767 research outputs found

    Reinforcement Learning Based Sensor Optimization for Bio-markers

    Full text link
    Radio frequency (RF) biosensors, in particular those based on inter-digitated capacitors (IDCs), are pivotal in areas like biomedical diagnosis, remote sensing, and wireless communication. Despite their advantages of low cost and easy fabrication, their sensitivity can be hindered by design imperfections, environmental factors, and circuit noise. This paper investigates enhancing the sensitivity of IDC-based RF sensors using novel reinforcement learning based Binary Particle Swarm Optimization (RLBPSO), and it is compared to Ant Colony Optimization (ACO), and other state-of-the-art methods. By focusing on optimizing design parameters like electrode design and finger width, the proposed study found notable improvements in sensor sensitivity. The proposed RLBPSO method shows best optimized design for various frequency ranges when compared to current state-of-the-art methods.Comment: 7 pages, 4 table

    Torsional Ultrasound Sensor Optimization for Soft Tissue Characterization

    Get PDF
    Torsion mechanical waves have the capability to characterize shear stiffness moduli of soft tissue. Under this hypothesis, a computational methodology is proposed to design and optimize a piezoelectrics-based transmitter and receiver to generate and measure the response of torsional ultrasonic waves. The procedure employed is divided into two steps: (i) a finite element method (FEM) is developed to obtain a transmitted and received waveform as well as a resonance frequency of a previous geometry validated with a semi-analytical simplified model and (ii) a probabilistic optimality criteria of the design based on inverse problem from the estimation of robust probability of detection (RPOD) to maximize the detection of the pathology defined in terms of changes of shear stiffness. This study collects different options of design in two separated models, in transmission and contact, respectively. The main contribution of this work describes a framework to establish such as forward, inverse and optimization procedures to choose a set of appropriate parameters of a transducer. This methodological framework may be generalizable for other different applications.This research was supported by the Intituto de Salud Carlos III, projects DTS15-00093 (EU-FEDER), UNGRIS-CE-3664, the Ministry of Education DPI2014-51870-R and Junta de Andalucia for projects P11-CTS-8089 and GGI3000IDIB

    Sensor configuration selection for discrete-event systems under unreliable observations

    Full text link
    Algorithms for counting the occurrences of special events in the framework of partially-observed discrete event dynamical systems (DEDS) were developed in previous work. Their performances typically become better as the sensors providing the observations become more costly or increase in number. This paper addresses the problem of finding a sensor configuration that achieves an optimal balance between cost and the performance of the special event counting algorithm, while satisfying given observability requirements and constraints. Since this problem is generally computational hard in the framework considered, a sensor optimization algorithm is developed using two greedy heuristics, one myopic and the other based on projected performances of candidate sensors. The two heuristics are sequentially executed in order to find best sensor configurations. The developed algorithm is then applied to a sensor optimization problem for a multiunit- operation system. Results show that improved sensor configurations can be found that may significantly reduce the sensor configuration cost but still yield acceptable performance for counting the occurrences of special events

    Comparing the fundamental limit of detection for interferometric and resonant biosensors with coherent phase read-out

    Get PDF
    We compare the limit of detection of coherently interrograted photonic biosensors, using both interferometric and resonant architectures.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Bipartite Graph Learning for Autonomous Task-to-Sensor Optimization

    Get PDF
    NPS NRP Project PosterThis study addresses the question of how machine learning/artificial intelligence can be applied to identify the most appropriate 'sensor' for a task, to prioritize tasks, and to identify gaps/unmet requirements. The concept of a bipartite graph provides a mathematical framework for task-to-sensor mapping by establishing connectivity between various high-level tasks and the specific sensors and processes that must be invoked to fulfil those tasks and other mission requirements. The connectivity map embedded in the bipartite graph can change depending on the availability/unavailability of resources, the presence of constraints (physics, operational, sequencing), and the satisfaction of individual tasks. Changes can also occur according to the valuation, re-assignment and re-valuation of the perceived task benefit and how the completion of a specific task (or group of tasks) can contribute to the state of knowledge. We plan to study how machine learning can be used to perform bipartite learning for task-to-sensor planning.Naval Special Warfare Command (NAVSPECWARCOM)N9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Bipartite Graph Learning for Autonomous Task-to-Sensor Optimization

    Get PDF
    NPS NRP Executive SummaryThis study addresses the question of how machine learning/artificial intelligence can be applied to identify the most appropriate 'sensor' for a task, to prioritize tasks, and to identify gaps/unmet requirements. The concept of a bipartite graph provides a mathematical framework for task-to-sensor mapping by establishing connectivity between various high-level tasks and the specific sensors and processes that must be invoked to fulfil those tasks and other mission requirements. The connectivity map embedded in the bipartite graph can change depending on the availability/unavailability of resources, the presence of constraints (physics, operational, sequencing), and the satisfaction of individual tasks. Changes can also occur according to the valuation, re-assignment and re-valuation of the perceived task benefit and how the completion of a specific task (or group of tasks) can contribute to the state of knowledge. We plan to study how machine learning can be used to perform bipartite learning for task-to-sensor planning.Naval Special Warfare Command (NAVSPECWARCOM)N9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Bipartite Graph Learning for Autonomous Task-to-Sensor Optimization

    Get PDF
    NPS NRP Technical ReportThis study addresses the question of how machine learning/artificial intelligence can be applied to identify the most appropriate 'sensor' for a task, to prioritize tasks, and to identify gaps/unmet requirements. The concept of a bipartite graph provides a mathematical framework for task-to-sensor mapping by establishing connectivity between various high-level tasks and the specific sensors and processes that must be invoked to fulfil those tasks and other mission requirements. The connectivity map embedded in the bipartite graph can change depending on the availability/unavailability of resources, the presence of constraints (physics, operational, sequencing), and the satisfaction of individual tasks. Changes can also occur according to the valuation, re-assignment and re-valuation of the perceived task benefit and how the completion of a specific task (or group of tasks) can contribute to the state of knowledge. We plan to study how machine learning can be used to perform bipartite learning for task-to-sensor planning.Naval Special Warfare Command (NAVSPECWARCOM)N9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Neural-inspired sensors enable sparse, efficient classification of spatiotemporal data

    Full text link
    Sparse sensor placement is a central challenge in the efficient characterization of complex systems when the cost of acquiring and processing data is high. Leading sparse sensing methods typically exploit either spatial or temporal correlations, but rarely both. This work introduces a new sparse sensor optimization that is designed to leverage the rich spatiotemporal coherence exhibited by many systems. Our approach is inspired by the remarkable performance of flying insects, which use a few embedded strain-sensitive neurons to achieve rapid and robust flight control despite large gust disturbances. Specifically, we draw on nature to identify targeted neural-inspired sensors on a flapping wing to detect body rotation. This task is particularly challenging as the rotational twisting mode is three orders-of-magnitude smaller than the flapping modes. We show that nonlinear filtering in time, built to mimic strain-sensitive neurons, is essential to detect rotation, whereas instantaneous measurements fail. Optimized sparse sensor placement results in efficient classification with approximately ten sensors, achieving the same accuracy and noise robustness as full measurements consisting of hundreds of sensors. Sparse sensing with neural inspired encoding establishes a new paradigm in hyper-efficient, embodied sensing of spatiotemporal data and sheds light on principles of biological sensing for agile flight control.Comment: 21 pages, 19 figure

    Bipartite Graph Learning for Autonomous Task-to-Sensor Optimization

    Get PDF
    NPS NRP Project PosterThis study addresses the question of how machine learning/artificial intelligence can be applied to identify the most appropriate 'sensor' for a task, to prioritize tasks, and to identify gaps/unmet requirements. The concept of a bipartite graph provides a mathematical framework for task-to-sensor mapping by establishing connectivity between various high-level tasks and the specific sensors and processes that must be invoked to fulfil those tasks and other mission requirements. The connectivity map embedded in the bipartite graph can change depending on the availability/unavailability of resources, the presence of constraints (physics, operational, sequencing), and the satisfaction of individual tasks. Changes can also occur according to the valuation, re-assignment and re-valuation of the perceived task benefit and how the completion of a specific task (or group of tasks) can contribute to the state of knowledge. We plan to study how machine learning can be used to perform bipartite learning for task-to-sensor planning.Naval Special Warfare Command (NAVSPECWARCOM)N9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.
    • …
    corecore