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PRIVACY PRESERVING DATA PUBLISHING

by

ZAOBO HE

Under the Direction of Zhipeng Cai, PhD and Yingshu Li, PhD

ABSTRACT

Recent years have witnessed increasing interest among researchers in protecting indi-

vidual privacy in the big data era, involving social media, genomics, and Internet of Things.

Recent studies have revealed numerous privacy threats and privacy protection methodologies,

that vary across a broad range of applications. To date, however, there exists no powerful

methodologies in addressing challenges from: high-dimension data, high-correlation data and

powerful attackers.

In this dissertation, two critical problems will be investigated: the prospects and some

challenges for elucidating the attack capabilities of attackers in mining individuals private

information; and methodologies that can be used to protect against such inference attacks,

while guaranteeing significant data utility.

First, this dissertation has proposed a series of works regarding inference attacks laying

emphasis on protecting against powerful adversaries with auxiliary information. In the con-

text of genomic data, data dimensions and computation feasibility is highly challenging in

conducting data analysis. This dissertation proved that the proposed attack can effectively

infer the values of the unknown SNPs and traits in linear complexity, which dramatically



improve the computation cost compared with traditional methods with exponential compu-

tation cost.

Second, putting differential privacy guarantee into high-dimension and high-correlation

data remains a challenging problem, due to high-sensitivity, output scalability and signal-to-

noise ratio. Consider there are tens-of-millions of genomes in a human DNA, it is infeasible

for traditional methods to introduce noise to sanitize genomic data. This dissertation has

proposed a series of works and demonstrated that the proposed differentially private method

satisfies differential privacy; moreover, data utility is improved compared with the states of

the arts by largely lowering data sensitivity.

Third, putting privacy guarantee into social data publishing remains a challenging prob-

lem, due to tradeoff requirements between data privacy and utility. This dissertation has

proposed a series of works and demonstrated that the proposed methods can effectively

realize privacy-utility tradeoff in data publishing.

Finally, two future research topics are proposed. The first topic is about Privacy Pre-

serving Data Collection and Processing for Internet of Things. The second topic is to study

Privacy Preserving Big Data Aggregation. They are motivated by the newly proposed data

mining, artificial intelligence and cybersecurity methods.

INDEX WORDS: Inference Attack, Data Sanitization, Differential Privacy, SNP-
Trait Association, Belief Propagation, Probabilistic Graphical
Model
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Chapter 1

INTRODUCTION

1.1 Background and Motivations

Consider a social network application that collects user data from social media plat-

forms, for performing business analysis or providing services. Due to privacy concern, the

users do not want to release their sensitive data to third-party social applications, so that

sensitive data is generally sanitized prior to releasing. However, it is possible to mine sensi-

tive information carried in collected data by data mining techniques, to contribute to more

commercial benefit. We proposed that well-designed data sanitization can be developed for

realizing privacy-utility tradeoff in social network data publishing, although powerful attack-

ers are presented with a broad range of auxiliary information to launch inference attacks.

Such sanitization helps users sanitize their data by deleting some attributes, inserting other

attributes, and perturbing some attributes, thereby hiding private information within ran-

domness. Meanwhile, such sanitization should enable applications effectively recover useful

information from sanitized data for data utility concern. Searching a well-designed saniti-

zation method is highly non-trivial as data utility is restricted in sanitization process. Our

works show that this issue can be alleviated by identifying the implicit dependency relation-

ship encoded in data, and incorporating social attribute sanitization and link sanitization

simultaneously, etc.

We looked more generally at using sanitization for preserving privacy. Consider a set

of multi-modal sensory data is collected by mobile devices, which offers great potentials to

promote meaningful services. However, privacy concerns arises from multiple situations as

well: it is possible to collect private information from released data without any permission

directly; furthermore, third party applications can also infer sensitive information contained

in released data using data mining techniques. Given a certain data sanitization method for
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user’s data, what can we claim about the privacy protection it achieves? and what can we

claim about the utility guarantee under certain level of privacy protection? New method-

ologies have been developed that answer these two questions in terms of optimizing utility

with customized privacy. We proposed that these two types of privacy threats should be

identified separately, defined as inherent data privacy and latent data privacy, and construct

data sanitization methodology to optimize the tradeoff between data utility and customized

two types of privacy. Moreover, we proposed to design such sanitization methodologies to

combat against powerful third-party application with broad knowledge and launching opti-

mal inference attacks. The new methodology has been applied to preserve the privacy of

the users of Internet of Things and shown to yield practically useful results. The generality

of this methodology has allowed us to extend privacy guarantees to multi-modal data in

cyber-physical systems.

Consider individuals are using their genomes to learn about their (genetic) predisposi-

tions to diseases. However, once the owner of a genome is identified, he not only damages his

own genomic privacy, but also puts his relatives privacy at risk (for example, form insurance

companies). How do launch inference attacks to predict target phenotypes and genotypes

with known genomes of an owner? How do release individual genomes privately with guar-

anteed genetic service quality? New methodologies have been developed that answer these

two questions.

For the first research issue, we formalize the problem and detail an efficient reconstruc-

tion attack based on graphical models and belief propagation. We proposed that an effective

reconstruction methodology can be built by incorporating SNPs, traits and SNP/trait asso-

ciations (released by GWAS Catalog) on a probability graphical model and running belief

propagation for inference. Our work does consider the magnitude property of SNPs and

empower the inference method on target traits and genotypes in linear complexity. To pro-

tect against such inference attacks, we formalize the genomic privacy and utility metrics of

individuals and develop a data-sanitization method to realize privacy/utility tradeoff.

For the second research issue, the state-of-the-art approach for privacy preserving data
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publishing is differential privacy, which offers powerful privacy guarantee without confining

assumptions about the background knowledge about attackers. However, high-dimensional

data releasing with differential privacy guarantee is highly non-trivial as it requires injecting

huge amount of noise, which would significantly degrade data utility. For genomic data

with tens of million of SNPs (Single Nucleotide Polymorphism), current approaches based

on differential privacy are not effective to handle. To address this problem, we propose

a methodology to approximate the high-dimensional distribution of the original genomic

data with a set of well-chosen low-dimensional distributions; then, noise with differential

privacy guarantee can be injected into them. Finally, synthetic genomes are sampled from

the approximate distribution, which can be proved satisfying differential privacy.

The above problems are briefly introduced in the following three sections. For the

detailed information, please refer to Chapter 3, 4 and 5.

Finally, future research topics are proposed to complete the dissertation. The first topic

is about privacy preserving data collection and processing for IoTs. The second future work

is to study privacy preserving big data aggregation.

1.2 Collective Data-Sanitization for Preventing Sensitive Information Inference

Attacks in Social Networks

Releasing social network data could seriously breach user privacy. User profile and

friendship relationships are inherently private and generally are protected. Unfortunately, it

is possible to predict the sensitive information carried in the released data latently by utilizing

data mining techniques. Therefore, sanitizing network data prior to release is necessary. This

study explore how to lunch an inference attack exploiting social networks with a mixture

of non-sensitive attributes and social relationships. This issue is mapped to a collective

classification problem and a collective inference model is proposed. In this model, an attacker

utilizes user profile and social relationships in a collective manner to predict the sensitive

information of related victims in a released social network dataset. To protect against such

attacks, this study proposes a novel data sanitization method that collectively manipulates
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user profile and friendship relations. The key novel idea lies that in addition to sanitize

friendship relations, the proposed method can take advantages of various data-manipulating

methods. It is shown that on various characteristics social communities, the proposed method

can easily reduce adversary’s prediction accuracy on sensitive information, while resulting

in less accuracy decrease on non-sensitive information.

1.3 Latent-Data Privacy Preserving With Customized Data Utility for Social

Network Data

Social network data can help with obtaining valuable insight into social behaviors and

revealing the underlying benefits. New big data technologies are emerging to make it easier

to discover meaningful social information from market analysis to counterterrorism. Un-

fortunately, both diverse social datasets and big data technologies raise stringent privacy

concerns. Adversaries can launch inference attacks to predict sensitive latent information,

which is unwilling to be published by social users. Therefore, there is a tradeoff between data

benefits and privacy concerns. This study investigates how to optimize the tradeoff between

latent-data privacy and customized data utility. In this study, a data sanitization strategy is

proposed that does not greatly reduce the benefits brought by social network data, while sen-

sitive latent information can still be protected. Even considering powerful adversaries with

optimal inference attacks, the proposed data sanitization strategy can still preserve both da-

ta benefits and social structure, while guaranteeing optimal latent-data privacy. This is the

first work that preserves both data benefits and social structure simultaneously and combats

against powerful adversaries.

1.4 Inference Attacks and Controls on Genotypes and Phenotypes for Individ-

ual Genomic Data

The rapid growth of DNA-sequencing technologies motivates more personalized and

predictive genetic-oriented services, which further attract individuals to increasingly release

their genome information to learn about personalized medicines, disease predispositions,
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genetic compatibilities, etc. Individual genome information is notoriously privacy-sensitive

and highly associated with relatives. In this study, an inference attack algorithm is proposed

to predict target genotypes and phenotypes based on belief propagation in factor graphs.

With this algorithm, an attacker can effectively predict the target genotypes and phenotypes

of target individuals based on genome information shared by individuals or their relatives,

and genotype and phenotype association from genome-wide association study (GWAS). To

address the privacy threats resulted from such inference attacks, this work elaborates the

metrics to evaluate data utility and privacy and then presents a data sanitization method.

The inference attack algorithm and data sanitization method are evaluated based on real

GWAS dataset: Age-related macular degeneration (AMD) case/control dataset. The evalu-

ation results show that the proposed method can effectively defense against genome threats

while guaranteeing data utility.

1.5 Organization

The rest of this dissertation is organized as follows: Chapter 2 summarized the relat-

ed literatures. Chapter 3 presents a data-sanitization method to prevent against sensitive

information inference attacks in social networks. Chapter 4 studies latent-data privacy pre-

serving with customized data utility for social network data. Chapter 5 solves the problem

of inference attacks and controls on genotypes and phenotypes for individual genomic data.

Chapter 6 proposes the future works.
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Chapter 2

RELATED WORK

2.1 Privacy Threats in Social Network Data Publishing and Protection

Anonymization and De-anonymization. Privacy is typically protected by anonymiza-

tion methods, i.e., removing information regarding name, religion, political view, etc. How-

ever, such network could be de-anonymized by utilizing background knowledge such as refer-

ence network. For example, de-anonymization approaches utilize ‘network mapping’ to map

social nodes from reference networks to anonymized networks.

In [1], the authors propose a community-enhanced de-anonymization approach to re-

identify users, which first partitions the network into communities and then carries out a

two-stage mapping: first mapping communities then the entire network. In [2], the authors

consider a de-anonymization algorithm to re-identify the users in an anonymized social net-

work based on network topology, namely, mapping the anonymous target graph and the ag-

gregated graph from multiple social networks. Comparatively, our works attempt to protect

against inference attacks on sensitive information of users, rather than solely re-identifying

users in an anonymized network. In [3], the authors propose a family of anonymization algo-

rithms and consider the corresponding de-anonymization algorithms. However, their network

model only consists of users and friendship links and the attackers are assumed to re-identify

the users. Clearly, their studied problem is quite different from our works because they do

not consider how to anonymize a network in order to protect against inference attacks on

sensitive attributes. The work in [4] presents a systematic survey for the anonymization

techniques for social network data. The anonymization techniques are mainly categorized

into the clustering-based approaches and the graph modification approaches. Comparatively,

our works take advantage of various techniques to balance privacy and data utility.
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Inference Attacks and Protection Methods. There are many works investigating

how to infer sensitive information of users. In [5], the authors demonstrate that users’

sensitive information can be inferred via detecting communities based on the assumption

that users in a community are more likely share common attributes. Similarly, the work in

[6] indicates that users’ sensitive information can be inferred based on friendship information

and group memberships, and it also shows that disclosure of one user’s hidden attribute

would breach her friends privacy. In [7], the authors develop a Bayes network model to infer

sensitive information based on friendship links. Meanwhile, [7] takes a protection method

that randomly hides friendship links and friends’ attributes. In [8], several link-prediction

and attribute-prediction algorithms are proposed in social-attribute networks. In [9], the

authors employ the big data technologies to predict demographic information of users such

as age and location based on users’ mobile communication patterns. The work in [10] designs

a method to predict sensitive latent information from texts published in social media. The

work in [11] develops a data-sanitization strategy to predict sensitive information which can

harness link and attribute information simultaneously. The work in [11] also evaluates the

effect of removing links, removing attributes and perturbing attributes on protecting sensitive

latent information. Our previous work [12] also studies how to customize the tradeoff data

utility and customized latent-data privacy in classification based applications.

Comparatively, our works study which friendship link(s) and user’ attribute(s) should

be manipulated to protect privacy. Close to our works, [9] studies how to infer users’ de-

mographics (gender and age) depending on users’ daily communication patterns. It novelly

harness both the interaction between sensitive attributes and non-sensitive attributes, and

the interaction among sensitive attributes (such as gender and age). Clearly, their method is

quite different from our works because they do not consider the information from friendship

relations that can be utilized in order to infer sensitive information. Moreover, our works

further study how to protect against such inference attack deriving from collective informa-

tion. Moreover, in [13], the authors consider the inference attacks to infer which shortened

URLs clicked by a user in Twitter, only based on two public available information, twitter
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metadata and the click analytics information.

Note that sanitizing data prior to release is a popular method to realize privacy protec-

tion and utility guarantee [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28]

[29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [28] [39] [40] [41] [42]

Both the work [14] and [15] sanitize data by synthesizing sampled data so that synthe-

sized data satisfy differential privacy. In addition to sensitive latent information, protecting

social network property privacy, like link privacy [16], degree distribution [17], graph privacy

[18] and applications such as influence maximization [19] and privacy preserving content

sharing [43], also attracts much attention. [44] explored how to sanitize data to optimize

the tradeoff between three parties: utility, inherent-data privacy and latent-data privacy. To

protect against inference attacks on social data, [45] proposed a data-sanitization method

that can sanitize social attributes and links collectively with different sanitization methods.

[20] explored the inference attacks on personal traits and genotypes based on belief propa-

gation. Furthermore, a genomic data sanitization method is proposed in [20], by removing

most indicative genomes to traits.

Existing privacy preserving techniques, like differential privacy [46], k-anonymity [47], l-

diversity [48], are generally proposed for preserving inherent-data privacy; however, they are

not competent for protecting latent-data privacy being subject to inference attacks. Inherent-

data privacy is related to sensitive attribute contained in the attribute set released by users

in order to receive data-related services. For example, age and gender are unavoidable data

for health related services yet unwilling to be released by most consumers.

2.2 Genomic Data Privacy Threats and Protection

Probability graph models are widely used in predicting haplotype, genotypes or phe-

notypes in the context of genomic data releasing. Especially, Bayesian networks attract

much attention in mapping the association between phenotypes and genes [49] [50] [51], or

genetic linkage analysis [52] [53]. Factor graphs are also employed for inference attacks on S-

NPs through incorporating linkage disequilibrium to preserve kin-genomic privacy [54]. The
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work in [53] elaborates the applications of gene expression studies and genetic architecture

of disease linkage analysis based on probability graph models. The authors in [54] proposed

a reconstruction model to infer the genotypes of target individuals with released SNPs from

individuals or their relatives, by mapping the linkage disequilibrium of SNPs. The work in

[55] aims to predict the haplotype of individuals with publicly available genotypes and phe-

notypes, as well as lifestyle knowledge of individuals, based on Markov chain Monte Carlo

(MCMC) sampling. To lower the large computational burden, the work in [56] introduces a

“pre-phasing” strategy to balance the linkage analysis and computational cost, by estimating

the haplotype statistically first and then impute unknown genotypes into the estimated hap-

lotype in prior stage. The work in [57] reviews differential statistical techniques for genotype

imputation, and explores the aspects that result in diverse imputation performance.

A crucial challenge presented in inference or linkage analysis for genomic data is high

computation complexity. Although previous works have made significant efforts to address

this issue, none of them has incorporated known and unknown genotypes, phenotypes and

background knowledge of attackers together to launch inference attacks. Moreover, none of

them presents effective methods to defense against such inference attacks in the context of

high-dimensional data and complex associations.

In the recent years, inference attacks based on data mining, machina learning and sta-

tistical prediction methods have been investigated in several areas, such as location tracking,

social networks [45] [44], and mobile networks [58] [43]. Differential privacy [59] is widely

adopted in providing formal privacy guarantee through enabling distinguishability for query

results over released data. However, applying differential privacy for protecting genomic

data privacy is non-trivial since massive noises are required due to the high dimension of

genomic data. The work in [60] proposes a privacy preserving data mining technique which

supports analysts to conduct data analysis with accurate results while guarantees analysts

cannot learn which and how many SNPs to consider.

Moreover, some recent works have proved that anonymization is not sufficient to p-

reserve privacy [61] [62] [63]. The work in [61] proves that the released genotypes can be
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de-anonymized with the help of auxiliary information such as known phenotypes. It is shown

in [62] that individual surnames can be identified from individual genome data. Moreover,

the works in [62] claims combining a surname with auxiliary information such as gender, age

or state, the identity of target individual can be triangulated. Moreover, some cryptography

techniques are employed to achieve tradeoff between genomic data privacy and utility [63]

[64]. The work in [54] presents two metrics to evaluate privacy, attacker uncertainty and

incorrectness.

Compared with the previous works, our work proposes an efficient inference model with

low computation complexity by incorporating target unknown variables, known variables and

auxiliary information into a probability graph model. Furthermore, we achieve the tradeoff

between genomic data privacy and utility by introducing the utility and privacy metrics first

and proposing an effective SNP-sanitization method, which can maximize data utility while

protecting genome privacy.
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Chapter 3

INFERENCE ATTACKS AND COLLECTIVE DATA-SANITIZATION FOR

SOCIAL DATA PUBLISHING

3.1 Introduction

Social networks provide a virtual stage for users to reveal themselves to their own

societies or to the public. For example, Facebook users publish information regarding favorite

books, popular songs, interesting movies, political views, etc. Users of ResearchGate [65],

a professional network for scientists and researchers, publish information regarding research

experiences, publications, academic activities and so on. Besides users, third party users

such as researchers, merchants, advertisers, and even adversaries may benefit from the huge

amount of published data that can be easily and deliberately obtained from social networks

for scientific/commercial purpose or malicious intention. For instance, IMDb [66] may make

use of the data released by Facebook to suggest proper movies and TV programs to target

users. However, the rising privacy concerns restrain the data release scale. Facebook Beacon

[67] is an unsuccessful example that reminds people to release anonymous and incomplete

user data. Therefore, the contradiction between the benefit rendered by data and privacy

concerns drive third party users to mine sensitive information hidden in the released data in

addition to non-sensitive information.

Privacy concerns in social networks can be mainly categorized into two types: inherent-

data privacy and latent-data privacy. Inherent-data privacy is related to sensitive data

contained in the data profile submitted by users in order to receive data-related services.

For example, age and gender are unavoidable data for health related services yet unwilling

to be released by most users. De-anonymization towards anonymous data is an inherent-

data privacy instance. For example, two New York Time journalists used to successfully

identify personal information from the published search logs involving 650,000 users made
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available by AOL. The logs include the information of name, age, sex, location, etc., and

such information is associated with a specific individual. Another well-known example is that

individuals’ medical visits were successfully identified based on the anonymized data made

available by the Group Insurance Commission, and the former governor of Massachusetts was

one of the victims. On the other hand, latent-data privacy is related to unreleased sensitive

information, yet such sensitive information can be inferred from released data or users’ social

relationships. For instance, Jenny does not publish her political opinions online, yet such

information could be inferred by mining her friends’ data as Jenny’s social relationships may

be public. Another illustrative example comes from ABCNews.com [68] and Boston Globe

[69]. They reported that it is possible to determine the sexual orientations of some users by

analyzing a subgraph from Facebook.

In this paper, we focus on latent-data privacy. We assume third party users may collect

anonymous user data from social networks. Some users disclose their sensitive information,

while others do not [70]. However, third party users can carry out de-anonymization actions

and further infer sensitive information of users. We first investigate how to infer sensitive

information hidden in the released data. Then, we propose some effective data sanitization

strategies to prevent information inference attacks. On the other hand, the sanitized data

obtained by these strategies should not reduce the valuable benefit brought by the abundant

data resources, so that non-sensitive information can still be inferred and utilized by third

party users.

To explore how to launch an inference attack by third party users, we employ a typical

inference attack, called collective inference, as a case study. We present a novel imple-

mentation method for collective inference. Collective inference mainly rely on iteratively

propagating current predicting results throughout a network to improve prediction accura-

cy, thus we need to consider how to best predict sensitive information in each iteration.

Previous works primarily utilize the Naive Bayes classifier to infer sensitive information in

each iteration. However, social network data are generally incomplete, inaccurate and un-

certain. Hence, the existing approaches may not obtain a precise learned model and may
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degrade inference performance. Our work does consider the special features of social network

data to investigate collective attacks in diverse large scale social networks.

The previous works for preventing inference attacks mainly have three deficiencies. First,

users’ released data and their friendship information are separately considered, degrading

prediction accuracy possibly. Second, only a single type of manipulation method, such

as filtering, perturbing, and adding, is considered at a time, incurring poor effectiveness

performance. Third, data utility is not taken into full consideration, reducing the benefit

brought by the abundant amount of data. Therefore, the previous works cannot reasonably

balance privacy and data utility. In this work, we propose two strategies to prevent inference

attacks. Our strategies can ensure that third party users cannot obtain necessary information

to accurately predict sensitive information. On the other hand, our strategies can still

promote data utility.

In this work, we focus on two concrete issues: (a) how exactly third party users launch an

inference attack to predict sensitive information of users, and (b) are there effective strategies

to protect against such an attack to achieve a desired privacy-utility tradeoff. Following is

the summary of our contributions and improvements over the previous works:

1. Rather than considering users’ attribute sets and friendship information separately,

we present a novel implementation method for collective inference that can effectively

predict users’ sensitive information, with both attribute sets and friendship information

comprehensively taken into account.

2. To hide sensitive information through manipulating attribute sets, rather than sim-

ply implementing perturbing methods through introducing various types of noises,

we rationally identify the dependency relationship between sensitive information and

non-sensitive information.

3. To hide sensitive information through manipulating friendship information, rather than

simply adding or removing friendship links, we propose a novel concept that enables

us to easily find the most representative links.
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4. We further analyze the relationships between data utility and non-sensitive informa-

tion. The identified relationships then support us to design a collective strategy to

achieve a desired privacy-utility tradeoff. Rather than relying on a signal type of

manipulating method, our collective strategy is able to take advantages of various

manipulating methods.

The remainder of the paper is organized as follows. The investigated problem is for-

malized in Section 4.2. Section 4.3 introduces some preliminary knowledge. In Section 3.4,

we investigate the working scenario of inference. Some data sanitization strategies are then

proposed in Section 3.5 and Section 3.6. The evaluation results are presented in Section 4.6.

Section 4.7 concludes the paper.

3.2 Problem Statement

3.2.1 Social Network Model

We now present our network model.

Definition 3.2.1. Social network. A social network is a graph G(V,E,X ) consisting of

user set V , friendship link set E and the set of user attribute sets denoted by X . For any

user ui, uj ∈ V (1 ≤ i, j ≤ |V |), their friendship link ei,j ∈ E also indicates ej,i ∈ E.

Definition 3.2.2. Attribute set. For an arbitrary user ui, its attribute set is denoted by

~Xi ∈ X (1 ≤ i ≤ |V |). Each attribute xj ∈ ~Xi (1 ≤ j ≤ | ~Xi|) is for a certain attribute

category hr ∈ H (1 ≤ r ≤ |H|), where H is the set of all the categories for a social network.

We denote an attribute xj as xj = {hr : l1; ...; lt}, which means xj is for category hr with

value list l1; ...; lt where t ≥ 1.

It is worth mentioning that for a particular category, the user input can be a single

value or multiple values. For example, for category “Favorite movies”, the input can be

“The Terminator”, “Titanic” and “Pianist”. For category “Birthday”, the input should be a

single value. Moreover, there may be categories with no input values for some users, such as
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“Political view” and “Religion view”. In specific applications, certain categories are regarded

as sensitive categories. We use Hs ⊆ H to denote the set of the sensitive categories for a

particular user. Any xj ∈ ~Xi is a sensitive attribute of user ui if xj is for hr ∈ Hs. Following

is an example.

H = {Favorite movies, Favorite books, Religion view,

Political view}

V = {u1 = Jack, u2 = Emily}

~X1 = {x1 = {Favorite movies:Titanic}, x2 = {Favorite books:

Automata; Machine learning}}

~X2 = {x1 = {Favorite movies:Pianist}, x2 = {Political view:

Conservative}}

e1,2 ∈ E, e2,1 ∈ E

In this example, there are four categories as shown in H. There are two user-

s u1 and u2. u1 publishes one favorite movie and two favorite books. Thus, for u1,

Hs = {Religion view, Political view}. u2 publishes her political view, thus for u2, Hs =

{Religion view}. u1 and u2 are friends in the social network.

Each possible attribute value for an arbitrary attribute category hr ∈ Hs can be viewed

as a class label when third party users predict sensitive attribute xj for category hr. For

example, if hr is category “Political view”, we can consider two possible attribute values as

our class labels: “Conservative” and “Liberal”. Class label is formally defined as follows.

Definition 3.2.3. Class label. We say that yi (i ≥ 1) is one of the class labels for hr ∈ Hs

if yi is one of the attribute values for attribute category hr.

3.2.2 Utility and Privacy

We now formally define privacy and utility. The existing privacy definitions, such as

differential privacy [46], k-anonymity [47], l-diversity [48], are only for inherent-data, and
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are not suitable for inference attacks. Meanwhile, most of the existing works evaluate data

utility by only considering how much noise is added to the initial data. In this paper, we

present a finer-grained utility definition.

Intuitively, we expect released data do not help with significantly improving prediction

accuracy compared with the prediction accuracy based on prior knowledge.

Definition 3.2.4. Prior knowledge. Prior knowledge is the information related to a data

set but not necessarily obtained from the data set.

For instance, prior knowledge can be users’ movie viewing records, phone numbers, zip

codes or the publicly available Voter Registration List. Such knowledge can be obtained

from many ways rather than the data set itself. Then, privacy is formally defined as follows.

Definition 3.2.5. Classifier accuracy. Classifier accuracy, denoted as Λhr
c (G), is the

accuracy of classifier c trained on the available information of social graph G, and it is used

to classify G to predict attributes for category hr ∈ H.

Definition 3.2.6. Privacy. Given a social network G, prior knowledge K held by third

party users, a set of classifiers denoted by C, and a set of sensitive categories Hs, G is

(∆, C)-private if for each attribute category hr ∈ Hs, G satisfies

maxc∈CΛ
hr
c (G,K)−maxc′∈CΛ

hr

c′ (K) ≤ ∆

∆ denotes the additional prediction accuracy gained by third party users by utilizing

G. Clearly, ∆ ≥ 0, which is specified by data publisher. If ∆ = 0, it indicates that third

party users do not gain additional prediction accuracy in predicting sensitive attributes for

category hr ∈ Hs.

With respect to data utility, there are two factors to consider. First, the sanitized social

graph should not deviate from the initial one by too much. Second, the sanitized social
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graph should guarantee a beneficiary can effectively infer the non-sensitive information of

users. Then, we formally define it as follows:

Definition 3.2.7. Utility. Given social graph G, data dissimilarity measurer M, prior

knowledge known to third party users K, classifier set C, and non-sensitive category set

H − Hs, the sanitized graph of G, denoted as G′, satisfies (ε, δ)-utility if for each attribute

category hr ∈ H −Hs, the following conditions are satisfied:

(i).M(G,G′) ≤ ε;

(ii). maxc∈CΛ
hr
c (G′,K)−maxc′∈CΛ

hr

c′ (K) ≥ δ.

δ denotes the additional prediction accuracy gained by third party users by utilizing G′.

Clearly, δ ≥ 0. If δ = 0, it indicates that the classifier does not gain additional classification

accuracy by utilizing G′ in predicting non-sensitive attributes for category hr ∈ H −Hs. As

well, both ε and δ are specified by data publisher.

Compared with the existing definitions, Definition 4.4.1 takes the inferred non-sensitive

attributes into consideration (condition (ii)). That is, any sanitization strategy should guar-

antee a beneficiary of the sanitized data and could effectively infer the non-sensitive at-

tributes.

3.2.3 Problem Definition

Based on the above privacy and utility definitions, given user-specified thresholds on

privacy and utility, the sanitization social graph is expected to achieve the desired privacy-

utility tradeoff:

Input:

(1) Social graph G(V = V k∪V U , E, X , Y = Y K∪Y U , Hs) with user set V , friendship

link set E, the set of user attribute sets X , and the set of sensitive categories Hs. y
i ∈ Y is

a class label of ui for an arbitrary category hr ∈ Hs.
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(2) Y K is the set of known labels for users ui ∈ V K , where V K is the set of users with

known labels. Y U is the set of unknown labels for users ui ∈ V U , where V U is the set of

users with unknown labels.

(3) User-specified privacy threshold ∆, and utility thresholds ε and δ.

Output:

Task 1: Prediction method that can predict Y U for users ui ∈ V U , where V U = V −V K .

Task 2: Data publishing method with optimized tradeoff between privacy and utility.

The first task investigates how third party users launch an inference attack to predict

sensitive attributes. A powerful inference method is expected. Since users have the option

to publish no attributes for some categories, the attribute data are usually incomplete.

Meanwhile, there are always dishonest users, so the attribute data may be inaccurate or

uncertain. Therefore, we employ the Rough Set Theory (RST) as a building block to develop

our inference method. RST is a mathematical tool that can be used to extract knowledge

from incomplete, inaccurate and uncertain data sets. It allows us to easily analyze the large

scale and diverse social network data. For the second task, RST helps us to easily distinguish

the objective attributes to be manipulated to protect against inference attacks.

3.3 Preliminaries

In this section, several concepts of RST are introduced and some illustrative examples

are given. We then describe how to use RST to extract decision rules from the attribute data.

Last, we present how to determine the class label of an user based on friendship information.

3.3.1 Rough Set Theory

We only introduce several basic concepts of RST and more details can be found in

[71]. Knowledge representation in RST is through an information system. Based on the

information system, the decision rules can be extracted.
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Table 3.1. An example information system for a Facebook data set.

V h1: Favorite musical h2: Favorite movies h3: Favorite books d: Political view

u1 Taylor Swift God’s Not Dead Heaven Is For Real Conservative
u2 Carrie Underwood Son of God I Declare Conservative
u3 Carrie Underwood God’s Not Dead Heaven Is For Real Liberal
u4 George Strait The Fast and the Furious Heaven Is For Real Green
u5 George Strait Son of God I Declare Liberal
u6 Taylor Swift Transformers The Hunger Games Conservative
u7 George Strait Son of God The Hunger Games Liberal
u8 Taylor Swift Transformers I Declare Conservative

Definition 3.3.1. Information system. An information system is a pair Γ = (V, H =

C∪D), where V is a finite set of users, and H is a nonempty finite set of attribute categories.

H includes two subsets: the set of condition attribute categories C and the set of decision

attribute categories D. For each attribute xj for category hr ∈ H, function fxj
(u) : V

xj−→ Ωhr

assigns an attribute value to xj for user u, where Ωhr is the attribute value set for hr.

Example 3.3.1. A simple example of information system for a Facebook data set is presented

in Table 3.1. As shown in Table 3.1, V = {u1, u2, . . . u8}, C = {h1, h2, h3}, and D = {d}.

Attribute “Favorite movies” of u1 is assigned value “God’s Not Dead”.

Definition 3.3.2. Indiscernibility relation. Given H ′ ⊆ H, any two users ui and uj

having H ′-indiscernibility relation is denoted by INDH′(ui, uj) where

INDH′(ui, uj)

={(ui, uj) ∈ V 2 | ∀xj for H ′, fxj
(ui) = fxj

(uj)}

We denote the users whose attributes have the same values for H ′ as [u]H′ , called the

equivalence class of H ′-indiscernibility relation.

Example 3.3.2. Suppose H ′ = {h2, h3} which is extracted from Table 3.1. Hence, both

(u1, u3) and (u2, u5) have H ′-indiscernibility relation. Table 3.1 also indicates [u]H′ =

{{u1, u3}, {u2, u5}, {u4}, {u6}, {u7}, {u8}}.
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Definition 3.3.3. H ′-lower and H ′-upper approximation of V ′. Given V ′ ⊆ V and

H ′ ⊆ H, V ′ can be approximated using only the information contained in H ′ by constructing

H ′-lower approximation and H ′-upper approximation of V ′:

H ′V ′ = {u | [u]H′ ⊆ V ′}

H ′V ′ = {u | [u]H′ ∩ V ′ 6= Φ}

Example 3.3.3. For the information system shown in Table 3.1, let H ′ = {h2, h3} and

V ′ = {u1, u2, u6, u8}. Hence, H ′V ′ = {u1, u2, u3, u5, u6, u8} and H ′V ′ = {u6, u8}.

Definition 3.3.4. Attribute dependency. Let H ′ ⊆ H and H ′′ ⊆ H. We say that H ′′

depends on H ′ with degree k (0 ≤ k ≤ 1), denoted by H ′ →k H ′′, if

k = γ(H ′, H ′′) =
|POSH′(H

′′)|
|V | (3.1)

where POSH′(H
′′) =

⋃
X∈[x]H′′

H ′(X), called H ′-positive region of H ′′.

In particular, if k = 1, we say that A′′ totally depends on A′.

Example 3.3.4. For the information system shown in Table 3.1, let H ′ = {h2, h3} and

H ′′ = d. Since

[x]H′ = {{u1, u3}, {u2, u5}, {u4}, {u6}, {u7}, {u8}}

[x]H′′ = {{u1, u2, u6, u8}, {u4}, {u3, u5, u7}}

H ′({u1, u2, u6, u8}) = {u6, u8}

H ′({u4}) = {u4}

H ′({u3, u5, u7}) = {u7}
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we can compute

POSH′(H
′′) = {u6, u8, u4, u7}.

Hence,

k = γ(H ′, H ′′) =
|POSH′(H

′′)|
|V |

= 4/8 = 1/2.

For an information system, there usually exist some redundant condition attributes that

do not provide any additional knowledge for prediiction. Hence, RST defines a reduct for

an information system as a minimum attribute set that keeps the indiscernibility relation.

Furthermore, as would be discussed in Section 3.6, reduct can help us to find the privacy-

dependent attributes and utility-dependent attributes, which is the foundation to balance

the privacy-utility tradeoff.

Definition 3.3.5. Reduct. Given an information system Γ = (V,H = C ∪D), any R ⊆ C

is a reduct of C if

(i). POSR(D) = POSC(D);

(ii). for any hr ∈ C, IND(R− hr) 6= IND(C).

After removing the repetitive row, (V,R ∪D) is called a reduct system.

Example 3.3.5. For the information system shown in Table 3.1, let R1 = {h1, h2}, R2 =

{h1, h3} and R3 = {h2, h3}. We have

POSC(D) = {u1, u2, u3, u4, u5, u6, u7, u8}

POSh1(D) = {u1, u2, u3, u4, u5, u6, u7, u8}

POSh2(D) = {u1, u2, u3, u4, u5, u6, u7, u8}

POSh3(D) = {u4, u6, u7, u8}

Hence, we can conclude R1 and R2 are reducts of C since they also satisfy the second

condition according to Definition 3.3.2. However, R3 is not a reduct of C.
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The first condition of Definition 3.3.5 indicates that the reduct retains the indiscerni-

bility relation of the original attribute set. That is, any indiscernible pair of objects based

on R is also indiscernible in A and vice versa. The second condition indicates that R is the

minimum subset of A that keeps its indiscernibility.

3.3.2 Generating Decision Rules Based on an Attribute Set

We now introduce how the decision rules are generated based on the reduct system

(V,R ∪ D). Suppose the equivalence class of the R-indiscernibility relation and the D-

indiscernibility relation are [u]R = {P1, P2, . . . , Pm} and [u]D = {Q1, Q2, . . . , Qn}, respec-

tively. Each Pi (1 ≤ i ≤ m) and Qj (1 ≤ j ≤ n) is a user or a set of users. For example, for

the information system shown in Table 3.2, [u]R = {P1 = {u1, u3, u9}, P2 = {u2, u4}, P3 =

{u5, u6}, P4 = {u7, u8}} if R = {h1, h2}, and [u]D = {Q1 = {u1, u2, u3, u4, u7, u9}, Q2 =

{u5, u6, u8}} if D = {d}.

Since both [u]R and [u]D partition V , each Pi is associated with a setMi = {Qj | Pi∩Qj 6=

Φ}. For example, P4 is associated with M4 = {Q1, Q2}.

Hence, for an arbitrary user u, we have:

If u ∈ Pi, then u ∈ Qj1 or u ∈ Qj2 . . . or u ∈ Qj|Mi|
.

According to Definition 3.3.1, we know that each Pi of [u]R corresponds to an attribute

vector ~X(Pi) = {xi1, xi2 . . . xi|R|}, where an arbitrary user u ∈ Pi if and only if fxi
1
(u) = vxi

1
and

. . . and fxi
|R|

(u) = vxi
|R|

, where vxi
k

(1 ≤ k ≤ |R|) is the attribute value of attribute xk for the

users in Pi. For example, P1 corresponds to ~X(P1) = {“Taylor Swift”, “Gods Not Dead”}.

Similarly, suppose there is a signal decision attribute d, i.e., |D = 1|, and each Qj of

[u]D corresponds to a decision attribute value vdj , where an arbitrary user u ∈ Yj if and only

if fd(u) = vdj . For example, any u ∈ Yj if and only if fd(u) = “Conservative”.

Hence, the above rule can be rewritten as

if fxi
1
(u) = vxi

1
and . . . and fxi

|R|
(u) = vxi

|R|
, then fd(u) = vd1 or fd(u) = vd2 , or . . ., or
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Table 3.2. Information system for generating decision rules.

V h1: Favorite musical h2: Favorite movies d: Political view

u1 Taylor Swift God’s Not Dead Conservative
u2 Carrie Underwood Son of God Conservative
u3 Taylor Swift God’s Not Dead Conservative
u4 Carrie Underwood Son of God Conservative
u5 George Strait Son of God Liberal
u6 George Strait Son of God Liberal
u7 Taylor Swift Transformers Conservative
u8 Taylor Swift Transformers Liberal
u9 Taylor Swift God’s Not Dead Conservative

fd(u) = vd|Mi|
.

If Pi ⊆ Qj, which indicates the class label of any user u ∈ Pi is uniquely determined by

dj, we say Pi is a deterministic class. Otherwise, we call Pi as an indeterministic class.

Example 3.3.6. We extract decision rules from the reduct system (V,R ∪ D) shown in

Table 3.2, where R = {h1, h2} and D = {d}. Let P1 = {u1, u3, u9}, P2 = {u2, u4}, P3 =

{u5, u6}, P4 = {u7, u8}, Q1 = {x1, x2, x3, x4, x7, x9} and Q2 = {x5, x6, x8}. Based on the

prior analysis, P1, P2 and P3 are deterministic classes. Hence, the following decision rules

are extracted:

if A1 = “Taylor Swift” and A2 = “God’s Not Dead”,

then, D = “Conservative”;

if A1 = “Carrie Underwood” and A2 = “Son of God”,

then, D = “Conservative”;

if A1 = “George Strait” and A2 = “Son of God”,

then, D = “Liberal”.
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3.3.3 Prediction Based on Friendship Information

Another significant knowledge that can be utilized to infer sensitive attributes is friend-

ship information in social networks. However, it is inaccurate to extract decision rules based

on friendship information directly, since there are relatively few links from users with known

labels that connect to an arbitrary user ui. Therefore, rather than directly extracting deci-

sion rules from the friendship links of ui, we consider uj’s class, where uj ∈ Ni and Ni is the

neighbor set of ui. For clarity, ui in class yt is denoted by yit.

For simplicity, the probability of ui to be in class yt, denoted as P (yit), is the average

probability of its neighbors being in yt:

P (yit|Ni) =
1

|Ni|
∑
uj∈Ni

P (yjt )

However, purely calculating the average probability of neighbors would incur overfitting.

To prevent this, the weighted-vote Relational Neighbor algorithm (wvRN) [72] suggests to

add a weight to each friendship link. There are many such methods and we adopt the ones

with the assumption that the more public attributes shared by two friends, the more is the

sensitive attributes that are shared by two friends. Then we introduce weight Wi,j between

ui and uj as follows:

Wi,j =
|(A1

i , . . . , A
m
i ) ∩ (A1

j , . . . , A
n
j )|

|Ai|
(3.2)

Equation (4.2) calculates the total number of attributes shared by ui and uj divided by

the number of ui’s attributes. Obviously, Wi,j 6= Wi,j. Then to determine yi based on Ni

becomes the following, where Z is a normalization factor:

P (yit|Ni) =
1

Z

∑
nj∈Ni

P (yjt )×Wi,j (3.3)
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3.4 Collective inference

Unfortunately, the prediction methods described in the previous section have several

problems. The attribute-based classifier (Section 3.3.2) just considers the attribute sets of

the users it is classifying. Conversely, relation-based classifier (Section 3.3.3) only considers

the friendship information of a user. However, third party users may launch an inference

attack by exploiting all the publicly available information. Moreover, a major problem of

relation-based classifier is that it requires that at least one of the neighbors of each unlabeled

user to be located in the training set (i.e., the set of users with known labels, as shown in

Equation (4.3)). Obviously, this strict requirement is hard to be satisfied by real-world data.

Collective inference attempts to tackle the above two issues by considering both attribute-

based classifier and relation-based classifier in a collaborative manner to improve prediction

accuracy. Formally, we consider the following network prediction problem.

Definition 3.4.1. Collective inference. Given social graph G(V = V k∪V U , E, X , Y =

Y K∪Y U , Hs) with user set V , friendship link set E, the set of user attribute sets X , and the

set of sensitive categories Hs. y
i ∈ Y is a class label of ui for an arbitrary category hr ∈ Hs.

LK is the known labels for users ui ∈ V K. Collective inference is to predict Y U for users

ui ∈ V U , where V U = V − V K.

This problem is challenging as some of the user labels are unknown. A fundamental idea

is to first predict a class label approximately and then refine the predicted result iteratively.

Several collective classification algorithms have been proposed to increase accuracy when

the network users are interrelated, such as the Iterative Classification Algorithm (ICA) [73]

and Gibbs sampling (Gibbs) [74]. Many collective classification algorithms and variants,

including ICA, use an attribute-based classifier MA to predict the approximate class label at

the bootstrap stage; then, they use both attribute and link based classifier, MAR, to refine

the results. The algorithms repeat these two operations until the class labels converge. We

present an algorithm under the framework of ICA that takes RST as a local classifier (one

that uses local information, e.g., attribute sets of users), denoted by ICA-RST.
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ICA-RST is shown in Algorithm 1. It first learns an attribute-based classifier MA based

on the known labels Y K (step 1), which is a set of RST decision rules. Then, by MA, it

predicts the labels of the users with unknown labels, V U (steps 2-3). Step 5 stores the

known labels Y K and the predicted labels {yi|ui ∈ V U} in set Y R. The known labels and

the predicted labels are utilized to calculate link features for each user in V U (step 7). Step

8 then learns a classifier MAR based on all of the attributes and labels. Step 10 utilizes MAR

to predict unknown labels. Finally, Step 11 returns the predicted results.

Algorithm 1: ICA-RST

Input: V = users, E = links, X = attribute set, Y K = labels of known users
(Y K = {yi|ui ∈ V K})

Output: Y U = labels of unknown users (Y U = {yi|ui ∈ V U , V U = V − V K})
1 MA = learn RST Rule(V K , Y K); // learn classifier MA utilizing only

attributes
2 for each user ui ∈ V U do

3 yi ←MA( ~Xi); // predict the labels of the unknown
users utilizing MA

4 for t = 1 to n do
5 Y R ← Y K ∪ {yi|ui ∈ V U}; // store the known labels and the

predicted labels in set Y R

6 for each user ui ∈ V U do

7 ~fi = calReFeats(V,E, Y R); // calculate link features utilizing known
labels and the predicted labels

8 MAR = learn RST Rule(V, Y R); // learn classifier MAR utilizing all of the
attributes and labels

9 for each user ui ∈ V U do

10 yi = MAR( ~Xi, ~fi); // re-predict the unknown labels utilizing
MAR

11 return Y U

Fig.3.1 shows an example for ICA-RST, which is applied to political view inference

attacks. Each step in Fig.3.1 displays a social graph consisting of five users with the cor-

responding friendship links. The class label of each node is yi, which takes value from

label set Y = {Con, Lib}, representing conservative party and liberal party, respectively.

Four users have unknown labels (V U = {u2, u3, u4, u5}) and only one user has known labels
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u1

X1 = {1, 1, 0} 

f1 = null

y1 = Co

u2

X2 = {1, 0, 1} 

f2 = {?, ?}

y2 = ?

u3

X3 = {0, 1, 1} 

f3 = {?, ?}

y3 = ?

u4

X4 = {1, 1, 1} 

f4 = {?, ?}

y4 = ?

u5

X5 = {1, 0, 0} 

f5 = {?, ?}

y5 = ?

A.) Initial state

u1

X1 = {1, 1, 0} 

f1 = null

y1 = Co

u2

X2 = {1, 0, 1} 

f2 = {?, ?}

y2 = Co

u3

X3 = {0, 1, 1} 

f3 = {?, ?}

y3 = La

u4

X4 = {1, 1, 1} 

f4 = {?, ?}

y4 = La

u5

X5 = {1, 0, 0} 

f5 = {?, ?}

y5 =Co

B.) Classify using MA (utilize attributes)

u1

X1 = {1, 1, 0} 

f1 = null

y1 = Co

u2

X2 = {1, 0, 1} 

f2 = {1, 1}

y2 = Co

u3

X3 = {0, 1, 1} 

f3 = {3, 1}

y3 = La

u4

X4 = {1, 1, 1} 

f4 = {0, 1}

y4 = La

u5

X5 = {1, 0, 0} 

f5 = {0, 1}

y5 =Co

C.) Compute links features

u1

X1 = {1, 1, 0} 

f1 = null

y1 = Co

u2

X2 = {1, 0, 1} 

f2 = {1, 1}

y2 = Co

u3

X3 = {0, 1, 1} 

f3 = {3, 1}

y3 = Co

u4

X4 = {1, 1, 1} 

f4 = {0, 1}

y4 = La

u5

X5 = {1, 0, 0} 

f5 = {0, 1}

y5 =Co

D.) Classify using MAR (utilize attributes and links)

u1

X1 = {1, 1, 0} 

f1 = null

y1 = Co

u2

X2 = {1, 0, 1} 

f2 = {2, 0}

y2 = Co

u3

X3 = {0, 1, 1} 

f3 = {3, 1}

y3 = Co

u4

X4 = {1, 1, 1} 

f4 = {1, 0}

y4 = La

u5

X5 = {1, 0, 0} 

f5 = {1, 0}

y5 =Co

E.) Recompute links features

Repeat steps D and E

Figure 3.1. An example for ICA-RST.

(V K = {u1}). In step A, no labels yi and link features ~fi in V U have been predicted, so they

are marked with a question mark. In step B, attribute-based classifier MA assigns a label

to ui in V U using only attribute ~Xi. Based on the predicted labels in step B, step C then

computes the link features of each ui. For instance, ~f3 = {3, 1} in step C since u3 has three

links with label Co (i.e., u1, u2, u5) and one link with label La (i.e., u4). In step D, classifier

MAR reclassifies users in V U using the attributes and link features, and it recomputes the

link features. Repeat step D and step E until the labels of ui in V U converge to a stable

state.

3.5 Hiding Sensitive Information

The existing privacy preservation techniques, such as differential privacy [46], k-

anonymity [47], l-diversity [48] and so forth, are designed for inherent-data privacy only, and
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do not protect against inference attacks directly. For instance, differential privacy ensures

that the aggregation results of a data set that operates the differential privacy algorithms

are the same with or without one row. k-anonymity guarantees that third party users cannot

distinguish real data from at least their nearest k− 1 neighbors. Since our goal is to release

social network data while preserving data utility and protecting against inference attacks,

the above techniques are not competent.

To develop a sanitization strategy, there are three issues to be addressed concerning

inference attacks. First, we should understand the relationship between sensitive attributes

and the released data set. For instance, Bryden made Facebook analysis and found that

conservatives with distinguished cultural tastes than other partisans [75]. Second, it is

necessary to figure out which attribute or link manipulating method(s) should be carried

out to achieve the desired privacy-utility tradeoff. For example, we can add or modify an

attribute or a link to add noises to the released data. Also, we can remove some attributes

and links to anonymize the released data. However, which one of the above methods are

better? Last, for a specific manipulating method, how to effectively carry it out to achieve the

desired privacy-utility tradeoff? For example, which attributes and links should be removed

to markedly decrease the prediction accuracy on sensitive attributes while resulting in less

accuracy decrease on non-sensitive attributes. In the following, we address the three issues.

3.5.1 Choosing Attributes to Manipulate

One of the most significant aspects is the dependency relationships between non-

sensitive attributes and sensitive attributes. Through analyzing dependence relationships,

we can reveal which publicly available attributes dominate the prediction results on sensi-

tive attributes. Namely, dependency relationship provides the theoretical basis to determine

which attributes should be chosen to manipulate. For example, suppose political view de-

pends on activity and favorite movies, which indicates that we can manipulate these two

attributes to reduce the prediction accuracy on political view. We denote the attributes that

dominate the classification results on sensitive attributes as privacy-dependent attributes.
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As shown in Definition 3.3.4 in Section 3.3.1, given an arbitrary information system

Γ = (V,A = C ∪ D), any decision attribute set D′ ⊆ D depending on condition attribute

set C ′ ∈ C with degree k can be calculated as C ′ →k D′. Here, C and D can be viewed as

publicly available attributes and sensitive attributes, respectively.

To hide sensitive attributes, our idea is to manipulate the most dependent attributes

with respect to each sensitive attribute: for an arbitrary user ui with attribute set ~Xi, and

a sensitive attribute xj = {hr : lt}, we can find the most dependent attribute xs ∈ C (1 ≤

s ≤ |C|) for sensitive attribute xj based on the following:

argmaxs{k | xs →k lt}

In practice, we can find any nt-most dependent attributes for sensitive attribute with

attribute value lt, after extracting the attributes with the largest nt dependence degree.

However, simply manipulating privacy-dependent attributes could incur utility reduc-

tion if we do not take utility into consideration. Consider the scenario that IMDb makes use

of the data released by Facebook to suggest proper movies and TV programs to target users.

It may classify users considering different movie types to make recommendations, depending

on users’ attribute sets. However, movie types could also depend on a privacy-dependent at-

tribute. For example, the possible movie types are closely related to the attribute of “favorite

movies”.

We denote the attributes that dominate the classification results on non-sensitive at-

tributes as utility-dependent attributes. Hence, the following statement determines our

choice:

Problem 3.5.1. Given social graph G(V, E, X = C∪D) with publicly available attribute set

C and sensitive attribute set D, determine the set of attributes C ′ ⊆ C so that G′(V,E,C ′∪D)

has the most decrease in prediction accuracy in D, while preserving the utility of C.

Hence, the double dependency relationships become a challenge for the attribute ma-

nipulating method.
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3.5.2 Attribute Manipulating Method

Obviously, attributes can be manipulated in three manners: adding new attributes, re-

moving existing attributes, and perturbing (substitute one attribute to another). Since both

adding and perturbing decrease prediction accuracy on sensitive information by introducing

different types of noises, they are collectively called the obfuscation method. Removing, how-

ever, can be viewed as an anonymization method. Taking which manipulating method(s)

depends on data semantics, privacy and utility metrics and so on. For example, if users spec-

ify a set of attributes as sensitive and quantify utility as the expected number of released

attributes, the removing method could be advisable.

Suppose we just release our data to the public and do not announce what the data is

used for. For example, social graph G is released online for research purpose and xp is a

privacy-dependent attribute of G. In this case, we have no direct measurement to determine

how to perturb ap; namely, use what attribute to substitute xp, since no applications are

specified. In this case, the removing method may be a proper choice. We just need to remove

the privacy-dependent attributes.

For example, consider two social graphs G1 and G2, which are sanitized graphs of G after

applying the obfuscation and anonymization methods, respectively. When we consider G1

in which there is an attribute “favorite movies: Titanic”, based on the employed obfuscation

method, the original attribute set may not have this attribute or have an obsoletely distinct

one. Hence, utility cannot be guaranteed by an obfuscation method when the application is

not specified.

However, if the data are released for a special purpose such as movie recommendation,

we could evaluate the changing utility when manipulating the attributes. In this case, the

perturbing method could be a proper choice since properly perturbing can guarantee the

desired privacy-utility tradeoff. For example, when we consider G2, it may sacrifice much

utility if there exists intersection between privacy-dependent attributes and utility-dependent

attributes. Due to these observations, we consider removing and perturbing separately.
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3.5.3 Link Manipulating Method

Another option for protecting against inference attacks is to manipulate links. Unlike

attribute, link manipulating methods only add new links and remove existing links. With

the same reason, we only consider the link anonymization method in the case of releasing the

data set to the public and without announcing what the data are used for. With the same

goal, the manipulated links should reduce the prediction accuracy on sensitive attributes.

Suppose that adding or removing a link renders the prediction results on sensitive attributes

locating in each class with a same probability, and we call this link as indistinguishable link,

which is formally defined as follows:

Definition 3.5.1. ∆′-Indistinguishable link. Given social graph G(V,E,X ) and an

arbitrary ui ∈ V with possible class labels Y = {y1, y2, . . .}, and P{yit} is the probability

of ui with label yt. Any link fj ∈ Fi,j is an indistinguishable link of ui if removing fj results

that

V ar{P{yi1}, P{yi2}, . . . , P{yi|Y |}} ≤ ∆′ (3.4)

where V ar(S) is for valuating the variance of set S.

To hide sensitive attributes through removing links, our idea is to manipulate the most

indistinguishable link with respect to each user. We can find the most indistinguishable link

fj for ui based on the following:

argminj{V ar{P{yi1}, P{yi2}, . . . , P{yi|Y |}} | removing fj}

3.6 Collective Method

To protect against inference attacks, we attempt to manipulate attributes by perturbing

and removing separately in the respective situations. As mentioned in Section 3.5.2, these two

methods must be restricted by the utility requirements. In this section, in order to achieve
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the desired privacy-utility tradeoff, we present how to utilize removing and perturbing in a

collective manner.

Clearly, simply removing or perturbing Privacy-Dependent Attributes (PDAs) could re-

duce prediction accuracy on non-sensitive attributes. Hence, there should exist a compromise

strategy for manipulating the PDAs to achieve the privacy-utility tradeoff. Therefore, rather

than removing or perturbing PDAs directly, we analyze the relationship between PDAs and

Utility-Dependent Attributes (UDAs) first.

For simplicity, we have the following collective method:

Algorithm 2: Collective method

Input: G, PDAs, UDAs
Output: collective method

1 if PDAs ∩ UDAs = Φ then
2 removing PDAs;
3 else then
4 removing PDAs - Core;
5 perturbing Core

Algorithm 2 shows that if there are no shared attributes between PDAs and UDAs,

we just need to remove the PDAs since they have no contributions on utility (Step 2).

Conversely, with the same reason, we remove the difference set between PDAs and the

shared attribute set Core (step 4). For the shared attributes, perturbing them to optimize

the privacy-utility tradeoff (step 5).

The details of the perturbing method on Core in Algorithm 2 are presented in Subsection

3.6.1.

3.6.1 Perturbing

We formally define the shared attributes as a Core.

Definition 3.6.1. Core. Given an information system Γ = (V, A = C ∪D), D = Du∪Dp,

where Du and Dp are two decision attribute sets for utility and privacy, respectively. We
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say that C ′ ⊆ C is a core of Du and Dp if C ′ ⊆ Ru and C ′ ⊆ Rp, where Ru and Rp are the

reduct of C for Γ = (V,A = C ∪Du) and Γ = (V,A = C ∪Dp), respectively.

Our idea is to substitute each attribute in the Core with a generic attribute, which

ensures that third party users cannot get specific information to increase prediction accuracy

on sensitive attributes, while guarantees no significant accuracy reduction on data utility.

Moreover, the higher level of generalization, the more preference to privacy for the utility-

privacy tradeoff. Since there are different levels of generalization, the generic attributes can

be organized into a hierarchy, which is formally defined as follows:

Definition 3.6.2. Generic Attribute Hierarchy. A Generic Attribute Hierarchy (GAH)

is a finite hierarchical ordering. The first layer of the ordering is one of the privacy-dependent

attributes, and each parent layer is a generic of the sublayer.

Definition 3.6.2 indicates that the ancestor of the GAH is the highest level of general-

ization of initial attributes. Substituting one privacy-dependent attribute with the ancestor

of the GAH would render the highest level of privacy. For example, if one attribute value in

core is for category favorite movies, the corresponding GAH can be

Star Wars→ Fantasy→ American film

This indicates that we can substitute original attribute “Star Wars” with “American

film”, in order to get the highest level of generalization. We could also substitute it with

“Fantasy” to give more preference to utility for the utility-privacy tradeoff since “Fantasy”

is more specific than “American film”. Hence, GAH guarantees that we can programmati-

cally determine which level of generic value should be chosen to optimize the privacy-utility

tradeoff.

Algorithm 3 presents the generation process of the generic values for guaranteeing op-

timal ε-utility.
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Algorithm 3: Generate generic value

Input: Core, ε = utility threshold
Output: GAH

1 while maxc∈CΛ(G′,K, Xnon)−maxc′∈CΛ(K, Xnon) ≥ ε do
2 further generate all the current attributes;

3 return Perturbed Core

3.7 Evaluation

3.7.1 Datasets

In our experiments, we investigate three different Facebook datasets. The first one is the

SNAP Facebook dataset1 which contains user friendships and a number of node attributes

such as gender, birthday, position, employer, location, etc. The other two are the Facebook

dataset containing all the Facebook friendships at Caltech and MIT in 2005, as well as a

number of node attributes such as student/faculty status flag, gender, graduation year, aca-

demic major, etc. 2 For convenience, we denote these three datasets as SNAP, Caltech, and

MIT, respectively. In Caltech and MIT, each attribute is specified by a numeric value and

each of which indicates a corresponding attribute. However, in SNAP, each attribute is spec-

ified by a 0/1 value and each of which indicates the absence/presence of the corresponding

attribute. For example, attribute “EducationDegree: undergraduate; master; PHD” with

attribute value 010 means that the attribute value is master. For convenience, we map each

attribute in SNAP into an unique numeric value in each attribute category. For example,

the above attribute value 010 in Education degree is mapped to 2.

In Table 3.3, some general statistics about the three datasets are provided. It shows

that all of the three graphs are almost fully connected.

1https://snap.stanford.edu/data/egonets-Facebook.html
2http://www.michaelzimmer.org/2011/02/15/facebook-data-of-1-2-million-users-from-2005-released/
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Table 3.3. General statistics about the three datasets
Network property SNAP Caltech MIT
Number of nodes 792 769 6440

Number of friendship links 14024 16656 251252
Number of attributes for each user 20 7 7

Number of values for decision attribute 2 4 7
Number of components in the graph 10 4 18

Nodes in largest connected component 775 762 6402
Edges in largest connected component 14006 16651 251230

Diameter longest shortest path 10 6 8

3.7.2 Experiment Settings

In our experiments, we regard gender in SANP and student/faculty status flag (flag for

short) in Caltech and MIT as sensitive attributes.

Table 3.3 shows that there are 2, 4, and 7 attribute values in SNAP, Caltech and MIT,

respectively, which are regarded as class labels here.

We predict a sensitive attribute with the following attack models: 1) the attack model

with absence of link information (AttrOnly), 2) the attack model with absence of attribute

information (LinkOnly), and 3) the attack model based on collective inference (CC).

As mentioned in Section 3.4, a major issue is raised if directly executing LinkOnly

requires that at least one of the neighbors of each unlabeled user locates in the training set

(as shown in Equation (4.3)). Hence, in our experiments, we first predict the class label of

those unlabeled nodes by classifying their attribute sets. Next, we predict the class label of

any user ui by calculating the weighted average probability of its neighbors with one class

label (as calculated in Equation (4.3)).

Moreover, CC employs attribute based classifier to predict the approximate class label

at the bootstrap stage. Then, it uses classifier that based on both attribute and link, MAR,

to refine the results. In our experiments, we employ the following MAR

αPA{yit}+ βPL{yit} (3.5)

where P{yit} and PL{yit} are the probabilities of ui with label yt, assigned by AttrOnly
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Table 3.4. Information of the Reduct Systems for SNAP, Caltech and MIT
Decision attribute No. of condition attributes

Gender in SNAP 19 → 13
Flag in Caltech 6 → 5
Flag in MIT 6 → 5

and LinkOnly, respectively. α + β = 1, where α and β represent the ratio of AttrOnly

and LinkOnly, respectively. The values of α and β are determined by dataset features.

Specifically, α is larger than β iff the node attributes are more indicative than node relations.

To determine α and β, we study a set of experiments with multiple combinations and find the

optimal one that renders the best prediction accuracy for CC. In Section 3.7.3, we set both

α and β as 0.5; namely, an average prediction result assigned by AttrOnly and LinkOnly is

expected. In Section 3.7.4, the utility and privacy under several pairs of α and β would be

discussed.

For the attribute-based classifier utilized in AttrOnly, LinkOnly and CC, we carry it

out with three techniques: RST, Navie Bayes and KNN [76]. Hence, with different attribute-

based classifiers, AttrOnly can be further specified as: 1) RST, 2) Navie Bayes, 3) KNN;

LinkOnly can be further specified as: 4) LinkOnly-RST, 5) LinkOnly-Bayes, 6) LinkOnly-

KNN; and CC can be further specified as: 7) ICA-RST, 8) ICA-Bayes, 9) ICA-KNN.

3.7.3 Effect of Attribute-removal and Link-removal Methods on Inference

Attacks

In this part, we aim to protect against inference attacks with the following sanitization

methods: 1) Attribute removal: remove the most privacy dependent attributes, namely, the

attributes in the reduct system (Section 3.5.1), and 2) Link removal: remove the distinguish-

able links (Section 3.5.3).

Table 3.4 lists the information of the reduct systems for these three datasets. We can

see that in Table 3.4, the number of condition attributes is reduced from 19 to 13 in SNAP

and from 6 to 5 in Caltech and MIT, respectively.
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SNAP Fig.3.2(a), Fig.3.2(b) and Fig.3.2(c) show the prediction accuracy of differ-

ent attack models on SNAP with the removal of the most privacy dependent attributes.

Fig.3.2(d), Fig.3.2(e) and Fig.3.2(f) show the prediction accuracy of different attack models

on SNAP with the removal of the indistinguishable links. As we can see from Fig.3.2(a),

Fig.3.2(b) and Fig.3.2(c), removing the most privacy dependent attributes is generally suc-

cessful in reducing the prediction accuracy on sensitive attributes.

It is shown that there is a decrease in the prediction accuracy with more and more

attributes being removed. Surprisingly, however, the accuracy of LinkOnly does not decrease

significantly while we remove attributes. For LinkOnly, as discussed in Section 3.7.2, we first

predict the class labels of those unlabeled nodes by classifying their attribute sets; hence,

the accuracy decrease of attribute-based classifier should also render the accuracy decrease

for LinkOnly. A possible explanation is that just a small part of the nodes need labels in the

first step of LinkOnly through classifying attribute set, since most of the labeled nodes are

in the training set. Hence, removing attributes do not have a significant influence. Clearly,

we can see that CC generally outperforms AttrOnly and LinkOnly.

The results in Fig.3.2(d), Fig.3.2(e) and Fig.3.2(f) show that removing the indistinguish-

able links is generally successful in reducing the prediction accuracy on sensitive attributes.

However, we find a surprising phenomena in Fig.2: a volatile prediction accuracy after the

removal of a single attribute or link. Especially, a much more volatile prediction accuracy

after the removal of a single link. For the volatility related to attribute, it is a result of large

class size difference in the SNAP dataset. Since approximately 65% of the nodes in SNAP

are ”male” and there are no attributes that are highly dependent on gender, a small change

of attributes can affect the prediction accuracy in uncontrollable ways. For the volatility re-

lated to links, it is a result of the local optimal link-removal strategy. Since the link-removal

strategy always manipulates the most indistinguishable link with respect to each user, it

cannot guarantee the removed link is globally optimal. Therefore, a small change of links

can also affect the prediction accuracy in uncontrollable ways.
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Caltech Fig.3.3(a), Fig.3.3(b) and Fig.3.3(c) show the prediction accuracy of different

attack models on Caltech with the most privacy dependent attributes removed. Fig.3.3(d),

Fig.3.3(e) and Fig.3.3(f) show the prediction accuracy of different attack models on Caltech

with the removal of the indistinguishable links. As we can see from Fig.3.3(a), Fig.3.3(b)

and Fig.3.3(c), compared with the results on SNAP, there is a much more volatile prediction

accuracy after the removal of a single attribute. This is a result of larger class size difference

in Caltech than that of SNAP. Since approximately 72% of the nodes in Caltech have a same

class label and there are no attributes that are highly dependent on flag, a small change of

attributes can affect the prediction accuracy in uncontrollable ways.

MIT Fig.3.4(a), Fig.3.4(b) and Fig.3.4(c) show the prediction accuracy of different

attack models on MIT with the most privacy dependent attributes removed. Fig.3.4(d),

Fig.3.4(e) and Fig.3.4(f) show the prediction accuracy of different attack models on MIT

with the removal of the indistinguishable links. Fig.4 shows that removing the most pri-

vacy dependent attributes or indistinguishable links is generally successful in reducing the

prediction accuracy on sensitive attributes. As we can see from Fig.3.4(a), Fig.3.4(b) and

Fig.3.4(c), compared with the results on Caltech, there is a less volatile prediction accuracy

after the removal of a single attribute. This appears to be a result of larger class size differ-

ence in the Caltech dataset than that of the MIT. Approximately 67% of the nodes in MIT

have a same class label and there are no attributes that are highly dependent of flag.

Fig.3.5(a) and Fig.3.5(b) show the prediction accuracy of different attack models on

MIT with the most privacy dependent attributes and indistinguishable links removed simul-

taneously. As shown in Fig.3.5, the prediction accuracy is more sensitive to the removal of

attribute than the removal of link.

3.7.4 Effect of Collective Method on Inference Attacks

We further test the collective method to evaluate the effectiveness of our data sanitiza-

tion. Since there are no utility and privacy expectation specified for each dataset, we select
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Table 3.5. Setting of utility attribute and privacy attribute
Utility attribute Privacy attribute

SNAP education type gender
Caltech gender flag

MIT gender flag

two attributes as privacy attribute and utility attribute, respectively. The selection of the

above two attributes is listed in Table 3.5. We attempt to evaluate the effectiveness of our

method in achieving a desired privacy/utility tradeoff: reducing the prediction accuracy on

sensitive attribute while ensuring the prediction accuracy on utility atteibute.

Since each attribute has a numeric value, we cannot generate a generic value from the

semantic view directly. However, we can map several attribute values to an interval and

generalize them with an unique value in this interval. Algorithm 4 is used to generate

generic attribute values. For each attribute category hr in Core, Algorithm 4 first calculates

the maximum and minimum attribute values of all the users for hr (steps 2-3). Then, it

calculates the range between MAX and MIN under generic level L (step 4). Finally, for

each user i, Algorithm 4 maps its original attribute value xi,r to b(Xi,r −MIN)/Rangec

(steps 5-7). In Algorithm 4, perturbing degree decreases with the increase of generalization

level L.

Algorithm 4: Generate generic value

Input: Core, L = generalization level
Output: Generic attribute set with level L

1 for each attribute category hr ∈ Core do
2 MAXr = max(x1,r, x1,r, . . . , x|V |,r) ;
3 MINr = min(x1,r, x1,r, . . . , x|V |,r) ;
4 Ranger = b(MAXr −MINr)/L+ 1c;
5 for i = 1 to |V | do
6 xi,r = b(xi,r −MIN)/Rangec;

7 return xi,r

According to Algorithm 2, the information for PDAs, UDAs and Core for SNAP, Caltech
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Table 3.6. Information for PDAs, UDAs and Core

Dataset No. of UDAs No. of PDAs - Core No. of Core

SNAP 7 6 6
Catech 3 2 1
MIT 3 2 1

Table 3.7. Maximum utility/privacy under collective, attribute removal and link removal
methods with α = 0.5, β = 0.5

Dataset Collective Attribute removal Link removal
SNAP 1.1967 1.1639 1.1639

Caltech 1.5273 1.3433 1.3433
MIT 1.2636 1.1881 1.1931

and MIT are shown in Table 3.6.

We test multiple levels of generalization (set generalization level as L = 5, 6, 7, 8) and

compare the collective method with the data removal and link removal sanitization methods.

We use utility/privacy as privacy-utility tradeoff criteria to evaluate the performance of these

three data-sanitization methods.

Table 3.7 shows the maximum utility/privacy under these three methods, with α = 0.5

and β = 0.5. From Table 3.7, we observe that the collective method achieves the best

privacy/utility tradeoff with ratio 1.1967, 1.5273 and 1.2636 in SNAP, Caltech and MIT,

respectively. Table 3.8, Table 3.9 and Table 3.10 show the utility/privacy under different

generalization levels, and different numbers of removed attributes and links. In Table 3.8,

Table 3.9 and Table 3.10, “R-Attr”, “R-Link” and “Uti/pri” represent “Number of Removed

attribute”, “Number of Removed link” and “Utility/privacy”, respectively. As shown in

Table 3.8, Table 3.9 and Table 3.10, utility to privacy ratio decreases with the increase of

perturbing degree (L from 5 to 8 ). Moreover, utility to privacy ratio decreases as well

with more and more attributes and links being removed. Additionally, we observe that

our proposed collective method generally outperforms attribute removal and link removal

method.
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Table 3.8. General statistics about priacy/utility on SNAP with α = 0.5, β = 0.5
L Uti/pri No. of R-Attr Uti/pri No. of R-Link Uti/pri
5 1.1613 0 1.1639 0 1.1639
6 1.1803 3 1.0862 200 1.1500
7 1.1967 6 0.9524 400 1.1333
8 1.1967 9 0.9375 600 1.1148

Table 3.9. General statistics about priacy/utility on Caltech with α = 0.5, β = 0.5
L Uti/pri No. of R-Attr Uti/pri No. of R-Link Uti/pri
5 1.4839 0 1.3433 0 1.3433
6 1.4918 1 1.1970 400 1.2464
7 1.5112 2 1.0274 800 1.2206
8 1.5273 3 0.9865 1200 1.1690

Table 3.10. General statistics about priacy/utility on MIT with α = 0.5, β = 0.5
L Uti/pri No. of R-Attr Uti/pri No. of R-link Uti/pri
5 1.2313 0 1.1881 300 1.1931
6 1.2425 1 1.0469 600 1.1901
7 1.2580 2 1.0342 900 1.1897
8 1.2636 3 0.9698 1200 1.1798
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Table 3.11. Maximum utility/privacy under collective, attribute removal and link removal
methods with α = 0.1, β = 0.9

Dataset Collective Attribute removal Link removal
SNAP 1.3019 1.3148 1.4800
CalTech 1.4032 1.3770 1.3770
MIT 1.2274 1.2121 1.2239

Table 3.12. Maximum utility/privacy under collective, attribute removal and link removal
methods with α = 0.9, β = 0.1

Dataset Collective Attribute removal Link removal
SNAP 1.1356 1.1754 1.1930
CalTech 1.3968 1.2985 1.2985
MIT 1.2674 1.2101 1.2132

Furthermore, we evaluate the maximum utility/privacy under different combinations of

α and β: α = 0.1, β = 0.9 and α = 0.9, β = 0.1. The results are shown in Table 3.11 and

Table 3.12. Table 3.7, Table 3.11 and Table 3.12 show that utility/privacy value of collective

method is always better than that of attribute removal and link removal method, when an

average prediction result are assigned by AttrOnly and LinkOnly, i.e., α = 0.5 and β = 0.5.

3.8 Conclusions

We address two issues in this paper: (a) how exactly third party users launch an inference

attack to predict sensitive information of users, and (b) are there effective strategies to

protect against such an attack to achieve a desired privacy-utility tradeoff. For the first

issue, we show that collectively utilizing both attribute and link information can significantly

increase prediction accuracy for sensitive information. For the second issue, we explore

the dependence relationships for utility/public attributes, and privacy/public attributes.

Based on these results, we propose a Collective Method that take advantages of various data

manipulating methods to guarantee sanitizing user data does not incur a bad impact on data

utility. Using Collective Method, we are able to effectively sanitize social network data prior



43

to release. The solutions for the two addressed issues are proven to be effective towards three

real social datasets.
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Figure 3.2. Sensitive attribute prediction accuracy on SNAP with different attack models.
With most privacy-dependent attributes removed, and (a) Bayes, (b) KNN, (c) RST as
attribute-based classifier; With indistinguishable links removed, and (d) Bayes, (e) KNN, (f)
RST as attribute-based classifier.
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Figure 3.3. Sensitive attribute prediction accuracy on Caltech with different attack models.
With most privacy-dependent attributes removed, and (a) Bayes, (b) KNN, (c) RST as
attribute-based classifier; With indistinguishable links removed, and (d) Bayes, (e) KNN, (f)
RST as attribute-based classifier.
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Figure 3.4. Sensitive attribute prediction accuracy on MIT with different attack models.
With most privacy-dependent attributes removed, and (a) Bayes, (b) KNN, (c) RST as
attribute-based classifier; With indistinguishable links removed, and (d) Bayes, (e) KNN, (f)
RST as attribute-based classifier.
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Figure 3.5. Predicting accuracy on MIT with the most privacy dependent attributes and
indistinguishable links removed simultaneously: (a) ICA-KNN as attack model; (b) ICA-
Bayes as attack model.
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Chapter 4

TRADEOFF BETWEEN PRIVACY AND CUSTOMIZED DATA UTILITY

FOR SOCIAL DATA PUBLISHING

4.1 Introduction

Among the many big data resources, social networks contribute considerable amount

of data covering all the aspects of frontend and backend. Facebook has 1.65 billion users

with 1 billion active users per month, Twitter has 600 million users with 0.5 billion tweets

published per day, Amazon has 304 million users with 9.65 billion items traded per year,

Tencent QQ has 829 million active users with up to 210 million simultaneous online users,

WeChat has over a billion users with 700 million active users, etc. With such large scale

of and variety of data, Social Network Analysis (SNA) becomes increasingly important for

classifying end users, predicting buying interests, foretelling event occurrence, etc. Recent

years have witnessed the boom of social networks, offering a great opportunity for SNA to

prompt more novel applications.

Although the abundant social data bring valuable benefits, they unfortunately raise

stringent privacy concerns as well. Each social network user is generally associated with

an attribute set which may contain sensitive attributes like location, gender, sexual orienta-

tion, etc. Such personal information could be exploited by third parties like data analysts,

marketer, or social media itself. Any third parties with malicious intentions on sensitive

information of users can be viewed as adversaries and they breach user privacy by collecting

sensitive data first. People now begin to concern about the privacy issue and become more

conservative in publishing personal and sensitive data, which may degrade data publishing

scale and drive users to publish anonymized data. Therefore, the conflict between privacy

concerns and data utility promotes adversaries to exploit sensitive information contained in

the published data.
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Concerns derived from inference attacks towards sensitive information contained in user

data is represented as latent-data privacy, where the inference attacks usually employ statis-

tical analysis, machine learning or data mining techniques to infer sensitive information. For

instance, suppose a user does not disclose her opinions and interests online. Unfortunately, it

is easy to predict some of her opinions and interests if it is publicly known that she is affiliat-

ed with any particular organization or club. ABCNews.com and Boston Globe [69] shown it

is achievable to infer the sexual orientation of a user through mining a Facebook subnetwork

involving the user’s friendship relations, gender, and other attributes. Latent-data privacy

breaches could incur serious negative repercussions.

Publishing sanitized data is generally adopted to protect latent-data privacy. Data

sanitization methods introduce noises by sanitizing attribute sets or social links. Although

sanitizing publicly available data can help with protecting latent-data privacy, such simple

methods could also reduce data utility for SNA. On the one hand, some user attributes

are indicative for specific social analysis which is expected to be accurately predicted. For

instance, a SNA server utilizes published Facebook data to make movie recommendation for

target users. Unfortunately, some dominant attributes, such as ”gender”, may have been

sanitized to protect latent-data privacy, degrading recommendation performance. On the

other hand, in addition to sanitizing attributes, sanitizing social network links can distort

friendship relations among users and change one’s social status, which is another reason of

reducing data utility for SNA. For example, social link sanitization can turn an influential

user to an unsocial one. Therefore, effective privacy preserving SNA strategies are crucial

for big social network data.

In this work, we explore how to balance the tradeoff between latent-data privacy and

data utility. We assume adversaries collect user data, and some privacy-unconscious users

publish their sensitive latent information. We first formalize the metrics to measure data

utility loss and latent-data privacy. Then, we propose two data sanitization methods that

sanitize social attributes and links, respectively. Finally, data-sanitization strategies are

proposed, which should not degrade the benefits brought by social network data, while
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sensitive latent information can still be protected.

To measure data utility loss, we introduce prediction accuracy deviation and network

structure disparity. Both of them cause utility loss because of the employed data sanitization

strategy. We investigate how to measure them and their relationship. Previous works usually

consider them separately. Network structure disparity not only affects prediction accuracy,

but also limits social interaction among users. The current metrics do not comprehensively

measure data utility and could sacrifice more utility in realizing privacy-utility tradeoff. Our

work does consider both prediction accuracy deviation and network structure disparity. For

latent-data privacy, we expect our data sanitization strategy can combat against powerful

adversaries with abundant prior knowledge who launch inference attacks. Thus, it is neces-

sary to figure out how adversaries launch inference attacks. Previous works primarily assume

relatively weak adversaries such that the proposed data sanitization strategy is not effective.

Our work does consider this problem and quantify the capabilities of adversaries.

The previous studies for privacy-utility tradeoff have several deficiencies. First,

attribute-sanitization and link-sanitization are separately considered, degrading the privacy

preserving effect. Second, relatively weak adversaries are assumed so that the proposed da-

ta sanitization strategies are not sufficient to combat against powerful adversaries. Third,

structure utility loss caused by social structure disparity is ignored so that preserved utility

is overestimated. Therefore, the previous studies cannot effectively optimize the tradeoff

between latent-data privacy and data utility. In this paper, we identify an optimization

problem seeking a data sanitization strategy to realize the maximum latent-data privacy

with customized data utility. Our main contributions are summarized as follows:

1. We consider prediction utility loss and structure utility loss simultaneously rather than

considering them separately.

2. We assume powerful adversaries who can launch optimal inference attacks instead of

weak adversaries.

3. Rather than separately considering attribute-sanitization and link-sanitization, we col-
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lectively sanitize social links and attributes.

We organize the paper as follows. Section 4.2 introduces Network model and problem

definition. Section 4.3 introduces the prediction method for latent attributes and data-

sanitization method. In Section 4.4, privacy and utility metrics are introduced. The data

sanitization strategy to optimize the privacy-utility tradeoff is presented in Section 4.5. The

performance evaluation are shown in Section 4.6. Section 4.7 concludes the paper.

4.2 Problem Statement

4.2.1 Social Network Model

Definition 4.2.1. Social network. Social network is represented by graph model

G(V,E,X ), with user set V , link set E, and the set of attribute sets, X . For any link

eij ∈ E between users ui and uj, eij ∈ E also indicates eji ∈ E.

Definition 4.2.2. Attribute set. For user ui ∈ V , its attribute set is represented by an

attribute vector Xi ∈ X . Each attribute xj ∈ Xi (1 ≤ j ≤ |Xi|) takes value(s) from the j-th

dimension.

For social network data, a SNA server performs analysis to predict users’ latent in-

formation such as preferences. Then, according to the predicted results, the corresponding

services are provided. For example, a SNA server can predict movie preference of users by

classifying the users into different classes such as action, adventure, comedy, etc. Howev-

er, adversaries also attempt to gain benefit from users’ social relationships and attribute

set to infer sensitive latent information. These two types of latent information related to

data utility and latent-data privacy are denoted as Sensitive Latent Attributes (SLA) and

Non-Sensitive Latent Attributes (NSLA), respectively.

Definition 4.2.3. SLA. SLA is a set of unpublished sensitive attributes, yet such attributes

could be predicted from published social network data combined with prior knowledge.



52

Definition 4.2.4. NSLA. NSLA is a set of unpublished non-sensitive attributes, yet such

attributes can be predicted from published social network data combined with prior knowledge.

We expect NSLA can be accurately predicted so that satisfactory services can be guar-

anteed. Conversely, to protect the privacy of SLA, we expect SLA does not being predicted

accurately. Furthermore, social network structure should be preserved such as node degree,

centrality, betweenness, etc. Thus, there exists a tradeoff between latent-data privacy and

data utility. Utility and latent-data privacy are formally defined as follows.

Definition 4.2.5. Latent-data privacy. Latent-data privacy preserving is to protect the

SLA of each user.

Definition 4.2.6. Utility. The utility of a social network dataset is high iff 1) a SNA server

has a high prediction accuracy for NSLA; and 2) the social network structure is effectively

preserved.

For the sake of brevity, we omit the subscript and use X and X ′ to denote an original

and sanitized attribute set of a user, respectively, in the rest of the paper without confusion.

4.2.2 Model of Adversaries

We assume powerful adversaries with abundant prior knowledge about users, and they

can launch optimal inference attacks to infer the SLA of each user. This assumption allows

the constructed data-sanitation method can combat against adversaries with a larger range

of capability.

There exists a prior probability for a user’s attribute vector X, denoted as ψ(X), which

represents the probability of a user with attribute set X. For a user, all her possible attribute

sets satisfy
∑
ψ(X) = 1. We call the set of ψ(X) as a user’s profile.

Definition 4.2.7. Profile. The profile of a user is a set of probabilities Ψ = {ψ(X1), ψ(X2), . . . , ψ(Xk)},∑
1≤i≤k ψ(Xi) = 1, where each ψ(Xi) is the probability of a user with attribute set Xi and k

is the number of possible attribute sets.
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Table 4.1. Major symbols
Parameter Definition
X Set of attribute sets
Xi Attribute set of user ui
xj j-th attribute

ψ(X) Prior probability of attribute set X
lit t-th latent attribute, lt, of ui

P (lit) Probability of ui with latent attribute lt
Wi,j Weight between ui and uj

f(X ′|X) Attribute sanitization strategy
L(X ′|X) link sanitization strategy

ε Structure-utility loss threshold
δ Prediction-utility loss threshold

First, we assume adversaries know each user’s profile. Second, adversaries are assumed

to know the data-sanitization strategy employed to realize the tradeoff between utility and

privacy. Based on the above knowledge, optimal inference attacks are launched by adver-

saries.

4.2.3 Problem Definition

In this paper, we study the following problem.

Input:

(1) Social graph G, SLA and NSLA of users.

(2) Utility thresholds ε and δ.

Output:

The data sanitization strategy that minimizes the predication accuracy for unpublished

SLA and satisfies utility threshold ε and δ.

For clarity, the meanings of the symbols are summarized in Table 4.1.

4.3 Preliminaries

In this section, the prediction method is presented to predict both SLA and NSLA of a

user based on published social data.
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4.3.1 Prediction Method for Latent Attributes

We assume powerful adversaries that launch inference attacks by utilizing all publicly

available knowledge including social links and attribute sets. Therefore, the prediction

method predicts latent information considering social links and attribute sets collectively

to increase prediction accuracy.

Link knowledge is important for predicting latent information in social networks. There-

fore, we consider uj’ latent information when predicting ui’ latent information, where uj ∈ Ni

and Ni denotes the neighbor set of ui. For clarity, ui with latent attribute lt is denoted as lit.

For brevity, the probability of ui to have latent attribute lt is denoted as P (lit). The

average probability of ui’ neighbors with latent attribute lt is calculated as:

P (lit|Ni) =
1

|Ni|
∑
uj∈Ni

P (ljt ) (4.1)

However, directly computing the average probability may incur overfitting. In practice,

close neighbors should have larger impact for each other on the determination of latent

information. To avoid overfitting, we introduce a weight to evaluate the impact of one

neighbor for target user. We assume that if more published attributes are shared by two

friends, they tend to share more latent attributes. Then the weight Wi,j between ui and uj

is calculated as

Wi,j =
|(xi1, . . . , xim) ∩ (xj1, . . . , x

j
n)|

|Xi|
(4.2)

Equation (4.2) computes the proportion of the shared attributes between ui and uj

among ui’s attributes. Clearly, Wi,j 6= Wj,i. To determine li based on Ni, we combine

Equation (4.1) and Equation (4.2) as follows,

P (lit|Ni) =
1

|Ni|
∑
uj∈Ni

P (ljt )
Wi,j∑

uk∈Ni
Wi,k

(4.3)
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It is easy to find that Equation (4.3) requires that at least one of the neighbors of each

user to publish her latent attributes. Obviously, this strict condition is hard to be satisfied

in real social networks. Therefore, it is inaccurate to predict the latent attributes of user

ui based on link information directly, since it is possible that few neighbors publish their

latent attributes. To solve this problem, we first predict the latent attributes of those unpub-

lished users through analyzing their attribute sets. Then, we predict the latent attributes of

unpublished users through utilizing weighted link knowledge calculated by Equation (4.3).

Next, we present how to predict the latent attributes of a user through analyzing her

attribute set. Given a user ui with attribute set Xi = {x1, . . . , xn} and p potential latent

attributes l1, . . . , lp, the probability of ui with latent attribute lt is arg max
1≤t≤p

[P (lit|x1, . . . , xn)].

To calculate the above value, based on Bayes Theorem, assuming that all attributes are

independent, we have

arg max
1≤t≤p

[
P (lit)× P (x1|lit)× . . .× P (xn|lit)

P (x1, . . . , xn)

]
.

We find that P (x1, . . . , xn) is the same for any value of P (lit). Therefore, we only need

to calculate

arg max
1≤t≤p

[
P (lit)× P (x1|lit)× . . .× P (xn|lit)

]
.

4.3.2 Data Sanitization Method

In Section 4.3.1, we assume powerful adversaries that launch inference attacks by ex-

ploiting social links and attribute sets simultaneously. Therefore, in order to realize the

tradeoff between privacy and utility, our objective is to sanitize both social links and at-

tribute sets.

Attribute-sanitization method An attribute set could be sanitized in three ways,

adding attributes, removing attributes, and perturbing attributes (replace one attribute with
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another). Which methods should be employed to sanitize social data depends on data utility

and privacy metrics and data semantics.

To prevent inference attacks on SLA, we can sanitize the most indicative attributes for

each SLA which is publicly available to adversaries. With this objective, for a user with

attribute set X, it is easy to determine the most indicative attribute xj for any SLA zi ∈ Z

by argmaxj[∀zi ∈ Z : P (xj|zi)].

This allows us to determine a single attribute which is the most indicative for a SLA

and sanitize it. Unfortunately, directly sanitizing the most indicative attributes for SLA can

reduce utility if we don’t consider the most indicative attributes for NSLA. For instance,

consider the case to predict health conditions of users which could be viewed as NSLA.

Health conditions and SLA such as sexual orientation share indicative attribute “gender”.

Therefore, although sanitizing “gender” reduces the prediction accuracy for SLA, it also

reduces the prediction accuracy for NSLA.

To resolve the above conflict, we propose the following data sanitization method: (1) If

there exist indicative attributes shared by SLA and NSLA, we perturb the shared indicative

attributes; and remove the SLA except the shared indicative attributes; (2) If there does not

exist any indicative attribute shared by SLA and NSLA, we remove the indicative attributes

for SLA.

The next challenge is how to perturb the indicative attributes shared by SLA and NSLA.

Our idea is to generalize each shared indicative attribute. For example, if a shared attribute

is idol: Jodon, it can be generalized to basketball star. For each shared indicative attribute,

we can organize potential generalized attributes into a hierarchy.

Link-sanitization method Unlike attributes, social links can only be sanitized by

adding links and removing existing links. Similar with the attribute-sanitization method, a

link-sanitization method should reduce the prediction accuracy for SLA and do not greatly

reduce the prediction accuracy for NSLA. Unfortunately, unlike attributes, it is nontrivial to

find the indicative links shared by SLA and NSLA, thus we focus on reducing the prediction
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accuracy for SLA firstly when sanitize links and more constraints will be given later to

guarantee utility.

For this goal, the concept of Vulnerable Link is introduced as follows:

Definition 4.3.1. Vulnerable link. A vulnerable link of one user is the link whose removal

will lower the prediction accuracy for the SLA of the user. The prediction accuracy for the

SLA of ui upon removing the vulnerable link eij is Λ(Ei − eij).

From the above definition, it shows that Λ(Ei − eij) ≤ Λ(Ei). To protect SLA of ui

through removing links, we first identify a set of vulnerable links denoted as Ai. Second, for

any eij ∈ Ai, we calculate the reduction of prediction accuracy for SLA upon removing eij.

Then, we order the links in Ai according to the calculated prediction accuracy reduction.

We next remove those links with the largest prediction accuracy reduction in Ai.

4.4 Metrics

Now we discuss how to measure utility and latent-data privacy. Our data sanitization

strategy includes two parts: attribute sanitization strategy f(X ′|X) and link sanitization

strategy L(X ′|X). f(X ′|X) likes a transfer function that takes a user’s attribute set X as

input and outputs the sanitized one X ′. Meanwhile, for an arbitrary user ui, L(E ′i|Ei) can

be viewed as a transfer function that takes ui’s link set Ei as input and outputs the sanitized

one E ′i.

4.4.1 Utility metric

For data utility, two aspects need to be considered. First, the sanitized attribute set and

social links should guarantee a SNA server can effectively infer the NSLA of users. Second,

the sanitized network structure should not deviate from the original one very much. Worth

to note that the second aspect expects that sanitizing social links does not distort friendship

relations among users and does not change one’s social status too much. We introduce two
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parameters ε and δ to scale the above two aspects. Then, (ε, δ)-data utility can be defined

as follows.

Definition 4.4.1. (ε, δ)-Utility. Given social graph G, network disparity measurer M,

collective prediction method C, NSLA set Y , accessible prior knowledge known to third party

users K, we say that G’s sanitized graph G′ satisfies (ε, δ)-utility if for any NSLA yi ∈ Y ,

(i).M(G,G′) ≤ ε;

(ii). Λyi
C (G′,K)− Λyi

C (K) ≥ δ,

where Λyi
C (G) represents the prediction accuracy of collective prediction method C for NSLA

yi. ε is the super-threshold of social structure changes. δ measures how much added pre-

diction accuracy is earned by adversaries through predicting with the published G′. Clearly,

ε, δ ≥ 0. To preserve data utility, both ε and δ are given by the data publisher.

Next, we define utility loss due to the data-sanitization strategy carried out on published

data. Definition 4.4.1 shows that utility loss comes from two aspects: network structure

disparity and prediction accuracy deviation for NSLA. Therefore, utility loss is defined based

on the above two aspects: structure utility loss and prediction utility loss.

Definition 4.4.2. ε-Structure utility loss. Structure utility loss estimates how much an

arbitrary user ui loses regarding network structure after sanitizing its social links. Structure

utility loss of ui is determined by the structure utility values of ui’s neighbors. For a given

structure utility value metric, the ε-structure utility loss for ui after sanitizing ui’ vulnerable

link set Ai ⊆ Ni is given by SULi = ζ(SAi
) ≤ ε, where SAi

= {Sj|uj ∈ Ai ⊆ Ni, Sj ∈ R∗},

and Sj represents the structure utility value of user uj.

The structure utility value of a user reflects social structure properties, which can be

measured by different metrics. In this paper, we use number of shared friends as structure

utility metric. Unfriending a friend that shares a large of friends of one user has a bad effect
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on the clustering coefficient of the user. Furthermore, we assume ζ(.) is an additive function,

then SULi =
∑

uj∈A⊆Ni
Sj ≤ ε.

Since both attribute set and social links of a user are sanitized and we assume powerful

adversaries predict SLA based on them simultaneously as shown in Section 4.3.1, prediction

utility loss is derived from both of the disparity sources. Since social structure disparity

is measured by ε-structure utility loss, prediction utility loss only needs to measure the

prediction accuracy deviation derived from attribute sanitization.

To evaluate prediction utility loss due to sanitized attribute set, we introduce an at-

tribute set disparity measurer du, such that du(X,X ′) measures how much prediction utility

loss there is if a SNA server performs analysis depending on X ′ rather than X. Thus, given

ψ(X), f(X ′|X), and du(X,X ′), prediction utility loss can be calculated as the expectation

of du(X,X ′) over all X and X ′ for a user.

Definition 4.4.3. δ-Prediction utility loss. Prediction utility loss estimates the amoun-

t of prediction accuracy deviation for the NSLA of an arbitrary user ui. For a given

attribute set disparity measurer du, the δ-prediction utility loss for ui after carrying out

a data sanitization method on its attribute set X and social links, is given by PULi =∑
X,X′ ψ(X)f(X ′|X)du(X,X ′) ≤ δ.

Attribute set disparity measurer du is determined by data semantics. In different appli-

cations, du can be defined as Euclidean, Hamming, or Mahalanobis distance, etc.

4.4.2 Latent-data privacy metric

We assume powerful adversaries have the knowledge of user’s profile ψ(X) and our data-

sanitization strategy. After obtaining the sanitized attribute set, adversaries calculate the

posterior probability of X, conditional on X ′ with prior knowledge ψ(X) and f(X ′|X):

Pr(X|X ′) =
Pr(X,X ′)

Pr(X ′)
=

f(X ′|X)ψ(X)∑
X f(X ′|X)ψ(X)

Then, for each X with posterior probability Pr(X|X ′), adversaries can predict the
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user’s SLA based on X and sanitized social links. We represent the SLA predicted from

Pr(X|X ′) as ZX . Obviously, ZX is related to the sanitized link set A such that we denote

ZX as the function of A, i.e., ZX(A). Adversaries’ goal is then to choose Ẑ to minimize the

user’s conditional expected latent-data privacy, conditional on Pr(X|X ′). For an arbitrary

Ẑ, the user’s conditional expected latent-data privacy is
∑

X Pr(X|X ′)dp(ZX(A), Ẑ), where

dp(ZX(A), Ẑ) is the privacy disparity between ZX(A) and Ẑ.

For the minimized Ẑ, it is

min
Ẑ

∑
X

Pr(X|X ′)dp(ZX(A), Ẑ) (4.4)

The latent-data privacy conditional on a givenX ′ is given by Equation (4.4). Meanwhile,

the probability of X ′ output by the sanitization method is P (X ′) =
∑

X f(X ′|X)ψ(X).

Thus, unconditional expected privacy of the user’s is

∑
X′

ψ(X ′)min
Ẑ

∑
X

Pr(X|X ′)dp(ZX(A), Ẑ)

=
∑
X′

min
Ẑ

∑
X

ψ(X)f(X ′|X)dp(ZX(A), Ẑ)

(4.5)

We define

PX′ = min
Ẑ

∑
X

ψ(X)f(X ′|X)dp(ZX(A), Ẑ). (4.6)

Incorporating PX′ into Equation (4.5), the users unconditional expected privacy is

rewritten as

∑
X′

PX′ , (4.7)

which is the user attempts to maximize by finding the optimal f(X ′|X).

Unfortunately, the minimum operator in Equation (4.6) makes the computation problem
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nonlinear. Therefore, we can transform (4.6) into a series of linear constraints by

PX′ ≤
∑
X

ψ(X)f(X ′|X)dp(ZX(A), Ẑ) ∀Ẑ (4.8)

Therefore, maximizing Formula (4.7) under constraint (4.6) is equal to optimizing For-

mula (4.7) under constraint (4.8).

4.5 Privacy-Utility Tradeoff

In this section, we first formalize optimal problem that can produce optimized data

sanitization strategy. Then, we discuss how to solve the proposed optimal problem. Here, we

introduce function LaPri(.) to measure latent-data privacy with current sanitized attribute

set and social links.

4.5.1 Optimal Problem Formulation

The problem of (ε, δ)-utility with maximize latent-data privacy can be formulated as

follows.

Definition 4.5.1. (ε, δ)-UtiOptPri (ψ(.), du(.), dp(.),S, ε, δ, ). Given user’s profile ψ(.),

attribute set disparity measurer du(.), privacy disparity measure dp(.), structure utility value

metric S, structure utility loss threshold ε, and prediction utility loss threshold δ, the question

is to find data-sanitization strategy f(.) and link-sanitization strategy L(.), and latent-data

privacy function LaPri(.) such that

1. L(.) satisfies ε-structure utility loss and f(.) satisfies δ-prediction utility loss;

2. For any L′(.) that satisfies ε-structure utility loss and f ′(.) that satisfies δ-prediction

utility loss, LaPri(L′(.), f ′(.), ψ(.), dp(.)) ≥ LaPri(L(.), f(.), ψ(.), dp(.)).

The linear optimization program for an arbitrary user ui to find the optimal data sani-

tization strategy is as following: choose f(X ′|X), Ẑ, ∀X,X ′, in order to
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Maximize:
∑
X′

PX′

Subject to:

PX′ ≤
∑
X

ψ(X)f(X ′|X)dp(ZX(A), Ẑ) ∀Ẑ

∑
uj∈Ai⊆Ni

Sj ≤ ε

∑
X

ψ(X)
∑
X′

f(X ′|X)du(X,X ′) ≤ δ

f(X ′|X) ≥ 0 ∀X,X ′∑
X′

f(X ′|X) = 1, ∀X

4.5.2 Solve the optimal problem

We now solve the optimal problem to find attribute sanitization strategy f(.) and link

sanitization strategy L(.).

Find Link-sanitization Strategy First, we prove the link sanitization method in-

troduced in Section 4.3.2 has monotonicity property. The monotonicity property indicates

that if we increase the number of removed links of a user, we can only improve this user’s

latent-data privacy.

Theorem 4.5.1. Monotonicity. Function LaPri : Ai → R∗ is monotonically nondecreas-

ing, namely, LaPri(Ai∪eij) ≤ LaPri(Ai), where eij ∈ Ai, Ai ∈ Ni, and Ai is the vulnerable

link set of ui.

Proof. As discussed in Definition 4.3.1, the prediction accuracy for user ui’ SLA decreases

upon removing the vulnerable link between ui and uj; namely, for any vulnerable link eij,

Λ(Ai) ≤ Λ(Ai∪eij). This accuracy relation indicates that for user ui, the latent-data privacy

with vulnerable link set Ai is definitely larger than the latent-data privacy with vulnerable

link set Ai ∪ eij. Hence, LaPri(Ai ∪ eij) ≤ LaPri(Ai).
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Theorem 4.5.2. Submodularity. Function LaPri : Ai → R∗ is submodular, namely,

LaPri(Bi∪ eij)−LaPri(Bi) ≤ LaPri(Ai∪ eij)−LaPri(Ai), where Ai ⊆ Bi ⊆ Ni, eij ∈ Ni,

and Ai and Bi are vulnerable link sets of ui.

Proof. For the prediction accuracy for SLA, the maximum decrease in prediction accuracy

of user ui, by removing a vulnerable link eij from vulnerable link set Ai is at least more than

the maximum decrease by removing eij from another set Bi, namely, Λ(Ai ∪ eij)− Λ(Ai) ≤

Λ(Bi ∪ eij)− Λ(Bi), where Ai ⊆ Bi ⊆ Ni, and e ∈ Ni. The accuracy relation indicates that

for user ui, the maximum gain in latent-data privacy after removing vulnerable link eij from

vulnerable link set Ai is at least more than the maximum gain by removing eij from Bi.

Hence, LaPri(Bi ∪ eij)− LaPri(Bi) ≤ LaPri(Ai ∪ eij)− LaPri(Ai).

With Theorem 4.5.1 and Theorem 4.5.2, the problem of finding a link-sanitization strat-

egy is equivalent to the minimization of submodular, nondecreasing, nonnegative function

with constraints that is knapsack-like. The greedy algorithm proposed in [77] could be ex-

ploited to solve this problem with nondecreasing, submodular, nonnegative objective function

constrained by structure utility loss.

Find Attribute-sanitization Strategy To find an attribute-sanitization strategy,

the optimization problem can be solved by iterating over all possible f(X ′|X), all X and

all sanitized X ′ to make sure the prediction accuracy loss of latent-data privacy is less than

δ. Furthermore, find the optimal set of f(X ′|X) that produce minimum value of objective

function
∑

X′ PX′ . However, this approach is impractical since there is an infinite number

of f(X ′|X). For example, X has three possible sanitized attribute vectors X1, X2 and X3,

and the probabilities that satisfy
∑

i=1:3 f(Xi|X) = 1, f(Xi|X) ≥ 0,∀X,Xi are infinite. To

solve this problem, we discrete the probability space, i.e., [0, . . . , 1]→ [0, 1/d, 2/d, . . . , 1] to

get a suboptimal solution. Furthermore, to shrink search space of X, the set of X ′ can be

derived through substituting each attribute in the shared attributes between SLA and NSLA

with a generic attribute, which ensures that adversaries cannot get specific information to

increase prediction accuracy on sensitive attributes, while guarantees no significant accuracy
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Table 4.2. General information about Caltech
Network property Value

Number of users 769
Number of social links 16656

Number of attributes of each user 7
Number of possible attribute values for SLA 4

Number of possible attribute values for NSLA 2

reduction on data utility. Moreover, since there are different levels of generalization, we

organize the generic attributes as a hierarchy.

4.6 Evaluation

4.6.1 Dataset

In our evaluation, we study a large Facebook dataset that contains all the Facebook

“friendship” links among the users at California Institute of Technology at a certain time in

September 2005. It also includes some demographic information like student/faculty status

flag, gender and some other attributes, which are published by users on their Facebook pages.

Each attribute is assigned a numeric value and user identity is ignored. For convenience, the

dataset is named as Caltech. Some general information about Caltech are listed in Table 4.2.

4.6.2 Experimental Settings

As shown in Table 4.2, there are 7 attributes for each user. We choose attribute stu-

dent/faculty status flag (represented by flag) and gender as SLA and NSLA, respectively.

Table 4.2 shows that SLA and NSLA have 4 and 2 possible attribute values, respectively.

The remaining 5 attributes are assumed to be publicly available attributes, among which 3

attributes are for SLA, 3 attributes are for NSLA, and 1 attribute is common.

We compare our data-sanitization strategy with different strategies to satisfy the (ε, δ)-

UtiOptPri problem defined in Definition 4.5.1: 1) Attribute Removal: remove the most

indicative attributes for SLA; 2) Attribute Perturbing: perturb the most indicative attributes
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for SLA; 3) Link Removal: remove vulnerable links; 4) Random Link Removal: randomly

remove links. We denote our data sanitization strategy as Collective Sanitization since it

collectively harnesses different data sanitization methods.

4.6.3 Privacy-Utility Tradeoff with Different Data-Sanitization Strategies

We evaluate the effectiveness of our Collective Sanitization to realize the privacy-utility

tradeoff. To make a fair comparison, we first evaluate latent-data privacy when the above

five strategies satisfy the same data utility thresholds. We choose an arbitrary pair of ε

and δ such as ε = 180, δ = 0.4, and then calculate the latent-data privacy under different

strategies with increasing number of attributes and links being sanitized. As stated in

Section 4.3.2, Collective Sanitization sanitizes user attributes by employing removing and

perturbing collectively. The horizontal axis of Fig.4.1(a) for Collective Sanitization represents

the number of the removed attributes (indicative for SLA) and the number of attributes

(common indicative attributes for SLA and NSLA) being perturbed. Similarly, the horizontal

axis of Fig.4.1(b) for Collective Sanitization represents the number of the removed vulnerable

links (as presented in Section 4.3.2).

As shown in Fig.4.1(a), four strategies are generally effective in protecting latent-data

privacy while realizing customized (ε, δ)-utility. With increasing number of attributes being

sanitized, latent-data privacy monotonically increases as well. However, compared with the

remaining three strategies, Collective Sanitization can realize a larger level of latent-data

privacy with the same number of attributes being sanitized and same utility thresholds.

Meanwhile, as expected, Attribute Removal is better than Attribute Perturbing in protecting

latent-data privacy. With more and more attributes removed and perturbed, this advantage

of Attribute Removal becomes more and more obvious. Furthermore, in protecting latent-

data privacy, Link Removal is better than both Attribute Removal and Attribute Perturbing.

To explain this observation, we find that the latent-data privacy under Link Removal and

Collective Sanitization are close, indicating that removing vulnerable links contributes more

effectiveness than attribute sanitization in protecting latent-data privacy.
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The same observation can be found in Fig.4.1(b), where latent-data privacy monotoni-

cally increases with more and more links removed. However, compared with the remaining

two strategies, Collective Sanitization can also achieve a larger level of latent-data privacy

with the same number of links removed and same utility threshold. Meanwhile, Link Re-

moval is better than Random Link Removal in protecting latent-data privacy. With more

and more links removed, this advantage of Link Removal becomes more and more obvious.
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Figure 4.1. Latent-data privacy under different data-sanitization strategies with increasing
number of (a) attributes; (b) sanitized links, ε = 180, and δ = 0.4.

We further discuss the effectiveness of Collective Sanitization in guaranteeing utility

under different levels of latent-data privacy. The results are shown in Fig.4.2, which shows

that utility loss increases with the increasing of latent-data privacy level. Furthermore, utility

loss converges to a stable level with the increasing of latent-data privacy level. The reason

lies that the marginal gain of latent-data privacy is obtained with the maximum number of

sanitized attributes and links, and minimized utility.

4.6.4 Privacy-Utility Tradeoff with Different Prior Knowledge

We evaluate the privacy-utility tradeoff with different cases of prior knowledge for ad-

versaries. We compare our Collective Sanitization assuming most powerful adversaries with
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Figure 4.2. Utility loss under different levels of latent-data privacy: (a) structure utility loss
with different prediction utility loss thresholds and ε = 180; (b) prediction utility loss with
different structure utility loss thresholds and δ = 0.4.

the knowledge of user profile ψ(X) and data-sanitization strategy, where different types of

prior knowledge are assumed: 1) Profile Only: only profile is known to adversaries; 2) S-

trategy Only: only data-sanitization strategy is known to adversaries; 3) Unknown Both:

neither profile nor strategy is known to adversaries.

To make a fair comparison, we first compare the latent-data privacy when the above

four cases has same utility thresholds. With the same utility thresholds ε = 500 and δ = 0.4,

we calculate the latent-data privacy under different cases with increasing number of sanitized

attributes and links. The results are shown in Fig.4.3(a) and Fig.4.3(b), where the horizontal

axis for Collective Sanitization represents the number of removed/perturbed attributes and

the number of removed vulnerable links, respectively.

Fig.4.3 shows that compared with different cases, Collective Sanitization assuming pow-

erful adversaries is the most effective one in protecting latent-data privacy while guaranteeing

customized (ε, δ)-utility. As shown in Fig.4.3(a) and Fig.4.3(b), the latent-data privacy un-

der Profile Only and Strategy Only lies somewhere in between Collective Sanitization and

Unknown Both, and profile information is more valuable than strategy information in some

cases. The similar observation can be obtained in Fig.4.3(c) and Fig.4.3(d), where it is al-



68

so shown that latent-data privacy converges to a stable level with the increasing of utility

thresholds. The reason lies that the marginal gain of latent-data privacy is obtained with

the most sacrifice in utility.
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Figure 4.3. Latent privacy-utility tradeoff with different cases of prior knowledge for adver-
saries, with increasing number of (a) attributes; (b) sanitized links; and the increasing of (c)
prediction utility threshold; (d) structure utility threshold.

Finally, the latent-data privacy with different utility thresholds is shown in Fig.4.4.

Fig.4.4 shows that with the increasing of ε and δ, latent-data privacy increases as well. The

reason lies that it is possible to determine a better data-sanitization strategy with fewer
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utility requirements. Furthermore, latent-data privacy converges to a stable value with

continuously increase of ε and δ, which indicates the optimal data-sanitization strategy is

found.

1

150

2

0.378

10-3

La
te

nt
-d

at
a 

pr
iv

ac
y

3

0.376100

Epsilon

0.374

Delta

4

0.37250 0.37
0.368

Figure 4.4. Latent-data privacy with different utility thresholds.

4.7 Conclusions

In this paper, we study how to optimize the tradeoff between latent-data privacy and

customized data utility when combating against powerful adversaries with optimal inference

attacks. To address this issue, we first propose two sanitization methods for links and at-

tributes, based on which we formalize prediction utility loss matric, structure utility loss

matric and latent-data privacy. Then we formulate an optimization problem that can max-

imize latent-data privacy while guaranteeing customized data utility. Finally, we evaluate

our data-sanitization strategy towards real big social network data and the results show that

the proposed data-sanitization strategy can effectively achieve a meaningful privacy-utility
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tradeoff. Our future work is to explore formal privacy models, such as differential privacy or

k-anonimity to balance latent-data privacy and customized data utility.
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Chapter 5

PRIVACY PRESERVING GENOMIC DATA PUBLISHING

5.1 Introduction

The rapid growth of genetic techniques motivates numerous genetic-testing services, in

which DNA-sequencing becomes more and more popular with decreasing cost. Consequently,

an increasing number of individuals (or families) release their genomic data to genetic service

providers, such as 23andMe [78], a DNA genetic testing & analysis provider; OpenSNP

[79], a test result sharing platform; and PatientsLikeMe [80], a disease sharing and research

platform.

Meanwhile, high availability of human genomes have accelerated genomic research in

heralding the diagnosis of hereditary diseases, personalized medicine, or genetic identifica-

tion. Furthermore, individuals can benefit from the research to learn about their genetic

disease predispositions, genetic characteristics of ancestry, and even paternity test results,

using their sequenced genome data. As a consequence, researchers expect more and more

genome data could be collected to pave the way for genomic-orientated services. Individuals

are also inclined to release their genome data to gain benefits from these services.

Although the released genome data bring significant benefits, they also present serious

privacy threats. Single nucleotide polymorphisms (SNPs), the most important variants of

DNA among human beings, can provide key information to compute the diseases suscepti-

bility of an individual. For example, GWAS has reported that 3 particular SNPs (rs8034191,

rs2808630 and rs7626795 on chromosomes 15, 1 and 3, respectively) indicate an increasing

susceptibility for lung cancer. Even though genome data are generally anonymized prior

to release, studies have shown that anonymization is not sufficient to preserve privacy [62]

[81]. An individual may incur discrimination risks from, for example, insurance providers or

employers [82].
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Relatives’s genomes are highly correlated. Currently, an individual can release her

genome data through a simple click on a personal computer, without any consent from

her relatives in advance. Consequently, once an individual is identified, even anonymized

genome data would also threaten the privacy of this individual’s relatives. For example,

a controversy is reported regarding the publishing and sequencing of Lacks’s genome data

without any consent from her relatives [83]. The relatives think that their privacy is being

threatened. However, some researchers think that the genetic information has been diluted

because of gene mixing in the reproduction process. In this work, we intend to show that

kin genomic privacy can actually be threatened. We also investigate the necessary effective

tradeoff between data utility and kin genome privacy in order to take full advantage of

genome data.

Publicly available genome association studies help with identifying sensitive information

from the released genome data. For example, GWAS Catalog provides a publicly available

quality controlled collection of GWAS assaying including at least 100,000 SNPs and all the

SNP-trait associations [84]. An SNP-trait association indicates some SNPs (Genotypes) are

associated with some human traits (Phenotypes). Once the genome data releaser is identified,

an attacker can predict possible traits of this releaser and the releaser’s relatives, through

some data mining and machine learning techniques. As a consequence, some individuals

choose to never release any genome data or only release partial genome data. However, those

individuals may still face privacy threats because their relatives may choose to release genome

data. Releasing partial genome data cannot completely protect against inference attacks.

A pertinent example is that, James Watson, co-discover of DNA, shared his whole DNA

sequence to the public, excepting Apolipoprotein E, the significant predictor of Alzheimer’s

disease. However, a recent article [85] shows that, although this sensitive gene is removed, it

can be inferred with the publicly available statistical correlation among SNPs (i.e., linkage

disequilibrium).

In this paper, we first propose an inference attack algorithm to predict target SNPs

and traits based on genome data shared by individuals and SNP-trait associations from
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GWAS Catalog [84]. We then develop a data sanitization method to protect privacy by

sanitizing SNPs and traits prior to releasing while guaranteeing data utility. In our inference

attack algorithm, we incorporate SNPs (known and unknown), traits (known and unknown)

and SNP-trait associations in a factor graph, and then apply belief propagation in this

factor graph to compute the marginal probability of target unknown SNPs and traits. The

previous algorithms generally incur very high computation cost which is proportional to

the number of SNPs of individuals. Considering the number of human’s SNPs is of tens of

millions, it is a big limitation for the existing methods to obtain precise inference results. Our

method achieves linear computation complexity and is more practical for inference attacks.

For our data sanitization method, we first formally define the metrics to evaluate genomic

privacy and data utility. We then introduce noises into SNPs prior to releasing to achieve

a reasonable tradeoff between privacy and utility. Compared with the previous works, our

data-sanitization method can guarantee better privacy-utility tradeoff.

5.2 Preliminaries

In this section, three fundamental concepts are briefly introduced.

5.2.1 Single Nucleotide Polymorphism

A single SNP is a DNA variation between sets of individuals of a species. Such vari-

ation means the difference in a single nucleotide (A, T, C, or G) in the genome between

sets of individuals. For example, the following two DNA fragments from two individuals,

CAGGTCA to CAAGTCA, have a different single nucleotide: G and A. For such a pair of

nucleotides, G and A, or C and T, we say that they are alleles.

Recent studies show that SNPs carry significant information involving the susceptibil-

ity to diseases for human beings. As aforementioned, it is shown that 3 particular SNPs

(rs8034191, rs2808630 and rs7626795 on the chromosomes 15, 1 and 3, respectively) indicate

an increasing susceptibility for lung cancer.

Within a population, two nucleotides (i.e., alleles) on a SNP locus could be distinguished
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as a major allele and a minor allele. A major allele refers to the most common nucleotides

of a given population. A minor allele refers to the rare nucleotides of a given population.

We denote a major allele and minor allele as B and b, respectively.

In alleles, one of the nucleotides on a SNP locus is inherited from father and the other

one is inherited from mother. Therefore, alleles can be denoted as BB (both nucleotides

are major alleles), Bb (a major allele and a minor allele) or bb (both nucleotides are minor

alleles).

5.2.2 Belief Propagation

Belief propagation is a statistical inference algorithm which passes messages in proba-

bilistic graph models, including Bayesian networks, factor graphs and Markov random fields.

It is generally used to calculate Marginal Probability Distribution (MPD) for target unknown

variables, conditional on known ones. Belief propagation is generally described by the op-

erations in factor graphs (a Bayesian network and Markov random field can be transformed

to a factor graph). A factor graph is undirected, which contains two disjoint types of nodes:

variable nodes and factor nodes. There is an edge between a factor node and a variable

node iff this variable node is an argument of the factor node. In belief propagation, each

variable node (factor node) passes messages to its neighbor factor nodes (variable nodes).

The propagated message is the probability (belief) of a variable node being a value (such as 1

(0) representing the presence (absence) of a trait). Given certain initial states and boundary

conditions, belief propagation is to propagate messages until the unknown variables converge

to the boundary conditions.

5.2.3 GWAS Catalog

GWAS can be used to identify the SNPs associated with human’s traits, by splitting

individuals in a given population into case groups and control groups. GWAS has identified

the SNPs associated with many human traits and diseases, including lung cancer, Chronic

kidney disease, height, cervical cancer, type-2 diabetes, etc.
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GWAS Catalog is a publicly available report of GWAS which presents all the SNP-

trait associations. The analysis of massive variation across human genomes in case-control

studies can also distinguish two nucleotides in a SNP locus as: risk allele and non-risk allele.

A risk allele refers to the most common nucleotide of the individuals in a case group (i.e.,

individuals present a target trait). Accordingly, the other nucleotide in a SNP locus is

referred as a non-risk allele.

In the context of GWAS studies, another parameter reported by GWAS Catalog is odds

ratio of a nucleotide K, which refers to the ratio of the odds of traits for individuals having

K and the odds of traits for individuals who do not have K.

5.3 Problem Formulation

5.3.1 Genomic Data Model

All SNPs in the DNA sequence of an individual is denoted by S (|S| = n). The genotype

of SNP S is denoted by si with si ∈ S and si ∈ {BB,Bb, bb} (as defined in Section 5.2.1).

We assume target individuals or familial members release complete or partial genome data

to the public, and the target sensitive part is not released for privacy concerns. The publicly

available SNPs of target individual is defined as SK , while the unknown part is defined as

SU .

In an SNP-trait association, we represent the collected traits for target family by T . For

each trait tj ∈ T , the set of associated SNPs is denoted by Stj . For each si ∈ Stj , the risk

allele of si is denoted by rji , and the odds ratio of rji is denoted by Oj
i . GWAS also reports the

risk-allele frequency (RAF) in a control group which is expressed by f j
i

o
. Although GWAS

does not report the RAF in the case group (denoted by f j
i

a
), we can obtain it from f j

i

o

and Oj
i [49]. Similarly, the released traits by familial members are defined by TK and the

unreleased ones are denoted as TU .
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5.3.2 Attacker Model

An attacker intends to predict target traits and SNPs of target individuals, i.e., XU =

TU ∪ SU . We assume the attacker is relatively powerful with broad background knowledge:

(i) the released SNPs from the target individual and the relatives (if any) (i.e., SK), (ii)

the traits shared by the individual and her relatives (if any) (i.e., TK), and (iii) SNP-trait

association and auxiliary information (i.e., C(T, si, rji , O
j
i , f

j
i

o
)).

5.3.3 Problem Definition

The studied problem can be formally defined as follows:

Input:

(1) individual released SNPs SK , released traits TK , and SNP/trait association

C(T, si, rji , O
j
i , f

j
i

o
).

(2) Privacy threshold δ.

Output:

Inference algorithm for predicting Xu.

Privacy preserving genome data releasing method achieving tradeoff between privacy

and data utility.

5.4 Inference Attacks

For the above problem, the inference attacks on target SNPs and traits could be formu-

lated as calculating their Marginal Probability Distribution (MPD).

With this objective, we first calculate the joint probability distribution of the target

unknown variables, i.e., p(XU |SK , TK , C), where XU = TU ∪ SU .

Then, the marginal probability distribution of a target variable xi ∈ XU can be obtained:

p(xi|SK , TK , C) =
∑

XU\xi

p(XU |SK , TK , C) (5.1)

where XU\xi is to sum over all the variables in XU except xi.
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In Equation (5.1), the number of the terms exponentially increases with the number of

the variables in XU . Considering human’s DNA sequences contain tens of million of SNPs

as well as massive potential traits, it is impossible to predict target variables by computing

marginal probability distribution directly. Our solution is to factorize the joint probability

distribution of target variables into sets of local distributions, with each one taking a subset

of variables as arguments. Conducting such a transformation is challenging since we need to

identify proper local functions and their arguments from massive SNPs and traits.

To address this issue, we model known variables, unknown variables, and SNP-trait as-

sociations as a probability graph, and then apply belief propagation to calculate the marginal

probability distribution of target variables. In this way, the calculation of marginal prob-

ability distribution is transformed from an exponential complexity problem into a linear

complexity problem.

A factor graph is a probability graph model containing two types of nodes: variable

nodes and factor nodes. A SNP variable node represents a known or unknown SNP, and a

trait variable node represents a potential known or unknown trait. A factor node represents

an SNP-trait association.

Variable nodes and factor nodes are connected in the following way: SNP variable node

si and trait variable node tj are connected to factor node fji if si is associated with trait tj.

Fig.5.1 shows a simple example with 3 trait variables T = {t1, t2, t3} and 5 SNP vari-

ables S = {s1, s2, s3, s4, s5}. From Fig. 5.1, we observe that {s1, s2}, {s2, s3, s4}, {s5} are

associated with t1, t2 and t3, respectively.

By applying belief propagation in a factor graph, p(XU |SK , TK , C) could be factorized

into sets of local distributions and each one takes a subset of variables (SNPs and traits) as

arguments:

p(XU |SK , TK , C) =
1

Z

∏
i∈S

∏
j∈T

fji(si, tj, C) (5.2)

where Z ia a normalization factor.

We now investigate the rationality of Equation (5.2). As introduced in Section 5.2.2,
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Figure 5.1. A factor graph with 3 traits T = {t1, t2, t3} and 5 SNPs S = {s1, s2, s3, s4, s5}.

belief propagation performs inference on probability graphical models by passing messages

from variable nodes and factor nodes, and from factor nodes to variable nodes. Two pa-

rameters are introduced, µ and λ. µ represents the massages from a variable node (si

or tj) to a factor node. λ represents the massages from a factor node to a variable n-

ode. To describe the message-passing process, we take nodes t2 and s1, factor node f21 in

Fig.5.1 as an example. Massage µ
(n)
v→f (s1

(n)) from s1 to f21 represents the probability of

s1 = κ (κ = BB,Bb, bb) in the n-th iteration. Message λ
(n)
f→v(s1

(n)) from f21 to s1 repre-

sents the probability of s1 = κ (κ = BB,Bb, bb) in the n-th iteration, given the trait/SNP

associations.

A variable node v passes massage to its neighbor factor node f by multiplying all

messages passed from its neighbor factor nodes except f . Taking the factor graph in Fig.5.1

as an example, the message from s1 to f21 (denoted as s→ f) is:

µ
(n)
s→f (s1

(n)) =
1

Z
×

∏
f∗∈N(s1)\f21

λ
(n−1)
f∗→s (s1

(n−1)) (5.3)

where N(s1)\f21 includes all the neighbor factor nodes of s1 except f21 (in Fig.5.1,

N(s1)\f21 = {f11}).



79

Similarly, variable node t2 sends message to factor node f21 (denoted as t→ f):

µ
(n)
t→f (t2

(n)) =
1

Z
×

∏
f∗∈N(t2)\f21

λf∗→t(t2
(n−1)) (5.4)

where N(t2)\f21 = {f22, f23}.

Then, from belief propagation, factor node f sends message to neighbor variable node v

by multiplying all the massages from the neighbors of f except v, and multiplies the obtained

product with the factor. It then sums all the neighbor variable nodes of f except v. The

massage from f21 to variable node s1 (denoted as f → s) is

λ
(n)
f→s(s1

(n)) =
∑
t2

f21(s1, t2)
∏

v∗∈N(f21)\s1

µ
(n)
v∗→f (v∗) (5.5)

where f21(s1, t2) ∝ p(s1|t2) and we will discuss its computation in the following part.

Similarly, the message passing from f21 to variable node t2 (denoted as f → t) is

λ
(n)
f→t(t2

(n)) =
∑
s1

f21(s1, t2)
∏

v∗∈N(f21)\t2

µ
(n)
v∗→f (v∗) (5.6)

where f21(s1, t2) ∝ p(t2|s1) and we will discuss its computation in the following part.

We now show the initial state and termination condition in a massage-passing iteration.

In the initial iteration (i.e., n = 1), variable nodes first pass massage to factor nodes. Variable

node si ∈ SU begins passing massage to its neighbor factor nodes. We set µ
(1)
s→f (si

(1)) = 1

for each potential value of si (i.e., µ
(1)
s→f (si

(1) = BB) = 1, µ
(1)
s→f (si

(1) = Bb) = 1, µ
(1)
s→f (si

(1) =

bb) = 1). On the other hand, for any SNP variable node si ∈ SK with known value si = κ,

we set µ
(1)
s→f (si

(1) = κ) = 1 and µ
(1)
s→f (xij

(1)
= κ′) = 0 for other potential SNP values κ′,

κ′ ∈ {{BB,Bb, bb}\κ}.

The massages passing from tj ∈ TU to its neighbor factor nodes follows the same rule.

Until all the massages are converged (i.e., the values of µ and λ never change), the iteration

is finished. Finally, the MPD of each unknown variable xi ∈ XU is obtained by multiplying
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Table 5.1. Conditional probability of risk allele rji and non-risk allele ρji , given one of
neighbor factor nodes tj of si

tj t̄j
rji f j

i

a
f j
i

o

ρji 1− f j
i

a
1− f j

i

o

Table 5.2. Genotype probability of rji r
j
i , r

j
i ρ

j
i and ρjiρ

j
i , given one of si’ neighbor factor

nodes tj
tj t̄j

rji r
j
i

√
f j
i

a
√
f j
i

o

rji ρ
j
i f j

i

a
(1− f j

i

a
) f j

i

a
(1− f j

i

o
)

ρjiρ
j
i

√
1− f j

i

a
√

1− f j
i

o

all the massages passed to xi.

As indicated in Equations (5.5) and (5.6), to formulate the message content in each

iteration, we need to calculate the conditional probability of traits and SNPs. Firstly, the

prevalence rate of each trait p(tj) can be viewed as prior knowledge, which can be collected

from public organizations such as CDC [86]. Then, since it is non-trivial to deduce the prob-

ability of SNP si conditioned on an associated trait, we calculate the conditional probability

of the nucleotide of a SNP locus. As introduced in Section 5.2.3, two nucleotides are distin-

guished in a SNP locus as: risk allele and non-risk allele. Table 5.1 shows the probability of

RAF and nRAF conditioned on an associated trait, respectively.

Based on the conditional probability of RAF and nRAF, we go back to calculate the

probability of SNP conditioned on an associated trait. Given allele rji and allele ρji , the

genotype of si associated by trait tj can be one of the following: rji r
j
i , r

j
i ρ

j
i and ρjiρ

j
i . There-

fore, the genotype frequency can be easily obtained by simply transforming Table 5.1. The

resultant table is shown in Table 5.2. Similarly, the trait probability conditioned on an SNP

to which it associates can be easily deduced from Table 5.2 based on Bayesian posterior

probability.
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5.5 Tradeoff between Privacy and Utility

In this section, we present a data-sanitization method to achieve a reasonable tradeoff

between privacy and utility by introducing noises to SNPs prior to releasing. The data

sanitization method is expected to effectively defense against inference attacks on target

sensitive SNPs and traits, as well as to guarantee data utility. With this goal, we first define

the metrics for evaluating privacy and utility loss with noises introduced into SNPs.

5.5.1 Metrics for Privacy and Utility

If the sanitized data can prevent attackers to learn sensitive information, generally, such

sanitization can effectively protect privacy. We define privacy in terms of the ambiguity level

of inference results. Specifically, we expect that the larger uncertainty of an attacker, the

higher the privacy preservation level.

We use the entropy of p(xi|SK , TK , C) to evaluate the uncertainty of inference results

from an attacker:

Hi =
−
∑

xi
p(xi|SK , TK , C) log p(xi|SK , TK , C)

log(3)
(5.7)

where xi is either a target SNP (xi ∈ {BB,Bb, bb}) or a trait (xi ∈ {0, 1}). The larger the

entropy, the larger the ambiguity of p(xi|SK , TK , C). Then, parameter δ is introduced to

bound Hi as a privacy metric:

Definition 5.5.1. δ-privacy. The released SNPs satisfy δ-privacy if Hi ≥ δ for each SNP

si.

For data utility, it is expected that as many actual SNPs as possible are released, while

guaranteeing δ-privacy.

Definition 5.5.2. Utility. The utility of a set of SNPs is measured by the expected number

of released SNPs.
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5.5.2 Data-Sanitization Method

To defense against inference attacks on xi, we propose to sanitize the neighbor SNPs of

xi. The neighbor SNPs of a trait and an SNP are defined as follows:

Definition 5.5.3. Neighbor SNPs of a trait. The neighbor SNPs of trait tj are those

SNPs which:

1. are directly associated with tj.

2. are associated with the traits sharing common SNPs with tj.

3. share common traits with the SNP in Case 2.

For example, all three SNPs s1, s2 and s3 are neighbor SNPs of t1 in Fig.5.1, as s2

and s3 are associated with t2 that shares s1 with t1 (satisfying Case 2). Furthermore, if s3

and another SNP s4 are associated with another trait t3, s4 is also the neighbor SNP of t1

(satisfying Case 3).

Similarly, the neighbor SNPs of an SNP is defined as follows:

Definition 5.5.4. Neighbor SNPs of an SNP. The neighbor SNPs of SNP si are those

SNPs which:

1. are associated with a same trait with si.

2. are associated with the traits associated with the SNPs in Case 1.

3. share common traits with the SNP in Case 2.

For example, s2 and s3 are neighbor SNPs of s1, as they are associated with same trait

t2 with s1. Furthermore, if s3 and another SNP s4 are associated with another trait t3, s4 is

also the neighbor SNP of s1 (satisfying Case 2).

To achieve the tradeoff between privacy and utility, we expect the set of neighbor SNPs

of each xi can be identified so that sanitizing them can maximize data utility while satisfying
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the privacy preservation constraint. For this purpose, the concept of vulnerable neighbor SNP

is introduced:

Definition 5.5.5. Vulnerable neighbor SNP. The vulnerable neighbor SNP of xi is a

neighbor SNP of xi, whose sanitizing will decrease the prediction accuracy on xi.

Since sanitized released SNPs through the perturbing method (i.e., replace an actual

SNP with another one) may generate uncontrollable results when making genetic analysis,

we choose to sanitize SNPs through the removing method. The privacy of xi upon removing

its vulnerable neighbor SNP xk is Hi(Ni − xk), where Ni is the neighbor SNPs of xi.

With Definition 5.5.5, the problem of achieving Genome Privacy-Utility Tradeoff (G-

PUT) can be formally stated as follows:

Definition 5.5.6. GPUT(SK , TK , SU , TU , C, δ). Given known SNPs XK, known traits TK,

statistical information from GWAS Catalog C, and privacy threshold δ, how to identify the

minimum number of SNPs to sanitize so that the sanitized SNPs guarantee each trait in TU

and each SNP in SK satisfy δ-privacy.

To solve the problem, we first prove the ambiguity of inference results, i.e., Equation

(5.7) has the monotonicity and submodularity properties, when the increasing number of

SNPs are sanitized. The monotonicity property means that if we sanitize more SNPs, we

can only improve privacy.

Theorem 5.5.1. Monotonicity. The privacy function of an arbitrary variable xi ∈ XU ,

Hi : Ni → R∗ is monotonically nondecreasing, i.e., Hi(Ni∪ sk) ≤ Hi(Ni), where sk ∈ Ni and

Ni is the set of vulnerable neighbor SNPs of xi.

Proof: As mentioned in Definition 5.5.5, the prediction accuracy on xi decreases upon

sanitizing vulnerable neighbor SNPs, which implies that Λ(Ni) ≤ Λ(Ni∪sk) for any vulnera-

ble neighbor SNP xk. Obviously, the above inequation indicates that for any xi, the privacy

with neighbor SNPs Ni is definitely larger than the privacy with neighbor SNPs Ni ∪ xk,

namely, Hi(Ni ∪ sk) ≤ Hi(Ni).
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Theorem 5.5.2. Submodularity. The privacy function of an arbitrary variable xi ∈ XU ,

Hi : Ni → R∗ has the submodularity property, i.e., Hi(Ui∪sk)−Hi(Ui) ≤ Hi(Vi∪sk)−Hi(Vi),

where Ui ⊆ Vi ⊆ Ni, sk ∈ Ni, and Ui and Vi are the sets of vulnerable neighbor SNPs of xi.

Proof For an arbitrary variable xi ∈ XU , the maximum decrease in prediction accuracy

on xi, by sanitizing a vulnerable neighbor SNP sk from vulnerable neighbor SNPs Vi is at

least more than the maximum decrease by removing sk from another set Ui, namely, Λ(Vi ∪

sk)− Λ(Vi) ≤ Λ(Ui ∪ sk)− Λ(Ui), where Vi ⊆ Ui ⊆ Ni, and sk ∈ Ni. The accuracy relation

indicates that for xi, the maximum gain in privacy after removing vulnerable neighbor SNP

sk from vulnerable neighbor SNPs Vi is at least more than the maximum gain by removing

sk from Ui. Hence, Hi(Ui ∪ sk)−Hi(Ui) ≤ Hi(Vi ∪ sk)−Hi(Vi).

Theorem 5.5.1 and Theorem 5.5.2 show that the problem of finding an SNP sanitiza-

tion method is transformed to the minimization of submodular, nondecreasing, nonnegative

function with constraints that is knapsack-like. Then, we can utilize the greedy algorithm

proposed in [77] to solve this problem.

5.6 Evaluation

5.6.1 Datasets

In our evaluation, we construct a factor graph relying on the trait/SNP associations

provided by GWAS Catalog, as discussed in Section 5.2.3 and Section 5.4. Then, we evaluate

our inference method on trait and SNPs and the data-sanitization method towards the Age-

related macular degeneration (AMD) dataset. AMD is a degeneration of eye’s macula,

which generally leads to vision loss for elder people. As a chronic disease, AMD is caused

by a combination of genetic defect and environmental factors. The AMD dataset contains

genotypes of 90449 SNPs from 96 cases and 50 controls [?].
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Table 5.3. Seven other popular diseases and the corresponding prevalence rates
Disease Prevalence rate

Alzheimer’s Disease 0.0167
Celiac Disease 0.0075
Heart Diseases 0.115

Hypertensive disease 0.29
Liver carcinoma 0.000017
Osteoporosis 0.103

Stomach Carcinoma 0.00025

5.6.2 Experiment Setting

Since the AMD dataset only contains the case/control groups involving the AMD dis-

ease, for our evaluation, we choose 7 other popular diseases and assume each individual

has each disease with disease prevalence rate. The chosen diseases and the corresponding

prevalence rates are shown in Table 5.3.

By searching from GWAS Catalog, the corresponding associated SNPs and parameters

can be identified for each disease. Then, the factor graph involving these diseases and

associated SNPs can be constructed.

As a comparison, we introduce the estimation error of an attacker for target traits and

SNPs as another privacy metric, and the estimation error of an attacker in predicting xi is

defined as:

Er =
∑
xi

p(xi|SK , TK , C)‖xi − x̂i‖ (5.8)

where x̂i is the predicted result by an attacker.

5.6.3 Experiment Results

We show the evolution of trait privacy level with the increasing number of sanitized SNPs

in Fig.5.2. It shows that our prediction method has a better accuracy performance. When

no SNPs are removed, our inference method has larger entropy (less attacker uncertainty)

and lower estimation error compared with that of naive Bayes. Furthermore, to maximize

attacker uncertainty (i.e., entropy error value approximates to 1), our inference method

requires removing more SNPs.



86

0 1 2 3 4 5 6 7 8

Removed SNPs

0

0.2

0.4

0.6

0.8

1
P

riv
ac

y 
le

ve
l

Entropy error
Inference error

(a)

0 1 2 3 4 5

Removed SNPs

0

0.2

0.4

0.6

0.8

1

P
riv

ac
y 

le
ve

l

Entropy
Inference error

(b)

Figure 5.2. Privacy level with increasing number of sanitized SNPs: (a) belief propagation;
(b) Naive Bayes, as a prediction method.

5.7 Conclusions

In this paper, we propose an inference attack algorithm which can predict the genotypes

and traits of individuals with linear computation complexity, based on publicly available

genome data and traits released by individuals or their relatives. We also propose an SNP-

sanitization method to achieve the tradeoff between genomic data privacy and utility, by

introducing noises to genome data to be released. The proposed reconstruction method

can efficiently launch inference attacks for high-dimensional genomic data, relying on factor

graphs and belief propagation. To develop such a method, we first introduce the metrics to

evaluate utility and privacy based on data availability and attacker uncertainty. With the

defined metrics, proper SNPs can be sanitized to satisfy the privacy protection budget with

less utility loss.
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Chapter 6

FUTURE RESEARCH DIRECTIONS

6.1 Privacy-Preserving Data Collection and Processing for the Internet of

Things

The privacy challenges raised by IoT are critical to address as they have implications

on basic rights and our collective ability to trust the Internet and the devices that connect

to it. Generally, privacy concerns are amplified by the way in which the IoT expands the

feasibility and reach of surveillance and tracking.

The Internet of Things (IoT) is becoming more and more widespread, which has led to

increasing volume of sensory data. As estimated by the IDC, by 2020, more than 212 billion

sensors will be connected worldwide and 44 zettabytes of data will be generated. With the

development of big data techniques, certainly, clients daily life will also benefit from such

incomprehensible sensory data. Therefore, emerging data techniques are expected to extract

valuable information from such big multi-modal sensory data.

However, the emerging privacy scandals reminder clients must demand better privacy

and security preservations that protect them against data breaches, inference attacks, cor-

porate surveillance, etc. Therefore, how to conduct privacy preserving data collection and

processing for the IoT with significant data utility, is becoming increasingly stringent.

Although several methodologies have been developed for addressing this issue; however,

three key challenges are still demanding new techniques: 1) Analyzing how the potential

strategies taken by the IoT server and the clients to guarantee better tradeoff between IoT

privacy and data utility 2) Theory and practice of designing privacy proxy to outsource

the management of privacy preference expressing, regulating and enforcing. 3) Privacy

preserving aggregation on big IoT data.

The first challenge mainly derives from the high dimensional property of IoT data, the
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complex data correlation, and the potential auxiliary knowledge of attacker. In collecting

high-dimensional data with privacy guarantee, large scale of noise is generally required to be

injected, because of output salability and signal-to-noise ratio [1]. Furthermore, the complex

data correlation and auxiliary knowledge among multi-modal data presents significant chal-

lenges in protecting against inference attacks. To address issue, I propose to incorporate such

high-dimensional data, correlation and auxiliary information into a probabilistic graphical

model (such as factor graph), and then approximate the high-dimensional distribution of

the IoT data with a set of well-chosen low-dimensional distributions; then, noise for specific

privacy guarantee can be injected into them.

The second challenge mainly derived from large number of devices in modern IoT. To

rescue clients from such a heavy burden of expressing, regulating and enforcing privacy

preferences, I propose to develop a privacy proxy based on game theory. Since such a proxy

is honest-and-curious so that we propose to identify a privacy proxy from the game playing

among attacker, clients and proxy.

The third challenge mainly derived from the big data property of IoT data. How to

effectively obtain complex aggregation results with specific privacy guarantee from big IoT

data is challenging, such as range counting, quantiles, etc. For example, to guarantee the

differential privacy (viewed as the formal privacy definition), the sensitivity of aggregation

functions is generally very high in IoT. To address this issues, we propose to lower the

sensitivity of functions with sampling and data combinations.

It is my belief and a key motivation for the future research interests that, to properly

protect privacy in an IoT application, one must make available two different toolsets:

6.1.1 Toolset 1: Enable Users to Express, Regulate and Enforce Their Pri-

vacy Preferences

For a client, there must be a toolset for him/her to properly express, regulate, and

enforce their privacy preferences involving a large number of IoT devices. It is important for

the client to determine how much he/she values his/her private data and, in turn, whether
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the benefit of an IoT application outweighs the sacrifice on privacy. Given many clients’

lack of expertise on understanding the implications of disclosing private information, it is

imperative to have a toolset that helps a client with the proper valuation of private data

and determining whether to share it to enable an IoT application. Moreover, since privacy

preferences are generally evolving dynamically, it is imperative to have a toolset that helps

clients to regulate their preferences autonomously. Most importantly, such toolset can help

clients to put their preferences into effect.

6.1.2 Toolset 2: Understand the Tradeoff between Service Quality and Pri-

vacy guarantees

For a server, there must be a toolset for it to understand the tradeoff between service

quality and privacy guarantees. After all, it is the job of the server to return to clients

the benefit of an IoT application, so as to justify the collection of private information. A

reputable company may be willing to provide a consumer-friendly privacy policy - but this

cannot come at a significant expense of the service quality offered by the IoT application.

Thus, there must be a toolset available for the server to properly evaluate the tradeoff

between privacy guarantees and the resulting loss of quality of service; and to devise optimal

strategies that preserve service quality given potentially wide ranges of privacy preferences

of different clients.

6.1.3 Interesting Problems

Here are some examples of problems I find interesting:

• Theory and practice of designing privacy proxy to outsource the management of privacy

preference expressing, regulating and enforcing.

• Big data mining methodology over multi-modal IoT data to reconstruct detailed pro-

files of clients.
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• Analyzing how the potential strategies taken by the server and the clients play out

with each other - specifically, the implications of such strategies on the effectiveness of

IoT applications and the client privacy.

• Dynamic and distributed IoT data publishing with privacy and utility guarantee.

• Privacy preserving IoT data mining.

6.2 Differentially Private Algorithms for Big Data Aggregation

The proliferation and ever-increasing capabilities of mobile devices such as smart phones

give rise to a variety of mobile sensing applications, and also produce a large amount of

sensory data. How to effectively extract useful information from such mass data, such as

performing business analysis, identifying frequent patterns, releasing data statistics, etc,

is becoming more and more valuable and imperative, with sensory data being collected,

analyzed, and disseminated in a massive scale.

Although aggregation statistics computed from sensory data are very useful, in many

scenarios, the data from users are privacy-sensitive, and users do not trust any single third-

party aggregator to see their data values. Fortunately, differential privacy, the state-of-the-

art paradigm can be used to address the balance between data utility and privacy in data

aggregation, which requires that the data released reveals little information about whether

any particular individual is present or absent from the data. However, the most significant

challenges is, to implement differential privacy over big data (general high-dimensional), the

amount of noise injected in data has to be very high.

Therefore, it is my belief and a key motivation for the future research interests that, to

properly protect privacy in big data aggregation, one must address the following issues first:

• Differentially private algorithms for constructing data aggregation over high-dimensional

domain.

• Approaches to reduce the sensitivity in data aggregation.
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• Privacy preserving deep learning method to assist data aggregation.

6.3 Privacy Preserving Genomic Data Publishing

A key challenge for developing privacy preserving genomic data publishing is how to

deal with high computational complexity brought by the massive genomes and human trait-

s, as well as complex association in human’s genetic information. As shown by the dbSNP

database, the largest public SNP repository [87], includes over 50 million human SNPs,

encoding the most common type of genetic variation among people. Meanwhile, statisti-

cal data form NIH in 2010 shows that there are more than 6,000 genetic disorders known.

Genome-Wide Association Study of different type of human traits (i.e., case-control study)

can be publicly accessed in dbGaP [88], which offers the genetic information of case group

population and control group population. For example, we can collect Age-related macular

degeneration (AMD) dataset from dbGaP. AMD is a degeneration of eye’s macula, which

generally leads to vision loss for elder people. As a chronic disease, AMD is caused by a com-

bination of genetic defect and environmental factors. The AMD dataset reported genotypes

of 90449 SNPs from 96 cases and 50 controls. For such massive SNPs and traits, SNP-trait

association shows the susceptibility of an individual to several diseases can be computed

from his SNPs. The GWAS Catalog published a vast amount of data, encompassing over

38,000 SNP-trait associations from more than 2,800 publications as of May 2017 [89]. More-

over, DNA sequences are highly correlated, leading to interdependent privacy risks. Linkage

disequilibrium is a correlation that appears between any pair of SNP positions in the whole

genome due to the population’s genetic history. Such genetic information can be accessed in

[87]. For example, the CEPH/Utah Pedigree 1463 that contains the partial DNA sequences

of 17 family members. Therefore, protecting individual privacy with privacy guarantee is

challenging.
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