56,823 research outputs found

    Sensor Selection Based on Generalized Information Gain for Target Tracking in Large Sensor Networks

    Full text link
    In this paper, sensor selection problems for target tracking in large sensor networks with linear equality or inequality constraints are considered. First, we derive an equivalent Kalman filter for sensor selection, i.e., generalized information filter. Then, under a regularity condition, we prove that the multistage look-ahead policy that minimizes either the final or the average estimation error covariances of next multiple time steps is equivalent to a myopic sensor selection policy that maximizes the trace of the generalized information gain at each time step. Moreover, when the measurement noises are uncorrelated between sensors, the optimal solution can be obtained analytically for sensor selection when constraints are temporally separable. When constraints are temporally inseparable, sensor selections can be obtained by approximately solving a linear programming problem so that the sensor selection problem for a large sensor network can be dealt with quickly. Although there is no guarantee that the gap between the performance of the chosen subset and the performance bound is always small, numerical examples suggest that the algorithm is near-optimal in many cases. Finally, when the measurement noises are correlated between sensors, the sensor selection problem with temporally inseparable constraints can be relaxed to a Boolean quadratic programming problem which can be efficiently solved by a Gaussian randomization procedure along with solving a semi-definite programming problem. Numerical examples show that the proposed method is much better than the method that ignores dependence of noises.Comment: 38 pages, 14 figures, submitted to Journa

    Estimation in Phase-Shift and Forward Wireless Sensor Networks

    Get PDF
    We consider a network of single-antenna sensors that observe an unknown deterministic parameter. Each sensor applies a phase shift to the observation and the sensors simultaneously transmit the result to a multi-antenna fusion center (FC). Based on its knowledge of the wireless channel to the sensors, the FC calculates values for the phase factors that minimize the variance of the parameter estimate, and feeds this information back to the sensors. The use of a phase-shift-only transmission scheme provides a simplified analog implementation at the sensor, and also leads to a simpler algorithm design and performance analysis. We propose two algorithms for this problem, a numerical solution based on a relaxed semidefinite programming problem, and a closed-form solution based on the analytic constant modulus algorithm. Both approaches are shown to provide performance close to the theoretical bound. We derive asymptotic performance analyses for cases involving large numbers of sensors or large numbers of FC antennas, and we also study the impact of phase errors at the sensor transmitters. Finally, we consider the sensor selection problem, in which only a subset of the sensors is chosen to send their observations to the FC.Comment: 28 pages, 5 figures, accepted by IEEE Transactions on Signal Processing, Apr. 201

    Non-linear minimum variance estimation for discrete-time multi-channel systems

    Get PDF
    A nonlinear operator approach to estimation in discrete-time systems is described. It involves inferential estimation of a signal which enters a communications channel involving both nonlinearities and transport delays. The measurements are assumed to be corrupted by a colored noise signal which is correlated with the signal to be estimated. The system model may also include a communications channel involving either static or dynamic nonlinearities. The signal channel is represented in a very general nonlinear operator form. The algorithm is relatively simple to derive and to implement

    Localisation of mobile nodes in wireless networks with correlated in time measurement noise.

    Get PDF
    Wireless sensor networks are an inherent part of decision making, object tracking and location awareness systems. This work is focused on simultaneous localisation of mobile nodes based on received signal strength indicators (RSSIs) with correlated in time measurement noises. Two approaches to deal with the correlated measurement noises are proposed in the framework of auxiliary particle filtering: with a noise augmented state vector and the second approach implements noise decorrelation. The performance of the two proposed multi model auxiliary particle filters (MM AUX-PFs) is validated over simulated and real RSSIs and high localisation accuracy is demonstrated
    • …
    corecore