53,562 research outputs found

    Modelling network travel time reliability under stochastic demand

    Get PDF
    A technique is proposed for estimating the probability distribution of total network travel time, in the light of normal day-to-day variations in the travel demand matrix over a road traffic network. A solution method is proposed, based on a single run of a standard traffic assignment model, which operates in two stages. In stage one, moments of the total travel time distribution are computed by an analytic method, based on the multivariate moments of the link flow vector. In stage two, a flexible family of density functions is fitted to these moments. It is discussed how the resulting distribution may in practice be used to characterise unreliability. Illustrative numerical tests are reported on a simple network, where the method is seen to provide a means for identifying sensitive or vulnerable links, and for examining the impact on network reliability of changes to link capacities. Computational considerations for large networks, and directions for further research, are discussed

    Online Mixed Packing and Covering

    Full text link
    In many problems, the inputs arrive over time, and must be dealt with irrevocably when they arrive. Such problems are online problems. A common method of solving online problems is to first solve the corresponding linear program, and then round the fractional solution online to obtain an integral solution. We give algorithms for solving linear programs with mixed packing and covering constraints online. We first consider mixed packing and covering linear programs, where packing constraints are given offline and covering constraints are received online. The objective is to minimize the maximum multiplicative factor by which any packing constraint is violated, while satisfying the covering constraints. No prior sublinear competitive algorithms are known for this problem. We give the first such --- a polylogarithmic-competitive algorithm for solving mixed packing and covering linear programs online. We also show a nearly tight lower bound. Our techniques for the upper bound use an exponential penalty function in conjunction with multiplicative updates. While exponential penalty functions are used previously to solve linear programs offline approximately, offline algorithms know the constraints beforehand and can optimize greedily. In contrast, when constraints arrive online, updates need to be more complex. We apply our techniques to solve two online fixed-charge problems with congestion. These problems are motivated by applications in machine scheduling and facility location. The linear program for these problems is more complicated than mixed packing and covering, and presents unique challenges. We show that our techniques combined with a randomized rounding procedure give polylogarithmic-competitive integral solutions. These problems generalize online set-cover, for which there is a polylogarithmic lower bound. Hence, our results are close to tight

    Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach

    Full text link
    We systematically investigate the effect heterogeneity of job search programmes for unemployed workers. To investigate possibly heterogeneous employment effects, we combine non-experimental causal empirical models with Lasso-type estimators. The empirical analyses are based on rich administrative data from Swiss social security records. We find considerable heterogeneities only during the first six months after the start of training. Consistent with previous results of the literature, unemployed persons with fewer employment opportunities profit more from participating in these programmes. Furthermore, we also document heterogeneous employment effects by residence status. Finally, we show the potential of easy-to-implement programme participation rules for improving average employment effects of these active labour market programmes
    • …
    corecore