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Abstract− This paper presents a comparative study of the 
novel Unscented Kalman Filter (UKF) and the Extended 
Kalman Filter (EKF) for estimation of the rotor speed and 
position of a permanent-magnet synchronous motor (PMSM) 
drive. The general structure of the EKF and the UKF are 
reviewed. The various system vectors, matrices, models and 
algorithm programs are presented. Simulation studies on the 
two Kalman filters are carried out using Matlab and Simulink 
to explore the usability of the UKF in a sensorless PMSM drive. 
In order to compare the estimation performances of the 
observers, both filters are designed for the same motor model 
and control system and run with the same covariances. The 
simulation results indicate that the UKF is capable of tracking 
the actual rotor speed and position provided that the elements of 
the covariance matrices are properly selected. Since covariance 
tuning of the Kalman filter is often a trial-and-error process, an 
unconventional, asymmetric way of setting the model covariance 
parameters is introduced. It is shown that tuning is easier and 
the method gives a significant improvement in performance and 
filter stability.  
 

I. INTRODUCTION 
The permanent magnet synchronous motor (PMSM) is fast 

becoming the next-generation variable-speed AC motor drive 
due to the availability of high-energy permanent-magnet 
materials. Compared with the inverter-fed induction motor 
drive, the PMSM has no rotor loss and hence it is more 
efficient and a larger torque-to-weight ratio is achievable. 
One serious drawback of the classical PMSM, however, is the 
need for a rotor position sensor, such as a high-resolution 
encoder, for proper control of the inverter switches. To 
reduce the cost and to improve the reliability, sensorless 
PMSM control strategies have been developed. In these 
strategies, the motor position and speed is estimated and used 
as a feedback signal for closed-loop speed control. 

The Kalman filter is a special kind of observer which 
provides optimal estimation of the system states based on 
least-square techniques. The extended Kalman filter (EKF) is 
widely used for nonlinear filter problems. It is derived from 
the Kalman filter based on the successive linearization of the 
signal process and observation map. The EKF has been 
successfully applied to several sensorless AC drives [1]-[11]. 
Although the EKF is straightforward and simple to apply, it 
has three important drawbacks: 

1. Costly and sometimes complex derivation of the 
Jacobian/Hessian  matrices. 

2. Only first-order  accuracy. 
3. The linearization can lead to filter instability.  

To overcome the above drawbacks, Julier and Uhlmann 
[12], [13] introduced a novel estimation tool, known as the 
Unscented Kalman filter (UKF) for replacing the EKF in 
nonlinear filtering problems. The main advantage of the UKF 
is that linearization of the state and covariances is no longer 
necessary. Instead of linearizing using Jacobian matrices, the 
UKF uses a deterministic sampling approach to capture the 
mean and covariance estimates with a minimal set of sample 
points. Although the UKF has been applied to a wide range of 
estimation problems [14]-[18], little research work has been 
done on its application to position and speed estimation in 
sensorless PMSM drives. 

 In this paper, we explore the potential benefits of the UKF 
over the widely used EKF for sensorless control of PMSM 
drives. We describe the results of simulation studies which 
examine the estimation performances of the UKF and EKF in 
a variety of drive operations for a PMSM drive. The 
simulation will be done with Matlab/Simulink software.  

Like the EKF, the UKF also lacks analytical methods for 
suitable selection of model covariances. Choosing the 
parameters is often a trial-and-error process. Several methods 
have been introduced to find optimal settings [9]-[11]. In the 
present study, an unconventional way of choosing the model 
covariance parameters will be introduced.  

This paper is organized as follows. The next section gives 
some design considerations for the chosen drive structure. In 
section III a description of the control structure for the 
sensorless drive can be found. In section IV the used PMSM 
motor model is presented.  Section V gives a summary of the 
EKF and UKF filter. The simulation results are presented in 
section VI. 

II. DESIGN CONSIDERATIONS 
The motor model can be derived both in the stationary 

orthogonal αβ-reference frame, fixed to the stator, or in the 
synchronous dq-reference frame, fixed to the rotor flux.  

When implemented using the αβ-reference frame, the 
Kalman filter may converge to the wrong solution (-ω, θ+π) 
[4]. The wrong solution is maintained by the innovation step 
which updates the estimate and compensate for the difference 
between actual and predicted voltages and currents. 
Simulation studies have proved that this, as expected, also 
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applies to the UKF. Dedicated algorithms need to be 
implemented to correct the wrong convergence at startup [1]. 

Using the PMSM model in the dq-reference frame, the 
wrong convergence solution will not fit in the voltage 
equations and, hence, will prevent the system from wrong 
startup. Another side effect is that the system state matrices 
are less complex, especially for the interior-type PMSM, 
which will reduce the computational requirements 
considerably [2]. The main disadvantage of the dq model for 
a PMSM is that the measured currents need to undergo a 
coordinate transformation which uses the estimated position. 
This will introduce errors in the measured currents which are 
used in the innovation step, resulting in a constant error in the 
position estimation.  

In the model equations, the velocity ω is regarded as 
constant within the sampling time step Ts, assuming that the 
electrical system’s time constant is much smaller than the 
mechanical time constant. The motor inductances are 
assumed to be independent of currents, i.e., saturation effects 
arenot taken into account. 

III. SPEED AND CURRENT CONTROLLER 
Fig. 1 shows a schematic diagram of the proposed 

sensorless PMSM drive. A proportional-plus-integral (PI) 
speed controller is implemented to regulate the rotor speed by 
comparing the reference speed with the estimated speed. The 
PI controller delivers an output current reference iq*, while 
the direct current reference id* is set to zero for normal 
operation in order to obtain the maximum torque-to-current 
ratio.  

Fig. 2 shows the schematic diagram of the current 
controller represented using Simulink blocks. Two PI 
controllers are employed to regulate the stator current and  
feedforward control is used to decouple the dynamics 
between the applied voltages and the currents. The inputs of 
the current controller are the current reference and the  
estimated rotor speed, while its output is the reference 
voltage. The reference voltage will be applied to a space 
vector pulse width modulation (SVPWM) unit. The outputs 
of the PI controllers are limited and have anti-reset windup. 
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Fig. 1 Schematic diagram of proposed sensorless PMSM drive. 
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Fig. 2 Current controller: a representation using Simulink blocks. 

 
The reference voltages are used as estimator input instead 

of the measured phase voltages in order to improve the 
drive’s robustness to noise without the need for filtering. This 
approximation, however, is not effective at low speeds 
because of the dead times and the voltage drop of the inverter 
bridge, causing relatively large errors in the voltage estimate. 
Compensation methods can be used to improve the 
performance at low speeds [2], [20]-[22]. 

IV. PMSM EQUATIONS  
To avoid convergence problems at startup and to simplify 

the motor equations, the rotor reference frame is chosen for 
evaluation of the Kalman filters [2]. The motor nonlinear 
state equations can be expressed in the form:  

( )( ) ( ) ( ) ( )
( ) ( )
t t t t
t t
= +

=

x F x x Gu
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&
 (1) 

where d qu u ′ =  u and d qi i ′ =  y are the input and the 
output vectors, respectively. The state variables are 

d q e ei i ω θ ′ =  x  
The system state matrices are defined as 

 

( )

0 0

0( )

0 0 0 0
0 0 1 0

q
e

d d

d e
e

q q q

LR
L L

L KR
x t

L L L

ω

ω

 
− 

 
 
− − −=  
 
 
 
  

F  (2) 

816

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 11, 2009 at 02:03 from IEEE Xplore.  Restrictions apply.



1 0

10

0 0
0 0

d

q

L

L

 
 
 
 

=  
 
 
 
  

G    

1 0
0 1
0 0
0 0

 
 
 =
 
 
 

H  (3)(4) 

As can be seen from Fig. 1, the measurement of the phase 
voltages is replaced by the actual dq voltage delivered by the 
current control.  

V. ESTIMATION STRATEGIES 

A. EKF algorithm 
The EKF is an optimal estimator in the least square sense 

for the estimation of nonlinear dynamic systems. It is derived 
from the Kalman filter based on successive linearization of 
the signal process and observation map [14]. More details can 
be found in a previous work [3]. 

For this application the motor nonlinear state equations (1) 
are expressed in the discretized form  

( )1k k k k k+ = + +d dx F x x G u w  (5) 

k k k= +dy H x v  (6) 
The state model represented by (5) and (6) also includes 

the statistical description for the inaccuracies,  
where ( )k skT=w w  and  ( )k skT=v v  are, respectively, the 
zero-mean Gaussian process noise and measurement noise 
vectors with covariance matrices Q and R.  

The discretized matrices are derived using the exponential 
Taylor approximation [23]-[24], assuming a small sampling 
time and the use of zero-order-hold (ZOH) sampling 
technique.  

sT≅ +dF I F  (7) 

sT≅dG G  (8) 
=dH H  (9) 

The basic idea of the EKF is to linearize the state-space 
model represented by (5) and (6) at each time instant around 
the most recent state estimate, which is taken at ˆ kx or 1ˆ k−x . 
Once a linear model is obtained, the standard Kalman filter 
equations can be applied. 

The prediction of the state covariance requires the online 
computation of Jacobian matrix Ф, defined as 
 

( )
| 1| 1

1
ˆˆ

( ) ( )

k kk k

k

t t

−−

−
==

∂ ∂
= =

∂ ∂ x xx x

F x x xΦ
x x

&
 (10) 

The Jacobian of H is not calculated because H is linear. 
The discretized Jacobian of 1k−Φ will be approximated with  

, 1 1k k sT− −≅ +dΦ I Φ  (11) 
 

For a given sampling time tk the optimal state estimation 
ˆ k kx and its covariance matrix ˆ

k kP are generated by the filter 

through a two-step loop. The first step performs a prediction 
of both quantities using the previous estimates 1ˆ k k−x and the 

mean voltage vector 1k−u actually applied to the system in 

the period 1kt − to kt . The second step corrects the predicted 
state estimate and covariance matrix by the measured actual 
motor phase currents. 
 

Step 1: Prediction (time update) 
( )| 1 1| 1 1| 1 1ˆ ˆ ˆk k k k k k k− − − − − −= +d dx F x x G u  (12) 

| 1 1| 1 1k k k k k k− − − −
′= +d d dP Φ P Φ Q  (13) 

Step 2: Innovation (measurement update) 
( )| | 1 | 1ˆ ˆ ˆk k k k k k k k− −= + −x x K y Hx  (14) 

| | 1 | 1k k k k k k k− −= −P P K HP  (15) 
The Kalman gain is calculated by 

1

| 1 | 1k k k k k

−

− −′ ′ = + dK P H HP H R  (16) 

The covariance update involves subtraction and can result 
in loss of symmetry and positive definiteness due to rounding 
errors. Joseph’s form covariance update [14] avoids this at 
the expense of some computational burden: 

[ ] [ ] 1
| 1 | 1 1k k k k k k k k k k

−
− − − ′= − − + dP I K H P I K H K R K  (17) 

Details of the Jacobian matrices are given in Appendix A. 
 

B. Unscented Kalman filter 
The UKF is a derivative free alternative to the EKF [14]. 

The basic mechanism for UKF is the same as the one 
described above by the equations (12) and (14). The 
difference is that the UKF performs the state estimation by 
approximating the probability distribution after performing 
the computation using the nonlinear function, rather than 
approximating the nonlinearity itself as in the EKF.  To do 
this, the UKF utilizes the so called Unscented Transformation 
(UT).  

A set of deterministic sample points is taken around the 
last known state and propagated through the real nonlinear 
function. With these results a mean and covariance can be 
approximated using a weighted sample mean and covariance 
of the transferred sample points. 

These weighted sample points are generated as follows. 
Consider the state variable x with dimension L having mean 
x̂ and covariance xP . We now choose a set of 2 1L +  
weighted samples iχ (sigma points) deterministically so that 
they completely represent the true mean and covariance of 
state x. 
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where ( )2 L Lλ α κ= + −  is a scaling parameter. The 
superscripts (m) and (c) indicate the weight point for mean or 
covariance calculation respectively. The constant α 
determines the spread of the sigma points around x , and is set 
to a small positive value (e.g., 1 ≤ α ≤ 10-4). The constant κ is 
a secondary scaling parameter which is usually set to (3−L), 
and β is used to include prior knowledge of the distribution of 
x  (for Gaussian distribution β = 2 is optimal). 

( )( )L
i

λ+ Px  is the i-th row or column of the matrix 

square root of ( )L λ+ Px , and iW is the weight associated 

with the i-th sigma point so that 2

0
1L

ii
W

=
=∑ . Now each 

point is propagated through the nonlinear function to yield a 
set of transformed sigma points, 
 ( ) 0,...2i iY i Lχ= =g  (20) 

The mean and covariance of y are approximated by the 
weighted average mean and covariance of the transformed 
sigma points. 
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L T
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W Y

W Y Y
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=
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P y y
 (21) 

 
The UKF is an extension of the UT to the Kalman filter 

framework. Table I shows the standard UKF algorithm for 
the additive (zero mean) case which is used for the 
simulations.  

VI. SIMULATION RESULTS 
To verify the state estimation performance of the UKF and 

the EKF, a number of simulations were carried out for 
different operating conditions and parameter settings. The 
simulations were implemented using Matlab/Simulink 
software. The EKF and UKF algorithms were implemented 
as s-function blocks which were then inserted into the 
Simulink model. The parameters of the motor model and 
simulation are given in Appendix B. A sampling time of 50µs 
was chosen for the s-function. 

 
 

TABLE I 
UKF ALGORITHM FOR ADDITIVE (ZERO MEAN) NOISE 
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A crucial step in the design of the Kalman filters is the 

choice of the elements of the covariance matrices Q and R, as 
they will affect the performance, convergence and stability. 
The use of large values in Q presumes high model noise 
and/or parameter uncertainties. An increase in the values of 
the elements of Q will likewise increase the Kalman gain, 
resulting in faster filter dynamics but poorer steady-state 
performance.  Matrix R is related to the measurement noise. 
Increasing the values of the elements of R will assume that 
the current measurements are more affected by noise and thus 
less reliable. Consequently, the filter gain will decrease, 
yielding poorer transient response. 

The covariances Q and R are fixed for the simulations. 
Different values have been experimented for Q and R. For 
the simulation and comparison the following values were 
chosen: 
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In (23), Q11 and Q22 were not set to be equal as is normally  

done. Various simulation experiments conducted have shown 
that this gives a good transient response as well as good 
steady-state performance. Also finding a stable set proved to 
be easier when Q22 is 10 to 100 times smaller than Q11. The 
parameters for the UKF were set as follows: 

1, 2, 0α β κ= = = .  
Fig. 3 and Fig. 4 show, respectively, the simulation results 

of UKF and EKF state estimation performance for the 
sensorless PMSM drive. It is observed that both the UKF and 
EKF are capable of tracking the motor states satisfactorily. 
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Fig. 3 UKF performance: motor angle and speed states for no-load four 
quadrant high-speed reversal. 
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Fig. 4 EKF performance: motor angle and speed states for no-load four 
quadrant high-speed reversal. 
 

 

To test the noise robustness of the Kalman filters, a current 
noise in the range of [0-0.5A] was injected into the measured 
currents. The same simulations were carried out as for Fig. 3 
and Fig. 4. Fig. 5 and Fig. 6 show the errors between the 
actual and estimated states of the PMSM during this noise 
performance investigation. It can be observed that both filters 
were capable of tracking the speed and angle under noisy 
machine operation and the filter performances were 
comparable to the cases when no noise was present. 

Fig. 7 and Fig. 8 show the speed estimation performance of 
the filters subsequent to step load changes. The PMSM is 
started on no load and accelerated to the command speed. At 
time t = 0.2 s, rated torque is applied to the motor. At t = 0.4 
s, the load is removed. The simulation results show that both 
filters give similar performances under steady-state 
conditions, but with the UKF the motor speed exhibits more 
oscillations during the transient period before settling to the 
steady state. For the studied PMSM, the transient periods for 
UKF and EKF are 0.05 s and 0.03 s, respectively.    
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Fig. 5 UKF performance: angle error ˆ( )e eθ θ−  and speed error 

ˆ( )m mω ω− for no-load four-quadrant high-speed reversal with injected 
current noise. 
 
 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.2

-0.1

0

0.1

0.2
theta error

[ra
d]

time [s]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-20

0

20

speed error

[ra
d/

s]

time [s]  
Fig. 6 EKF performance: angle error ˆ( )e eθ θ−  and speed error 

ˆ( )m mω ω− for no-load four-quadrant high-speed reversal with injected 
current noise. 
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Fig. 7 UKF performance: speed response to step load changes at normal 
speed. 
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Fig. 8 EKF performance: speed response to step load changes at normal 
speed. 

VII. COMPARISON 
To compare the speed estimation of the EKF and UKF in 

more detail, the estimation errors are squared and 
accumulated during the simulation run. The results are shown 
in Fig. 9 for the no-load, full speed four-quadrant simulation 
cases shown in Fig. 3 and Fig. 4. 

It can be seen that during startup the EKF performs slightly 
better than UKF. During the speed reversal, however, the 
UKF performs better, resulting in a much lower accumulated 
error count. Both estimators give good steady-state 
performance. After a transient period, the estimation error 
tends to zero, as observed from the horizontal lines in Fig. 9.  

The transient response of the EKF seems slightly better; 
the steady-state (horizontal line) condition is reached in a 
shorter time. 

The noise performance of the UKF seems better. 
Comparing Fig. 5 with Fig. 6, it can be observed that the  
speed estimate of the UKF is less noisy than that of the EKF 
as indicated by the thinner speed error trace. 

The steady-state performance of both filters is similar. The 
dynamic response of the EKF, however, is better as can be 
seen from Fig. 7 and Fig. 8. 

For a real-time implementation of the filters, the 
computation time of the control algorithms is another 

important factor. The EKF is designed for nonlinear systems; 
it linearizes the system at each sampling time by taking the 
derivative of the system matrices. This requires a costly 4x4 
Jacobian matrix calculation for the PMSM model for every 
sampling time. Depending on the model used, this 
linearization can also introduce errors which may lead to 
system instability. 

The UKF has a derivative-free structure and involves no 
linearization steps, which eliminates the need for the costly 
Jacobian calculation. The UKF however needs to calculate 
the sigma points for every sampling period. Depending on the 
system nonlinearities and complexity, the UKF can be a 
better alternative to EKF from computational requirement 
considerations.  

A review of the s-function codes for the EKF and UKF 
shows that the computational requirements are less for EKF 
in the present application due to the relatively simple motor 
model and weak nonlinearity.  

In other cases (for example, the IPM in [2]), the UKF can 
be used in the αβ-reference frame. This was not even possible 
for the EKF due to the complex Jacobian matrix calculations 
involved.  
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Fig. 9 Accumulated speed error at no load, full speed four quadrant 
simulation run. 

VIII. CONCLUSIONS 
Two different Kalman filtering techniques have been 

studied and compared. Both observers are found to be 
suitable candidates for sensorless control of PMSM drives. 
The EKF performs slightly better during motor start-up, but 
the UKF performs better in tracking the speed, especially 
during transients. For industrial applications where steady-
state performance is critical, there is no preference for either 
filter. Under noisy conditions the UKF seems more promising 
with better filter characteristics than the EKF. In highly 
nonlinear and complex systems, the UKF is a serious 
competitor of the EKF. The computational requirements 
become in favor of the UKF due to the absence of the 
Jacobian matrix, making it possible to choose more complex 
and more accurate motor models that provide better 
performance. For simple motor drive models, however, the 
EKF is still the better choice as the algorithms and models are 
easier to optimize for real-time implementation, resulting in 
higher performance and lower costs for the microprocessor 
unit. 
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APPENDIX A  
CALCULATION OF JACOBIAN MATRICES F AND H 

At time 1 ( 1)k st k T− = − the Jacobian matrix F is defined as 
in (2) 
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F is a 4x4 matrix as follows: 
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The elements of matrix F at time 1 ( 1)k st k T− = − can be 
derived as follows: 
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APPENDIX B 
The following motor parameters are used for Simulink 

simulation: 
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NOMENCLATURE 

 
 

 

TABLE III 

Symbol  

Ls Stator winding self induction 
Rs Stator winding resistance 
Ke Back EMF constant 
B Damping constant 
P Number of pole-pairs 
J Rotor inertia 
ωn Nominal speed 
vA, vB, vC, 
iA, iB, iC 

Stator phase voltage and currents 

vd, vd; id, iq  Stator voltage and currents in rotor reference frame 
vα, vβ; iα, iβ Stator voltage and currents in stationary reference frame 
vγ, vδ; iγ, iδ  Stator voltage in control coordinate reference frame 
eα,eβ Back EMF in stationary reference frame 
p Differential operator 
ωe Angular velocity at electrical angle 
ωm Angular velocity of mechanic rotor angle 
Te Electrical torque 
TL Load torque 
Ld Inductance of d axis 
Lq Inductance of q axis 
Ts Sample time 
  

Subscripts, superscripts, and symbols 
a, b, c Three axis frame quantities 
d, q Two axis synchronous frame quantities 
α, β Two axis stationary frame quantities 
γ, δ Two axis control frame quantities 
‘ Transposed matrix 
* Reference quantities 
^ Estimated 
d discrete 
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