429,902 research outputs found

    The Highly Miniaturised Radiation Monitor

    Full text link
    We present the design and preliminary calibration results of a novel highly miniaturised particle radiation monitor (HMRM) for spacecraft use. The HMRM device comprises a telescopic configuration of active pixel sensors enclosed in a titanium shield, with an estimated total mass of 52 g and volume of 15 cm3^3. The monitor is intended to provide real-time dosimetry and identification of energetic charged particles in fluxes of up to 108^8 cm−2^{-2} s−1^{-1} (omnidirectional). Achieving this capability with such a small instrument could open new prospects for radiation detection in space.Comment: 17 pages, 15 figure

    Miniature biplanar coils for alkali-metal-vapor magnetometry

    Full text link
    Atomic spin sensors offer precision measurements using compact, microfabricated packages, placing them in a competitive position for both market and research applications. Performance of these sensors such as dynamic range may be enhanced through magnetic field control. In this work, we discuss the design of miniature coils for three-dimensional, localized field control by direct placement around the sensor, as a flexible and compact alternative to global approaches used previously. Coils are designed on biplanar surfaces using a stream-function approach and then fabricated using standard printed-circuit techniques. Application to a laboratory-scale optically pumped magnetometer of sensitivity ∼\sim20 fT/Hz1/2^{1/2} is shown. We also demonstrate the performance of a coil set measuring 7×17×177 \times 17 \times 17 mm3^3 that is optimized specifically for magnetoencephalography, where multiple sensors are operated in proximity to one another. Characterization of the field profile using 87^{87}Rb free-induction spectroscopy and other techniques show >>96% field homogeneity over the target volume of a MEMS vapor cell and a compact stray field contour of ∼\sim1% at 20 mm from the center of the cell

    GeoNEX: A Cloud Gateway for Near Real-time Processing of Geostationary Satellite Products

    Get PDF
    The emergence of a new generation of geostationary satellite sensors provides land andatmosphere monitoring capabilities similar to MODIS and VIIRS with far greater temporal resolution (5-15 minutes). However, processing such large volume, highly dynamic datasets requires computing capabilities that (1) better support data access and knowledge discovery for scientists; (2) provide resources to enable real-time processing for emergency response (wildfire, smoke, dust, etc.); and (3) provide reliable and scalable services for the broader user community. This paper presents an implementation of GeoNEX (Geostationary NASA-NOAA Earth Exchange) services that integrate scientific algorithms with Amazon Web Services (AWS) to provide near realtime monitoring (~5 minute latency) capability in a hybrid cloud-computing environment. It offers a user-friendly, manageable and extendable interface and benefits from the scalability provided by Amazon Web Services. Four use cases are presented to illustrate how to (1) search and access geostationary data; (2) configure computing infrastructure to enable near real-time processing; (3) disseminate and utilize research results, visualizations, and animations to concurrent users; and (4) use a Jupyter Notebook-like interface for data exploration and rapid prototyping. As an example of (3), the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) was implemented on GOES-16 and -17 data to produce an active fire map every 5 minutes over the conterminous US. Details of the implementation strategies, architectures, and challenges of the use cases are discussed

    Determination of the 3D Human Spine Posture from Wearable Inertial Sensors and a Multibody Model of the Spine

    Get PDF
    [Abstract] Determination of spine posture is of great interest for the effective prevention, evaluation, treatment and evolution monitoring of spinal disorders. Limitations of traditional imaging systems, including cost, radiation exposure (for X-ray based systems), projection volume issues and subject positioning requirements, etc., make non-invasive motion assessment tools effective alternatives for clinical and non-clinical use. In this work, a procedure was developed to obtain a subject-specific multibody model of the spine using either inertial or optical sensors and, based on this multibody model, to estimate the locations and orientations of the 17 vertebrae constituting the thoracolumbar spine. The number and calibration of the sensors, angular offsets, scaling difficulties and gender differences were addressed to achieve an accurate 3D-representation of the spine. The approach was validated by comparing the estimated positions of the sensors on 14 healthy subjects with those provided by an optical motion capture system. A mean position error of lower than 12 mm was obtained, thus showing that the proposed method can offer an effective non-invasive tool for the assessment of spine posture.This work was funded by the Spanish MCI under project PGC2018-095145-B-I00, co-financed by the EU through the EFRD program, and by the Galician Government under grant ED431C2019/29 and under grant IN853B-2018/02Xunta de Galicia; ED431C2019/29Xunta de Galicia; IN853B-2018/0

    Target Mass Monitoring and Instrumentation in the Daya Bay Antineutrino Detectors

    Full text link
    The Daya Bay experiment measures sin^2 2{\theta}_13 using functionally identical antineutrino detectors located at distances of 300 to 2000 meters from the Daya Bay nuclear power complex. Each detector consists of three nested fluid volumes surrounded by photomultiplier tubes. These volumes are coupled to overflow tanks on top of the detector to allow for thermal expansion of the liquid. Antineutrinos are detected through the inverse beta decay reaction on the proton-rich scintillator target. A precise and continuous measurement of the detector's central target mass is achieved by monitoring the the fluid level in the overflow tanks with cameras and ultrasonic and capacitive sensors. In addition, the monitoring system records detector temperature and levelness at multiple positions. This monitoring information allows the precise determination of the detectors' effective number of target protons during data taking. We present the design, calibration, installation and in-situ tests of the Daya Bay real-time antineutrino detector monitoring sensors and readout electronics.Comment: 22 pages, 20 figures; accepted by JINST. Changes in v2: minor revisions to incorporate editorial feedback from JINS

    Experimental Study of Various Techniques to Protect Ice-Rich Cut Slopes

    Get PDF
    INE/AUTC 15.08 and INE/AUTC 13.07 (2013) Construction Repor

    Respiration rate and volume measurements using wearable strain sensors.

    Get PDF
    Current methods for continuous respiration monitoring such as respiratory inductive or optoelectronic plethysmography are limited to clinical or research settings; most wearable systems reported only measures respiration rate. Here we introduce a wearable sensor capable of simultaneously measuring both respiration rate and volume with high fidelity. Our disposable respiration sensor with a Band-Aid© like formfactor can measure both respiration rate and volume by simply measuring the local strain of the ribcage and abdomen during breathing. We demonstrate that both metrics are highly correlated to measurements from a medical grade continuous spirometer on participants at rest. Additionally, we also show that the system is capable of detecting respiration under various ambulatory conditions. Because these low-powered piezo-resistive sensors can be integrated with wireless Bluetooth units, they can be useful in monitoring patients with chronic respiratory diseases in everyday settings
    • …
    corecore