1,300 research outputs found

    Vacuum mechatronics

    Get PDF
    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed

    Task analysis of discrete and continuous skills: a dual methodology approach to human skills capture for automation

    Get PDF
    There is a growing requirement within the field of intelligent automation for a formal methodology to capture and classify explicit and tacit skills deployed by operators during complex task performance. This paper describes the development of a dual methodology approach which recognises the inherent differences between continuous tasks and discrete tasks and which proposes separate methodologies for each. Both methodologies emphasise capturing operators’ physical, perceptual, and cognitive skills, however, they fundamentally differ in their approach. The continuous task analysis recognises the non-arbitrary nature of operation ordering and that identifying suitable cues for subtask is a vital component of the skill. Discrete task analysis is a more traditional, chronologically ordered methodology and is intended to increase the resolution of skill classification and be practical for assessing complex tasks involving multiple unique subtasks through the use of taxonomy of generic actions for physical, perceptual, and cognitive actions

    Develop a Multiple Interface Based Fire Fighting Robot

    Get PDF

    Integrated platform for real-time control and production and productivity monitoring and analysis

    Get PDF
    In this paper is proposed the IndustSystems, which is an integrated platform that aims at controlling and monitoring of production and evaluation of productivity in real time, via web access, using hybrid and scheduling algorithms that allow management and optimized use of production resources and perfect synchronization of production flows.This work was supported by FCT “Fundação para a Ciência e a Tecnologia” under the program: PEst20152020.info:eu-repo/semantics/publishedVersio

    Final report key contents: main results accomplished by the EU-Funded project IM-CLeVeR - Intrinsically Motivated Cumulative Learning Versatile Robots

    Get PDF
    This document has the goal of presenting the main scientific and technological achievements of the project IM-CLeVeR. The document is organised as follows: 1. Project executive summary: a brief overview of the project vision, objectives and keywords. 2. Beneficiaries of the project and contacts: list of Teams (partners) of the project, Team Leaders and contacts. 3. Project context and objectives: the vision of the project and its overall objectives 4. Overview of work performed and main results achieved: a one page overview of the main results of the project 5. Overview of main results per partner: a bullet-point list of main results per partners 6. Main achievements in detail, per partner: a throughout explanation of the main results per partner (but including collaboration work), with also reference to the main publications supporting them

    Sensor based real-time mechatronic control of computer integrated manufacturing

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2008Industrial competition is characterised by increasing globalisation of markets, coupled wit

    Machine Vision for intelligent Semi-Autonomous Transport (MV-iSAT)

    Get PDF
    AbstractThe primary focus was to develop a vision-based system suitable for the navigation and mapping of an indoor, single-floor environment. Devices incorporating an iSAT system could be used as ‘self-propelled’ shopping carts in high-end retail stores or as automated luggage routing systems in airports. The primary design feature of this system is its Field Programmable Gate Array (FPGA) core, chosen for its strengths in parallelism and pipelining. Image processing has been successfully demonstrated in real-time using FPGA hardware. Remote feedback and monitoring was broadcasted to a host computer via a local area network. Deadlines as short as 40ns have been met by a custom built memory-based arbitration scheme. It is hoped that the iSAT platform will provide the basis for future work on advanced FPGA-based machine-vision algorithms for mobile robotics
    corecore