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ABSTRACT

Simultaneous camera pose, 4D reconstruction of an object
and deformation clustering from incomplete 2D point tracks
in a video is a challenging problem. To solve it, in this work
we introduce a union of piecewise subspaces to encode the 4D
shape, where two modalities based on B-splines and Catmull-
Rom curves are considered. We demonstrate that formulating
the problem in terms of B-spline or Catmull-Rom functions,
allows for a better physical interpretation of the resulting pri-
ors while C1 and C2 continuities are automatically imposed
without needing any additional constraint. An optimization
framework is proposed to sort out the problem in a unified,
accurate, unsupervised and efficient manner. We extensively
validate our claims on a wide range of human motions, in-
cluding articulated and continuous deformations as well as
those cases with noisy and missing measurements where our
approach provides competing joint solutions.

Index Terms— 4D Reconstruction, Catmull-Rom, B-
splines, Clustering, Optimization.

1. INTRODUCTION

The problem of simultaneously recovering the 3D reconstruc-
tion of a dynamic object and the camera motion from incom-
plete 2D point tracks in a video is coined in the literature as
non-rigid structure from motion [1, 2, 3]. Despite being a
very challenging problem with many real-world applications
in several domains, solving it without 3D supervision is an
ill-posed problem that requires exploring the art of priors to
be tractable. Probably, the most standard prior in this context
is that based on a low-rank subspace in terms of shapes [4, 5],
trajectories [6, 7], shape-trajectory models [8, 9, 10, 11] or
forces to induce the deformations [12]. These models for
shapes [13] and trajectories [14] were also considered in a
deep-learning context, where large amounts of training data
are needed to learn the model. According to literature, most
shape- and force-based approaches need to estimate the ba-
sis from data. However, a trajectory basis for a wide variety
of motions could be pre-defined a priori, by using some sig-
nal representations as the discrete cosine transform [6, 7, 14]
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Fig. 1. Human motion modeling by means of piecewise curves.
Considering a parametric scenario with K = 7 control points, sev-
eral performances can be obtained depending on the trajectory ba-
sis: 1) Catmull-Rom functions that interpolate the points (blue and
magenta pieces), 2) B-spline functions that approximate the points
(green and cyan pieces), and 3) Bézier functions that include some
points in the solution (red and black pieces). As it can be seen, the
Bézier curve is not smooth between pieces. Best viewed in color.

where the problem is handled in a global manner. More re-
cently, these methods were extended to piece-varying mo-
tion, where the trajectory basis is local-aware, more control-
lable but it needs to impose restrictive continuity constraints
to smoothly connect the pieces [15]. The low-rank constraint
has also been imposed by directly minimizing the rank of a
matrix representing the 4D shape, considering the data lie in a
single [16, 17], in a union of temporal [18, 19], in a dual union
of spatio-temporal [20, 21], or in multiple [22] subspaces. In
these cases, some temporal and/or spatial segmentations were
also included in the solution.

We here depart from previous work in that our approach
exploits a union of piecewise subspaces to encode 3D point
trajectories that are observed in 2D data. The key factor of
our approach is that we use pre-defined Catmull-Rom and
B-spline functions to define the trajectory basis that directly
guarantees C1 and C2 continuities, respectively. Our piece-
wise model is parametrized by a set of control points that
are interpolated/approximated in the case of Catmull-Rom/B-
spline functions, respectively (a comparison of both represen-
tations is displayed in Fig. 1). We present a novel unified, ac-
curate, unsupervised, and efficient approach that can exploit
both modalities naturally, and it produces competing results
with respect to state-of-the-art solutions. To the best of our
knowledge, this is the first time a union of B-spline/Catmull-
Rom subspaces is introduced.



2. SMOOTH-AWARE SPLINE CURVES

The use of parametric curves defined by a set of control
points have been widely employed in mechanical engineering
for computer-aided design [23]; in the context of computer
graphics for object modeling, camera paths or vector fonts
as well as in many computer-vision and image-processing
applications such as image segmentation, compression [24]
and recognition [25]. Without loss of generality, a curve
c(s) can be defined by means of a linear combination of K
basis of degree K − 1 restricted to the continuous interval
s = [0, . . . , 1] as c(s) =

∑K
k=1 bk(s)pk, where bk(s) and pk

are the k-th basis and control point, respectively. The control
points, for any d-dimensional space, can be applied indepen-
dently for every dimension, being they directly defined in a
3D space by its coordinates as pk = [pxk, pyk, pzk]>.

While a curve could be approximated by high-order Bern-
stein polynomials, such as in a Bézier curve, the alternative
will normally produce unwanted wiggles or over-smoothing
solutions that do not consider rich and local information.
Moreover, the obtained global approximation would be very
hard to control. To solve that, splines can be considered to
obtain a piecewise smooth curve that is coded by low-order
–up to a degree of 3– polynomials. In this context, maybe the
most standard way is the use of low-order Bézier curves [15].
For Bézier curves, the solution is contained in the convex
hull of the control polygon and, the use of quadratic or cubic
functions is a direct consequence of the number of control
points to encode the global curve. This type of approximation
guarantees directly a C0 continuity, since a unique control
point acts as the last and the first in two consecutive pieces,
respectively (see Fig. 1). Unfortunately, and as it can be seen
in the figure, this construction does not guarantee C1 and C2

continuities that instead it should be enforced via constraints.
Looking for a more compact representation, we could

consider the use of Catmull-Rom splines that provides local
controllability –like in piecewise Bézier curves– while both
C0 and C1 continuities will be automatically guaranteed. In
this interpolation case, all control points excepting the first
and the last are included in the global curve (see Fig. 1). To
achieve that, a different set basis needs to be used but, in
contrast to piecewise Bézier curves, this time with the same
basis for every piece (see Fig. 2-left with cubic Catmull-Rom
functions). In addition to that, we could also consider uniform
B-spline basis functions to solve the problem, achieving C2

continuity and local controllability in a unified formulation.
To this end, B-spline basis functions (see Fig. 2-middle with
cubic B-spline functions) are used to produce global curves
that do not interpolate any of control points (an example it
can be observed in Fig. 1), i.e., the set of control points is
approximated by piecewise and continuous sections.

Table 1 shows the number of pieces as a function of the
number of control points for both B-spline and Catmull-Rom
modalities. It is worth noting that a unique set of cubic func-
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Fig. 2. Cubic spline basis functions. Left: Catmull-Rom. Mid-
dle: B-spline. Right: Bézier. Every color represents a k-th basis
bk(s). Best viewed in color.

K P Modality N K P Modality N
4 1 B-spline/Catmull 0/2 11 8 B-spline/Catmull 0/9
5 2 B-spline/Catmull 0/3 12 9 B-spline/Catmull 0/10
6 3 B-spline/Catmull 0/4 13 10 B-spline/Catmull 0/11
7 4 B-spline/Catmull 0/5 14 11 B-spline/Catmull 0/12
8 5 B-spline/Catmull 0/6 15 12 B-spline/Catmull 0/13
9 6 B-spline/Catmull 0/7 16 13 B-spline/Catmull 0/14
10 7 B-spline/Catmull 0/8 17 14 B-spline/Catmull 0/15

Table 1. Curve modeling using B-spline and Catmull-
Rom functions. The table shows how a generic curve can be
approximated/interpolated by several B-spline/Catmull-Rom
curves, respectively, as a function of the number of control
points (K), the number of pieces (P) to be used, and the num-
ber of control points to lie in the final curve (N). For every
modality, the same cubic functions are used per piece.

tions is employed for every modality instead of a combina-
tion of quadratic and cubic pieces that are used for piecewise
Bézier curves [15]. In general terms, the number of pieces
is bigger and, therefore, the global curve is more local-aware
controllable, while C1 and C2 continuities between consec-
utive pieces can be automatically enforced without including
any additional constraint. In the next section, we introduce
both B-spline and Catmull-Rom curves to encode 3D motion,
fitting it from 2D point tracks in a sequence of color images.

3. MODELING 3D SPLINES FROM 2D MOTION

Let sin = [xin, y
i
n, z

i
n]> be the n-th 3D point at image i of an

object. Assuming an orthographic camera, its 2D projection
can be denoted as wi

n = [uin, v
i
n]>. After detecting the N

points in the I images, and subtracting a 2D translation to
obtain zero-mean measurements, the 3D-to-2D projection is:w1

1 . . . w1
N

...
. . .

...
wI

1 . . . wI
N


︸ ︷︷ ︸

W

=

R1

. . .
RI


︸ ︷︷ ︸

G

s11 . . . s1N
...

. . .
...

sI1 . . . sIN

 ,
︸ ︷︷ ︸

S

where W is a 2I ×N measurement matrix to collect the 2D
point tracks, G is a 2I × 3I block diagonal matrix, made of
the I truncated 2× 3 camera rotations Ri, and S is a 3I ×N
shape matrix with the 3D locations of the corresponding dy-
namic points. The inverse problem to infer both camera pose
and the 3D non-rigid reconstruction from 2D data consists in
factoring W into motion G and shape S factors.



One possibility to handle the previous problem is the use
of trajectory-based models [6, 14, 15, 26, 27], where the loca-
tion of each point coordinate over time is encoded by a linear
combination of K low-frequency basis vectors. These meth-
ods were first applied in a global manner without being useful
to recover piece-varying motions and later, in a local fashion
by means of the use of piecewise Bézier curves [15]. De-
spite providing striking results and local controllability, the
global curve could not be smooth enough as some continuities
need to be enforced by additional constraints. To sort out this
limitation, we propose the use of B-splines or Catmull-Rom
functions, achieving so a more compact representation where
the continuities are automatically enforced. To this end, and
following [15], we consider N 3K-dimensional vectors as
κn = [pnx1, . . . , p

n
xK , p

n
y1, . . . , p

n
yK , p

n
z1, . . . , p

n
zK ]>, to col-

lect theK control-point locations associated with the n-th ob-
ject point. Additionally, we define I K-dimensional vectors
as bi(s) = [b1(s), . . . , bK(s)]>, where the entries bk(s) rep-
resent the k-th B-spline or Catmull-Rom basis component at
instant s. As in both cases we use cubic functions, all entries
excepting four in bi(s) will be null. To find those particu-
lar entries in the i-th image, we consider the total number of
control points to obtain the number of pieces (according to
Table 1) and assign the corresponding number of images to
each piece defined by just four control points. Then, for ev-
ery piece, it is established a direct correspondence between
the number of images and the interval [0, . . . , 1], obtaining
the s value. Control-point locations and basis functions are
combined to encode a 3D image-varying shape as:

S =

I3 ⊗ (b1(s))>

...
I3 ⊗ (bI(s))>


︸ ︷︷ ︸

B∈R3I×3K

[
κ1 . . . κN

]︸ ︷︷ ︸
C∈R3K×N

, (1)

where I is a 3 × 3 identity matrix, and ⊗ represents the Kro-
necker product. Finally, we assume that the image-varying
shape encoded by B-spline or Catmull-Rom curves lie in a
union of temporal subspaces. To this end, we introduce the
matrix Ŝ that rearranges the entries of S into a new 3N × I
matrix [18, 16] and then define Ŝ = ŜT + E, where T is a
I × I similarity matrix to encode the deformation clustering,
and E is a 3N × I residual noise. To solve the problem, a
low-rank constraint over Ŝ is enforced as the deformation can
be coded by a reduced combination of modes. T is also low
rank and that value represents the number of clusters.

4. OPTIMIZATION PROBLEM

Our goal is to jointly retrieve the camera pose, the 3D non-
rigid shape, as well as the deformation clustering of an ob-
ject, all of them, from partial 2D point tracks. To this end,
we exploit a union of B-spline or Catmull-Rom subspaces –
two modalities are possible–, as it was introduced in sec. 3.

As it was said above, we must impose some low-rank con-
straints that is a non-convex NP-hard problem, being handled
by means of a nuclear norm as its convex relaxation [28]. Fi-
nally, we enforce orthonormality constraints on camera ro-
tations and we also use a fourth-order temporal filter in our
formulation by means of the expression ŜF = 0, as it was
introduced in [18]. As a result, our optimization strategy is
unsupervised, unified, accurate and efficient.

With these considerations, let Ψ ≡ {W,G,S, Ŝ,T,C,E}
be the set of all model parameters to be estimated. As input
data, we consider partial 2D point tracks in W̄, and the cor-
responding visibility matrix V ∈ RI×N , with {0, 1} values
indicating whether a point in a specific image is missing or
not. On overall, the problem can be written as:

arg min
Ψ

‖ (V ⊗ 12)�
(
W − W̄

)
‖2F + β‖W‖∗ + ζg(Ri)

+ α‖S−BC‖F + γ(‖Ŝ‖∗ + ‖T‖∗) + λ‖E‖2,1 (2)

subject to W = GS

S = q(Ŝ)

Ŝ = ŜT + E

ŜF = 0

RiRi> = I2 , 1 ≤ i ≤ I

where 1 is a vector of ones, and � represents a Hadamard
product. ‖ · ‖F , ‖ · ‖∗ and ‖ · ‖2,1 indicate the Frobenius, nu-
clear and l2,1-norms, respectively. {β, ζ, α, γ, λ} are weight
coefficients. Finally, we denote by g(·) the function to en-
force smooth solutions on the camera rotation, and by q(·) the
function to map Ŝ into S. Problem in Eq. (2) can be solved
by means of a two-step approach in which: 1) complete miss-
ing tracks W, 2) estimate rotation G, 4D shape (S, Ŝ,C,E)
and clustering T parameters. Both problems are solved by
augmented Lagrange multipliers [20].

5. EXPERIMENTAL EVALUATION

We provide experimental results on several human motion se-
quences, considering different body configurations with ar-
ticulated and continuous deformation as well as with partial
and dense entries. For quantitative evaluation, we use the ar-
ticulated human motion dataset introduced in [6] which in-
cludes five types of actions; nine competing methods are con-
sidered for comparison: MP [4], PTA [6], CSF [9], KSTA [8],
BMM [16], PPTA [27], URS [18], TRUS [3], and PBS [15];
and under two situations: noise-free and noisy 2D point tracks
as it was done in [27]. As in [9, 16, 27], we provide the mean
rotation error eR and the normalized mean 3D error eS . For
further details, we refer the reader to these papers. We also re-
port the deformation clustering error eC [20], after applying
spectral clustering [29] over the similarity matrix T.

As in piecewise Bézier curves [15], our approach –with
two modalities– needs to fix the number of control points K.



PPPPPPPPData
Met.

MP [4] PTA [6] CSF [9] KSTA [8] BMM [16] PPTA [27] URS [18] TRUS [3] PBS [15] BS (Ours) CR (Ours)

eR eS(K) eR eS(K) eR eS(K) eR eS(K) eR eS(K) eR eS(K) eR eS eC [%] eR eS eC [%] eR eS eC [%] eR eS eC [%] eR eS eC [%]
Noise-free observations

Drink .330 .357(12) .006 .025(13) .006 .022(6) .006 .020(12) .007 .027(12) .006 .011(30) .006 .009 0.8(2) .006 .009 0.6(2) .005 .009 0.6(2) .005 .008 0.6(2) .005 .009 0.6(2)
Stretch .832 .900(8) .055 .109(12) .049 .071(8) .049 .064(11) .068 .103(11) .058 .084(11) .058 .061 4.1(3) .058 .060 4.1(3) .048 .062 4.3(3) .048 .062 4.3(3) .047 .061 4.0(3)
Yoga .854 .786(2) .106 .163(11) .102 .147(7) .102 .148(7) .088 .115(10) .106 .158(11) .106 .143 0.3(2) .091 .133 0.2(2) .076 .111 0.1(2) .076 .110 0.1(2) .075 .109 0.1(2)
Pick-up .249 .429(5) .155 .237(12) .155 .230(6) .155 .233(6) .121 .173(12) .154 .235(12) .154 .221 3.7(3) .147 .209 3.0(3) .104 .138 1.4(3) .104 .137 1.1(3) .104 .136 0.8(3)
Dance – .271(5) – .296(5) – .271(2) – .249(4) – .188(10) – .229(4) – .165 – – .150 – – .143 – – .140 – – .141 –
Average error: .549 .166 .148 .143 .121 .143 .119 .112 .093 .091 0.91
Relative error: 6.01 1.82 1.63 1.57 1.33 1.57 1.31 1.23 1.02 1.00 1.00

Noisy observations
Drink .329 .517(12) .043 .045(13) .043 .044(6) .043 .042(12) .044 .056(12) .042 .038(30) .042 .044 3.6(2) .036 .034 1.4(2) .037 .036 1.3(2) .037 .035 1.3(2) .037 .036 1.3(2)
Stretch .872 .975(8) .091 .144(12) .091 .121(8) .091 .166(11) .098 .183(11) .091 .123(11) .091 .119 8.4(3) .091 .119 5.1(3) .091 .120 4.9(3) .091 .119 4.3(3) .091 .119 4.3(3)
Yoga .858 .791(2) .124 .174(11) .125 .168(7) .125 .172(7) .136 .195(10) .124 .174(11) .125 .167 0.0(2) .112 .162 0.2(2) .115 .164 0.2(2) .114 .164 0.2(2) .114 .163 0.2(2)
Pick-up .250 .407(5) .148 .228(12) .148 .224(6) .148 .222(6) .141 .212(12) .148 .228(12) .148 .207 3.1(3) .147 .205 2.5(3) .103 .136 1.2(3) .103 .136 1.2(3) .103 .135 0.8(3)
Dance – .282(5) – .299(5) – .266(2) – .248(4) – .236(10) – .222(4) – .164 – – .157 – – .146 – – .144 – – .144 –
Average error: .594 .178 .165 .170 .176 .157 .140 .135 .120 .119 .119
Relative error: 4.98 1.49 1.38 1.42 1.48 1.32 1.17 1.13 1.01 1.00 1.00

Table 2. Quantitative comparison on human mocap sequences. Rotation eR and 3D reconstruction eS errors for competing
techniques: MP [4], PTA [6], CSF [9], KSTA [8], BMM [16], PPTA [27], URS [18], TRUS [3], and PBS [15]; and for our
methods BS and CR, considering both noise-free and noisy observations. The table also indicates in parentheses the rank K
of the linear subspace that produced the lowest eS . Relative error is always computed w.r.t. the best reconstruction. When
possible, eC [%] and the number of motion clusters in parentheses are provided. “−” means that ground truth is not available.
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Fig. 3. eR and eS errors as a function of K for BS (-.) and CR
(–) functions. Results on the five human motion capture sequences.

Fortunately, our approach is not very sensitive to this selec-
tion, providing an error reduction as K increases, while the
solution is within reasonable bounds (see Fig. 3). Thanks to
this behavior, our approach does not need fine tuning any pa-
rameter and K could be set according to other factors such
as external physical priors or computational resources. Ta-
ble 2 summarizes both eR and eS for all methods, actions,
and situations we consider. It is worth pointing out that our
approaches provide competitive solutions in terms of joint es-
timations, improving eS with respect to state-of-the-art ap-
proaches by large margins between the 2% and 601% for
noise-free, and between the 1% and 498% for noisy obser-
vations, respectively. As a consequence of the improvement
on 3D error, our approaches also achieve good clustering re-
sults eC when available. The median computation time for
both modalities in unoptimized Matlab code for these exper-
iments was of 81 seconds, on a commodity laptop with an
Intel Core i7 processor at 2.4GHz, i.e., giving an speed up of
27% in comparison with [15] due to no additional constraint
to enforce spatial continuity is needed.

We provide results against a 11.5% of missing entries by
processing an American-sign-language sequence where a hu-
man face is deforming and moving; and using dense (back and
heart) data by running two sequences taken from [17]. Fig-
ure 4-top shows some images and our joint estimations for all
points in every case by using Catmull-Rom functions. Our al-
gorithm obtains qualitatively accurate and physically possible
solutions in comparison to [3, 15]. For instance, three clusters
in the face sequence (open and closed mouth with open eyes,
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Fig. 4. Qualitative comparison on real Face, Back and
Heart videos. The same information is provided in all cases.
Left: Deformation similarity matrix T and the corresponding
clustering bar we recover. Right: Images and 3D reconstruc-
tion for a novel point of view. Every color corresponds to a
deformation cluster. Blue crosses represent missing tracks.

and closed eyes) are detected for our approach.

6. CONCLUSION

We have introduced a union of piecewise subspaces with two
modalities based on B-splines and Catmull-Rom trajectory
functions to encode a 4D shape that is observed with a color
camera. This model is combined with some additional priors
but without enforcing explicitly a spatial smooth continuity.
All model parameters are recovered in a unified, accurate, un-
supervised, and efficient manner by means of an optimization
algorithm. Experimental results on human motion sequences
show a good trade-off between accuracy and computational
cost in comparison to state-of-the-art approaches. Our future
work is oriented to extend our formulation to spline surfaces.
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