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Abstract

The industrial sector continuously demands innovation in sensing technology.

Identification of flow conditions, gas/void detection, and porosity estimation are

important factors in many liquid metal processes. This thesis aims to demonstrate

the magnetic induction tomography (MIT) system in a liquid metal process model

at a laboratory scale.

The work designs MIT instrumentations which are able to acquire measurement

data from eight coils system. The frequency range is between 100 Hz to 100 kHz

enabling multi-frequency measurement. Its signal-to-noise ratio (SNR) reached

66 dB with a speed of 1.5 s/frame to produce real, imaginary, amplitude, and

phase data and reconstructed images. On the software side, spatio-spectral im-

age reconstruction algorithm has been formulated to do a spectrally correlated

analysis identifying an object’s circumstances.

MIT sensors have been constructed for detecting and visualising liquid metal

flow. Typical flow shapes have been successfully recovered with a correlation

coefficient up to 0.9 and relative error as low as 0.2. In addition, a liquid metal

shape classifier based on a neural network yields a test accuracy of 99%. As for

interior voids in liquid metal, a convolutional neural network has been trained to

quantify the number of non-metallic inclusions with 96% of test accuracy.

This research also develops a vector-based complex mutual inductance spectro-

scopic imaging and derives regional complex impedance diagrams. The resulting

complex plots from the reconstruction comprehensively indicate the functional

and structural characteristics of the metallic materials. Furthermore, this invest-

igation for the first time demonstrates a novel thermal mapping system using

eddy current based spectroscopic imaging data. Inductive based temperature

mapping devices can have great potential applications where none of the existing

thermal measuring devices could work noninvasively.

This study intends to contribute to the context of eddy current, imaging, and

induction spectroscopy.
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Chapter 1

Introduction

1.1 Background and Motivation

Metal has become an essential element for engineering. Steel, as a prominent

example of metal-based materials, is used in almost every product in human life.

In 2020, apparent steel use reaches 1772 million tonnes worldwide, an increase

from 1315 million tonnes a decade ago. This translates to 228 kg of finished steel

products use per capita. To this day, the production of steel consumes a huge

amount of energy which is sourced mostly from fossil fuel, hence carbon footprint.

On average, every tonne of steel produced led to the emission of 1.85 tonnes of

CO2 into the atmosphere, thus representing 7–9% of global anthropogenic emis-

sions [1]. From the steelmaking engineering perspective, yield improvement to

increase output is directly linked to energy and material reduction. Process re-

liability reduces losses in quality and process time so that energy use per tonne

of steel is also suppressed. Therefore, an innovation that results in efficiency in

this industrial sector will benefit engineering, social-economic, as well as envir-

onmental aspects.

Around 96.9% of the world’s crude steel output comes from the continuous casting

process [1]. Continuous casting is a process to solidify steel in the form of a

continuous strand. Molten steel carried in the ladle is transferred into tundish

which acts as a reservoir. The tundish has a hole(s) for pouring liquid steel into

the nozzle. The flow is regulated by a sliding gate or stopper rod. An inlet

15



in the upper nozzle is used to inject gas for preventing clogging and removing

impurities. Then, the steel flows through the nozzle into open-bottomed, water-

cooled moulds. As the molten steel passes through the mould, the outer shell

solidifies.

In continuous casting, flow regime, phase distribution, as well as gas inclusion in

the submerged entry nozzle (SEN) are very important phenomena related to steel

quality [2]. It is desired to anticipate flow patterns and ensure cleanliness before

the shell is solidified further down the mould. Clogging nozzle causes asymmet-

rical, chaotic flow, and highly fluctuated meniscus level [3] which are bad for shell

formation. Proper concentration of gas injection helps to remove impurities, but

an excessive amount of gas could be trapped in the solid shell becoming defects.

A comprehensive measurement of such has not yet been achieved because there

is no unique measurement technique that can resolve the outer interface and

bubbles in the liquid metal bulk with sufficient accuracy.

Measurement techniques for liquid metal were reviewed in [4]. Inclusion (in the

form of gas bubbles) can be observed using ultrasound transit-time (UTT), con-

tactless inductive detection, and X-ray imaging. The UTT can quantify gas

bubble with diameter 5 – 7 mm without producing an image. However, any im-

purity or unclean medium will hinder the sound transmission, hence its detection

capability. On the other hand, high-resolution X-ray can recover the gas bubbles

image down to about 1 mm with a maximum thickness of the fluid layer of about

15 mm. This limitation arises due to the ray is highly attenuated through a con-

ductive medium. Therefore, given an adequate penetration depth, the inductive

method is favourable for industrial implementation.

For liquid metal fast breeder reactors, real-time radiography is used to image the

system [5]. Basic research has been conducted in using neutron radiography for

observing liquid metal two-phase flows in vessels. Using the technique reported in

[6], radial void fraction profiles were obtained. Also, the follow-up research by the

same authors [7] clarified the basic characteristics of the flow. They visualised

the liquid metal two-phase flow and measured its void fraction using neutron

radiography and conductivity probe, respectively. The radiography method was

used earlier utilising a tracer particle [8]. However, it requires the attenuation of

rays caused by the liquid metal being less than 1/e, and particle size larger than
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one digitised image element size. The other known method is invasive. Report

by [9] discloses a probe insertion for detecting gas bubbles in liquid metals. A

recent technique, optical fibre sensors were used and tested in a well-controlled

lab-scale and a pilot-scale reactor [10].

Porous metal is another engineering material product that is formed in the liquid

phase. Its processing method involves bubble generation where pore growth is one

of the parameters of interest [11]. Although several modelling methods for liquid

metal foam processing have been established [12], experimental observations are

still limited. The difficulty in investigating opaque system such as metallic foam

is acknowledged. In [13], X-ray tomoscopy was used to clarify the liquid metal’s

dynamic phenomena, one of which is bubble arrangements.

Generally, alloy casting suffers from inclusions such as dissolved gases. A tech-

nique was demonstrated to assess the metal quality by visualising gas content,

albeit only a single dissolved gas in the aluminium alloy was tested by [14]. An

online liquid metal cleanliness analyzing system is used for quality assurance of

inclusion sensitive products. The commercial system [15] is based on the electric

sensing zone.

Electromagnetic sensors are arguably the most feasible means to do the meas-

urement in close proximity of a harsh, high temperature, and opaque SEN at the

caster. Pair of coils were designed to sense molten steel profiles such as bubbly

flow, central stream, and annular flow using a wood metal model. It could dif-

ferentiate those flow profiles by evaluating the relative detection values over a

certain frequency range [16]. The expanded version of the sensor was then tested

on the steel caster’s nozzle. It was able to visualise the flow [17], as well as infer

the pattern in accordance with casting parameter gas injection [18]. Tomographic

configuration was introduced for imaging molten steel flow [19]. A hot trial test

was conducted and able to visualise the steel flow [20].

Electromagnetic tomography is a method for generating cross-sectional images

utilizing a low-radiation intensity electromagnetic field as excitation energy. It

is capable of examining the electromagnetic properties of the object. Owing

to a contact-less non-invasive non-intrusive low-cost system and fast imaging

process, it has been rigorously appraised for various applications, from industrial
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to medical, in the past three decades. Historically reported in chronological order,

the modalities make use of resistance [21], capacitance [22], and inductance [23]

measurements.

Magnetic induction tomography (MIT) is able to reconstruct the conductivity

distribution in one cross-section of the SEN, and thereby distinguish between

liquid metal and argon gas in case of a two-phase flow, in a physical model, as

been done by [24]. A preliminary study for electrical capacitance tomography

(ECT) as a new imaging tool for metal flow was introduced in a report from

Wondrak and Soleimani [25]. ECT is capable of producing a high-quality image

of the outer surface of metal flow. On the other hand, contactless inductive

flow tomography (CIFT) was developed to observe the flow velocity field in the

mould. This paves way for a combined tomographic imaging approach to tackle

the common task in a system.

Meanwhile, the advancement in artificial intelligence (AI) is accelerated by the

availability of data generated from potent sectors. Since the algorithm shows

its capability for image interpretation, its implementation progressively finds the

broad area of medical, industrial and informatics [26] [27]. This trend also applies

in tomography technology [28] [29], where the data and/or the resulting image

can be exploited to obtain conclusive outputs. Machine learning (ML) utilised

in tomography research has mainly been for the reconstruction scheme [30] [31],

image enhancement [32] [33], and various post-processing mechanisms [34] [35].

Those methods are rarely directly targeting primary information embedded in the

measurement data. Bypassing the complexity of tomographic image reconstruc-

tion, the detection based on raw data will reduce the computational resources

in the deployment phase [36]. Moreover, end-to-end learning of spatio-temporal

feature from raw tomography sensor data was assessed to be an efficient scheme

[37].

Key parameters in multiphase flow were predicted from multiple sensors read-

ing using a deep-learning method [38]. The model demonstrated generalisation

capability for potential field measurement. The work presented in [39] took a dir-

ect approach to map the relationship between measurements from ECT sensors

and hydrodynamics parameters of flow patterns in a fluidised bed. Although the

reconstruction process was still conducted to infer the process parameters, it ex-
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perimentally collected training samples offline and then the model was used for

online monitoring to estimate solid concentration and bubble diameter.

Among the intended implementation of tomography technology, is its incorpor-

ation into a process. This is leveraged by the ever-increasing of hardware per-

formance, material technology, and computation power. Monitoring and/or con-

trolling an industrial process is becoming possible. The thesis deals with the use

of magnetic induction tomography and spectroscopy for liquid metal application.

1.2 Aims and Objectives

The development of the MIT technique would benefit from both forward-inverse

solutions, as well as low-cost high-performance systems [40]. This research aims

to demonstrate the MIT system in a liquid metal process model. It has several

objectives:

� apply the MIT system for liquid metal process

� design and experiment of multi-frequency MIT

� design and experiment with complex impedance imaging in MIT

A multi-frequency approach is explored to elevate the MIT capability and produ-

cing rich information. This is in some ways answering the future direction from a

previous thesis [41]. Furthermore, measurement and imaging of complex imped-

ance in MIT will give more perspective on the resulting image. It also correlates

to further recommendation from a prior work [42].

1.3 Statement of Originality

The work in this thesis is the author’s original work with the supervisor that

has been conducted between September 2017 to September 2021. Exceptions are

conceded where reference has been cited to prior work of other people.

1.4 Contributions

Published peer-reviewed works which constitute the backbone of the thesis are:
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1. Direct capacitance measurement for tomographic imaging of metallic ob-

jects (2018) [43]. This paper was presented at the 9th World Congress

in Industrial Process Tomography. It served as an entry point to electro-

magnetic tomography, measurement system, and reconstruction method.

Chapter 2 is partly taken from it.

2. Real-time control of the mould flow in a model of continuous casting in

frame of the TOMOCON project [2], presented at 9th International Sym-

posium on Electromagnetic Processing of Materials in 2018. Co-authored

with collaborators in the working group, this paper describes a framework

of the project. The proposal triggers the work in Chapter 4 and Chapter 7.

3. Magnetic induction tomography sensors for quantitative visualisation of

liquid metal flow shape [44]. The publication appeared in IEEE Sensors

Letters in 2020. This exposes an experimental work with liquid metal as in

Chapter 4.

4. Magnetic induction tomography spectroscopy for structural and functional

characterization in metallic materials [45]. This paper was published in

MDPI Materials in 2020. Chapter 5 is based on this.

5. Noninvasive conductivity and temperature sensing using magnetic induc-

tion spectroscopy imaging, published in IEEE Transactions on Instrument-

ation and Measurement in 2021 [46]. This paper is the main source for

Chapter 6.

6. Interior void classification in liquid metal using multi-frequency magnetic

induction tomography with a machine learning approach, published in IEEE

Sensors Journal in 2021 [47]. This paper is a direct consequence of the work

in Chapter 7.

1.5 Thesis Organisation

The next chapter presents a briefing on measurement methods for liquid metal

flow. It proposes some ideas for integrating electromagnetic tomography with a

control system in a demonstration environment. It is immediately followed by

chapter on MIT which covers forward formulation, inverse solution, and hardware
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method. This chapter provides a general basis which is common to the remaining

chapters. Chapter 4 describes MIT implementation for visualising liquid metal

flow shape. It informs the direction of the applied work in the research project. In

Chapter 5, the structural and functional of metallic materials are characterised.

This is an example of the capability of complex MIT. Chapter 6 focuses on

exploring multi-frequency MIT measurement and the resulting information for

conductivity and temperature sensing. Chapter 7 deals with a machine learning

approach for the problem of interior void detection in liquid metal. The last

chapter presents the overall conclusions of the thesis. The importance of the

results and their implications will be discussed. The limitations of the research

will also be discussed.
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Chapter 2

Liquid Metal Flow Measurement

Measurement methods have been applied for liquid metal detection. Examples

of non-contact and non-invasive solutions are electrical capacitance tomography

(ECT), magnetic induction tomography (MIT), and contactless inductive flow

tomography (CIFT). This chapter introduces these techniques and explores the

prospective on integrated implementation.

2.1 Electrical Capacitance Tomography

Capacitance can be used as boundary measurement to extract dielectric distri-

bution in a sensing region. ECT has been well-known as a low-cost non-invasive

non-intrusive non-radiating technique for imaging a substance that has dominant

permittivity value. However, recent researches by Al Hosani [48] and Zhang [49]

showed the capability of ECT to reconstruct a metal object in order to obtain

information about inclusion’s surface along the region of interest. This develop-

ment opens an opportunity for ECT to be implemented into a wider application

where the imaging target is metallic material [25].

ECT uses electrostatics approach in which the governing equation for the ECT

is defined as Poisson’s equation [50]:

∇ · ε∇ϕ = 0 (2.1)
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Mutual capacitance (C) between electrodes i− j is [51],

Cij =
Qj

∆Vij

(2.2)

here (∆V ) is voltage difference, whereas charge (Q) at the electrode j can be

written as,

Qj =

�
Γj

ε(x, y)∇ϕ(x, y) · n̂dl (2.3)

combining (2.2) and (2.3) yields,

Cij =
1

∆Vij

�
Γj

ε(x, y)∇ϕ(x, y) · n̂dl (2.4)

where ε is permittivity and ϕ is potential, Γj is the enclosing path for detection

electrodes, and n̂ is its normal unit vector. Figure 2-1 is ECT concept illus-

trated through simulation. Typical ECT sensors consist of a set of electrodes

from which capacitance values between electrodes will be measured as boundary

measurements. The traditional implementation of ECT is directed to an object

whose conductivity is low and material with low-frequency permittivity in the

range of 1–100. Nevertheless, a recent development by [43] showed that it also

can be conditioned to reconstruct high conductivity inclusion inside the sensor.

Figure 2-1: ECT measurement concept. Cylindrical vessel with set of circular ca-
pacitive electrodes (left); simulation where an electrode is energised with voltage
resulting in electric field inside the vessel (right).
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Conventional ECT system has a frequency in the range of 250 kHz up to 2.5 MHz

with various types of excitation signal [52]. Given the implementation where the

sensing space is few inches in diameter and electrode thickness less than one

millimetre, the most common operating frequency is 500 kHz. This ensures an

electrostatic approach is applicable due to signal wavelength significantly larger

than sensor geometry or object’s size [53].

For an object that is not pure dielectric, the measurement method and frequency

operation should be adjusted accordingly. Primary readout circuitry for lossy

capacitance value is necessary. The charge transfer principle is the foremost mean

for measuring capacitance between electrodes. It also has been used since the

first generation of the ECT system. Alternating current (AC) -based capacitance

measurement was later adopted as an improvement in ECT hardware. Due to the

nature of AC signal processing, the complexity is increased especially on phase-

sensitive demodulation required to accomplish accurate measurement results [54].

On the other hand, a commercial module for capacitance measurement has been

proven in electrical tomography systems as reported in [55]. It is a low-cost

and easy-to-integrate solution for direct measurement in a preliminary study of

capacitance tomography applications.

The concept of capacitance-based metallic object imaging is derived from the

work of Zhang [49]. This method considers a metal object as dielectric inclusion

inside capacitive sensor. Metal inclusion can be seen as a high permittivity object

between capacitive electrodes. The term ’permittivity illusion’ was used by prior

work [49] to describe a pure conductive object which acts as though it was a very

high dielectric substance seen by a capacitive electrode. This ’illusion’ will shorten

spacing between capacitance electrode pairs. In other words, the inclusion of

metal (floating conductor) acts as a pseudo dielectric material that can be imaged

by ECT. In addition, a three-dimensional (3D) image can also be produced with

a single-plane sensor as described by [56], taking advantage of the fringe effect of

the electric field.

The work in [43] proposes a method of metallic object imaging using capacitance

measurement. It shows a system setup of capacitance measurement for imaging

metallic inclusion inside the ECT sensor. The boundary shape of the object has

been successfully retrieved by reconstruction. This method could not recover
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the inner distribution of the metal object but might be complemented with a

penetrating magnetic field in order to obtain the whole structure. Therefore,

a combination of ECT and MIT modalities would be an attractive solution for

metallurgical process imaging.

2.2 Magnetic Induction Tomography

Mutual inductance tomography, also known in terms of magnetic induction tomo-

graphy or electromagnetic inductance tomography (EMT) [57], [58], works on

several routines. The region of interest is excited by a magnetic field from the

alternating current which flows through a coil. The field is then modified as a

result of material distribution in the sensing space. These primary and second-

ary field distributions are measured using an array of coils arranged (usually)

circumventing the region. The boundary measurements can be reconstructed as

an image using the inversion algorithm to map the electromagnetic properties

in the sensing area. In addition to an image, other means of information such

as parameters or profiles are also of interest. That information can be obtained

directly from measurement or derived from reconstruction results.

The method is based on trans-impedance measurement between the transmitting

coil (excited by a current source) and receiving coil (from which induced voltage

is sensed). Having established reference measurement with air background con-

dition, the relationship between induced voltage V and excitation current I is,

V = jωMI (2.5)

where M is the mutual inductance between transmitter and receiver coils. When

an object with electromagnetic properties is placed in between coils, the spatial

distribution of the magnetic field is perturbed. Consequently, the change in mu-

tual inductance ∆M raises a modification in the detection signal ∆V at receiving

coil, re-arranged into:

∆M =
∆V

jωI
(2.6)

Here, the current is kept at an independent level. ∆M is a complex value con-

sists of resistive and reactive components. Magnetic material will increase the
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mutual induction between coils, hence increasing the measured signal; whereas

conductive material will reduce the signal. In other words, the real part of the

impedance change represents a change in the magnetic flux while the imaginary

part represents the loss due to the eddy currents.

Considering an imaging system where conductivity σ is sought, a formulation

using magnetic vector potential A in the conductive region [59],

∇×
(

1

µ
×A

)
+ jωσA = Js (2.7)

where µ is permeability, ω is the angular frequency, and Js is the source’s current

density. MIT principle is depicted in Figure 2-2, where a coil is excited by current

Figure 2-2: MIT measurement concept.

I (red arrows), while the other coil is induced by voltage V as a result of A field

(surface plot) in the region with the distribution of conductivity σ and eddy

current (black arrows). Thus, tomographic data are formed as arrays of sensors’

measurement combinations. In the case of 8 sensors, each of which can act as

either exciter or detector, one frame (a complete set of ‘projection’) consists of

(C8
2) 28 readings.

A linear approximation can be applied only for a small perturbation on pixel

value, and a linear response is assumed between the change in pixel value and

the change in mutual inductance being measured between coil pairs. Supposed
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that there are k pixel each has a value of pi representing electromagnetic property

required from a pixel, then pixel values can be arranged to be a vector P. Like-

wise, if there are n measured coil pairs each with the measured mutual inductance

of mj, then the measured values can be arranged into vector M. Small change

in M (δM) with change in P (δP) may be linearly related through sensitivity

matrix S [60],

δM = SδP (2.8)

Therefore, S is Jacobian matrix in the system where:

δP =



δP1

...

δPi

...

δPk


; δM =



δM1

...

δMj

...

δMn


;S =


∂m1

∂p1
. . . ∂m1

∂pk
...

. . .
...

∂mn

∂p1
. . . ∂mn

∂pk

 (2.9)

Due to signal’s change is relative to empty (air) background, δP and δM are

simply notated as P and M respectively. This coefficient S can be obtained

experimentally by scanning small test object as a perturbation in the sensing

space and measuring the response on every coil pairs accordingly. However, the

common approach is to calculate
∂mj

∂pi
using finite element modelling or vector

field solution.

Mutual impedance changes (∆Z) between transmitter and receiver coils affected

by an object is derived. Derivations in [61] and [62] expose some relations of

source’s and probe’s change due to electromagnetic field modification. Lorentz

reciprocity relation is considered and a generalised formula applies for coil pairs

[63],

∆Z = Zb − Za

=
1

I2

�
v

jω(µb − µa)Ha ·Hb − (σb + jωεb − σa − jωεa)Ea · Ebdv
(2.10)

27



where Za is the mutual impedance between coil pairs when properties of the

medium are (µa, σa, εa). One of the coils is excited by a current I with angular

frequency ω generating magnetic and electric fields Ha and Ea respectively. Zb is

the mutual impedance when properties of the medium are (µb, σb, εb). Identically,

the other coil is excited by a current I with angular frequency ω generating

magnetic and electric fields Hb and Eb respectively. The region v covers the

medium (and object) under inspection.

In the interest of observing only a conductive object, the permeability change is

neglected. Furthermore, as the reference measurement is air background, both

conductivity σa and permittivity εa are negligible as well. Thus, (2.10) is simpli-

fied,

∆Z = − 1

I2

�
v

(σb + jωεb)Ea · Ebdv (2.11)

As an attempt to reduce the coupling capacitance between coils and object, the

sensing system is designed in such a way that the electric field generated by coils

is eliminated. Consequently, for background condition ∇V ≈ 0, the electric field

becomes,

Ea ≈ −∂Aa

∂t
= −jωAa (2.12)

whereas the current density in the object is,

Jb = (σb + jωεb)Eb (2.13)

putting altogether (2.11), (2.12), and (2.13),

∆Z ≈ jω

I2

�
v

Aa · Eb(σb + jωεb)dv

=
jω

I2

�
v

Aa · Jbdv

(2.14)

Therefore, an approximation for the system that observes complex conductivity

changes related to the measurement of mutual impedance can be obtained as a

discrete coefficient,

S =
∆Z

∆(σ + jωε)
(2.15)

28



Examples of sensitivity matrix derivation for some electromagnetic problems have

been reported in [64] [65] [66] [67]. The general form of the sensitivity formula

for excitation-detection pairs (e.g. coil-1 and coil-5 in Figure 2-2) is [68]

�
Γ

δE1 ×H5 · nds =

�
Ω

−jωδµH1 ·H5 + (δσ + jωδε)E1 · E5dv (2.16)

where the left-hand side represents excitation and detection by surface integral

on surface Γ; while the right-hand-side is the volume integral over the perturbed

region Ω. The magnetic and electric fields when sensor 1 is excited are H1 and

E1; whereas H5 and E5 are the magnetic and electric fields when sensor 5 is

excited. Therefore, a relationship between the change of detection voltage and

conductivity change at eddy current region can be derived from the dot product

of electric fields [69]. Here, the space Ω is discretised onto elements in two-

dimensional 50 × 50 pixels along X and Y axes.

Figure 2-3: Sensitivity map.

Figure 2-3 illustrates a computed sensitivity map for coil pairs in adjacent (top-
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left), orthogonal (top-right), near-opposite (bottom-left), and opposite (bottom-

right) positions. These four maps are the basis that can be rotated to form a full

combination sensitivity matrix. They are plotted relative to the adjacent map’s

value and reveals high-sensitive regions near the boundary. This will affect the

reconstruction result.

The linear case has an inevitable limitation. Nevertheless, this method gives

a rough qualitative image which indicates material distribution. The inversion

determines P from the measurement of M. However, the sensitivity matrix S

cannot be inverted in an obvious fashion. The Moore-Penrose generalised inverse

S† may be chosen [60],

S† = (ST · S)−1 · ST (2.17)

where P = S†M is least-square solution for M = SP, i.e. min∥M − S · P∥2.
Mostly, the applications demand a large number of k than the number of meas-

urements n. This makes the problem ill-posed, and computation of (ST · S)−1

or (S · ST)−1 has a numerical error. Thus, regularisation is required to minimise

least square error as well as penalise large value in P,

min{∥M− S ·P∥2 + α2∥P∥2} (2.18)

α2 compromise between matching the data and controlling solution. The choice

of α2 represents the level of a priori knowledge related to the solution.

2.3 Contactless Inductive Flow Tomography

The CIFT reconstructs the velocity field of flowing conductive liquid [70]. The

basis of this technique is the induction of secondary magnetic fields when a

primary magnetic field exposes the flowing liquid. As a result, magnetic field

perturbation outside the volume can be measured, and the inversion problem

will determine the flow velocity. While MIT reconstructs conductivity distri-

bution in a body through induced eddy current from AC magnetic field, CIFT

utilises induced eddy current due to the interaction between a moving liquid with

an applied DC (or very low frequency) magnetic field [71].

If a moving fluid with velocity v is exposed to a stationary magnetic field B, then
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by using Ohm’s law the current density will be induced [72],

J = σ(v ×B−∇ϕ) (2.19)

where σ is the electrical conductivity of the fluid and ϕ is the electric scalar

potential. The current density J will then in turn induce a secondary magnetic

field b at position r which is defined by Biot-Savart’s law:

b(r) =
µ0σ

4π

�
V

[v(r′) ×B(r′)] × r− r′

|r− r′|3dV
′ − µ0σ

4π

�
S

ϕ(s′)n(s′) × (r− s′)

|r− s′|3dS
′

(2.20)

here dV ′ is the volume element, r′ is the position vector in the volume, dS ′

is a surface element and n(s′) is the normal vector of the surface at position s′.

Assuming insulating boundaries, with the divergence-free of J, a Poisson equation

for electric potential can be derived from (2.19). The solution fulfils the boundary

integral equation according to Green’s theorem.

ϕ(s) =
1

2π

�
V

[v(r′)×B(r′)]· s− r′

|s− r′|3dV
′− 1

2π

�
S

ϕ(s′)n(s′)· (s− s′)

|s− s′|3dS
′ (2.21)

Generally, the total magnetic field B is a sum of the primary magnetic field B0

and the secondary magnetic field b. The ratio between b and B0 follows the

magnetic Reynolds number (Rm). For industrial application, typically Rm is

smaller than 1 so that B can be replaced by B0. Therefore, this approximation

leads to a linear inverse problem for determining the velocity field v from the

measurement of the induced magnetic field b [73]. Figure 2-4 illustrates the

principle and application of CIFT.

This technique has been implemented to observe fluid flow in a rectangular vessel

in the physical model of continuous casting of steel slabs using a cold liquid

metal [74]. The flow structure in the mould, where the steel starts to solidify, is

an important factor that affects the product quality [75].
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(a) CIFT principle (b) CIFT setup

Figure 2-4: CIFT principle and setup in velocity field reconstruction (images
from hzdr.de)

2.4 Application

The hydrodynamic measurement and visualisation of liquid metal inside nozzle

and mould play an important role in improving the steel quality. Transferring

liquid steel from tundish to the mould, the SEN contains and determines flow con-

dition which affects the subsequent process. However, temperature and opacity

hinder the conventional probe and/or optical measurement access. Examination

of SEN flow pattern remains necessary [76].

While operational conditions in the continuous caster pose difficulties for study-

ing liquid steel phenomena, physical models present feasible means to perform

experimental practices. This kind of reduced geometry within the ambient tem-

perature system is frequently used to represent fluid dynamic system [76]. The

mini-LIMMCAST facility was constructed for the purpose of observing two-phase

flow using cold liquid metal GaInSn and argon gas [77]. There is a need to sense

the nozzle (imaging area in Figure 2-5) to obtain the two-phase distribution of

liquid metal and gas while the system is running. The immediate goal is to

handle clogging in the nozzle as well as maintain stable flow down in the mould

by actuating the stopper rod and gas supply.

The injection of inert gas is an attempt to obtain clean steel. The resulting

bubbles help in dealing with clogging and inclusion removal. On the other hand,

the excessive amount of them is also threatening in the form of entrapment in

solidified steel, hence the deteriorated product. Therefore, understanding the
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Figure 2-5: Mini-LIMMCAST construction at HZDR (figures from [77] and [2])

metal/gas regime in a bubbly flow might be influential for quality assurance

by controlling the responsible process parameters such as metal and gas flow

rates. Numerical simulation shows that argon gas bubbles injected from the

inner wall of the tundish upper nozzle will initially go down along the wall due

to the liquid steel action. Farther away from tundish, argon bubbles penetrate

gradually to the nozzle’s central region [78]. The measurement technique that is

able to characterise those behaviours is essential [79].

Some experimental techniques for identifying two-phase liquid-gas flow patterns

are reviewed [80]. Impedance (capacitance, conductance, wire-mesh) sensors,

pressure fluctuation, photon attenuation, and ultrasonic are commonly used in

a non-transparent process. Setting aside those which are intrusive and nuclear

radiation methods, ECT, MIT, and CIFT are prospective.

In control perspective, fuzzy technique was used to recognise flow pattern [81],

identify two-phase gas-liquid [82], and analyse tomographic data [83]. Inform-

ation from multiple sensors also can be fused by using the fuzzy method, as

described in [84]. Practically, fuzzy control has been implemented in continuous

casting process [85], [86], and generally in iron-making [87].
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Interpretation of the sensors’ output, i.e. metal shape and gas fraction, can be

quantified as linguistic variables required for fuzzy inference. Together with flow

velocity data (either from ultrasonic doppler velocimetry –UDV– measurement

in the nozzle or CIFT measurement in the mould investigated by [88]), they

constitute important flow characteristics in deciding control action. Figure 2-6

depicts the simplified input-output scheme.

Figure 2-6: Input output control model

Generally, fuzzy rules composition can be described as [89],

Ri : IF x is A and y is B, THEN z is C

where Ri is the ith rule, x and y are controlled variables and z is control input.

A and B are input subsets; whereas C is the output subset. For instance [90],

fuzzy sets of the control output for stopper rod may be assigned as positive small

(PS) and positive medium (PM) to describe an increase in position; negative

small (NS) and negative medium (NM) to describe a decreasing position; also

zero (ZR) to indicate no change.

The determination of parameters and knowledge base can be derived and tuned

through experiments as well as experts’ analysis in future work. The tomographic

sensors designed and reinforced by experts involved in the framework [91] have

been demonstrated in an industrial model to achieve the control objective for the

continuous steel casting process.

2.5 Summary

The abovementioned techniques are reviewed in the interest of liquid metal flow

measurement. Implementation prospect utilising the measurement methods is,
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for instance, to control the flow in continuous casting model utilising data and/or

image from electromagnetic tomography sensors. An expert-based inference sys-

tem could be implemented to provide a control scheme to regulate the process.
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Chapter 3

Magnetic Induction Tomography

Spectroscopy

This chapter explains the basis of MIT and spectroscopy methods. Forward

problem formulates field and eddy current due to given passive electromagnetic

properties in the sensing space. Inverse problem attempts to resolve the ob-

ject distribution or parameter from the boundary measurements. The hardware

system is designed to conduct measurements for providing the necessary data.

3.1 Forward Problem

MIT utilizes an array of inductive coils, distributed equally around an imaging

region, to visualize the electromagnetic property distribution of the electrical

conductivity of an imaging subject. The imaging principle is based on the laws

of induction and eddy currents which are induced in an AC magnetic field [92].

The formulation can be obtained from Maxwell’s equations [59] [93], recalling

(2.7) from the previous chapter:

∇× 1

µ
∇×A + jωσA = Js (3.1)

Equation (3.1) can be solved by approximating the system as a combination of

linear equations in small elements with appropriate boundary conditions using
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the Galerkin’s approximation [94]:

�
ΩC+ΩS

(∇×Ni ·
1

µ
∇×A)dv+

�
ΩC+ΩS

(jωσNi ·A)dv =

�
ΩS

(∇×Ni ·Ts)dv (3.2)

where Ts is the electric vector potential and Js = ∇ × Ts, Ni is the linear

combination of edge shape functions, and ΩCand ΩS are eddy current region and

current source region or excitation coil region, respectively.

The right-hand side of equation (3.2) can be solved with the aid of Biot-Savart

Law. When J0 is the unit current density passing through coil, the measured

induced voltage in sensing coil can be calculated:

Vmn = −jω

�
ΩS

(A · J0)dv (3.3)

Then Jacobian matrix can be formulated by:

J =
δVmn

δσx

= −ω2

�
Ωx

Am ·Andv

I
(3.4)

where σx is the conductivity of pixel x and Ωx is the volume of the perturbation,

An is the forward solver of sensor coil excited by unit current, Am is the forward

solver of excitation coil m excited with I. Amplitude and phase Jacobian are

given

Jamp =
VrJr − ViJi

|V | (3.5)

Jphs =
VrJi − ViJr

|V |2 (3.6)

Where Vr and Vi are real and imaginary part of the measurement voltage. If one

reconstructs real and imaginary part of the impedance, then real and imaginary

part of J in equation (3.4) can be used. For forward modelling, the author used

non-ferrous materials, which means relative permeability of 1, and conductivity
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according to the metal sample.

(a) Sensor model (size in mm) (b) Detection voltages for reference
(ref), object (obj) and difference (diff)
values

Figure 3-1: Sensor and signal modelling in COMSOL

Figure 3-1a shows sensor model in COMSOL using finite element method. There

are non-conducting (outer region, sensing region) and conducting (coil, object)

domains. The complete mesh consists of 93419 domain elements, 7702 bound-

ary elements, and 1066 edge elements. Here, for clarity, only coil and object

are shown. Then field computation is run in coil geometry and frequency do-

main analysis. Induced voltages from every coil pair are collected. Detailed in

Table 3.1: Measurement Index

Rx
coil-2 coil-3 coil-4 coil-5 coil-6 coil-7 coil-8

coil-1 0 1 2 3 4 5 6
coil-2 7 8 9 10 11 12
coil-3 13 14 15 16 17

Tx coil-4 18 19 20 21
coil-5 22 23 24
coil-6 25 26
coil-7 27

Table 3.1, 8-coil transmitter-receiver (Tx-Rx) combination produces 28 data ar-

rangement. The numbering can be referred from Figure 2-2. This corresponds

to index in Figure 3-1b. The patterns here are the voltages for reference (air
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background), object (metal) and the difference/change between object presence

against a reference.

3.2 Inverse Problem

Algorithms for solving soft-field tomography, in general, have been studied ex-

tensively. The following briefly describes some methods which are used in the

subsequent chapters. Applicability in liquid metal imaging is the main consider-

ation for selecting these reconstruction techniques.

3.2.1 Tikhonov Method

It is assumed that the forward problem has a linear form,

∆V = J∆σ (3.7)

For ensuring uniqueness and stability, a least square solution is applied [95].

min∥∆V − J∆σ∥2 = min[(∆V − J∆σ)T (∆V − J∆σ)] (3.8)

∂

∂σ
[(∆V − J∆σ)T (∆V − J∆σ)] = −2JT (∆V − J∆σ) (3.9)

∆σ = (JTJ)−1JT (∆V) (3.10)

Further regularisation function shall be added for the accuracy and robustness of

the solution. Therefore, the Tikhonov regularisation method can be used as the

inverse solution to compute the conductivity distribution,

∆σ = (JTJ + αR)−1JT (∆V) (3.11)

where R and α are regularisation matrix and regularisation parameter, respect-

ively.
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3.2.2 Landweber Iteration Method

Assume that Ĵ0 is initial approximation of J−1, residual value of the inverse will

be

R = I− Ĵ0J (3.12)

and

J−1 = (I−R)−1Ĵ0 (3.13)

if both values are close, i.e. Ĵ0 ≈ J−1, spectral radius of R is less than unity

ρ(R) < 1. Series expansion of (1 −R)−1 can be made with kth approximation of

the inverse is

Ĵk ≡ (I + R) + · · · + Rk−1Ĵ0 (3.14)

Note that

(I−R)(1 + R + · · · + Rk−1) = I−Rk (3.15)

arranging (3.12) using (3.14) dan (3.15) results in

RkĴ0 = Ĵ0(I− JĴk) (3.16)

For (k + 1)th approximation inverse of Jk+1, image is given as

ˆKk+1 = ˆJk+1V (3.17)

expanding (3.17) using (3.14)

ˆKk+1 = K̂k + RkĴ0V (3.18)

substituting (3.16) to (3.18), taking ĴkV = K̂k

ˆKk+1 = K̂k + Ĵ0(V − JK̂k) (3.19)

Landweber method estimates Ĵ0 by transpose of J with gain factor α for con-

trolling convergence rate, hence

ˆKk+1 = K̂k + αJT (V − JK̂k) (3.20)
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a suitable convergence criterion is ∥ αJTJ ∥2< 2 so that α can be estimated into

2/λ where λ is the maximum eigenvalue of JTJ [96].

3.2.3 Spatio-Spectral Total Variation

The linear inverse problem can be defined as the recovery of a change in complex

conductivity ∆σ from a change in measured data ∆u, where ∆u = J∆σ. The

Jacobian J is computed by the Fréchet derivative of u with respect to σ [97]. The

complex conductivity includes the resistive component and reactive component

of the admittivity of the samples under test. In this case, a reference boundary

voltage u0 is available, where u0 = F (σ0), ∆u = u − u0, and ∆σ = σ − σ0.

Measured data in this case is real and imaginary part of mutual inductance, or

amplitude and phase of the mutual inductance.

In spectral imaging, the unknown conductivity changes and data are multidi-

mensional. Let’s redefine ∆σ = [∆σ1, · · · ,∆σI ] and data ∆u = [∆u1, · · · ,∆uI ],

where ∆u = J̃∆σ, for i = 1, · · · , I, and I is the number of spectral frames. It is

common to recover each frame independently, but this is not optimal, as it does

not exploit redundant information across frames. In this case, previous works

have defined the inverse problem as follows [98]:

argmin
∆σi

ϕ(∆σi) s.t. ∥J∆σi − ∆ui∥22 ≤ δ, ∀i = i, · · · , I (3.21)

where ϕ(∆σi) is a convex regularization functional that carries a priori informa-

tion of the unknown conductivity distribution for a single frame.

This work proposes a spatio-spectral reconstruction framework that exploits reg-

ularization [99]. Spatio-spectral total variation (TV) is implemented as MIT im-

ages can be well approximated by a piecewise constant function and consecutives

frames are expected to be similar. This allows to exploit redundant information

across consecutive frames. The spatio-spectral total variation problem can be

written as follows [100] [101]:

argmin
∆σ

∥∇x,y,z∆σ∥1 + ∥∇f∆σ∥1 s.t. ∥J̃∆σ − ∆u∥22 ≤ δ (3.22)
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where first and second terms correspond to isotropic spatial TV and spectral TV

functional, respectively, and where ∆σ represents a spectrally correlated conduct-

ivity distribution and J̃ is an augmented Jacobian operating on a frame-by-frame

basis.

The constrained optimization problem (3.21) can be solved using the split Breg-

man formulation, which efficiently handled constrained optimization and L1-

regularization [102] [103]. Using the Bregman iteration, the constrained problem

(3.21) is converted to an iterative scheme:

∆σk+1 = argmin
∆σ

∥∇x,y,z∆σ∥1 + ∥∇f∆σ∥1 +
I∑

i=1

µ

2
∥J̃∆σ − ∆uk∥22 (3.23)

∆uk+1 = ∆uk − J̃∆σk+1 + ∆u (3.24)

where (3.22) is an unconstrained optimization problem and (3.23) is a Bregman

iteration that imposes the constraint iteratively. The cost function in (3.22) is

still hard to minimize given the non-differentiability of the TV functional, but

this can be easily done with a splitting technique. Including auxiliary variables

allow splitting L1- and L2-functional in such a way that they can be solved in

separate steps in an easy manner. Images ∆σ are given analytically by solving a

linear system and L1-functional are solved using shrinkage formulae. To perform

the split, one can include dx = ∇x, dy = ∇y, dz = ∇z, df = ∇f , so equation

(3.22) becomes

(∆σk+1, dx, dy, dz, df ) = argmin
∆σ,dx,dy ,dz ,df

∥(dx, dy, dz)∥1 + ∥df∥1

+
µ

2
∥J̃∆σ − ∆uk∥22 s.t. di = ∇i∆σ

(3.25)

Constraints in equation (3.24) can be handled using the Bregman iteration as

above, which leads to the following iterative scheme
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(µJ̃T J̃ + λ
∑

i=x,y,z,f

∇T
i ∇i)∆σk+1 = µJ̃T∆uk + λ

∑
i=x,y,z,f

∇T
i (bki − dki ) (3.26)

dk+i
i = max(pk − 1

λ
, 0)

∇i∆σk+1 + bki
pk

, for i = x, y, z (3.27)

pk =

√ ∑
i=x,y,z

|∇i∆σk+1 + bki |2 (3.28)

dk+1
f = max(|∇f∆σk+1 + bkf | −

1

λ
, 0)

∇f∆σk+1 + bkf
|∇f∆σk+1 + bkf |

(3.29)

bk+1
i = bki + ∇i∆σk+1 − dk+1

i , for i = x, y, x, f (3.30)

∆uk+1 = ∆uk + ∆u− J̃∆σk+1 (3.31)

Equation (3.25) is a linear system that can be solved efficiently using a Krylov

solver [100] [101], [104], such as the bi-conjugate gradient stabilized method

(BiCGStab) [105], which involves only matrix-vector multiplications. Number

of Bregman iteration and other imaging parameters are selected empirically. Us-

ing known object size and shape, reconstruction is run initially with presumed

regularisation parameters. Then parameters are adjusted so that the reconstruc-

ted image closely matches the known size and shape. These chosen parameters

will be used for subsequent reconstructions with similar problems.

3.2.4 Neural Network

As an alternative to providing the desired interpretation, the neural network (NN)

can be employed for processing forward/measurement data. Figure 3-2 shows

neural network pipeline. For dense layer, where each input feature is assigned a
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Figure 3-2: Neural network pipeline.

vector of weights that connects to activation output, this operation applies [106]:

zi = W ix + bi (3.32)

yi = f i(zi) (3.33)

here, W i and bi are weights and biases at ith layer respectively. The layer’s

input is x, and the resulting linear activation zi is transformed by a non-linear

activation function f i. There are various activation functions such as sigmoid or

hyperbolic tangent. In order to start with the approach based on experimental

sensing data, the relatively simpler and faster Rectified Linear Unit (ReLU) will

be used.

f(z) = max(0, z) (3.34)

On the other hand, Figure 3-3 illustrates convolutional neural network (CNN)

which conducts (3.35):

zin = Ki
n ∗ x + bin (3.35)

where n is the index of the feature map, Ki
n is the nth filter kernel, and ∗ is the

convolution operator. In order to reduce the computation cost, the CNN layer is

usually accompanied by a pooling layer for sub-sampling the feature map. Max

operation finds the maximum value. For a classification problem, fully-connected

layers are put in the last stages. The output layer then produces the decision.
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input image
layer l = 0
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layer l = 3

fully connected layer
output layer l = 4

Figure 3-3: Convolutional neural network concept.

3.3 Measurement System

The hardware task is to enable field measurement in the sensing area. In the

case of the coil sensor, mutual coupling between excitation and detection pairs is

observed. Quantities of interest are the injection current and the induced voltage.

A multiplexer is required to perform selective switching to virtually rotate the

mutual induction of the multi-channel sensor arrays. Signal generation, switch

control, and signal acquisition are the common functionalities of the tomographic

measurement system.

Hardware for an MIT system have been designed in various configuration de-

pending on the intended application. Few recent reports disclose a detailed spe-

cification. Due to relatively small signal level in receiver coils, typically gain

requirement in this stage is 0–40 dB. It is common to employs ADC resolution

between 14 and 16 bit. Generally the signal processing exploits oversampling of

transmitter waveform to increase SNR [60]. Programmable device such as field-

programmable gate-array (FPGA) is preferred for a customized hardware-level

performance. Digital processing in the FPGA was reported to deliver data at 200

frames/s [107]. For low-frequency (0.1 Hz to 500 kHz) high-contrast imaging, one

example of advancement in the MIT system yields 131 frames/s with a typical

signal-to-noise ratio of 66 dB–95 dB [108]. Meanwhile for high-frequency (1 MHz–

10 MHz) low-contrast imaging, a modular MIT system was designed with phase
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demodulation error 0.0068 deg (RMSE), frequency stability ±0.1 ppm, 6 s/frame

at 16-channel, and SNR demodulation signal over 60 dB [109].

3.3.1 Magnitude-Based Hardware

The hardware block diagram of the MIT system based on magnitude detection

at a given measurement cycle is shown in Figure 3-4

Sensor MUX

Tx Amp Filter Signal Generator

µC

Rx Amp Filter Rectifier ADC

signal path
control path

Figure 3-4: Magnitude-based hardware block diagram.

This system consists of transmitting and receiving lines. At the transmitting

line, there are a signal generator (filtered), a current transmitter, and a mul-

tiplexer. At the receiving line, there are a multiplexer, a coil amplifier, gain

stages, an absolute detector, filters, and analog-to-digital converters (ADC). A

microcontroller is functioned to control signal generation, switching, ADCs, and

process the measurement data. All circuits are built using commercial off the

shelf components.

The signal generator produces a sine waveform with a fixed frequency at a given

cycle. This is accomplished by using the direct digital synthesis (DDS) method

[107]. The signal form is defined digitally, and the frequency is set according to

phase and counter relative to the main clocking crystal oscillator. Waveform and

frequency settings are instructed by the microcontroller.

The output of the signal generator has a suitable waveform, but inadequate

voltage and current level for exciting the coil. Therefore, a subsequent current

driver is placed. Additionally, DC offset has to be removed using a coupling ca-

pacitor. The current driver is constructed from voltage-controlled current-source

(VCCS) topology [110] using an operational amplifier (Op-Amp) with a buffer in
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the feedback line to get a precision output. A booster amplifier is added to pro-

duce a sufficient current level up to 100 mA for injecting the coils. Moreover, the

configuration is also tailored to support the required operating frequency range.

The signal is then passed to the common port of the multiplexer. Each coil

(eight in total) is connected to the ’drain’ ports of the multiplexer. In this way,

the excitation coil can be selected by closing the internal switch (through control

ports), thus the current from the driver is injected into the selected coil. A similar

manner applies to the other multiplexer in the receiving line. All eight channels

are connected to both transmitting and receiving multiplexer ports accordingly.

By contrast, when closing the receiving switch, the signal from the measuring coil

is fed into circuits in the receiving line. For instance, coil-1 as a transmitter and

coil-2 as a receiver, transmit multiplexer is controlled so that switching channel-1

is closed, while receive multiplexer channel-2 is closed (the remaining channels

are open). It should be taken into consideration that the multiplexer shall have

a sufficient signal range to accommodate both excitation current and detection

voltage from the coil arrays.

On the other hand, the first analogue stage in the receiving line is a coil ampli-

fier. It is usually configured as an instrumentation amplifier. The consideration

here is that the measurement voltage is significantly low and suffering from an

offset and/or drift, hence differential topology and high gain level are necessary.

Moreover, the bandwidth should cover the operating frequency range for the MIT

system.
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Figure 3-5: Simulation of analogue receiver circuits.

Following these gain stages, an absolute detection circuit is implemented so that

the low-speed ADCs can handle the input. The peak detection is established

using a precision rectifier based on Op-Amp [111], with an additional smoothing

filter. However, this poses typical problems such as settling-time and attenuation

and should be anticipated in processing the acquired signal. Figure 3-5 show the

transient SPICE simulation of essential circuits on the receiving line. It can be

seen that the input voltage Vin is amplified ten times to give VAmpOut, and then

the rectifier samples the signal amplitude into DC after 0.5 ms of settling time.

The abovementioned measurement schemes are repeated to do the coil combina-

tion cycles for complete tomographic sensing data. All digitised signals converted

by ADCs are then fed into the microcontroller and saved in the buffer software.

The interfacing between microcontroller and computer is established using a USB

serial module.

3.3.2 Hardware System for Spectroscopy

Multi-frequency measurement is conducted using an impedance bridge system.

Here, commercial benchtop E4980AL Precision LCR Meter (20 Hz – 300 kHz)
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from Keysight Technologies is configured for mutual inductance measurement.

Four ports, namely HC (high current), HP (high potential), LC (low current),

and LP (low potential) are connected using custom-made test-fixture. In order

to measure mutual inductance between two coils, HC and LC are connected to

the transmitter coil, whereas HP and LP are connected to the receiver coil. Both

LC and LP are shorted as a common reference. Another useful port from the

LCR meter is the ground casing which can be connected with an outer shielding

plate around the MIT sensors.

The main measurand of the LCR bridge is the amplitude value of impedance Z

and its phase θ, from which the other parameters are derived. Therefore, the

use of this measurement method will mainly be the impedance-phase data that

relates to mutual inductance between coil. Here, the calibration procedure is

crucial for the accuracy of impedance and phase reading. Short calibration is

used to eliminate the cabling effect; whereas open calibration is used to eliminate

parasitic capacitance.

Sensor MUX

LCR

PC

signal path
control path

Figure 3-6: Spectroscopy hardware block diagram.

In order to conduct a multi-channel measurement (as in 3.3.1), an additional

switching module is required. The manufacturer provides data acquisition (DAQ-

970A Data Acquisition System) and multiplexer (DAQ-M901A 20 Channel Mul-

tiplexer Module) to combine with the LCR system. Figure 3-6 shows the setup

where all instruments are synchronised and controlled by a computer (PC) using

Standard Commands for Programmable Instruments (SCPI). In this way, a MAT-

LAB script that acquires multi-channel measurement data can be incorporated

into an existing post-processing program.
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3.3.3 Complex-Valued Hardware

The third system is complex-valued measurement. This hardware is designed

to extract amplitude, phase, real, and imaginary components from the sensing

signals. The features are necessary for complex analysis and reconstruction.

Sensor MUX

Tx Amp VCCS

FPGA

Rx Amp Filter

signal path
control path

Figure 3-7: Complex-valued hardware block diagram.

Figure 3-7 shows the diagram of complex-valued hardware. The key difference

is in the use of an embedded system based on an FPGA. The module has the

capability of generating both source and reference signals to conduct a synchron-

ous detection. Additionally, ADCs are integrated with a high sampling rate for

direct full-wave acquisition. The module also controls the multiplexer through

digital input-output (DIO) ports. A transmission control protocol (TCP) connec-

tion is established between the module and a computer for sending and receiving

commands and data through ethernet.
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(a) Current transmitter response

(b) Receiver circuit response

Figure 3-8: Characteristics of transmitter and receiver circuits

At the transmitter, a VCCS convert the source’s sine-wave voltage into ac current.

Since the module can only generate a sine-wave with a maximum amplitude of

±1 V, a subsequent current buffer should be added. This buffer provides a boost

for current to be injected into low-impedance loads such as coils. The current

transmitter response from both simulation (SPICE) and test with a coil load is

plotted in Figure 3-8a. In the simulation, a coil is represented as a pure inductor

SPICE model. The discrepancy between the actual coil and simulated coil causes

some differences in the graphs. Moreover, low-level lump model overlooks details

51



such as ESR and parasitics. The spike in the simulation graph might occurs due

to those reasons.

On the other hand, the receiver part consists of an instrumentation amplifier for

detecting an induced voltage on the coil. Besides gain function, the instrumenta-

tion amplifier also has a DC cancellation to reject an offset that may occur from

the receiving signal. The stage is followed by passive filters that suppress signals

below set lower cut-off (100 Hz) and upper cut-off (100 kHz) frequencies. This

characteristic is shown in Figure 3-8b.

Figure 3-9: Measurement SNR (various views)

For 8-coil arrays arranged in circular, the measurement signal-to-noise ratio

(SNR) is plotted in Figure 3-9. On the horizontal axis is the measurement index

where index = 0 is induced voltage at coil-2 due to the magnetic field generated

by current injection at coil-1. The measurement index = 1 is mutual between

coil-1 ad coil-3, and so on until index = 27 which represents coil-7 and coil-8

pairing. It can be seen that the adjacent pair has the highest SNR, and the op-

posite pair has the lowest value. In addition, the number of signal samples also

affect the SNR. The digital signal processor module has hardwired setting where
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different input signal frequency will have different sample size. This is one of the

reasons that causes relatively lower SNR in some operating frequencies.

(a) Multiplexer PCB

(b) Analogue PCB

Figure 3-10: Multiplexer and analogue circuit boards

Two PCBs are designed and manufactured as seen in Figure 3-10. The multi-

plexer is assembled in a dedicated PCB along with BNC ports for connection

with the sensors and SMA ports for connection with the Tx and Rx channels.

The other board is for the analogue parts containing both Tx and Rx circuits.

53



The Tx channel takes an input of the source signal from the embedded module,

then produces an excitation current as an output. Meanwhile, the Rx channel

gets a detection voltage and provides the conditioned signal as output.

The signal generation, switching control, and signal acquisition is dictated by

a Python script through SCPI. This software on the PC sets the frequency op-

eration and the number of the measurement cycle. Once the measurement is

completed, the program will perform demodulation and arrange the data ac-

cordingly. As a result, amplitude, phase, real, and imaginary components are

obtained for all measurement indexes.

start

TX=0
RX=0

RX=TX+1

generate
signal

acquire
data

TX=TX+1 RX=RX+1

TX=8? RX=9?

stop
signal

end

N N

Y
Y

Figure 3-11: Hardware control flowchart.

54



Figure 3-11 shows the hardware control routine. At the start, multiplexers are

disabled (Tx=0 and Rx=0) so that all switches are off. Then, the FPGA gener-

ates a waveform for both source and reference. This involves triggering two DDS

channels to produce synchronous waveforms. Control signals are sent to switch

on the first combination of transmitter-receiver channels. In the 8-coil sensors

system, the first combination is Tx=1 and Rx=2; whereas the last combination is

Tx=7 and Rx=8. The source signal goes through the multiplexer and analogue

circuitry to excite the selected transmitter coil. Consequently, at the selected

receiver coil an induced signal occurs. This induced voltage is then passed into

the multiplexer and conditioned by the analogue receiver before being retrieved

by the embedded FPGA. In this acquisition process, a synchronous demodulation

(or lock-in detection) is applied with the help of the other generated reference

signal.

reference

average

average

φ +90◦

detection
signal
from

hardware
ADC

tan−1

| |

phas

ampl

real

imag

Figure 3-12: Block diagram of demodulation scheme implemented on the software

The lock-in detection follows the mechanism depicted in Figure 3-12. This scheme

occurs on software parts. A reference signal Vref with angular frequency ω, amp-

litude Aref and phase θref can be defined as,

Vref = Arefsin(ωt + θref ) (3.36)
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whereas in the detected signal Vdet with the same angular frequency ω, its amp-

litude Adet and phase θdet are,

Vdet = Adetsin(ωt + θdet) (3.37)

If the detected signal (3.37) is multiplied by (3.36), the resulting wave will be,

Vinp =
1

2
AdetArefcos(θdet − θref ) − 1

2
AdetArefcos(2ωt + θdet + θref ) (3.38)

where Vinp is the obtained signal product. Passing it through a low-pass filter, it

becomes

Vinp =
1

2
AdetArefcos(θdet − θref ) (3.39)

which is a DC value proportional to both reference and detected signals. Here,

the in-phase component is obtained.

In order to extract the phase difference between the reference and the detected

signals, a shifted version of the reference signal is generated.

Vref = Arefsin(ωt + θref + 90o) (3.40)

Multiplying this shifted-reference with the detected signal and applying a filter

to reject high-frequency components, one will have

Vqdr =
1

2
AdetArefcos(θdet − θref − 90o) − 1

2
AdetArefcos(2ωt + θdet + θref + 90o)

Vqdr[filtered] =
1

2
AdetArefsin(θdet − θref )

(3.41)

The reference’s signal amplitude and phase can be preset by the DDS to be

Aref = 1 and θref = 0. It gives,

Vinp =
1

2
Adetcos(θdet)

Vqdr =
1

2
Adetsin(θdet)

(3.42)

where Vinp and Vqdr are in-phase and quadrature components of the (filtered)
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detected signal, respectively. Both magnitude R and phase θ of the signal phasor

can be calculated.

R =
√
V 2
inp + V 2

qdr

θ = tan−1

(
Vqdr

Vinp

) (3.43)

This recovers the detected signal’s amplitude Adet = 2R and phase θdet = θ.

Additionally, real part re(Vdet) = Vinp and imaginary part im(Vdet) = Vqdr can

be directly inferred. Figure 3-13 depicts stages in the signal demodulation for

opposite coil pairs at 10 kHz.

(a) detection signal with reference 0o (b) detection signal with reference 90o

(c) inphase and quadrature (d) filtered inphase and quadrature

Figure 3-13: Signal demodulation

The demodulation is performed digitally in software after all the detection-

sensors’ raw-signals are acquired. Table 3.2 shows the timing details for hardware

operation. In the beginning, the hardware needs initiation to set measurement

parameters such as frequency, number of frames, etc. Another process that should
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Table 3.2: Hardware Timing

Process One Instance Full Frame
Initiation 2.83 ms
Switching 0.57 ms 15.95 ms
Acquisition 48.86 ms 1368.08 ms
Demodulation 155.78 ms
Reconstruction 14.39 ms

Total 1557.04 ms

be considered is channel switching. It controls multiplexing between transmitting

and receiving and consumes delay to ensure the settling time of analog switches.

The acquisition time comprises the generation of synchronous source-reference

signals and full-wave sampling of both reference and detection signals. This takes

the longest time in order to reserve a buffer window for capturing wave periods at

the lowest operating frequency. The timing for digital demodulation along with

data arrangement is also taken into account. The last process is reconstruction,

which in this timing example, the Landweber algorithm with 100 iterations is

executed.

Figure 3-14: Measurement data

Examples of measurement data for a free-space (air) background is shown in

Figure 3-14. These complex values enrich the information for further data analysis

58



and image reconstruction.

(a) Image of non-ferrous object

(b) Image of ferrous object

Figure 3-15: Image reconstruction from complex-valued hardware

Figure 3-15 shows examples of reconstruction results from complex-valued meas-

urement data where the object (circle which diameter is quarter of the space) is

placed on the West side. The Landweber algorithm described in Subsection 3.2.2

is used. The sensitivity matrix J [5x5] is obtained experimentally by measuring

small metals as perturbation at a single grid. It can be seen that the object’s
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location is indicated in the reconstruction. Different characteristics between non-

ferrous object (Figure 3-15a) and ferrous object (Figure 3-15b) are distinctive.

Table 3.3: Hardware Comparison

Parameter Magnitude sys Spectroscopy sys Complex sys
(3.3.1) (3.3.2) (3.3.3)

Measurement amplitude Z, θ amplitude, phase
real, imaginary

Main hardware AVR 8-bit LCR meter ARM Cortex-A9
MPCore32-bit+FPGA

Detection range 5 V 2 V ±20 V
Resolution 15-bit NA 14-bit

Current source 100 mA 10 mA 10–100 mA
Frequency range 1–100 kHz 20 Hz–300 kHz 100 Hz–100 kHz

SNR 59–91 dB 55–96 dB 46–66 dB
Processing time 0.75 s 10 s 1.55 s

Table 3.3 shows a comparison between the three systems. It should be noted

that SNR values are obtained experimentally using different sensors for different

systems and purposes.

3.4 Summary

Methods for MIT and spectroscopy described in this chapter are, of course, not

exhaustive. There are various algorithms that can be found in the literature.

The algorithm and system described here will be used in the upcoming chapters.

The Tikhonov algorithm is used in Chapter 4 and Chapter 6, whereas the spatio-

spectral TV is used in Chapter 5. The Landweber is used as a test algorithm

when developing the hardware. Neural network methods (Subsection 3.2.4) are

used in Chapter 4 and Chapter 7. The hardware described in Subsection 3.3.1 is

used in Chapter 4. The setup of Subsection 3.3.2 is used in Chapter 5, Chapter 6

and Chapter 7. The design from Subsection 3.3.3 is used in Chapter 4.
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Chapter 4

Visualisation of Liquid Metal

Flow Shape

This chapter describes MIT sensors for liquid metal visualisation. Design aspects

and performance evaluation are presented to quantify the shape of conductive

substance against the non-conductive region. Portable MIT sensors will be con-

structed and tested on GaInSn in the SEN model. Reconstruction results will be

evaluated whether the feature meets the need to observe flow regime and phase

distribution of steel in continuous casting. Flow shape classification method based

on neural-network is also assessed for applicability in liquid metal imaging.

4.1 Introduction

Electromagnetic induction method is arguably the most applicable technique to

visualise molten metal, since optical or nuclear means are not feasible for a real

caster. Sensors have been developed and tested for liquid steel two-phase flow

measurements [16] [19]. Previous researches [24] [112] have satisfactorily presen-

ted qualitative result on measurement and/or imaging liquid metal distribution

in the vessel. In order to incorporate the apparatus onto a regulated process, a

quantified information on both metal shape and inclusion, as well as a precise,

fast measurement with a real-time reconstruction is required.

Sensors for monitoring the steel flow are needed, which are rugged, safe for plant
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operation, and capable of visualising flow and clogging circumstances. As a real-

world insight for interested readers, operation practices for steel cleanliness were

reviewed in [113]. This work explores MIT sensors in a portable construction

fitted for SEN model. The aim is to develop a measurement system which can

be integrated into a control loop.

4.2 Continuous Casting Model

The liquid metal used in experiments is a eutectic alloy of gallium indium tin

(GaInSn) which has a liquid phase in room temperature. Essential material

property of GaInSn in term of electrical conductivity is 3.2 MS/m [114] which is

intended for electromagnetic sensors. A small-scale facility for continuous cast-

ing model was constructed at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

namely Mini-LIMMCAST (Liquid Metal Model for Continuous Casting) for ex-

perimental program on quantitative flow measurement of liquid metal [77]. This

work contributes to a wider project framework reported in [115] and [116]. In or-

der to control the process utilising data and/or image from tomographic sensors,

the scheme of which is sketched in Figure 4-1.

Figure 4-1: Mini-LIMMCAST scheme at HZDR.

The part of interest for this work, in particular, is SEN in which liquid metal is

flowing from tundish to mould (x-ray captured Figure 4-1 right) [117] . Imaging

area is focused on a section where the two-phase distribution of liquid metal

and gas are present. In the Mini-LIMMCAST experiment, liquid metal velocity
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in the SEN is approximately 1–2 m/s within which injected gas bubble size is

estimated between 2 mm–5 mm in diameter. Therefore, the sensor should be

sensitive to approximately 2.5%–20% area fraction of inclusion. As for the actual

implementation, acquisition rate around 100 frame-per-second is required.

4.3 Sensor Design

The sensor’s construction is seen in Figure 4-2. An individual part (left figure)

is ferrite-cored multi-layer coil. Eight of them are assembled evenly (45o axisym-

metric) into a plastic housing (right figure) to form a circular array of coils cir-

cumventing the sensing space. Besides as a fitting for SEN pipe, the housing

can be exploited for shielding to increase the sensors’ sensitivity and reject any

external interference. Structural details of the sensor are given in Table 4.1

Figure 4-2: Sensor design.

In terms of measurement, the sensitivity of a ferrite-cored induction coil sensor

is defined as the amount of induced voltage V per unit field H at operating

frequency f , and can be calculated [118]:

V

H
≈ 0.9 × 10−5 · f · l3

d2w
· di ·

1

ln(2l/di) − 1
(4.1)

From simulation (following method in [119]), it is evaluated that resultant mag-

netic field H (air background) on the edge of receiving coil (x = 7.5 mm) is 1.2155

(A/m) at 1 kHz. An example of MIT receiving circuitry has resolution down to

0.125 mV, using combination of analog-to-digital conversion and programmable
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Table 4.1: Sensor Parameter

Parameter Symbol Value
Wire diameter dw 32 AWG
Coil inner diameter di 2.5 mm
Coil outer diameter do 5 mm
Coil length l 5 mm
Core height h 8 mm
Case inner diameter Dix 15 mm
Case outer diameter Dox 40 mm
Case slot diameter Dx 7 mm
Case height Hx 10 mm
Number of turns N 100

gain amplifier [120]; while expected signal level for detection is 0.216 mV. There-

fore, the designed sensor is expected to response towards the exposing field and

generate sufficient level for common measuring hardware resolution.

4.4 Measurement Setup

The sensors are connected to MIT hardware system. The scheme is shown in

Figure 4-3 (left) where 8-coils are formed surrounding SEN pipe made of PMMA

with diameter of 15 mm and 2.5 mm wall thickness. Figure 4-3 (right) shows a

setup in which a contained liquid metal strand (diameter of 7 mm) is placed in

the centre of SEN pipe while MIT measurements are taken. Operating frequency

of 130 Hz (penetrating 24 mm depth through GaInSn) is chosen. This partic-

ular operating frequency was also successfully applied in previous work on steel

imaging [92].
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Figure 4-3: Experiment for liquid metal in SEN tube.

4.5 Visualisation Result

Conductivity distribution of material is obtained from measured data using im-

age reconstruction technique. Induced voltage values are taken as a function

conceived by electrical conductivity. Matrix equation can be described [19]:

V = SK (4.2)

where V is voltage measurement data, S is sensitivity map (representing re-

sponses of each sensors’ section to particular measurement) also called Jacobian,

and K is conductivity values. Given the V from experiment and the S for-

mulated from prior forward computation explained in Section 3.1, the pixelated

conductivity K can be estimated,

K ≈ S+V. (4.3)

The S+ could be in form of (STS + λR)−1ST where R and λ are the regular-

isation matrix and regularisation parameter (order of 10−12) respectively. This

method [121] to some extent is adequate for image observation, especially with

high conductivity contrast and centralised distribution.
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Since MIT will be applied to determine two-phase distribution of liquid metal

and gas inside the SEN, tests with different filling regimes have been observed.

Figure 4-4 (top of each section) shows several metal flow scenarios (assumed

from Figure 4-1) molded as 3-d printed containers (PLA material) and measured

by the sensor. The images are generated against either empty-air or full-metal

background reference. Note that the ’empty’ constitutes the SEN pipe with an

empty container; whereas ’full’ is the SEN pipe and a container filled with the

liquid metal. Normalisation of low perturbation against high background was

also explained in [122].

Figure 4-4: MIT imaging for metal flow scenarios in SEN.

The reconstructed images are shown in the bottom of respective sections in Fig-

ure 4-4. Red dashed-line indicates the actual boundary of the containers. From

left to right, top-bottom, cross-sectional image is depicted for central-stream oc-

cupying 15% of total area (a), side-stream 20% (b), split-streams 20% each (c),

stratified 50% (d), annular 50% (e), annular –wispy– with internal strand 7.5%

(f), void-side 20% (g), and bubbly (three voids) each of which has area fraction

7.5% (h). Taking fully-filled metal as threshold value, there are distinct regimes
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of conductive (metal) and non-conductive (gas) phase, except for difficult cases

where the sensitivity is weak in the centre region. Still, the measurements have

a good consistency across a hundred data for each case (measurement time of 12

seconds per frame) with an average signal-to-noise ratio (SNR) of 62.93 dB.

Evaluating the performance of MIT sensors in terms of imaging result, correla-

tion coefficient (CC) and relative error (RE) are used, as commonly adopted for

electromagnetic tomography [123],

CC =

∑N
i=1(ĝi − ¯̂g)(gi − ḡ)√∑N

i=1(ĝi − ¯̂g)2
∑N

i=1(gi − ḡ)2
(4.4)

RE =
||Ĝ−G||
||G|| (4.5)

where ĝi and ¯̂g are ith element and average of the reconstructed image; while

gi and ḡ are ith element and average of the actual distribution respectively. On

the other hand, Ĝ is overall reconstructed image; whereas G is overall actual

distribution.

Table 4.2: Imaging Evaluation

Shape CC RE
Central stream (a) 0.8888 0.2787
Side stream (b) 0.9063 0.2048
Split streams (c) 0.8693 0.2213
Stratified (d) 0.8928 0.2979
Annular (e) 0.4284 0.7472
Wispy annular (f) 0.3506 0.7012
Void side (g) 0.9015 0.3666
Bubbly (h) 0.8002 0.5702

Table 4.2 lists imaging evaluation for different cases. If the image and the actual

shape are directly correlated, the value of CC will be approaching unity; whereas

if the image and the actual shape are identical, the value of RE will be zero.

Central-stream, side-streams and stratified cases are reconstructed quite well.

The void-side case still has a decent confirmation. For internal recovery such as

wispy-annular and bubbly cases, the distribution are failed to be seen, as reflected
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by correlations below 0.5 and higher error values. The nature of reconstruction

algorithm and the simplified subtraction/thresholding method are among reasons

why image generation for some cases are less satisfactory and having artifacts at

different regions depending on the object’s distribution. In the future Mini-

LIMMCAST experiment, metal strand and/or bubble size around 5 mm in the

SEN would be the detection limit of the designed sensors.

4.6 Classification using Neural-Network

Integrating the visualisation into an environment such as a control system, it is

desirable to reduce the dimensionality of the information. Sensors measurement

data could be translated into flow shape categories through classification scheme.

NN has been used for such classification problem based on input data vector. This

section takes the approach for flow shape classification which takes measurement

data as input and provides prediction of the associated flow shape.

The network is built from scratch while adjusting an efficient architecture for the

given problem and dataset. The NN model is implemented in Keras 2.4.0 frame-

work [124] with TensorFlow 2.3.0 backend [125]. The performance is evaluated

using accuracy, i.e. ratio of correctly classified samples vs all available samples

[126]:

acc =

∑k−1
m=0 cm,m∑k−1

m=0

∑k−1
n=0 cm,n

(4.6)

where cm,n are the elements of the confusion matrix. The network is also trained

to minimise the loss between prediction and true labels.

The datasets are induced voltage collections of several pre-shaped flow regime

variations and used to train a machine learning model. Common two-phase

liquid-gas flow scenarios such as full-stream, stratified, bubbly, and annular are

investigated. Detailed in Table 4.3, datasets are created and labelled for five

classes, and split into training and test data. The validation set is randomly

chosen from training data during the training process.

Figure 4-5 shows the classifier architecture, which is a multi-layered dense neural

network. Keras model Sequential is constructed consisting of a hidden dense

layers which has 128 neurons, with activation function ReLU. The input data is
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Table 4.3: Flow Shape Dataset

Label Class Train Data Test Data
0 Stratified 90 10
1 Full 90 10
2 Split 90 10
3 Annular 40 10
4 Bubbly 21 10

a set (28 coil pairs combination) of MIT measurement values. Vector of “logits”

scores for each class are then converted into probability using a Softmax function.

It provides a number of outputs according to the prediction classes.

The total number of parameters (param) is 4357, all of which are trainable. Model

summary is described in Table 4.4. Loss function Sparse Categorical Crossentropy

takes a vector of logits and a “True” index and returns a scalar loss for each

example. The model is compiled using optimiser ADAptive with Momentum

(Adam), utilising “accuracy” metrics to measure the loss and the accuracy of the

model.

Table 4.4: NN Model Summary

Layer Properties Output Shape Param
input 28 x 1 (28) 0
Dense1 Activation: ReLU (128) 3712
Dense2 + Softmax (5) 645

This model will then be fitted adjusting parameters to minimise the loss. Fig-

ure 4-6 shows training and validation accuracy-loss along epochs. After 50 epochs

on the given datasets, this model produces 4% training loss and 99% training ac-

curacy; whereas validation loss is 0.06 and validation accuracy is 0.99. This is

detailed in Table 4.5.

Training and test utilize CPU with four compute cores clocked at 2.3 GHz and

4 GB of RAM. The training time for all data within complete number of epochs

lasts 16.089 s, whereas the test takes 0.5781 s. Examples of prediction on flow

shapes are depicted in Figure 4-7. Ten test data are fed into the model, and the

prediction bar chart is shown accordingly. The chart shows how confident the

model decides that the data corresponds to each class.
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Figure 4-5: Neural network classifier model.

Table 4.5: NN Performance Evaluation

Value
Train accuracy 0.9939
Train loss 0.0419
Test accuracy 1.0000
Test loss 0.0593
Epoch 50
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Figure 4-6: Training and validation accuracy-loss vs epoch.

The normalised confusion matrix is shown in Figure 4-8. The map represents

tests, where each case has ten predictions. The classifier produces a good accur-

acy where all flow-shape classes are predicted correctly to the maximum scale.

Refined with representative flow scenarios, the trained model could be deployed

for an intelligent online control system of liquid metal flow.
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(a) stratified (b) full

(c) split (d) annular

(e) bubbly

Figure 4-7: Plot prediction of flow shape
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Figure 4-8: Normalised confusion matrix.

4.7 Conclusion

The MIT sensors have been designed and tested to visualise the static liquid

metal profile inside the SEN model for steel casting. Quantitative evaluations

are provided for several flow scenarios, both outer shapes and internal recoveries.

Flow shapes are satisfactorily reconstructed with good correlations and low ima-

ging errors. However, inner structures are difficult to obtain, especially for small-

centralised inclusion or distributed bubbles. Future directions would be to use

spectroscopy methods for accurately revealing internal distributions, frame rate

improvement, and time-dependent behaviour. Neural-network classifier performs

satisfactorily in detecting common flow shapes. The proposed sensor and detec-

tion methods have the potential to be implemented for the Mini-LIMMCAST

facility in an integrated control experiment.
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Chapter 5

Structural and Functional

Characterisation in Metallic

Materials

This chapter investigates a multi-frequency MIT using both amplitude and phase

data. The image reconstruction algorithm is based on a novel spectrally correlat-

ive total variation method allowing an efficient and all in one spectral reconstruc-

tion. Additionally, this shows the rate of change in spectral images with respect

to the excitation frequencies. Using both spectral maps and their spectral deriv-

ative maps, one can derive key structural and functional information regarding

the material under test.

5.1 Introduction

Material characterisation as well as substance examination are important proced-

ures in many sectors. A comprehensive knowledge on a sample is desired before,

during, and after a process. In the case of metallic target, passive electromag-

netic properties such as conductivity and permeability convey crucial information

about its structural and functional traits. This leads to the employment of in-

spection techniques based on electromagnetic measurements.

Eddy current is widely accounted for examining a metal embodiment. Its applic-
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ation for non-destructive testing has been continuously developed and adapted

[127]. In addition to a direct defect observation, electrical conductivity is also

measured using eddy current method [128] [129]. Commonly, a coil probe is

employed to pick magnetic fields, primary from exciter and secondary from the

target’s response, then both amplitude and phase in the induced signal are ex-

tracted to give an indication of the target’s characteristics. The coil probe is

relatively more sensitive to drastic disruption in eddy current flow with high

dynamic range.

Multi-frequency technique expands the capability of the single frequency tech-

nique. The wide-band signal can profile the structural depth inside metallic

materials [130]. Therefore, it is able to accurately examine the properties since

the use of only a single lower frequency resulting in a reduced signal-to-noise ratio

in the detection. Furthermore, data at different frequencies can be correlated to

characterise the object under test. Some reports studied the spectral response of

pulsed eddy current [131], a multi-frequency technique for material characterisa-

tion [132], and frequency sweep and impedance normalisation method [133].

Measurement of field and impedance variations also facilitates conductivity ima-

ging in the materials. The inversion of inductive spectra was employed to de-

termine characteristics such as magnetic permeability, electrical conductivity, and

thickness [134]. Multiple frequency data can be reconstructed simultaneously to

exploit correlation among conductivity distributions at different frequencies [135].

Thus, different excitation frequencies enriches the information, improves the in-

verse method, and strengthens the system against experimental noises [136].

Magnetic induction spectroscopy (MIS) is a method for measuring conductivity

spectrum in non-destructive and contactless technique [137]. The term was in-

troduced in [138] which then has been followed by subsequent works to measure

the conductivity spectrum using gradiometer coil sensor [139], utilising differen-

tial methods [140], and signal improvement scheme [141]. The use of inductance

spectroscopy has been exploited for imaging both continuous conductivity pro-

file [142] and permeability distribution of a layered sample [143]. Applications

of magnetic induction spectroscopy have been found in biological and industrial

areas.
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The design of a practical MIS system was reported specifically for bioelectrical

impedance spectroscopy on yeast suspension in saline, fruits, and tissue [144].

Recent spectroscopic bioimpedance measurement was described for industrial-

scale agricultural produce [145]. In medical domain, gradiometer sensors were

designed to perform in vivo spectroscopic measurement on human hand [146];

meanwhile electromagnetic phase-shift spectroscopy was developed to diagnose

brain edema and brain hematoma [147].

On the other hand, industrial implementations vary from detection, classification,

and characterisation. Spectroscopic metal detection provides rich and distinctive

information about a target to help reducing false alarm rate in landmine detec-

tion [148], also for buried pipeline tracing in difficult terrain [149]. Additionally,

metal recycling sector requires sorting process, for which a classification of non-

ferrous metals based on MIS was developed in [150]. Particular frequency feature

was proposed for imaging a welding cross-section [151]. Internal material struc-

ture examinations using inductance spectroscopy measurement were presented in

many investigations such as in [152] [153] [154]. The demand for in-line monitor-

ing of phase transformation in the steel industry is answered by multi-frequency

electromagnetic instruments [155] [156] [157] [158].

Previous researches on MIS deal with hardware development [159], as well as

characterising ferromagnetic materials [160]. Various image reconstruction meth-

ods for soft field tomography techniques have been reviewed in [161]. Tikhonov

regularization method is commonly used in solving MIT inverse problem. This

least square solution has disadvantages such as an overly smoothed image so that

boundaries between samples become obscure. The use of an L1-norm regular-

ization, e.g. total variation (TV), can improve the MIT image quality. It is

a more suitable method for both sharp edges and high contrast. However, this

method faces difficulty in low-contrast recovery. The iterative technique has been

proposed to fix the low-contrast recovery problem [162]. It provides a sequence

of solutions which allows recovering the contrast lost. In this work, the author

aims to inspect metallic samples with functional and structural variations. The

algorithm is proposed for spectrally correlative imaging as magnetic induction

tomography spectroscopy (MITS). Spatial maps of conductive spectrum and its

derivative are presented.
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5.2 Experimental Setup

A multi-frequency data collection is proposed to cover wide range of frequency

spectrum. The experimental setup is depicted in Figure 5-1.

Figure 5-1: Measurement setup: (a) sketch of the sensor array and object in the
sensing region, switch, LCR meter, and PC connection (signal solid-line; control
dashed-line); (b) photograph of the system.

The sensors comprise eight coils arranged encircling the sensing space with dia-

meter of 50 mm. An individual sensor is off-the-shelf induction coil with self-

inductance value of 0.1 mH and 0.3 Ω intrinsic resistance. Amplitude and phase

measurements of mutual impedance between sensors (transmitting - receiving

coils) are acquired by LCR meter (frequency range 20 Hz - 300 kHz). For 8-coil

arrays, switch module is introduced to accommodate 28 independent coil-pairs

measurements. Synchronous operation between mutual coil selection (switch) and

current-source with potential-sense (LCR) is controlled by instrument program-

ming interface on PC. It takes approximately 10 minutes to collect a complete

cycle of measurement.

Background measurement is taken for free space (air) condition in the sensing

region as a reference. The amplitude spectrum is formed as normalised mutual

impedance of an object (Z) against free space (Z0); whereas phase spectrum is

the difference between measured phase in the presence of an object (θ) and that

of free space (θ0), shown in Figure 5-2, Figure 5-3 and Figure 5-4. Measurements

from nearby coil pairs have relatively higher values than those from far pairs.

The coil numbering can be referred from Figure 5-1.
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Figure 5-2: Free space background measurement of amplitude (top) and phase
(bottom) for 28 coil-pair combinations, with zoomed view at low and high fre-
quencies for both graphs.

Figure 5-3: Amplitude spectrum of a test (GaInSn with diameter 1 inch placed
at the centre) sample plotted against background.

78



Figure 5-4: Phase spectrum of a test sample (GaInSn with diameter 1 inch
placed at the centre) plotted against background.

For simplicity, norm values of 28 measurements are presented to show spectral

plots of the upcoming investigated cases. Fundamental plots are given for several

cases: conductivity, size, and structure variations.

Figure 5-5 shows spectral plot for different metallic samples whose conductivity

are varied. Each sample is 0.25 inch in diameter and placed at the centre (Position

can be referred from Figure 5-1). From the highest to the lowest are copper (58.4

MS/m), aluminum (26.3 MS/m), brass (16.1 MS/m), and Galinstan (3.2 MS/m).

Left vertical axis is normalised amplitude for solid-line plot; while phase difference

for dashed-line plot is on the right axis. The inclinations (for amplitude) and

peaks (for phase) are distributed following the respective conductivity values.

Figure 5-6 shows spectral plot of aluminum rods with different diameter (small

= 0.25 inch, big = 0.5 inch). Both amplitude and phase curves have larger scales

for a larger object’s size.
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Figure 5-5: Spectral plot for metallic samples (conductivity variations). Solid
line for amplitude ratio (left vertical-axis); dashed line for phase difference (right
vertical-axis).

Figure 5-6: Spectral plot for size variations. Solid line for amplitude ratio (left
vertical-axis); dashed line for phase difference (right vertical-axis).

Figure 5-7 shows spectral plot of aluminum samples with different structures:

pipe (hollow cylinder with outer diameter 0.5 inch and inner diameter 0.4 inch),

pipe (as previous) with 0.25 inch aluminum rod inside, and solid aluminum rod

0.5 inch. There are no significant differences in amplitude curves, whereas in
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Figure 5-7: Spectral plot for metallic structure. Solid line for amplitude ratio
(left vertical-axis); dashed line for phase difference (right vertical-axis).

phase curves, peaks’ signatures reveal distinct fashions according to the objects’

structures. They might be caused by interaction between fields resulting from

eddy current in the pipe and fields from eddy current in the rod.

Observing the aforementioned cases, spectral characteristics can be further treat-

ed into frequency derivative to classify metallic materials. These are shown in the

following Figures 5-8–5-10. There ndata is ∥(Z−Z0)/Z0∥ for amplitude data and

∥θ − θ0∥ for phase data. The derivative is used to reveal the frequency location

where the data reach its extrema. This frequency location will be treated as

spectral signature of object under test.

Figure 5-8: Spectral derivative for metallic samples with conductivity variations
(left: amplitude, right: phase).
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Figure 5-9: Spectral derivative for size variations (left: amplitude, right: phase).

Figure 5-10: Spectral derivative for metallic structures (left: amplitude, right:
phase).

The spectral data at every frequency are reconstructed into images using an

algorithm described in Subsection 3.2.3. This produces three-dimensional spec-

tral image (2D spatial image plus 1D frequency axis). In order to simplify the

presentation, 2D image will be evaluated along the diameter across the centre

(line position Y=0 to Y=50 in Figure 5-1). Therefore, it turns into 1D image

values (as vertical axis) and 1D frequency values (as horizontal axis).

5.3 Results and Analysis

Images were reconstructed for different circumstances of metallic materials: a

single conductive sample, different samples at different positions, and noncon-

ductive inclusion in a conductive body. For each condition, a contrast is observed

in both measurement data and its spectral derivative. Spatial reconstruction

along the frequency is also given. Due to either measurement setup or ambient
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disturbance, the noise will be present in the data (especially at low frequency).

Therefore, ’smooth’ function in MATLAB is applied to reduce the noise within

a data set.

5.3.1 Single Metal Sample

Figures 5-11, 5-12, 5-13 and 5-14 show the spectral profiles and the derivative

of spectral profile with respect to the frequency for various metal samples. All

samples are of the same size and located at the centre of the imaging area. The

’position’ axis can be referred to pixel position Y=0 to Y=50 in Figure 5-1.

These are the images using phase data from mutual inductance. The maxim

phase profile coincides with when the derivative profile goes down to 0. The

frequency for which the phase profile is its maximum and the derivative tends to

0 is an indicator of the electrical conductivity of the test sample.

Figure 5-11: Spectral profile and its derivative (data and reconstructed image
values) for copper (σ = 58.4 MS/m) rod 0.25 inch. Images on top are produced
by reconstructing raw data plotted below.
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Figure 5-12: Spectral profile and its derivative (data and reconstructed image
values) for aluminum (σ = 26.3 MS/m) rod 0.25 inch. Images on top are produced
by reconstructing raw data plotted below.

Figure 5-13: Spectral profile and its derivative (data and reconstructed image
values) for brass (σ = 16.1 MS/m) rod 0.25 inch. Images on top are produced
by reconstructing raw data plotted below.
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Figure 5-14: Spectral profile and its derivative (data and reconstructed image
values) for liquid GaInSn (σ = 3.2 MS/m) in 0.25 inch tube. Images on top are
produced by reconstructing raw data plotted below.

Norm of measurement data (ndata) and spectral derivative (dndata/df), with the

respective spatial reconstruction from data (image) and spectral derivative (df)

are given. For reconstruction figures (top), vertical axis is spatial cross-section

(pixelated) where position=0 is the location of sensor coil 1; and position=50 is

that of sensor coil 5. The horizontal axis represents frequency points associated

with the horizontal log(freq) axis of the bottom figures.

It can be seen for different samples with different conductivity levels, there are

value shifts in phase spectrums. The signatures’ locations are marked in spectral

derivative data/images, where zero values indicate the extremes of the norm data

or the respective reconstructed images.

5.3.2 Different Samples at Different Locations

The distribution of different samples at different locations is evaluated. Figure 5-

15a shows a more conductive sample (copper) at position=10 and less conductive

sample (brass) at position=40. In the reconstructed image, there are two distinct

regions depicting the objects, one starts at lower frequency (for higher conduct-
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ive), whereas the other (for lower conductive) lies at higher frequency. In the

spectral derivative there is pronounce line cutting-through ’position’ that shows

the location of both samples, initiating from a more conductive sample at bottom

position, then it turns to a less conductive sample at top position.

Figure 5-15b shows three samples (two at both edges, one at centre) the low-

est conductive sample (brass) at position=10, moderate conductive sample (alu-

minum) at position=25, and the highest conductive sample (copper) at posi-

tion=40. In the reconstructed image, there should be three different regions rep-

resenting the objects. However, due to non-uniformity in the sensitivity (highest

at near sensors, lower at central region) and further affected by reguralisation,

the object in the middle is obscure. For instance, regularisation controls the

sharpness of the image, so that with improper parameters the resulting image

might expand or shrink beyond the actual object’s boundary. Still there is an in-

clined line in the spectral derivative that shows the gradation from low conductive

(bottom position), mid-range (centre), to high conductive (top position).

5.3.3 Non-Conductive Inclusion in Conductive Liquid

Particular case likely to be found in the pratical applications is the presence of

non-conductive substance in a conductive body. An eutectic GaInSn alloy (σ

= 3.2 MS/m) was prepared in a 1 inch diameter tube. A wood cube (s = 1

cm) is immersed on the side of the tube (position=10 relative in sensing region).

This makes up a conductive body with inner void. Figure 5-16 shows spectral

reconstruction and its derivative. It is obvious in the image, there is low value

centering around 40 kHz which indicates the void. This corresponds to a zero-

valued line occurs between high-valued contours in the spectral derivative.

Three plastic rods (diameter = 0.25 inch) are inserted in the liquid metal tube,

located at centre and both edges (position 10, 25, and 40) to construct multiple

structural void in a conductive body. In Figure 5-17, spectral image reveals an

elongated low-valued region from spatial position 10 to 40. This should indicates

the three inclusions, yet the sensitivity and regularisation effect fail to separate

those voids. Accordingly, in the spectral derivative, there is a distinct zero-valued

line at around 40 kHz cutting along the spatial position.

86



Figure 5-15: Spectral profile and its derivative (data and reconstructed image
values) for (a) Copper (σ = 58.4 MS/m) rod 0.25 inch at pos=10 and brass (σ =
16.1 MS/m) rod 0.25 inch at pos=40; (b) Brass (σ = 16.1 MS/m) rod 0.25 inch
at pos=10, aluminum (σ = 26.3 MS/m) rod 0.25 inch at pos=25, and copper
(σ = 58.4 MS/m) rod 0.25 inch at pos=40. Images on top are produced by
reconstructing raw data plotted below.
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Figure 5-16: Spectral profile and its derivative (data and reconstructed image
values) for wood cube 1 cm3 at pos=10 in liquid GaInSn 35 mL 1 inch tube.
Images on top are produced by reconstructing raw data plotted below.

Figure 5-17: Spectral profile and its derivative (data and reconstructed image
values) for plastic rods 0.25 inch at pos=10, pos=25, pos=40 in liquid GaInSn 35
mL 1 inch tube. Images on top are produced by reconstructing raw data plotted
below.
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5.3.4 Spectral Derivative for Structural and Functional

Classification

Taking curve characteristics in Section 5.2, spectral gradient is applied to cor-

relate metallic object circumstances with the respective image spectrums. The

following Figures 5-18-–5-20 show spectral gradient of amplitude (Z) and phase

(θ) reconstruction.

(a)

(b)

Figure 5-18: Spectral gradient impedance images df of (a) amplitude Z and (b)
phase θ for metallic samples with conductivity variations. Bottom to top are
GaInSn, brass, aluminum and copper.
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Figure 5-18 illustrates spectral derivative for amplitude and phase reconstructions

from single sample with different conductivity levels (GaInSn, brass, aluminum,

and copper) at fixed position (Y=25). Both amplitude and phase can be in-

dication of different conductivity following particular location along horizontal

(frequency) axis. Peak values are the indicator on amplitude spectrum; whereas

zero-valued lines across spatial (vertical) axis are the marker on phase spectrum.

(a)

(b)

Figure 5-19: Spectral gradient impedance images df of (a) amplitude Z and (b)
phase θ for metallic samples with size variations. Bottom to top are aluminum d
= 0.25 inch, and aluminum d = 0.5 inch
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Spectral gradient for aluminum rod with different diameter (small = 0.25 inch,

big = 0.5 inch) at the centre region is plotted in Figure 5-19. While it is not

straightforward from locus spectrum, the size variations can be inferred from the

area of high-valued pixels. Larger area is associated with a larger sample and

vice versa.

(a)

(b)

Figure 5-20: Spectral gradient impedance images df of (a) amplitude Z and
(b) phase θ for metallic samples with structure variations. Bottom to top are
aluminum pipe id = 0.4 inch od = 0.5 inch, aluminum pipe id = 0.4 inch od =
0.5 inch with aluminum rod d = 0.25 inside, and aluminum rod d = 0.5 inch

Three different structures are arranged from the same material (aluminum): pipe
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(hollow cylinder with outer diameter 0.5 inch and inner diameter 0.4 inch), pipe

with 0.25 inch solid rod inside, and solid rod 0.5 inch. In the experiment, they

are fixed at the centre (Y=25) of sensing region. Figure 5-20 shows the respective

gradient of amplitude and phase spectrum.

5.3.5 Complex Plot of Normalised Impedance from Re-

construction

Analogous to Cole-Cole model [163] and dielectric spectroscopy [164], complex

plots are also generated using reconstruction values to represent the behaviour.

Region (group of pixels) making up the object is chosen for every investigated

case where real and imaginary parts of the image are taken into account. Mean

of pixel values in the region produces the following complex plots.

Real and imaginary parts of measurement data are collected for a number of

frequencies. The data are then reconstructed producing real and imaginary im-

ages. Since object’s location in the sensing space (X, Y ) is known, object’s region

in the resulting image (50×50 pixels) can be determined. Pixels values of that

region are then taken for analysis. Real and imaginary image values can be

formed as a complex plot. Due to the measurement data are relative against

reference/background, the complex values represent normalised impedance.

Figure 5-21a illustrates how the plot is configured. These reference values are

taken from measuring coils in COMSOL simulation (see setup in Section 3.1)

using objects with different conductivity. The graph indicates different levels for

different conductivity. Low-frequency point is annotated and usually lies near or

about the origin (0, 0); whereas high-frequency point lies on the second quadrant.

It is expected that complex plots for the studied cases follow similar trend.
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(a)

(b)

Figure 5-21: Complex plot of normalised impedance for metallic samples with
conductivity variations: (a) simulation reference (b) experiment

It can be seen from Figure 5-21b that metallic samples with different conductivity

levels have similar shapes with different foci and vertices in the impedance plane.

Here one can allocate the horizontal axis J for imaginary value; the vertical axis

I for real value. The plot starts from lower frequency near the origin (0,0) and

curves to high frequency at the other end.
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Figure 5-22: Complex plot of normalised impedance for metallic structures.

Figure 5-22 represents structural circumstances of the aluminum body. The com-

plex plots have the same shapes with increasing vertices. Solid structure has the

lowest vertex and the nearest focal point relative to the origin; while pipe struc-

ture has the highest vertex. The vertex level of pipe with rod is between that of

solid and pipe, but it has the farthest focal point.

Figure 5-23: Complex plot of normalised impedance for size variations.

As for size variations (aluminum with diameter of: small = 0.25 inch, big = 0.5
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inch), Figure 5-23 shows an obvious difference on the curves’ size.

Figure 5-24: (a) Complex plot of normalised impedance for inclusions; (b) fo-
cusing on 1 void but various background data

The complex plot for conductive liquid GaInSn with void distribution is depicted

in Figure 5-24a. It is shown that although the curves’ shape are similar due to

the embodiment of liquid metal, the level and inclination are varied for a single

void and three distributed voids respectively. This corresponds to the setup in

Subsection 5.3.3. Focusing on 1 void a wooden cube inside of liquid metal, one can

depict the cole-cole plot in three set of data, one pure metal from air background,

one wood and liquid metal from air background, and finally liquid metal when

the reference data is liquid metal including wooden block. Figure 5-24b shows

various plots in these three situations.

Figure 5-25: Complex plot of normalised impedance for different samples at
different locations
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The circumstances in Subsection 5.3.2 are plotted in Figure 5-25, taking the

position of the sample in sensing region and evaluating their values in the confined

area. For two different samples (5-25a), the plot shows each curves that follow

the trend in Figure 5-21 (copper and brass). However for three samples (5-25b),

the curves are tilted to the side, still each focal and vertex are consistent with

the trend for samples with different conductivity levels.

5.4 Discussion

This chapter shows the introduction to a spectrally correlative MITS using both

amplitude and phase data. Image reconstruction is plotted along a wide band-

width with sufficient resolution, and its frequency derivative is exposed. Samples

with conductivity, size, location, and internal structure variations have been in-

vestigated.

Using experimental apparatus based on LCR meter, high-frequency measurement

is sufficiently accurate. However, noisy data occur at lower frequency due to the

setup imperfection. This causes non-smooth complex plot in the beginning of

traces. Nevertheless, by considering overall traces from low-to-high frequency,

the result still can identify the object’s circumstance. The data can be used

to identify metal types and sizes given that a reference condition or object is

available to be measured.

When a lower conductive sample such as GaInSn is mixed with a non-conductive

sample, the signature frequency is pushed to a bit higher. Therefore, if lower con-

ductive metals are of interest, the measurement must go to a higher frequency

range to capture that effect. As opposed to more conductive contrast (i.e. alu-

minum structure variations), the result shows that is not the case as aluminum

is much more conductive relative to the inner structure (air).

Although the author used a TV (in fact a spectral TV), which normally gives

a sharp and clear image, in this iterative TV process the author did not aim

for a very sharp (near binary) image. The reason for that is if one gets a very

sharp boundary, one starts losing quantitative consistency with measured data.

So hence the TV is a good choice that gives a good balance between the image

quantitative information and shapes. Image quantitative information is key in
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this study as they form the basis of the complex plots. Having said that, for

future study more work needs to be done on hyperparameter tuning as when

dealing with complex data and images. Also for this wide frequency range, it is

challenging to assign a parameter set that works very well in all these ranges.

In this study, one had to maintain these parameters uniform so that one could

produce reliable quantitative values. The same can be said for the measured data,

future studies will need to evaluate the noise performance for different frequencies,

which may vary for real and imaginary parts.

5.5 Conclusion

The work proposes the spatio-spectral method to characterise a metallic object

in terms of electromagnetic and structural properties. The algorithm is explained

and supporting experimental works are described. The author has also presented

complex plots from reconstruction which comprehensively indicate functional and

structural behaviors in the metallic materials. This research is contributive in

the context of eddy current, imaging, and induction spectroscopy of materials as

significant information for characterisation techniques.
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Chapter 6

Conductivity and Temperature

Sensing

This chapter presents a perspective in evaluating electromagnetic tomography

reconstruction through a spectral eddy current imaging arrangement. Embark-

ing from an established analytical basis, the spectroscopic relation of a metallic

conductive body to its physical properties is revealed via multi-frequency mu-

tual impedance measurement. Characteristics are evident, from either modelling

or experiment, on certain frequency ranges that discriminate the object’s cir-

cumstances. Both the amplitude ratio and phase-contrast image spectrum show

information on the conductivity and structure of a target considered pivotal for

industrial applications. Two test cases will be investigated: liquid metal struc-

ture determination, and contactless temperature evaluation of a remote/hidden

medium/object.

6.1 Introduction

Industrial sectors demand decisive information for supervision, quality assess-

ment, as well as regulating a process. Inductive measurement has several desir-

able advantages, such as remote sensing technique, non-intrusive, sturdy opera-

tion, etc. In addition, multiple frequencies data contain important characteristics

of the measurand, particularly a conductive body. Distinctive patterns are known
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for conductivity level and target’s size [165], [166]. As a consequence, this instance

has inspired various implementations.

The spectrum of electromagnetic induction was applied for identification of bur-

ied conductive and/or permeable landmines independent on the depth or ori-

entation. Therefore, the identification is only based on spectral shapes where

the object’s signature can be obtained [167], [168]. The recent implementation

of magnetic spectroscopy for mine detection was also proposed in [169]. Fur-

thermore, the method was referred for classifying non-ferrous metal waste to be

recovered based on its purity [150]. On the other hand, inversion of induction

spectroscopy measurement into conductivity distribution image form was among

interesting research. The work disclosed in [142] offers an ability to extract depth

and internal profile of the target.

For liquid metal flow, multi-frequency inductive measurement could provide an

identification necessary to determine non-conductive distribution embedded in

conductive steel jet. The presence of gas bubbles (deliberately injected to pre-

vent clogging and remove impurities) disrupts the induced eddy current more

profoundly in higher frequency. The test reported in [16] correlated a frequency

crossover point that discriminates between annular and bubbly liquid metal flow.

This peculiar feature has not been exploited further to distinguish different flow

regimes.

Correspondingly, the observation of temperature profile of hot steel inside the bil-

let has been attempted. Internal map of electrical conductivity which is related

to the measurement of the solid, mushy and liquid layers was reported [92]. The

study synchronises the MIT and the thermal map from the actual process para-

meters. This paves prospective research on temperature reconstruction based

on conductivity detection through magnetic induction. Moreover, the possibil-

ity will enhance the development and application of temperature measurement

technologies [170].

The response of conductive objects toward magnetic field excitation over different

frequencies is picked up as induction spectroscopy data. This work makes use of

those facts to propose tomographic images based on electromagnetic induction

and illustrate them in spectroscopic fashion exposing electrical properties and
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physical circumstances of a target for further interpretation. Spectral imaging

can provide useful features to leverage more advance practices.

6.2 Method

The ratio of absolute mutual impedance (presence of conductive object against

air background) plots a sigmoid shape along the frequency to converge at an

asymptote; whereas phase change curves down to an extreme point before boun-

cing back towards zero as frequency increases. The straightforward explanation is

associated with skin-depth phenomena, that is the eddy currents tend to buoy to-

wards the surface and ultimately stick there at a higher frequency. Consequently,

the response field is invariant to the object’s conductivity (penetration depth is

negligible) and staying in-phase with the excitation field.

Figure 6-1: Behaviour of conductive body as function of induced voltage and
frequency. Amplitude (—) and phase (- -); conductivity σ1 (blue) = 0.1σ2 (red)
= 0.05σ3 (green).

Modelling in COMSOL is utilised to solve electromagnetic field problem of coil

combinations [171], and simulated to preliminarily confirm the aforementioned.

A pair of coils (solenoid) are modelled as the exciter-detector arranged opposite

(axial distance 15 mm) to each other. A cylinder sample (diameter 7.5 mm) is

placed in between coils, in such a way that the cylinder’s axis is perpendicular to
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the coils’ axis. The exciter coil is injected by a unit ac current in frequency sweep

mode (100 Hz – 100 kHz), and the induced voltage at the detector coil is recorded

for each frequency. The reference voltage (V0) is the induced voltage when the

measurement is taken without the conductive sample (air background); whereas

V is induced with the presence of the sample. Figure 6-1 shows amplitude (left y-

axis, solid line plot) and phase (right y-axis, dashed line plot) of induced voltage

when the cylinder object’s conductivity is varied (σ1 = 3 MS/s, σ2 = 30 MS/s,

and σ3 = 60 MS/s) relative to air (σ0 = 0).

Figure 6-2: Mutual impedance measurement scheme.

The measurement scheme is depicted in Figure 6-2 [172]. Pair of transmitter and

receiver coils (2200R, Murata Power Solutions, L = 220 µH) are arranged to face

each other (separating distance of 20 mm, with effective sensing space of 15 mm)

in which an object will be placed midway between them. The transmitting coil

is excited by a current source to generate a magnetic field that will be picked

up by the receiving coil. The induced voltage at terminals of receiving coil can

be sensed as a function of the primary field from the transmitter as well as a

secondary field depends on any perturbation exists in the sensing area. Eddy

currents will occur on conductive samples from which some information about

the object in question are carried by the secondary field relative to the primary

field.

In the experiments, the transmitter coil is injected with 10 mA source in fre-

quency sweep procedure; while the receiver coil is being sensed by measuring

bridge (E4980AL Precision LCR Meter, Keysight Technologies). The four-probe

method is used to directly measure a mutual impedance between coils [173]. Both

amplitude and phase are acquired which represent resistive and inductive com-
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ponents. The effect of parasitic capacitance is suppressed by prior calibration

and a commonly grounded screen placed in the outer perimeter of the sensors.

Figure 6-3: Multi-channels setup for tomographic projection system.

The two-coil system in Figure 6-2 is extended into multi-channel measurements

setup (Figure 6-3) via computer-controlled data acquisition (DAQ970A Data Ac-

quisition System, Keysight Technologies) and multiplexer (DAQM901A 20 Chan-

nel Multiplexer Module, Keysight Technologies) providing a projection system

for the tomographic purpose. The setup is capable of scanning up to 28 –the

combination of 8 coils taken 2 (a pair) at a time without repetition– independent

rotational measurements; each of which acquires impedance values over frequency

scope from 20 Hz to 300 kHz.

The direct induction effect is eliminated by taking amplitude ratio and phase dif-

ference of measurement with an object to a respective free-space measurement.
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Figure 6-4: Reference measurement of amplitude (top) and phase (bottom) for
28 Tx-Rx pairs with zoomed view at low and high frequencies for both graphs.

Figure 6-4 depicts the reference measurements for seven basic coil pairings. Meas-

urements from nearby Tx-Rx pairs (see Figure 6-3) have relatively higher values

than those from far pairs.

An example of MIT image is shown in Figure 6-5. The spatial region is divided

into 50x50 pixel with effective circular area of 1976 pixels. Experimentally seen in

Figure 6-3, five metal samples are placed in the sensing space (dsample = 6.25 mm;

Dspace = 60 mm), four of them (grey) have lower conductivity (σ = 16 MS/m)

than an object in the middle (black, σ = 58 MS/m). Positions refer to the sensing

space (Figure 6-3) which is mapped into pixel image shown in Figure 6-5. Pixel

values are unitless normalised values representing conductivity level qualitatively.

The algorithm described in Subsection 3.2.1 is used here. As expected in soft-

field tomography, region near the sensors poses a higher sensitivity compared to

central region, and reflected on the resulting image.

Single-frequency measurement at 10 kHz (averaging ten datasets) is taken. This

example is intended to show an overview of spatial (cross-section) image. In

the subsequent spectral imaging, where reconstruction is being done for each

frequency separately, the pixel values from Xposition = 1 to Xposition = 50, across
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Figure 6-5: Spatial arrangement of objects in the sensing region; and example of
MIT image from experiment with five metal rods.

Yposition = 25 plane are evaluated (indicated by dashed red-line). This constitutes

spatial ’position’ axis (vertical) against frequency axis (horizontal) in the ’surface

plot’ of the spectrum.

6.3 Spectroscopy

6.3.1 Mutual Impedance on Conductivity Level

Mutual impedance spectrum against air background measured from 20 Hz to 300

kHz (200 data points in logarithmic fashion) is shown in Figure 6-6. Different

samples with different conductivity produce sigmoid pattern where the inclination

shifts to the left as conductivity increases.

Phase spectrum against air background is similarly swept in the frequency range

(Figure 6-7). Different samples with different conductivity produce bell pattern

where the extreme valley shifts to the left as conductivity increases.

Both plots are produced from opposite coil measurement (setup Figure 6-2) and

consistent with modelling result (Figure 6-1), taking into account a variation of

conductivity values listed in Table 6.1.

Conductive samples are commercially available and comply with their standards
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Figure 6-6: Mutual impedance spectrum conductive samples 0.25 inch placed at
the centre of the sensing space.

Figure 6-7: Phase spectrum conductive samples 0.25 inch placed at the centre of
the sensing space.
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Table 6.1: Conductivity of Tested Objects

Sample σ (S/m)
Liquid GaInSn 0.32 × 107

Brass 1.61 × 107

Aluminum 2.63 × 107

Copper 5.84 × 107

and specifications, i.e. GaInSn eutectic alloy [114], brass rod (BS2874/CZ121M

(1986); BS EN 12164/CW614N), aluminum (Al) rod (BS1474 HE30 TF (1987);

BSEN 754-5 608 2T6), and copper (Cu) rod (BS2874/C101 (1986); BS EN 12164

CW 004A).

6.3.2 Mutual Impedance on Conductive Structure

The similar setup in Subsection 6.3.1 is implemented for three different conductive

structures. Plastic (PLA) containers are prepared to hold liquid metal GaInSn in

full, annular (50% area is hollowed in the centre), and bubbly (three voids each

occupies 25% area distributed inline axially).

Figure 6-8: Mutual impedance spectrum conductive structures.

Figure 6-8 shows that the same material with different structures produces a
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sigmoid pattern. The curves for full and annular condition are close to each other

and having intersection point at a certain frequency. Meanwhile, for bubbly case,

the tendency in the curve is as though there was a decrease in conductivity, and

the asymptote has a higher value.

Figure 6-9: Phase spectrum conductive structures.

Phase spectrum is shown in Figure 6-9. Same material with different structures

produces a bell pattern. The extreme valleys shift as though there was a decrease

in conductivity level. The position of the valleys in y-axis also changes, while

annular structure goes lower; bubbly structure goes higher.

6.3.3 Spectral Imaging of Mutual Impedance

Mutual impedance and phase spectrum measurements are collected for seven

coil-pairs in a circular array consisting of eight coils. The coil array is arranged

enclosing the object in the sensing area (see Figure 6-3). For a cylindrical ob-

ject, full tomographic sensing is obtained by virtually rotating the coil array 45o

counter-clockwise in each step. Therefore, a sufficient number of independent

measurements are acquired to be reconstructed as an image for every frequency

data.
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The images are reconstructed using the technique (Tikhonov) described previ-

ously in Chapter 3. Simply, single-step reconstruction with neighbouring matrix

and regularisation parameter of order 10−12 are used in this work. Resulting

images are then piled to construct a whole spectral image. In this way, the ho-

rizontal direction of the image represents frequency; whereas vertical direction

is spatial location. An example of aluminum rod half-inch of diameter produces

mutual impedance and phase spectrum as shown in Figure 6-10 and Figure 6-11

respectively. Surface plot (top) in the figures is the spectral image, while semi-

logarithmic plot (bottom part) is the associated measurement data. Each line

plots measurement between transmitter-receiver coils paired to a certain degree.

Both surface and semi-log plots share the same frequency axis.

The positions refer to scheme in Figure 6-3. Part (a) of the figures are based

on COMSOL simulation (see setup in Section 3.1), and part (b) are based on

experiment. There the trend is similar. Although in the simulation, received

voltages from equally spaced coil pairs (e.g. 45o and 315o) are exactly match;

whereas in the experiments they have slightly different values. Furthermore, the

frequency location is different. This might be caused by the difference between

conductivity value set in simulation and actual conductivity of the object in the

experiment.

Mutual impedance for seven coil-pairs gives familiar sigmoid patterns where in-

clinations lie on certain frequency indicating conductivity characteristics found

in measurement (see Subsection 6.3.1). The amplitude spectral reconstruction

shows image patterns (centre area at pos=25 where the object is placed) start-

ing from a high-contrast value (at low frequency) and finishing with low-contrast

value (at high frequency).

Similarly, phase change for seven coil-pairs produces bell shapes where extrema

occur on specific frequency from which conductivity level can be inferred. The

phase spectral image depicts high-contrast value (at the beginning), then down

to low-contrast value (midway), and end-up back with high-contrast value. In

other words, there is a gradient change of images along with the frequencies.

Note that all colormap scales/values are qualitative resulting from the inverse

calculation (affected by parameters and Jacobian), hence the interpretation of

which is another subject for the future work.
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(a) Simulation

(b) Experiment

Figure 6-10: Mutual impedance spectrum aluminum rod 0.5 inch. Top: spectral
image at spatial position against frequency. bottom: measurement plot. Both
share common horizontal frequency axis.
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(a) Simulation

(b) Experiment

Figure 6-11: Phase spectrum aluminum rod 0.5 inch. Top: spectral image
at spatial position against frequency. Bottom: measurement plot. Both share
common horizontal frequency axis.
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In order to obviously show the fingerprints of each object’s circumstances, mutual

impedance spectrums are compiled in a single plot. They are arranged as follows:

four individual images of four different samples are taken, with the sample with

the highest conductivity at the top and the sample with the lowest conductivity

at the bottom (σCu > σAl > σBrass > σGaInSn). In the measurement, the object

is located at the central location (pos = 25) in the sensing space. All plots share

the same frequency (horizontal) axis. Figure 6-12 and Figure 6-13 show shifting

colour contrast to lower frequency as conductivity level increases.
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(a) Simulation

(b) Experiment

Figure 6-12: Mutual impedance spectrum imaging conductivity. Individual
samples (d = 0.25 inch) are exposed. Each plot (top-to-bottom): Cu (σ = 58.4
MS/m), Al (σ = 26.3 MS/m), Brass (σ = 16.1 MS/m), GaInSn (σ = 3.2 MS/m).
All plots share common horizontal frequency axis.
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(a) Simulation

(b) Experiment

Figure 6-13: Phase spectrum imaging conductivity. Individual samples (d =
0.25 inch) are exposed. Each plot (top-to-bottom): Cu (σ = 58.4 MS/m), Al
(σ = 26.3 MS/m), Brass (σ = 16.1 MS/m), GaInSn (σ = 3.2 MS/m). All plots
share common horizontal frequency axis.
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6.4 Application

The aforementioned techniques are applied in the following two scenarios. Sub-

section 6.4.1 explains a case of liquid metal inclusion which is of interest in the

steel casting process. For the conventional method, field distribution in the case

of complex structure is less definite [174]. Another describes contactless tem-

perature measurement utilising the conductive body as an agent through which

the magnetic induction method is capable of sensing the temperature change and

mapping its distribution according to conductivity variation. Electromagnetic

methods for thermography are well-known such as infrared and magnetic reson-

ance [175]. While an electrical resistance device and capacitance thermometry

offer invasive technique, the inductive method provides a non-contact solution.

6.4.1 Inclusion in Liquid Metal

Experiments are conducted using liquid metal (GaInSn) as a conductive sample

that is detectable by multi-frequency impedance and phase measurements. Fig-

ure 6-14 shows the measurement setup. The coil arrays are made from eight

air-cored solenoids (8 mm height, 25 mm outer diameter, 10 mm inner diameter,

23 AWG wire, 100 turns) encircling 60 mm diameter of the sensing area. A

grounded aluminum sheet (150 mm height, 250 mm diameter, 1 mm thick) is

placed around the perimeter. As a result, the ambient noise, especially in lower

frequency is reduced.

Figure 6-14: Experiment setup for liquid metal inclusion.
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Firstly, impedance and phase are measured for 1 inch of diameter (D) plastic tube

fully-filled with the liquid metal and plotted against air background. The plot

is then considered as the reference for subsequent measurements where a non-

conductive inclusion is introduced in the liquid metal body. It is assumed that

the insertion of non-conductive material will disrupt the eddy current distribution

which occurs freely on the full liquid metal circumstance. Therefore, the overall

conductivity of the body is expected to change and a shift should be apparent

around extreme points in the mutual impedance and phase graphs.

Figure 6-15: Mutual impedance liquid metal inclusion. Left: impedance plot (—)
on left axis; phase plot (- -) on right axis. Right: inclusion true distribution (top)
and reconstructed image (bottom).

A squared wood (balsa) with size of 9.5 mm (S) is immersed in the test. It can be

seen from graph in Figure 6-15 (left) that an inclusion will shift the plot. Since

the inclusion’s precise location is unknown due to opacity of the liquid metal,

all mutual combination between 8-coil arrays are measured, and norm values

are taken. Note that this method does not necessarily require low-frequency

measurement to penetrate conductive samples in order to detect an inclusion

inside them. As a result, the frequency region can be contained into a range of

interests based on the fundamental plot for liquid metal GaInSn.

Cross-section true and constructed images are shown in Figure 6-15 (right). The

colour bar represents unitless normalised values representing conductivity level

relatively. Image reconstruction produces good consistency along the spectrum
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of interest. Therefore, mean values are applied here to illustrate inclusion’s im-

age (non-conductive) and its location (black line border) inside the liquid metal.

Quantitative analysis in spatial imaging is used to evaluate the liquid metal correl-

ation coefficient (0.63) and area error of 0.16 which are in an acceptable agreement

with the true distribution.

6.4.2 Temperature Sensing

Certain phenomena are dependent on temperature, hence exploitable for instru-

mentation. Making use of the renowned physical properties that is the resistivity

of a material is a function of its temperature, multi-frequency mutual impedance

and phase can also be employed for indirectly sensing the change in the temper-

ature of a medium surrounding a conductive body. This is applicable when the

conductive body and the medium exchange heat, unisolated towards one another.

Figure 6-16: Experiment setup for temperature sensing.

The experiment setup is shown in Figure 6-16, with the same coil array and sens-

ing space as described in Subsection 6.4.1. A metal sample (Al rod) is prepared in

a container filled with water, in the centre of coils. Mutual impedance and phase

between coil combinations are measured. Water temperature is varied from cold

to hot condition and measurements are taken in cycles, keeping the object intact

in the sensing region. The temperature is tested using a thermocouple (CHY

500 K) before and after each mutual impedance measurements cycle in order to

avoid the influence of magnetic fields on the thermocouple probe and vice versa.

It takes approximately 10 minutes to collect a complete cycle of measurement.
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Multi-frequency graphs are plotted (norm, against air background) showing dis-

tinct shifts for different temperatures in Figure 6-17 (left). Note that the plot

composes from two setups, i.e. cold (up to 20 oC) and hot (from 25 oC). Having

different background measurements and the relative position of the metal sample

in the water medium, a slight change in trend is anticipated.

Figure 6-17: Mutual impedance temperature sensing. Left: impedance plot (—)
on left axis; phase plot (- -) on right axis. Right: reconstruction value against
temperature.

Both impedance and phase plots indicate the change of the sample’s conductivity

confirming the change of water’s temperature. The frequency range where ex-

treme values and pronounce shifts lie can be taken as measurement reference for

more complex detection scheme. Operating norm on 28 measurement values can

produce resulting value greater than 1. It should be noted that experiments with

water-only were conducted beforehand with negligible values compared with the

presence of a metal object.

The data are then converted into imaging domain for assessing the correlation

between reconstruction value and temperature change, giving the trend shown in

Figure 6-17 (right). This can be derived as:

y = p1x
2 + p2x + p3 (6.1)

where the quadratic fit coefficients are: p1 = -0.072838, p2 = 7.6959, p3 = 3040.8;

whereas norm of residuals = 72.736. The reconstruction values are calculated

from the mean of unique numbers across the image sections. Equation (6.1) is

also affected by regularisation parameters of the image reconstruction, thus can
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be used as calibration function.

A complete two-dimensional tomographic heat mapping is attempted through

an experiment using the similar metal samples in different locations with some

temperature variations between them. The setup in Figure 6-18 (left) shows two

half-inch aluminum rods placed in sensing space. An object (obj-1) next to coil-1

was heated beforehand; meanwhile, the opposite obj-2 (near coil-5) is at room

temperature.

Figure 6-18: conductive objects distribution and the impedance-phase spectrum.
Left: spatial location in the sensing space [1 50]. Right: surface plot of position
(vertical axis) vs frequency (horizontal axis).

The reconstructed impedance and phase spectrum is shown in Figure 6-18 (right).

Three decades of frequency are swept (in log) for respective measurements and

put into (a shared) horizontal axis. The location in the sensing region (along the

red-line [1–50]) is allocated to the vertical axis. It can be seen that the images

become more pronounced at higher frequencies, having different colormap level

which indicates the temperature difference.

Referring to the spectral information from two conductive objects in different cir-

cumstances (position and temperature), a subsequent test is conducted keeping

track of the temperature of both objects. Once both object reach room temper-

ature, the respective measurement data are treated as reference data (in addition

to air background measurement). Phase spectrum for several conditions are given

in Figure 6-19. It depicts the distribution of conductive object in different tem-
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peratures relative to a condition at room temperature. There are 25 frequency

points between 300 Hz – 300 kHz in logarithmic space.

Figure 6-19: Spatial and spectral color map.

The arrangement of the experimental setup and its respective surface plot are

similar to that in Figure 6-18. Plots on the right-column share the same vertical

’position’ axis with those on the left-side; and all share the common horizontal

’frequency’ axis of the bottom-row plots. Position = 1 represents location near

coil-1 (where object-1 is placed having temperature of Tobj1); whereas position =

50 is location near coil-5 (where object-2 is placed having temperature of Tobj2).

There are distinct illustrations (scaled individually) of temperature change related

to conductivity change of the objects due to heating. A larger temperature dif-

ference between samples (reconstructed area) produces a wider color-scale range

respectively.

Quantitative analysis taking the mean value of reconstructed heat map along

the evaluated spectrum provides a reasonable trend in Figure 6-20. Temperature
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difference (∆T = Tobj1 − Tobj2) of 1 oC gives the value of 0.152; meanwhile at

the other end, value of 13.65 is obtained for 41 oC of difference in temperature.

The graph is derived from pixel values of temperature difference image in respect

with a reference condition. While electromagnetic tomography is mainly non-

linear relation of measurement data and reconstructed image, the image-to-image

operation can return a relatively linear fashion.

Figure 6-20: Reconstruction value vs temperature difference in heat map.

Another test case is the detection of pipe’s temperature in which a heated fluid

is contained (Figure 6-21). A copper pipe (42 mm outer diameter, 40 mm inner

diameter) is placed in the sensing region. It is filled with water whose temperature

is varied. Mutual impedance measurements are taken in cycles while monitoring

the water temperature.

Phase data along the spectrum of 100 Hz – 100 kHz are reconstructed and evalu-

ated according to water’s temperature, using room temperature state as reference.

Imaging value is correlated with thermocouple reading as shown in Figure 6-21

(right) and fitted in the following:

y = p1x + p2 (6.2)

where the linear coefficients are: p1 = -5.2561, p2 = -32.972; whereas norm of
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Figure 6-21: Experiment setup for temperature sensing in pipe.

residuals = 8.7962. For this particular situation, heating of the coil is considered

due to a small gap between the pipe’s surface and the coil array. Experiment

cycles are timely conditioned to allow stable heat distribution. In terms of im-

age reconstruction, the area near to coil has a higher sensitivity and should be

carefully evaluated. Nevertheless, (6.2) provides an acceptable trend.

The quadratic polynomial temperature fit of Figure 6-17 is to be used for relat-

ively wide temperature measurement range (in this case 0–80 oC) inside an object

(assumed due to some physical effects in the aluminum sample); while the linear

fit would be properly applied for temperature distribution (heat mapping) or a

relatively narrow variation of surface temperature. Still, particular measurement

situations are assessed.

6.5 Discussion

This work offers a non-invasive and non-intrusive measurement technique to in-

vestigate non-conductive inclusion inside a conductive body. It paves way for

potential applications on conductivity level or metal classification and could be

extended to gas bubble content determination in liquid metal flow. Using eddy

current based spectroscopic imaging data and appropriate calibration, the invest-

igation for a first time demonstrates a novel thermal mapping system. This is

121



a wireless and inductive based temperature mapping device that can have great

potential applications where none of the existing thermal measuring devices could

work noninvasively.

State-of-the-art of contactless technique for measuring and determining temper-

ature distribution in industrial application is infrared thermal imaging [176].

Commercial thermal cameras are available with typical sensitivity about 0.05
oC (within the range -40 oC to 550 oC), a specified accuracy of ±5 oC, and spa-

tial resolution approximately 1 mm/pixel (320×240 elements at 1 m object to

camera distance) [177]. However, infrared thermography (IRT) requires optical

access to the object’s surface. On the other hand, the main advantage of the

proposed method is that it can be used against an opaque structure. Although

the sensitivity is limited to 1 oC (based on the test between 0 to 80 oC meas-

ured by thermocouple with resolution 0.1 oC and accuracy ±1 oC), the spatial

resolution can reach about 1.2 mm/pixel (50×50 elements enclosing the object).

Note that both techniques still need calibration, parameters setting, and (some-

times for IRT) inversion process which are comparatively not straightforward.

Utilising a difference imaging, this noninvasive inductive temperature sensing is

suitable for condition monitoring (temperature uniformity) in, for instances, pipe

under-cladding, metal implant, or buried conductive materials.

The change of conductivity due to the change of temperature in materials is

an established principle. Here the author offers some technical solutions using

procedures which have been shown in the experiments. The use of magnetic in-

duction spectroscopy and its imaging results for accomplishing such task provides

rich information. However, some disadvantages should be anticipated. Tests have

been conducted for relatively low-ranged temperature estimation, and the resolu-

tion would be affected by imaging quality from which the temperature values are

extracted. Soft-field tomography imaging such as electromagnetic tomography

is an ill-posed problem, hence the reconstruction is challenging. Besides spatial

constraint, the temporal ability of the conductivity reconstruction should be con-

sidered for catching the continuous transient change in temperature variability for

typical industrial settings. In addition, more uncertainties occur compared with

1-dimensional measurement methods. The proposed technique has advantages of

a remote measurement, enhanced with temperature mapping without the need
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to either physical or optical access required by conventional means. Albeit lim-

ited, this method would still find suitable applications once the aforementioned

aspects are accounted.

6.6 Conclusion

Mutual impedance and phase spectra have been observed for metal objects with

different conductivity levels using MIT. Depicted in a spectroscopic fashion, the

perplexity of electromagnetic tomography reconstruction is reposed when the

imaging spectrum pronounces substantial information about the physical prop-

erties of an object. A distinct shift in the amplitude, accompanied by gradient

location in the phase are valuable insight upon which more sophisticated work

can be built. Some foreseeable implementations are phase distribution of a con-

ductive substance in a concealed vessel, e.g. steel flow in continuous casting, as

well as temperature-dependent conductivity mapping inside a physically and/or

optically inaccessible region. The magnetic induction sensing system is inherently

immune to surrounding contamination, robust in construction, and cost-effective

for industrial deployment. For the first time, the author demonstrated it is pos-

sible to derive the temperature and temperature distribution of a known metal

using spectroscopic eddy current data. This will open up a new type of thermal

mapping sensing device for many industrial and other applications that require

fully noninvasive thermal mapping.
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Chapter 7

Interior Void Classification in

Liquid Metal

Previously, a cross-section of flow shapes has been visualised using the MIT tech-

nique. This chapter exposes an interior void classifier based on multi-frequency

mutual induction measurements. The datasets are induced voltage collections of

several non-metallic inclusions (NMI) patterns in liquid metal static tests and are

used to train a machine learning model. The model architectures are a fully con-

nected neural network (FCNN) for 1D; and a convolutional neural network (CNN)

for 2D data. Refined with representative flow scenarios, the trained model could

be deployed for an intelligent online control system of the liquid metal process.

7.1 Introduction

The level of void and/or non-metallic inclusions needs to be estimated in many

liquid metal applications. In continuous steel casting, the presence of NMI, occur-

ring at the primary stage and then more crucial at the casting process (multiphase

flow of molten metal and argon gas from tundish to mould), affects the steel clean-

liness. Another application that necessitates the observation of porosity of metal

in its liquid phase is foam manufacturing [178]. The porosity of the liquid metal

will determine the final solid porous metal. Liquid metal is also used for cooling

a nuclear reactor [179] [180]. In the liquid metal-cooled reactor, it is desired to
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detect and characterise the voids due to their influence on heat exchange.

The MIT system produces mutual induction values as boundary measurements

which are then transformed into a cross-sectional image of conductivity distribu-

tion. This capability is further enriched by employing frequency-sweep on each

measurement resulting in spatio-spectral information. The structure of a con-

ductive body can be explored using the aforementioned spectroscopy [45]. How-

ever, spatial resolution is limited especially for recovering small and dispersed

interior non-conductive disturbances. Exhaustive algorithm or post-processing is

the usual treatments, still, they could not satisfy demands from some industrial

applications.

In Chapter 4, the author investigated common two-phase liquid-gas flow scenarios

such as full-stream, stratified, bubbly, and annular. These basic flow shapes have

been reconstructed with conventional MIT [44]. Accordingly, adaptation of AI

become more common in the metallurgy sector [181] [126]. ML approaches for

analysing the continuous casting process was surveyed in [182]. Thus, data-driven

method and system are prospective for field implementation to extract useful

information in helping production. This follow-up work attempts to produce a

classification of liquid metal inner structure based on multi-frequency mutual

induction measurements data.

7.2 Machine Learning Method

Among several techniques in employing ML for classification problems reviewed

in [183], the following work trains the network from scratch while adjusting an

efficient architecture for the given problem and dataset. In the previous chapter,

NN and CNN functions were explained. Here, two methods are investigated:

traditional dense FCNN for classifier using one-dimensional (1D) data, and CNN

for classifier using two-dimensional (2D) data. Both are implemented in Keras

2.4.0 framework [124] with TensorFlow 2.3.0 backend [125].

Mutual induction measurements are conducted using a two-port method with

LCR meter and additional switching module (Keysight Technologies) for sequen-

tially selecting a pair out of an 8-coil array at a time. This measurement system

has an SNR between 60–90 dB, where measurement at low-frequency opposite-
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coil has the lowest SNR; and high-frequency adjacent-coil has the highest SNR.

The detailed configuration was described in [46]. For the following work (see

Figure 7-1), all 28 (pair-combination) mutual induction coils are measured and

swept from 100 Hz to 100 kHz (logarithmic scale with 28 points).

Figure 7-1: The liquid metal column with grid for wood inclusion

Pixelated data vector was commonly used as either main or additional input

for improving traditional image classification performances [184]. This form of

pseudo-image can be built from an array of sensors’ reading on the first axis and

another measurement dimension on the second axis. An example of a classifier

model which is built on limited training images was reported by [185]. Neverthe-

less, this dataset will be a valuable framework in developing tomographic sensing

interpretation using ML [186] [187].

7.3 FCNN Classifier

In the FCNN classifier, the data are built from mutual induction measurement

between every coil pair. There are eight coils so that C8
2 gives 28 data of mutual

combination. This is observed at multiple frequency points.

Mf,n =


m1,1 . . . m1,28

...
. . .

...

m28,1 . . . m28,28

 (7.1)
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The measurement data structure in (7.1) details frequency points f with n mutual

induction values. For instance, m1,1 is mutual induction between coil-1 and coil-2

at the first frequency point, m1,28 is mutual induction between coil-7 and coil-8

at the first frequency point, m28,1 is mutual induction between coil-1 and coil-2 at

the last frequency point, and m28,28 is mutual induction between coil-7 and coil-

8 at the last frequency point. Particularly, the phase-shift between the driving

signal from transmitting-coil and the detected signal at receiving-coil is taken to

represent the sensing information. The measurement is relative values against

the reference where liquid metal is full (without any inclusion). θ are phase-shift

values for an investigated case, whereas θ0 are phase-shift values for a reference

condition. By this definition, the studied data are 28 of ∆θ = θ− θ0 values at 28

frequency points.

val(f) =

√√√√ 28∑
i=1

∆θi(f)2 (7.2)

Equation (7.2) is applied on each frequency point for all 28 phase-difference val-

ues, thus val(f) is the value at frequency f . As a result, a normalised one-

dimensional data plot is obtained as shown in Figure 7-2. Here, index=1 corres-

ponds to a data point at f=100 Hz, index=10 corresponds to a data point at

f=1 kHz, and so on. Previous work [45] used the same normalisation so that the

measurement data can be treated as an indicator for structural characteristic of

metallic materials.

A wood (balsa) occupies a single grid in the liquid metal (GaInSn) column. Five

classes are studied: 1 wood (central grid), 2 woods (East-West), 3 woods (East-

centre-West), 4 woods (North-South East-West), and 5 woods (North-South

centre East-West), as shown in Figure 7-3. Each case is measured in separ-

ate sessions and accompanied by the respective reference measurement. Datasets

are created and labelled for five classes, and split into training (80%) and test

(20%) data. The validation set is randomly chosen from training data during the

training process.

Figure 7-4 shows the FCNN architecture. Keras model Sequential is constructed

consisting of a hidden dense layers which has 32 neurons, with activation function
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Figure 7-2: The plot of 1D data for a number of wood inclusions

(a) 8-coil MIT sensor (b) case0 (c) case1

(d) case2 (e) case3 (f) case4

Figure 7-3: Wood inclusions in liquid metal cases with relative positions to
sensors’ arrangement
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Figure 7-4: The FCNN architecture: a neural network with features, hidden
layers, and predictions

ReLU. Dropout regularisation layers with a rate of 0.2 are added in an attempt

to prevent overfitting. Vector of “logits” scores for each class are then conver-

ted into probability using a Softmax function. Loss function Sparse Categorical

Crossentropy takes a vector of logits and a “True” index and returns a scalar

loss for each example. The model is compiled using optimiser ADAptive with

Momentum (Adam), utilising “accuracy” metrics to measure the loss and the

accuracy of the model. This model will then be fitted adjusting parameters to

minimise the loss. The total number of parameters (param) is 2149, all of which

are trainable. Model summary is described in Table 7.1.

Table 7.1: FCNN Model Summary

Layer Properties Output Shape Param
input 28 x 1 (28) 0
Dense1 Activation: ReLU (32) 928
Dropout1 Rate: 0.2 (32) 0
Dense2 Activation: ReLU (32) 1056
Dropout2 Rate: 0.2 (32) 0
Dense3 + Softmax (5) 165

Figure 7-5 shows training and validation accuracy-loss along 250 epochs. At the

beginning (1s 28ms/step) train loss is 1.6931, train accuracy is 0.2200, validation

loss is 1.6403, and validation accuracy is 0.2000; at the end (0s 5ms/step) train

loss is 0.4075, train accuracy is 0.8800, validation loss is 0.3122, and validation
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Figure 7-5: FCNN training and validation accuracy-loss vs epoch

accuracy is 0.9599. Training and test utilize CPU with four compute cores clocked

at 2.3 GHz and 4 GB of RAM. The training time for all data within complete

number of epochs lasts 21.9545 s, whereas the test takes 0.2811 s. Performance

is checked on test set, giving: test loss 0.31 and test accuracy 0.95.

Examples of prediction on woods/voids are depicted in Figure 7-6. Ten test

data are fed into the model, and the prediction bar chart is shown accordingly.

The chart shows how confident the model decides that the data corresponds to

each class. The confusion matrix is shown in Figure 7-7. The map represents

tests, where each case has ten predictions. The classifier has a good accuracy,

although four-woods case produce prediction errors. Experimentally, 4woods and

5woods are only differentiated by a central inclusion which is inherently difficult

to measure.
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(a) one wood (b) two woods

(c) three woods (d) four woods

(e) five woods

Figure 7-6: The prediction result from the FCNN model. Left: the plot of a
sample data case. Right: the probability chart
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Figure 7-7: The confusion matrix of prediction tests by the FCNN model

7.4 CNN Classifier

Two-dimensional data in the form of multi-frequency mutual coil combination

are constructed as pseudo-image. The data arrangement follows the structure in

(7.1). This makes a 2D analysis approach is suitable, such as applying a CNN

model.

Mutual coil pairs measurements lie on the horizontal axis; whereas frequency

points on the vertical axis. Mutual inductance combinations are 28 (from eight

coils), so to shape the image into 2D form, the same number of frequency points

is set to 28. The measurement frequency is swept in logarithmic fashion from

100 Hz up to 100 kHz. An example of a pseudo-image is shown in Figure 7-8.

The pseudo-image is 28x28 pixels and the values are scaled between [0 1]. Each

value represents ∆θ which is a phase-difference measurement of a liquid metal

case (θ), against a free-space (air) background reference (θ0). In addition to

cases depicted in Figure 7-3, up to nine inclusions are given, and a full liquid

metal (no inclusion) condition is incorporated. Therefore, there are ten classes to

investigate. Datasets are split into training (80%) and test (20%) data. Validation

set is randomly chosen from training data during the training process.
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Figure 7-8: The layout of pseudo-image which represents multi-frequency mutual
induction measurement data

input

32 26

28

conv1

32 13

pool1

64 11

conv2

64 5

pool2

64 3

conv3

1 57
6

flatten

1 64

dense

1

dense+softmax

10

output

Figure 7-9: The CNN model
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Sequential layers consist of Conv2D, MaxPooling2D, and Dense are stacked for

the model, as illustrated in Figure 7-9. The diagram gives the information about

the input shape, which is a pseudo-image in 2D 28x28 pixels and one ’colour’ chan-

nel. Subsequent layers are convolution and pooling before the tensor is flattened

for the traditional dense neural network. Finally, the last layer provides a number

of outputs according to the prediction classes. Table 7.2 describes the architecture

in detail, where total (trainable) parameters are 93322.

Table 7.2: CNN Model Summary

Layer Properties Stride Padding Output Shape Param
input 28 x 28 x 1 - - (28, 28, 1) 0
Convolution1 Filters: 32 1 x 1 Valid (26, 26, 32) 320

Kernel: 3 x 3
Activation: ReLU

MaxPooling1 Kernel: 2 x 2 - Valid (13, 13, 32) 0
Convolution2 Filters: 64 1 x 1 Valid (11, 11, 64) 18496

Kernel: 3 x 3
Activation: ReLU

MaxPooling2 Kernel: 2 x 2 - Valid (5, 5, 64) 0
Convolution3 Filters: 64 1 x 1 Valid (3, 3, 64) 36928

Kernel: 3 x 3
Activation: ReLU

Flatten - - - (576) 0
Dense1 Activation: ReLU - - (64) 36928
Dense2 + Softmax - - (10) 650

Figure 7-10 shows training and validation accuracy-loss along 250 epochs. Train-

ing and test utilize CPU with four compute cores clocked at 2.3 GHz and 4 GB

of RAM. The training time for all data within complete number of epochs lasts

297.1258 s, whereas the test takes 0.4219 s. Performance is checked on test set,

giving: test loss 0.18 and test accuracy 0.96.
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Figure 7-10: CNN training and validation accuract-loss vs epoch

Examples of prediction cases are depicted in Figure 7-11 where confidence per-

centage is shown at the bottom of each illustration.

The confusion matrix is mapped in Figure 7-12. For clarity, the labels associ-

ated with inclusion numbers are presented on the axes. Almost all test samples

are predicted accurately, except for full case (no inclusion) where the classifier

mispredicts symmetrically distributed of one and five voids/woods (NMI).
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(a) case0 (b) case1 (c) case2 (d) case3

(e) case4 (f) case5 (g) case6 (h) case7

(i) case8 (j) case9

Figure 7-11: The prediction result from the CNN model: the pseudo-image of a
sample test data with its respective label and probability
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Figure 7-12: The confusion matrix of prediction tests by the CNN model

7.5 Discussion

In this study, the author defines the classification based on the number of voids.

Datasets are taken from experimental data where measurements are conducted in

different sessions. In each session, all cases including references are tested. It en-

sures that the datasets are statistically independent. Data from all measurement

sessions are then compiled to constitute complete datasets. A dedicated function

in TensorFlow randomly divides the data sets into proportion of training and

validation data.

It is possible to define the classification in different ways depending on the applic-

ation. The accuracy of the classifier, on the one hand, depends on the algorithm

and training strategies and the other hand depends on the accuracy of the MIT

data. With an interest in the interior region of the liquid metal, the accuracy of

the MIT setup for low-frequency data will be an important factor.

The author intends to provide a prospect of the study for liquid metal processing

where void or NMI determination is crucial. The developed ML approach provides

a potent sensing method to address some issues on detecting and characterising

the two-phase liquid metal-gas system. Although this case study is for steel-

casting where the investigation of bubble distribution in metal flow is desired,
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this approach would also apply in a wide area of implementation involving liquid

metal such as reactor coolant and functional material processing.

The simplified experimental data is aimed as a starter to demonstrate the ML ap-

proach for liquid metal interior investigation. Additionally, computational fluid

dynamics (CFD) simulation would also be used to provide training and valid-

ation input. This proposed method, once escalated to field test could offer an

alternative to capture local and quantitative information relevant to operating

condition.

7.6 Conclusion

The work proposes a liquid metal flow condition classifier focused on the interior

voidage. Measurement datasets are multi-frequency mutual induction sensing

of several wood inclusion variations inside liquid metal GaInSn. The 1D classi-

fier architecture is a multi-layered fully connected neural network (FCNN). After

250 epochs, this model produces a training loss of 0.40, training accuracy 0.88;

whereas test accuracy is 95%. The 2D classifier architecture is based on a convo-

lutional neural network (CNN). After 250 epochs, this model produces a training

loss of 0.15, training accuracy 0.95; whereas test accuracy is 96%. The number of

woods, or non-metallic inclusions (NMI), classification can be further translated

into other quantification such as interior void fraction. This framework provides

a prospect for a data-driven liquid metal processing system.
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Chapter 8

Conclusion

8.1 Summary

The research aims to deal with liquid metal through electromagnetic tomography

using multi-frequency and complex methods. The work has been done in mag-

netic induction tomography with spectroscopy technique. Both computational

and experimental works are explained.

In this work, three different types of MIT systems have been assembled. Magnitude-

based hardware is meant for portable and fast measurement. As for the second

system, the LCR bridge instrument provides stable wide-frequency measurement.

The third system, which consists of an embedded module with custom analogue

circuits, is tailored for complex impedance measurement in multi-frequency.

The author also designed and constructed MIT sensors capable of visualising

liquid metal. Good correlations between actual shapes and reconstructed shapes

have been obtained. In addition, a neural network has been trained to accurately

classify flow shapes.

On the software side, spatio-spectral image reconstruction algorithm has been

formulated to do a spectrally correlated analysis identifying an object’s circum-

stances. Samples with conductivity, size, location and internal structure vari-

ations have been investigated. The resulting complex plots from reconstruction

comprehensively indicate functional and structural behaviours in the metallic
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materials.

Using eddy current based spectroscopic imaging data and appropriate calibration,

this research demonstrates a novel thermal mapping system. The author demon-

strated the feasibility of deriving the temperature distribution of a known metal

using spectroscopic eddy current data. Both reconstructed images and regression

plots provide a relationship between MIT and the object’s temperature.

This study also proposes a liquid metal flow condition classifier focused on the

interior voidage. It is capable of accurately determining the number of inclusions

in liquid metal with a quick decision. The developed machine learning approach

provides a potent sensing method to address some issues in detecting and char-

acterising the two-phase liquid metal-gas system. It is intended to provide a

prospect for liquid metal processing where void or non-metallic inclusions de-

termination is crucial.

Multi-frequency setup contributes to the previously established MIT step for-

ward. In addition to conductivity profiling using spectroscopic reconstruction,

coil arrays are also able to sense and map the temperature of objects. To the

best of the author’s knowledge, this inductive thermography connects a theoret-

ical basis and is the first of its kind. Complex measurement produces complex

plots derived from reconstructed images to characterise the structure and func-

tion of metallic materials. Moreover, the richness of data can be utilised for

machine learning approaches such as the classification of flow conditions. Tying

together, this research dedicates part of the studied techniques for liquid metal

process control demonstration.

8.2 Limitations and Further Work

Restating discussions from previous chapters, some limitations and suggestions

are identified:

� The measurement setup is based on general-purpose electronics which span

some frequency range. However, its performance is not uniform in all fre-

quencies. This is indicated by relatively weaker SNR at low frequency.

Although the work anticipates this problem by calibration and referencing,
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specialised instrumentation might perform better. This factor is important,

for instance, in producing a complex plot.

� In temperature detection, the sample’s innate characteristic needs to be

considered further. Based on preliminary experiments that have been done,

rigorous modelling taking into account the physical coefficients is a direc-

tion to pursue. Furthermore, wider temperature variation represents the

industrial case more realistically.

� Dynamic tests and online reconstruction will pose some impacts on sensing

behaviour. The integrated setting along with another sensing and system

affects the measurement differently from stand-alone lab testing. Both soft-

ware and hardware should be tailored to fit the purpose.

� A data-driven method relies on raw data quality as well as quantity. Data-

sets should be a proper representation of the problem under investigation.

On the other hand, the vast aspect of artificial intelligence demands more

focus on fine-tuning the learning process and deployment practice.

The above highlights some issues worthy of future research. As this thesis has

limitations, so the recommendation is also by no means exhaustive. To summar-

ise, the MIT technique still has a lot to explore, and this work more or less serves

as a good starting point to raise the new area of research and implementation.
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Appendix

Supplementary materials used throughout the thesis can be further accessed in

the following:

� Figure 3-2 is based on github.com/dreading/tex-neural-network

� Figure 3-3 is based on github.com/davidstutz/latex-resources

� Figure 3-12 is based on www.overleaf.com/latex/examples/ demodulador-

qam/qswnhnbyqycf

� Hardware design and software resources from Subsection 3.3.3 are available

upon request on https://github.com/imuttakin/.

� Figure 4-5 is based on www.overleaf.com/latex/examples/ neural-network-

color/jwsbrhgwmgmt

� Dataset and script from Chapter 4 and Chapter 7 are available upon request

on https://github.bath.ac.uk/im463/.

� Figure 7-9 is visualised using modified version of PlotNeuralNet [188].
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