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Nonlinear Minimum Variance Estimation for
Discrete-Time Multi-Channel Systems

Mike J. Grimble, Fellow, IEEE, and Shamsher Ali Naz

Abstract—A nonlinear operator approach to estimation in dis-
crete-time systems is described. It involves inferential estimation
of a signal which enters a communications channel involving
both nonlinearities and transport delays. The measurements
are assumed to be corrupted by a colored noise signal which is
correlated with the signal to be estimated. The system model may
also include a communications channel involving either static or
dynamic nonlinearities. The signal channel is represented in a
very general nonlinear operator form. The algorithm is relatively
simple to derive and to implement.

Index Terms—Estimation, filtering, minimum-variance, non-
linear, optimal estimation, optimization, quadratic cost.

I. INTRODUCTION

T HE solution of linear filtering and estimation problems
using least squares methods is well established and there

are well accepted estimators like the Wiener [1] and Kalman
filters [2], [3] that are often used. In this paper, the solution of
a very special class of nonlinear minimum variance (NMV) es-
timation problems is considered. The main contribution lies in
the definition of a simple estimator for systems with nonlinear
communication channels containing delays. The generality of
the problem is restricted to ensure a simple real time nonlinear
estimator can be derived. The cost function to be minimized
involves the variance of the estimation error and a relatively
simple optimization procedure and solution results [4].

The system of interest involves both linear and nonlinear sub-
systems. The estimation problem considered here is to detect
the signal of real interest given a measurement which includes
noise. To allow for uncertainty, the measurement may also be as-
sumed to include an interference signal that may enter through
a parallel channel [5].

One of the main strengths of the technique is that the non-
linear channel dynamics can be represented by a general non-
linear operator. This might involve a set of nonlinear equations
or could be a black box model containing unknown code and
lookup tables. The model may even be obtained from a neural
or fuzzy-neural network. The signal channel includes different
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delays and the resulting delayed output of the communications
channel is assumed to be measured.

The measurement or observations signal also includes a noise
signal which is assumed to derive from the same source but rep-
resents uncertainty. This is modeled by a parallel communica-
tions path which can represent a possible interference signal.
This may not be a physical path but is included for design pur-
poses to shape the interference and measurement noise atten-
uation characteristics. The solution requires an assumption be
made that a particular nonlinear operator has a stable inverse.
This operator depends upon the nonlinear channel interference
noise model, which is included for design purposes, and may
therefore be freely chosen.

The structure for this paper is as follows. The nonlinear
system and linear signal model, the cost-function and the
solution of the optimal estimation problem are described in
Section II and the main theorem is also introduced there. In
Section III, a design example that includes nonlinearities is
presented. Finally, conclusions are summarized in Section IV.

II. NONLINEAR ESTIMATION PROBLEM

A nonlinear inferential estimation problem is considered
involving the estimation of a signal, which enters a multi-
channel communication channel including nonlinearities and
transport-delay elements [6], [7]. The measurements are as-
sumed to be corrupted by a noise signal, which are correlated
with the signal to be estimated for channels. Signal and
noise models are assumed to have linear time-invariant model
representations, which is not very restrictive, since in many
applications the models for the signal and noise signals are only
linear time-invariant approximations. The system, shown in
Fig. 1, includes the nonlinear signal channel model and linear
measurement noise and signal models. These linear output
models are in the same form as in the traditional linear optimal
estimation problems [1], [2].

The message signal to be estimated is at the output of a
linear block: . For greater generality a dynamic cost
weighting is introduced and the weighted signal: is
then to be estimated [8]. If the channel is identity and there is
no uncertainty represented by the parallel dotted channel then
this is similar to a Wiener filtering type of problem.

The polynomial matrix system models may be listed as

(1)

(2)

where the unit delay operator is defined as .
These models can be taken to be asymptotically stable. Note

that the arguments of the polynomial matrices are often omitted
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Fig. 1. Nonlinear filtering problem with noise sources, communications channel and channel interference.

for notational simplicity. The signal channel models can include
severe nonlinearities that involve both linear and nonlinear dy-
namics. However, the rest of the system description is defined
so that simple results are obtained. The main nonlinear signal
channel dynamics with different delays in different channels
may be expressed as

(3)

where denotes a diagonal matrix:
of the common delay ele-

ments in the respective output signal paths and .
A nonlinear parallel channel with dynamics and different

channel time-delays may also be defined to have the form

(4)

This may be termed an uncertainty tuning function. The par-
allel path dynamics in Fig. 1 are shown using a dotted line. This
is because this channel will probably not exist physically but
provides a signal that enters the cost-function to be introduced
which enables the noise attenuation to be shaped. It is a ficti-
tious channel which provides additional design freedom when
the measurement noise characteristics are uncertain. If the gain
goes to zero and the optimal estimator exists then this corre-
sponds with the case where there is no channel uncertainty.

After separating the actual communications channel dy-
namics into a linear input subsystem and a nonlinear model
define the model for the main channel in the form

(5)

The output of the nonlinear subsystem with the explicit
channel delays will be denoted as the signal: , where
denotes time at the sample instants.

(6)

Note the following rather obvious signal notation is used:
which will denote the signal delayed by dif-

ferent amounts in different signal channels. For simplicity, the
nonlinear subsystem: is assumed to be finite gain stable.
For stability analysis, the time sequences can be considered to
be contained in extensions of the discrete Marcinkiewicz space

[11]. This is the space of time-sequences with
time-averaged square summable signals that have a finite power.

The input and noise generating processes have an innova-
tions signal model with white noise signal input , and
it may be assumed to be zero mean with covariance matrix

, where denotes the Kronecker delta-
function. The combined signal source and noise signal
is given as

(7)

The infinite-time estimation problem where the filter is as-
sumed to be in operation from an initial time: , is
considered. The signals shown in the closed-loop system model
of Fig. 1 may be listed as follows:

Noise (8)

Input signal (9)

Channel input (10)

Linear channel subsystem (11)

Channel interference (12)

Nonlinear channel subsystem

(13)

Nonlinear channel input

(14)

Observations signal (15)

Message signal to estimate

(16)

Weighted message signal (17)

Estimation error signal (18)

In some problems, may represent part of the communica-
tions path so that: . The power spectrum for the com-
bined linear models can be computed, noting these are linear
subsystems, using: , where the
notation for the adjoint of implies: ,
and in this case the denotes the -domain complex number.
The generalized spectral-factor: may be computed using:

, where . The system
models are assumed to be such that is a strictly Schur,
square, polynomial matrix [12] satisfying

(19)
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The right-coprime polynomial matrix may now be defined as

(20)

Observe that the noise and signal models are correlated. How-
ever, is normally low-pass and is normally high-pass
and the results for the special case of the linear problem, with no
channel dynamics, will be similar to those for the usual Wiener
or Kalman filtering case [1], [2].

A. Proposed Solution for Nonlinear Estimation Problem

The estimation problem is concerned with finding the best es-
timate of the signal in the presence of an interference noise
term. The minimum variance optimal deconvolution problem
[13] involves the minimization of the estimation error

(21)

where denotes the optimal nonlinear estimate of the
signal at time , given the observations: over the
semi-infinite interval: up to time . The
scalar may be positive or negative and as noted

Filtering

Fixed lag smoothing

Prediction

The weighted estimation error cost-function which is to be min-
imized has the form

(22)

where denotes the expectation operator and denotes
a linear dynamic cost weighting function matrix which is as-
sumed to be strictly minimum phase, square and invertible. The
estimate is assumed to be generated from a nonlinear,
estimator of the form

(23)

where denotes a minimal realization of the optimal non-
linear estimator. Since an infinite-time problem
is of interest no initial condition term is required. The following
theorem applies.

Theorem: Optimal Estimator for Nonlinear Systems: The as-
sumption is made that and commute and that the
operator has a stable inverse. The nonlinear
deconvolution filter , predictor , or smoother

, to minimize the variance of the estimation error (22),
for the system described in Section II, can be calculated from
the spectral factor, Diophantine, and operator equations. The
spectral factor , where is asymptotically
stable, is defined from the polynomial matrix

(24)

Right-coprime polynomial matrices and satisfy

(25)

Fig. 2. Nonlinear estimator structure.

The polynomial operators and may now be obtained
from the minimal degree solution , with respect to ,
of the following Diophantine equation:

(26)

Estimator: The optimal casual, nonlinear estimate
for the system described in Section II,

to minimize the average variance of the estimation error (22), is
given as

(27)

Minimum Cost: The minimum variance may be computed

(28)

Proof: The proof follows.
Remarks:
a) The assumption is required that ( and ) com-

mute, which is certainly satisfied if the delays are the same
, or if these models are diagonal.

b) Note that the Minimum Variance follows from (28) for
the system with uncertainty, and it does not, surprisingly,
include the nonlinear sensor characteristics.

c) The structure for the resulting estimator is shown in Fig. 2.

B. Solution

To obtain an expression for the weighted estimation error
, note from the (7)–(9)

(29)

A realization of can be obtained using the spectral factor
defined above as

(30)

where satisfies (19). Also recall the weighted message
signal is given from (17) as

(31)

Estimation error: From equations: (1), (20), and (31), obtain

(32)
Recall from (15) that the observations and substi-
tuting from (32)
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From (10), (12), (13), and (14) and
obtain

(33)

Also using equations (11), (16), and (30)

Under the assumption that and commute, then

(34)

The first term may be simplified using the Diophantine equation
and hence

(35)

C. Optimization

To compute the optimal nonlinear estimator, first inspect the
form of the weighted estimation error in (35) and advance by

to obtain

(36)

The signal above will first be considered. The polynomial
matrix term in (36) may be expanded as a sequence of terms
in the unit advance operator . It fol-
lows that the first term in (36) is dependent upon the future
values of the white noise signal components

. The second group of terms in
(36) (in the square brackets) are all dependent upon past values
of the white noise signals, whereas the first term depends only
upon future values. It follows that these two groups of terms
are statistically independent and the expected value of the cross
terms is null.

Also note that the first term on the right-hand side of (36) is in-
dependent of the choice of estimator. It follows that the smallest
variance is achieved when the remaining terms are set to zero.

Assuming the existence of a finite gain stable causal inverse to
the nonlinear operator the optimal estimator is obtained by set-
ting this second group of terms to zero, noting

(37)

This completes the solution of the theorem.
Also note that assumption preceding the main theorem has to

be satisfied for the results to apply so a silly choice of sensor
characteristic would mean that the results would not hold. If
the assumption does hold the minimum variance only depends
upon the linear signal and noise model terms. The expression
for the estimation error depends on both linear and nonlinear
terms, however, all the nonlinear terms when combined with the
nonlinear estimator add to zero. Thus, this cost may be consid-
ered an ideal and if the uncertainty channel was null it would
require an inverse to be computed for the sensor/channel char-
acteristic. Thus, it appears independent of any sensor character-
istic. In practice there will be uncertainty and the estimator will
not try to cancel the nonlinear sensor/channel characteristic but
the absolute minimum cost remains the same as defined by (28).

III. DESIGN ISSUES AND EXAMPLES

The computation of the estimator is relatively straightfor-
ward. The polynomial matrix equations can be solved using the
Matlab polynomial toolbox PolyX. Given these matrices the es-
timator may be implemented neatly, as shown in Fig. 2. The
NMV filter involves matrix calculations so its on-line computa-
tional might be large but this is not true because the major matrix
calculations are offline to be conducted during the design phase
and these have no impact in the implementation phase. The com-
putational complexity and implementation issues of the NMV
filter are discussed in some detail in [25].

The selection of the uncertainty tuning function is a
dual problem to the selection of optimal control cost function
weightings [7]. The requirement on the nonlinear operator men-
tioned before the theorem to have a stable inverse is of course
mandatory. A simple starting point is therefore to assume the
uncertainty model is a constant and of a small magnitude.
This corresponds to the situation where the uncertainty is
simply white noise added at the output of the communications
channel before it enters the estimator (see Fig. 1). Uncertainty
is, of course, often associated with high frequency behavior,
and hence a simple linear lead term might be used to represent
the frequency response of as in the example which follows.

An exhaust gas oxygen sensor or lambda sensor is a key
sensor in an automotive engine fuel control feedback loop. The
electronic control unit uses the sensor’s input to balance the fuel
mixture, leaning the mixture when the sensor reads rich and
enriching the mixture when the sensor reads lean. The
example assumes the sensor measures the residual oxygen in
the exhaust gas and passes the information to the engine con-
trol unit (ECU), and based on this the ECU adjusts the op-
timum air-fuel mixture in the mixture control unit. The lambda
or oxygen sensor is located at some distance from the point of
interest due to which there is also a significant delay in the mea-
surement as shown in Fig. 3.
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Fig. 3. Location of Lambda or oxygen sensor in automobile engine.

Fig. 4. (a) UEGO Lambda sensor nonlinear behavior. (b) EGO Lambda sensor
nonlinear behavior.

Fig. 5. Uncertainty tuning function � frequency response for EGO sensor.

Fig. 6. Comparison between actual and estimated lambda using the EGO
sensor.

In this particular example: Delay , where events
and the signal and noise models

(38)

(39)
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TABLE I
USING EGO SENSOR ONLY

Fig. 7. Uncertainty tuning function� frequency response for UEGO sensor.

Fig. 8. Comparison between actual and estimated Lambda using the UEGO
sensor.

(40)

The universal exhaust gas oxygen (UEGO) sensor uses the
changes of voltage that are representative of the oxygen levels
in the reference and test chambers of the sensor to drive an elec-
tronic control unit for feedback control. The exhaust gas oxygen
(EGO) sensor is an alternative which is an electrochemical cell
used to measure the oxygen content of an engine’s exhaust. In
closed-loop operation this signal is used to monitor the fuel mix-
ture. The static nonlinear characteristics of the UEGO and EGO
sensors are shown in Fig. 4(a) and (b), respectively.

Three cases of the NMV estimation problem are now con-
sidered. The minimum value of the cost for the system which
includes uncertainty follows from (28) and may be computed
as: . In first case the EGO sensor is used with the

TABLE II
USING UEGO SENSOR ONLY

Fig. 9. Uncertainty tuning function � frequency responses when EGO and
UEGO sensors are used.

Fig. 10. Comparison between actual and estimated lambda.

uncertainty tuning function shown in Fig. 5, but the fictitious
parallel uncertainty model is not included in the simulation, so
the computed cost will not be expected to coincide with this the-
oretical figure. The time response results are shown in Fig. 6 and
Table I.

In the second case, the UEGO sensor was used and the results
obtained in this case are shown in Figs. 7 and 8 and Table II. In
the last case, both the EGO and UEGO sensors are used together
and summed with two equally weighted estimators. The results
obtained in this case are as shown in Figs. 9 and 10 and Table III.

In all the above cases the estimator depends on the choice
of uncertainty tuning function to obtain a stable inverse of

. The choice of zero-frequency gain (
gain) and the cutoff frequency of are important in obtaining
a realizable design for the NMV estimation algorithm. Clearly
the estimation error reduces when the uncertainty tuning gain
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TABLE III
USING EGO AND UEGO SENSORS TOGETHER COMPARISON WITH

ALTERNATIVE APPROACHES

Fig. 11. Comparison results between NMV and EKF.

decreases so long as an optimal filter actually exists, which ex-
plains much of the behavior in the table of values. The dynamic
response should really reflect the type of uncertainty expected
or if the parallel uncertainty channel exists then it will depend
upon the physical model.

Comparison With Alternative Approaches: filtering: The
minimax estimator for nonlinear systems may handle con-

straints [22] and provides an alternative that may be particularly
useful for systems with significant nonlinearities. The mixed

and minimization problem enables traditional variance
based estimation criteria to be considered but also allow uncer-
tainty to be taken into account, considered by [23]. The most
practical way to implement the estimator is in discrete form
but there is a much greater level of mathematical abstraction in-
volved [24].

Extended Kalman filter: A comparison is described in [21]
and [25] that includes detailed discussions about the perfor-
mance of NMV filter with the extended Kalman filter imple-
mented on the ball and beam system in real time. The compar-
ison results are shown in Fig. 11. The minimum variance for the
NMV estimator was calculated as 0.00084 and for the EKF as
0.0035. We can also see from the Fig. 11 that the performance
of the NMV estimator is good in comparison to the EKF and is
in accordance with the minimum variance results.

The main strength of the approach is that for a restricted class
of systems, where the technique is applicable, it provides a very
simple solution to a difficult nonlinear estimation problem.

IV. CONCLUSION

The proposed nonlinear filter is applicable to a rather special
class of nonlinear estimation problems. However, it is believed
to be acceptable to reduce the generality of the problem consid-
ered, to obtain a very practical nonlinear estimation algorithm.
The solution is relatively easy to understand and to implement.
For example, the theoretical basis, however restricted, is much
easier to understand than or particle filtering, which is im-
portant in applications.

Other nonlinear filtering techniques like the extended Kalman
filter do of course involve approximations and they are not op-
timal estimators. The solution proposed here does not involve
the same type of approximation if the uncertainty tuning func-
tion is representative. However, a question of interest is whether
the optimal estimator for the system containing the fictitious un-
certainty model is more accurate than an approximately optimal
estimator for the actual system. A comparison with an EKF in
[21], using a Labview implementation, suggests the new class
of estimators is good for a real application.
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