9,434 research outputs found

    Overview of sensors suitable for active flow control methods

    Get PDF
    Hlavným cieľom tejto bakalárskej práce bolo vytvorenie prehľadu vyvíjaných a už aplikovaných senzorov pre účely aktívneho riadenia prúdov. Senzory musia splňovať niektoré podmienky, preto výber senzorov bol naviazaný na reálnych výsledkoch testovacích programov, popis ktorých tvorí prvú časť tejto bakalárskej práce. Opis technológie a princíp fungovania senzorov je popísaný v druhej časti tejto práce.The main purpose of this bachelor thesis was to create the overview of the sensors developed for the future active flow control applications and overview the sensors already used in the active flow control applications. The sensors have to fulfil several requirements, so selection for the overview was based on the real flight test programs results, which were described in the first part of the thesis. The sensors technology description and operation principles were included in the second part of the thesis

    PDNPulse: Sensing PCB Anomaly with the Intrinsic Power Delivery Network

    Full text link
    The ubiquitous presence of printed circuit boards (PCBs) in modern electronic systems and embedded devices makes their integrity a top security concern. To take advantage of the economies of scale, today's PCB design and manufacturing are often performed by suppliers around the globe, exposing them to many security vulnerabilities along the segmented PCB supply chain. Moreover, the increasing complexity of the PCB designs also leaves ample room for numerous sneaky board-level attacks to be implemented throughout each stage of a PCB's lifetime, threatening many electronic devices. In this paper, we propose PDNPulse, a power delivery network (PDN) based PCB anomaly detection framework that can identify a wide spectrum of board-level malicious modifications. PDNPulse leverages the fact that the PDN's characteristics are inevitably affected by modifications to the PCB, no matter how minuscule. By detecting changes to the PDN impedance profile and using the Frechet distance-based anomaly detection algorithms, PDNPulse can robustly and successfully discern malicious modifications across the system. Using PDNPulse, we conduct extensive experiments on seven commercial-off-the-shelf PCBs, covering different design scales, different threat models, and seven different anomaly types. The results confirm that PDNPulse creates an effective security asymmetry between attack and defense

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Radio frequency non-destructive testing and evaluation of defects under insulation

    Get PDF
    PhD ThesisThe use of insulation such as paint coatings has grown rapidly over the past decades. However, defects and corrosion under insulation (CUI) still present challenges for current non-destructive testing and evaluation (NDT&E) techniques. One of such challenges is the large lift-off introduced by thick insulation layer. Inaccessibility due to insulation leads corrosion and defects to be undetected, which can lead to catastrophic failure. Furthermore, lift-off effects due to the insulation layers reduce the sensitivities. The limitations of existing NDT&E techniques heighten the need for novel approaches to the characterisation of corrosion and defects under insulation. This research project is conducted in collaboration with International Paint®, and a radio frequency non-destructive evaluation for monitoring structural condition is proposed. High frequency (HF) passive RFID in conjunction with microwave NDT is proposed for monitoring and imaging under insulation. The small-size, battery-free and cost-efficient nature of RFID makes it attractive for long-term condition monitoring. To overcome the limitations of RFID-based sensing system such as effective monitoring area and lift-off tolerance, microwave NDT is proposed for the imaging of larger areas under thick insulation layers. Experimental studies are carried out in conjunction with specially designed mild steel sample sets to demonstrate the detection capabilities of the proposed systems. The contributions of this research can be summarised as follows. Corrosion detection using HF passive RFID-based sensing and microwave NDT is demonstrated in experimental feasibility studies considering variance in surface roughness, conductivity and permeability. The lift-off effects introduced by insulation layers are reduced by applying feature extraction with principal component analysis and non-negative matrix factorisation. The problem of thick insulation layers is overcome by employing a linear sweep frequency with PCA to improve the sensitivity and resolution of microwave NDT-based imaging. Finally, the merits of microwave NDT are identified for imaging defects under thick insulation in a realistic test scenario. In conclusion, HF passive RFID can be adapted for long term corrosion monitoring of steel under insulation, but sensing area and lift-off tolerance are limited. In contrast, the microwave NDT&E has shown greater potential and capability for monitoring corrosion and defects under insulation

    Small business innovation research. Abstracts of 1988 phase 1 awards

    Get PDF
    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Active thermography for the investigation of corrosion in steel surfaces

    Get PDF
    The present work aims at developing an experimental methodology for the analysis of corrosion phenomena of steel surfaces by means of Active Thermography (AT), in reflexion configuration (RC). The peculiarity of this AT approach consists in exciting by means of a laser source the sound surface of the specimens and acquiring the thermal signal on the same surface, instead of the corroded one: the thermal signal is then composed by the reflection of the thermal wave reflected by the corroded surface. This procedure aims at investigating internal corroded surfaces like in vessels, piping, carters etc. Thermal tests were performed in Step Heating and Lock-In conditions, by varying excitation parameters (power, time, number of pulse, ….) to improve the experimental set up. Surface thermal profiles were acquired by an IR thermocamera and means of salt spray testing; at set time intervals the specimens were investigated by means of AT. Each duration corresponded to a surface damage entity and to a variation in the thermal response. Thermal responses of corroded specimens were related to the corresponding corrosion level, referring to a reference specimen without corrosion. The entity of corrosion was also verified by a metallographic optical microscope to measure the thickness variation of the specimens
    corecore