5,404 research outputs found

    Assessing the Viability of Complex Electrical Impedance Tomography (EIT) with a Spatially Distributed Sensor Array for Imaging of River Bed Morphology: a Proof of Concept (Study)

    Get PDF
    This report was produced as part of a NERC funded ‘Connect A’ project to establish a new collaborative partnership between the University of Worcester (UW) and Q-par Angus Ltd. The project aim was to assess the potential of using complex Electrical Impedance Tomography (EIT) to image river bed morphology. An assessment of the viability of sensors inserted vertically into the channel margins to provide real-time or near real-time monitoring of bed morphology is reported. Funding has enabled UW to carry out a literature review of the use of EIT and existing methods used for river bed surveys, and outline the requirements of potential end-users. Q-par Angus has led technical developments and assessed the viability of EIT for this purpose. EIT is one of a suite of tomographic imaging techniques and has already been used as an imaging tool for medical analysis, industrial processing and geophysical site survey work. The method uses electrodes placed on the margins or boundary of the entity being imaged, and a current is applied to some and measured on the remaining ones. Tomographic reconstruction uses algorithms to estimate the distribution of conductivity within the object and produce an image of this distribution from impedance measurements. The advantages of the use of EIT lie with the inherent simplicity, low cost and portability of the hardware, the high speed of data acquisition for real-time or near real-time monitoring, robust sensors, and the object being monitored is done so in a non-invasive manner. The need for sophisticated image reconstruction algorithms, and providing images with adequate spatial resolution are key challenges. A literature review of the use of EIT suggests that to date, despite its many other applications, to the best of our knowledge only one study has utilised EIT for river survey work (Sambuelli et al 2002). The Sambuelli (2002) study supported the notion that EIT may provide an innovative way of describing river bed morphology in a cost effective way. However this study used an invasive sensor array, and therefore the potential for using EIT in a non-invasive way in a river environment is still to be tested. A review of existing methods to monitor river bed morphology indicates that a plethora of techniques have been applied by a range of disciplines including fluvial geomorphology, ecology and engineering. However, none provide non-invasive, low costs assessments in real-time or near real-time. Therefore, EIT has the potential to meet the requirements of end users that no existing technique can accomplish. Work led by Q-par Angus Ltd. has assessed the technical requirements of the proposed approach, including probe design and deployment, sensor array parameters, data acquisition, image reconstruction and test procedure. Consequently, the success of this collaboration, literature review, identification of the proposed approach and potential applications of this technique have encouraged the authors to seek further funding to test, develop and market this approach through the development of a new environmental sensor

    Arts of electrical impedance tomographic sensing

    Get PDF
    This paper reviews governing theorems in electrical impedance sensing for analysing the relationships of boundary voltages obtained from different sensing strategies. It reports that both the boundary voltage values and the associated sensitivity matrix of an alternative sensing strategy can be derived from a set of full independent measurements and sensitivity matrix obtained from other sensing strategy. A new sensing method for regional imaging with limited measurements is reported. It also proves that the sensitivity coefficient back-projection algorithm does not always work for all sensing strategies unless the diagonal elements of the transformed matrix, ATA, have significant values and can be approximate to a diagonal matrix. Imaging capabilities of few sensing strategies were verified with static set-ups, which suggest the adjacent electrode pair sensing strategy displays better performance compared to the diametrically opposite protocol, with both the back-projection and multi-step image reconstruction methods. An application of electrical impedance tomography for sensing gas in water two phase flows is demonstrated

    Fundamental Sensor Development in Electrical Resistance Tomography

    Get PDF
    This paper will provide a fundamental understanding of one of the most commonly used tomography, Electrical Resistance Tomography (ERT). Unlike the other tomography systems, ERT displayed conductivity distribution in the Region of Interest (ROI) and commonly associated to Sensitivity Theorem in their image reconstruction. The fundamental construction of ERT includes a sensor array spaced equally around the imaged object periphery, a Data Acquisition (DAQ), image reconstruction and display system. Four ERT data collection strategies that will be discussed are Adjacent Strategy, Opposite Strategy, Diagonal Strategy and Conducting Boundary Strategy. We will also explain briefly on some of the possible Data Acquisition System (DAQ), forward and inverse problems, different arrangements for conducting and non-conducting pipes and factors that influence sensor arrays selections

    Electrical Resistance Tomography for sewage flow measurements

    Get PDF

    Nanoantennas for visible and infrared radiation

    Full text link
    Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-ofstates engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of optical antennas based on the background of both well-developed radiowave antenna engineering and the emerging field of plasmonics. In particular, we address the plasmonic behavior that emerges due to the very high optical frequencies involved and the limitations in the choice of antenna materials and geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of investigation in this vivid area of research.Comment: Review article with 76 pages, 21 figure

    Selected Papers from the 9th World Congress on Industrial Process Tomography

    Get PDF
    Industrial process tomography (IPT) is becoming an important tool for Industry 4.0. It consists of multidimensional sensor technologies and methods that aim to provide unparalleled internal information on industrial processes used in many sectors. This book showcases a selection of papers at the forefront of the latest developments in such technologies

    Electrical Impedance Tomography: From the Traditional Design to the Novel Frontier of Wearables

    Get PDF
    Electrical impedance tomography (EIT) is a medical imaging technique based on the injection of a current or voltage pattern through electrodes on the skin of the patient, and on the reconstruction of the internal conductivity distribution from the voltages collected by the electrodes. Compared to other imaging techniques, EIT shows significant advantages: it does not use ionizing radiation, is non-invasive and is characterized by high temporal resolution. Moreover, its low cost and high portability make it suitable for real-time, bedside monitoring. However, EIT is also characterized by some technical limitations that cause poor spatial resolution. The possibility to design wearable devices based on EIT has recently given a boost to this technology. In this paper we reviewed EIT physical principles, hardware design and major clinical applications, from the classical to a wearable setup. A wireless and wearable EIT system seems a promising frontier of this technology, as it can both facilitate making clinical measurements and open novel scenarios to EIT systems, such as home monitoring
    • …
    corecore