2F+ < Y1, S

] − g(S) > +
β
2 ‖S

] − g(S)‖2F+ < Y2, S− SC > +
β
2 ‖S− SC‖2F .

(3)
The sub-problem for S reaches a least squares problem.

The closed-form solution of S can be derived as:
1
β (RT R + βI)S + S(I− C)(I− CT ) = 1

βR
T W+

(g−1(S]) + g−1(Y1)
β − Y2

β (I− CT )),
(4)

which is a Sylvester equation.

1.0.2 The solution of S]:

S] = arg min
S]

λ2‖S]‖∗+ < Y1, S
]−g(S) > +

β

2
‖S]−g(S)‖2F

(5)
A close-form solution exists for this sub-problem.

Let’s define the soft-thresholding operation as Sτ [x] =
sign(x) max(|x| − τ, 0). The optimal solution to Eq.-(5)
can be obtained as:

S] = USλ2/β(Σ)V, (6)

where [U,Σ, V] = svd(g(S)− Y1/β).

1.0.3 The solution of E:

E = arg min
E
λ1‖E‖1+ < Y3, CD−E > +

β

2
‖CD−E‖2F , (7)

A close-form solution exists for this sub-problem by us-
ing element-wise shrinkage.

E = Sλ1/β(CD +
Y3

β
). (8)

1.0.4 The solution of C:

C = arg minC < Y2, S− SC > +β
2 ‖S− SC‖2F+

< Y3, CD− E > +β
2 ‖CD− E‖2F+ < Y4, 1

T C− 1T > +
β
2 ‖1

T C− 1T ‖2F .
(9)

1



Figure 1: Typical convergence curves of the objective function and the primal residuals ‖S] − g(S)‖∞, ‖S − SC‖∞, ‖CD − E‖∞ and
‖1T C− 1T ‖∞. The above plot shows the convergence statistics for Dance+Yoga Sequence. *ADMM Convergence Curve = maximum of
(‖S] − g(S)‖∞, ‖S− SC‖∞, ‖CD− E‖∞ and ‖1T C− 1T ‖∞).

Figure 2: Left: 3D Reconstruction error VS noise levels; Right: non-rigid motion segmentation error VS noise levels.

The closed-form solution of C is derived as:

(ST S + 11T )C + C(DDT ) = ST S + ST Y2
β + EDT−

Y3
DT

β + 11T − 1 Y4
β .

(10)

C = C− diag(C), (11)

Finally, the Lagrange multipliers {Yi}4i=1 and β are up-
dated as:

Y1 = Y1 + β(S] − g(S)), Y2 = Y2 + β(S− SC), (12)

Y3 = Y3 + β(CD− E), Y4 = Y4 + β(1T C− 1T ), (13)

β = min(βm, ρβ), (14)

1.1. Experiment: Convergence

In this experiment, we would like to study the conver-
gence of our algorithm. Given noise free input, we want
to check whether or not our proposed algorithm converge;
and if it does converge, whether it converges to the correct



Figure 3: Obtained Affinity Matrix A = |C|+|CT |. a) Affinity ma-
trix from SSC; b) Affinity matrix from our Method. Best Viewed
on Screen.

solution. Note that we use the sparse sequences from the
CMU MoCap dataset [1] directly without any dimension
reduction or projection. Typical convergence curves of the
objective function and the primal residuals are illustrated in
Fig. 1.

1.2. Experiment: Performance on noisy feature
tracks

In the second experiment, we conducted analysis to the
performance of our method under different level of noise.
In the same manner as above, we generated multi-body non-
rigid sequences (“Dance + Yoga”, “Face + Pickup”, “Face
+ Yoga”, “Shark + Stretch”, “Shark + Yoga”, “Stretch +
Yoga” and “Walking + Yoga”), then zero-mean Gaussian
noise with standard deviation σ were added to the feature
tracks. For each noisy input, we ran our code for 5 times and
recorded the mean 3D reconstruction error and non-rigid

motion segmentation error.
In Fig. 2, we illustrated the statistical results of 3D

non-rigid reconstruction and non-rigid motion segmenta-
tion. From the figures, we conclude that both the 3D recon-
struction error and the motion segmentation error increases
with the increase of noise level. Our 3D reconstruction
based non-rigid motion segmentation achieves smaller mo-
tion segmentation error compared with 2D trajectory based
motion segmentation methods such as sparse subspace clus-
tering (SSC) [2] and efficient dense subspace clustering
(EDSC) [3].

1.3. Affinity Matrix Comparison

In Fig. 3, we compare the affinity matrices from SSC
[2] and our method. It is clear that our method outputs an
affinity matrix with better structure, which results in better
non-rigid motion segmentation performance.
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