377 research outputs found

    A Comprehensive Bibliometric Analysis on Social Network Anonymization: Current Approaches and Future Directions

    Full text link
    In recent decades, social network anonymization has become a crucial research field due to its pivotal role in preserving users' privacy. However, the high diversity of approaches introduced in relevant studies poses a challenge to gaining a profound understanding of the field. In response to this, the current study presents an exhaustive and well-structured bibliometric analysis of the social network anonymization field. To begin our research, related studies from the period of 2007-2022 were collected from the Scopus Database then pre-processed. Following this, the VOSviewer was used to visualize the network of authors' keywords. Subsequently, extensive statistical and network analyses were performed to identify the most prominent keywords and trending topics. Additionally, the application of co-word analysis through SciMAT and the Alluvial diagram allowed us to explore the themes of social network anonymization and scrutinize their evolution over time. These analyses culminated in an innovative taxonomy of the existing approaches and anticipation of potential trends in this domain. To the best of our knowledge, this is the first bibliometric analysis in the social network anonymization field, which offers a deeper understanding of the current state and an insightful roadmap for future research in this domain.Comment: 73 pages, 28 figure

    Comprehensive survey on big data privacy protection

    Get PDF
    In recent years, the ever-mounting problem of Internet phishing has been threatening the secure propagation of sensitive data over the web, thereby resulting in either outright decline of data distribution or inaccurate data distribution from several data providers. Therefore, user privacy has evolved into a critical issue in various data mining operations. User privacy has turned out to be a foremost criterion for allowing the transfer of confidential information. The intense surge in storing the personal data of customers (i.e., big data) has resulted in a new research area, which is referred to as privacy-preserving data mining (PPDM). A key issue of PPDM is how to manipulate data using a specific approach to enable the development of a good data mining model on modified data, thereby meeting a specified privacy need with minimum loss of information for the intended data analysis task. The current review study aims to utilize the tasks of data mining operations without risking the security of individuals’ sensitive information, particularly at the record level. To this end, PPDM techniques are reviewed and classified using various approaches for data modification. Furthermore, a critical comparative analysis is performed for the advantages and drawbacks of PPDM techniques. This review study also elaborates on the existing challenges and unresolved issues in PPDM.Published versio

    RiAiR: A Framework for Sensitive RDF Protection

    Get PDF
    International audienceThe Semantic Web and the Linked Open Data (LOD) initiatives promote the integration and combination of RDF data on the Web. In some cases, data need to be analyzed and protected before publication in order to avoid the disclosure of sensitive information. However, existing RDF techniques do not ensure that sensitive information cannot be discovered since all RDF resources are linked in the Semantic Web and the combination of different datasets could produce or disclose unexpected sensitive information. In this context, we propose a framework, called RiAiR, which reduces the complexity of the RDF structure in order to decrease the interaction of the expert user for the classification of RDF data into identifiers, quasi-identifiers, etc. An intersection process suggests disclosure sources that can compromise the data. Moreover, by a generalization method, we decrease the connections among resources to comply with the main objectives of integration and combination of the Semantic Web. Results show a viability and high performance for a scenario where heterogeneous and linked datasets are present

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Privacy Preserving Data Publishing

    Get PDF
    Recent years have witnessed increasing interest among researchers in protecting individual privacy in the big data era, involving social media, genomics, and Internet of Things. Recent studies have revealed numerous privacy threats and privacy protection methodologies, that vary across a broad range of applications. To date, however, there exists no powerful methodologies in addressing challenges from: high-dimension data, high-correlation data and powerful attackers. In this dissertation, two critical problems will be investigated: the prospects and some challenges for elucidating the attack capabilities of attackers in mining individuals’ private information; and methodologies that can be used to protect against such inference attacks, while guaranteeing significant data utility. First, this dissertation has proposed a series of works regarding inference attacks laying emphasis on protecting against powerful adversaries with auxiliary information. In the context of genomic data, data dimensions and computation feasibility is highly challenging in conducting data analysis. This dissertation proved that the proposed attack can effectively infer the values of the unknown SNPs and traits in linear complexity, which dramatically improve the computation cost compared with traditional methods with exponential computation cost. Second, putting differential privacy guarantee into high-dimension and high-correlation data remains a challenging problem, due to high-sensitivity, output scalability and signal-to-noise ratio. Consider there are tens-of-millions of genomes in a human DNA, it is infeasible for traditional methods to introduce noise to sanitize genomic data. This dissertation has proposed a series of works and demonstrated that the proposed differentially private method satisfies differential privacy; moreover, data utility is improved compared with the states of the arts by largely lowering data sensitivity. Third, putting privacy guarantee into social data publishing remains a challenging problem, due to tradeoff requirements between data privacy and utility. This dissertation has proposed a series of works and demonstrated that the proposed methods can effectively realize privacy-utility tradeoff in data publishing. Finally, two future research topics are proposed. The first topic is about Privacy Preserving Data Collection and Processing for Internet of Things. The second topic is to study Privacy Preserving Big Data Aggregation. They are motivated by the newly proposed data mining, artificial intelligence and cybersecurity methods

    A survey of state-of-the-art methods for securing medical databases

    Get PDF
    This review article presents a survey of recent work devoted to advanced state-of-the-art methods for securing of medical databases. We concentrate on three main directions, which have received attention recently: attribute-based encryption for enabling secure access to confidential medical databases distributed among several data centers; homomorphic encryption for providing answers to confidential queries in a secure manner; and privacy-preserving data mining used to analyze data stored in medical databases for verifying hypotheses and discovering trends. Only the most recent and significant work has been included
    • …
    corecore