37 research outputs found

    GA-based tuning of nonlinear observers for sensorless control of IPMSMs

    Get PDF
    The paper considers two observer-based rotor position estimation schemes for sensorless control of interior permanent magnet synchronous machines (IPMSMs). Emphasis is given to techniques based on feedback linearisation followed by Luenberger observer design, and direct design of nonlinear observers. Genetic algorithms (GAs) based on the principles of evolution, natural selection and genetic mutation are employed to address difficulties in selecting correction gains for the observers, since no analytical tuning mechanisms yet exist, with results included to demonstrate the enhanced performance attributes offered by observers tuned in this way

    Nonlinear state-observer techniques for sensorless control of automotive PMSM's, including load-torque estimation and saliency

    Get PDF
    The paper investigates various non-linear observer-based rotor position estimation schemes for sensorless control of permanent magnet synchronous motors (PMSMs). Attributes of particular importance to the application of brushless motors in the automotive sector, are considered e.g. implementation cost, accuracy of predictions during load transients, the impact of motor saliency and algorithm complexity. Emphasis is given to techniques based on model linearisation during each sampling period (EKF); feedback-linearisation followed by Luenberger observer design based on the resulting �linear� motor characteristics; and direct design of non-linear observers. Although the benefits of sensorless commutation of PMSMs have been well expounded in the literature, an integrated approach to their design for application to salient machines subject to load torque transients remains outstanding. Furthermore, this paper shows that the inherent characteristics of some non-linear observer structures are particularly attractive since they provide a phase-locked-loop (PLL)-type of configuration that can encourage stable rotor position estimation, thereby enhancing the overall sensorless scheme. Moreover, experimental results show how operation through, and from, zero speed, is readily obtainable. Experimental results are also employed to demonstrate the attributes of each methodology, and provide dynamic and computational performance comparisons

    GA-tuning of nonlinear observers for sensorless control of automotive power steering IPMSMs

    Get PDF
    The paper considers two observer-based rotor position estimation schemes for sensorless control of interior permanent magnet synchronous motors (IPMSMs) for use in future automotive power steering systems. Specifically, emphasis is given to techniques based on feedback-linearisation followed by classical Luenberger observer design, and direct design of non-linear observers. Genetic algorithms (GAs), using the principles of evolution, natural selection and genetic mutation, are introduced to address difficulties in selecting correction gains for the observers, since no analytical tuning mechanisms yet exist. Experimental measurements from an automotive power steering test-facility are included, to demonstrate the enhanced performance attributes offered by tuning the proposed observer schemes, online, in this manner

    GA-based tuning of nonlinear observers for sensorless control of IPMSMs

    Full text link

    Comparative study of speed estimators with highly noisymeasurement signals for Wind Energy Generation Systems

    Full text link
    This paper presents a comparative study of several speed estimators to implement a sensorless speed control loop in Wind Energy Generation Systems driven by power factor correction three-phase boost rectifiers. This rectifier topology reduces the low frequency harmonics contents of the generator currents and, consequently, the generator power factor approaches unity whereas undesired vibrations of the mechanical system decrease. For implementation of the speed estimators, the compared techniques start from the measurement of electrical variables like currents and voltages, which contain low frequency harmonics of the fundamental frequency of the wind generator, as well as switching frequency components due to the boost rectifier. In this noisy environment it has been analyzed the performance of the following estimation techniques: Synchronous Reference Frame Phase Locked Loop, speed reconstruction by measuring the dc current and voltage of the rectifier and speed estimation by means of both an Extended Kalman Filter and a Linear Kalman Filter. © 2010 Elsevier Ltd.The first author thanks the support of the Instituto Politecnico Nacional (IPN) to finance his stay at the Universidad Politecnica de Valencia (UPV). This work was supported by the Spanish Ministry of Science and Innovation under Grant ENE2009-13998-C02-02.Carranza Castillo, O.; Figueres Amorós, E.; Garcerá Sanfeliú, G.; González Morales, LG. (2011). Comparative study of speed estimators with highly noisymeasurement signals for Wind Energy Generation Systems. Applied Energy. 88(3):805-813. https://doi.org/10.1016/j.apenergy.2010.07.039S80581388

    A comparative study of Kalman filtering for sensorless control of a permanent-magnet synchronous motor drive

    Get PDF
    Author name used in this publication: Borsje, P.Author name used in this publication: Wong, Y. K.Author name used in this publication: Ho, S. L.Refereed conference paper2004-2005 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Three-Level Reduced Switch AC/DC/AC Power Conversion System for High Voltage Electric Vehicles

    Get PDF
    Two of the main challenges of recent electric vehicles (EVs) are the charging time and high initial cost. To solve the problem associated with long charging time, the car manufacturers are moving from 400 V battery EV (BEV) to 800 V BEV, which enables the utilization of multi-level converters in EV applications. This paper presents a power conversion system consisting of a Vienna rectifier and a two/three level hybrid inverter as a machine-side inverter to drive a permanent-magnet synchronous motor (PMSM). The Vienna rectifier improves the quality of the grid-side current and provides a regulated DC-link voltage. The proposed inverter, known as a 10-switch inverter, offers high output current quality with a lower number of active switches, making it compact and cost-effective. The field-oriented control (FOC), along with the SPWM modulation, is implemented to control the system. A reliable and cost-effective PMSM drive system demands sensorless control; therefore, a sliding mode observer (SMO) is used to estimate the rotor position and velocity. The accuracy of the proposed system was proved through the simulation results from MATLAB/Simulink.© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Study of solution towards ground leakage current via inverter switching in different topologies for grid connected PV system

    Get PDF
    Renewable energy sources are major issues in order to address the energy problem. Among them, the PV (Photovoltaic) system will be dominant because its availability and reliability. One of the common problems that arise due to the formation of solar PV panels is capacitive ground current. Although transformer helps in reducing this problem, the poor side of having the transformer in PV systems is accounted to bulky in size and hard to install the entire PV system. Indirectly, the cost is higher and led to a lower efficiency due to higher losses of power. To solve this, transformerless inverter topology offers a solution for the efficiency, size and weight. The leakage current depends on both inverter topology and control strategy. In this report, different inverter topologies have been reviewed with respect to ground current formation due to inverter switching that causes varying common mode voltage that will excite the resonant circuit as well as causes the leakage current phenomenon. The transformerless inverter topologies that are considered are Bipolar H-Bridge, Modified HB-ZVR and NPC. In order to study the effect of having a transformer in eliminating the ground current, Bipolar H-Bridge inverter with transformer also include in this project. All proposed topologies are modelled and simulated to compare the pattern and behavior of ground leakage current with other existing topology. By comparing the pattern of the output from the simulation, a conclusion is given which proves that NPC topology are suitable for PV application due to low leakage current compared with other two topologies

    Position control of parallel active link suspension with backlash

    Get PDF
    In this paper, a position control scheme for the novel Parallel Active Link Suspension (PALS) with backlash is developed to enhance the vehicle ride comfort and road holding. A PALS-retrofitted quarter car test rig is adopted, with the torque flow and backlash effect on the suspension performance analyzed. An elastic linear equivalent model of the PALS-retrofitted quarter car, which bridges the actuator position and the equivalent force between the sprung and unsprung masses, is proposed and mathematically derived, with both the geometry and backlash nonlinearities compensated. A position control scheme is then synthesized, with an outer-loop H∞ control for ride comfort and road holding enhancement and an inner-loop cascaded proportional-integral control for the reference position tracking. Experiments with the PALS-retrofitted quarter car test rig are performed over road cases of a harmonic road, a smoothed bump and frequency swept road excitation. As compared to a conventional torque control scheme, the newly proposed position control maintains the performance enhancement by the PALS, while it notably attenuates the overshoot in the actuator’s speed variation, and thereby it benefits the PALS with less power demand and less suspension deflection increment
    corecore