521 research outputs found

    Kirigami-inspired, highly stretchable micro-supercapacitor patches fabricated by laser conversion and cutting.

    Get PDF
    The recent developments in material sciences and rational structural designs have advanced the field of compliant and deformable electronics systems. However, many of these systems are limited in either overall stretchability or areal coverage of functional components. Here, we design a construct inspired by Kirigami for highly deformable micro-supercapacitor patches with high areal coverages of electrode and electrolyte materials. These patches can be fabricated in simple and efficient steps by laser-assisted graphitic conversion and cutting. Because the Kirigami cuts significantly increase structural compliance, segments in the patches can buckle, rotate, bend and twist to accommodate large overall deformations with only a small strain (<3%) in active electrode areas. Electrochemical testing results have proved that electrical and electrochemical performances are preserved under large deformation, with less than 2% change in capacitance when the patch is elongated to 382.5% of its initial length. The high design flexibility can enable various types of electrical connections among an array of supercapacitors residing in one patch, by using different Kirigami designs

    Photolithographic micropatterning of organic, flexible biomaterials and its applications

    Get PDF
    A current trend in biodevices has involved a shift from traditional rigid platforms to flexible and stretchable formats. These flexible devices are expected to have a significant impact on future healthcare, disease diagnostics and therapeutics. However, the fabrication of such flexible devices has been limited by the choice of materials. Biomimetic composites of naturally derived and synthetic polymers provide exciting opportunities to develop mechanically flexible, physiologically compliant, and degradable bioelectronic systems. Advantages include the ability to provide conformal contact at non-planar biointerfaces, being able to be degraded at controllable rate, and invoking minimal reactions within the body. These factors present great potential as implantable devices for in-vivo applications, while also addressing concerns with “electronic waste” by being intrinsically degradable. In this work, we present a combination of photo-crosslinkable silk proteins and conductive polymers to precisely fabricate flexible devices and cell culture substrate. A facile and scalable photolithography is applied to fabricate flexible substrates with conductive and non- conductive micropatterns which show tuneable electrical and mechanical properties. We also demonstrate an approach to engineer flexibility in materials through the creation of patterned defects inspired from Kirigami- the Japanese art of paper cutting. Mechanically flexible, free- standing, optically transparent, large-area biomaterial sheets with precisely defined and computationally designed microscale cuts can be formed using a single-step photolithographic process. As composites with conducting polymers, flexible, intrinsically electroactive sheets can be formed. Through this work, the possibility of making next- generation, fully organic, flexible bioelectronics is explored.https://scholarscompass.vcu.edu/gradposters/1099/thumbnail.jp

    Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors

    Get PDF
    An intrinsically stretchable rubbery semiconductor with high mobility is critical to the realization of high-performance stretchable electronics and integrated devices for many applications where large mechanical deformation or stretching is involved. Here, we report fully rubbery integrated electronics from a rubbery semiconductor with a high effective mobility, obtained by introducing metallic carbon nanotubes into a rubbery semiconductor composite. This enhancement in effective carrier mobility is enabled by providing fast paths and, therefore, a shortened carrier transport distance. Transistors and their arrays fully based on intrinsically stretchable electronic materials were developed, and they retained electrical performances without substantial loss when subjected to 50% stretching. Fully rubbery integrated electronics and logic gates were developed, and they also functioned reliably upon mechanical stretching. A rubbery active matrix based elastic tactile sensing skin to map physical touch was demonstrated to illustrate one of the applications

    Active Polymeric Materials for 3D Shaping and Sensing

    Get PDF
    Part I: Reprogrammable Chemical 3D Shaping for Origami, Kirigami, and Reconfigurable Molding Origami- and kirigami-based design principles have recently received strong interest from the scientific and engineering communities because they offer fresh approaches to engineering of structural hierarchy and adaptive functions in materials, which could lead to many promising applications. Herein, we present a reprogrammable 3D chemical shaping strategy for creating a wide variety of stable complex origami and kirigami structures autonomously. This strategy relies on a reverse patterning method that encodes prescribed 3D geometric information as a spatial pattern of the unlocked phase (dispersed phase) in the locked phase (matrix phase) in a pre-stretched Nafion sheet. Building upon the unique chemical reprogramming capability of the Nafion shape memory polymer, we have developed a reconfigurable molding technology that can significantly reduce the time, cost, and waste in 3D shaping of various materials with high fidelity. Part II: A Versatile, Multifunctional, Polymer-Based Dynamically Responsive Interference Coloration The bioinspired stimuli-responsive structural coloration offers a wide variety of potential applications, ranging from sensing to camouflage to intelligent textiles. Owing to its design simplicity, which does not require multilayers of materials with alternative refractive indices or micro- and nanostructures, thin film interference represents a promising solution towards scalable and affordable manufacturing of high-quality responsive structural coloration systems. However, thin films of polymers with appropriate thickness generally do not exhibit visible structural colors if they are directly deposited on substrates with relatively low refractive indices such as glass and polydimethylsiloxane (PDMS). Here, a versatile technology that enables polymer-based, stimuli-responsive interference coloration (RIC) on various substrates is presented. Real-time, continuous, colorimetric RIC sensors for humidity, organic vapor, temperature, and mechanical force are demonstrated by using different stimuli-responsive polymers. The transparent RIC film on glass shows strong coupling of constructive interference reflected colors and complementary destructive interference transmitted colors on opposite sides of the film. The ability to use substrates such as glass and PDMS allows for the proof-of-concept demonstration of a humidity-sensing window, and a self-reporting, self-acting sensor that does not consume external power

    Graphene-Based Transparent Flexible Strain Gauges with Tunable Sensitivity and Strain Range

    Full text link
    Flexible strain gauges with 88% optical transmittance, of reduced graphene oxide (rGO) on poly dimethylsiloxne membranes, are produced form monolayers of graphene oxide assembled into densely packed sheets at an immiscible hexane/water interface and subsequently reduced in HI vapor to increase electrical conductivity. Pre-straining and relaxing the membranes introduces a population of cracks into the rGO film. Subsequent straining opens these cracks, inducing piezoresistivity. Reduction for 30 s forms an array of parallel cracks that do not individually span the membrane and results in a strain gauge with a usable strain range > 0.2 and gauge factor of 20 - 100 at low strain levels that increases with increasing pre-strain. In all cases the gauge facto decreases with increasing applied strain and asymptotes to a value of about 3, as it approaches the pre-strain value. If the rGO is reduced for 60 s, the cracks fully span the width of the membrane, leading to an increased gauge resistance but a much more sensitive strain gauge with GF ranging from 1000 - 16000. However, the usable strain range reduces to < 0.01. A simple equivalent resistor model is proposed to describe the behaviour of both gauge types. The gauges show a repeatable and stable response with loading frequencies up to 1 kHz and have been used to detect human body motion in a simple e-skin demonstration.Comment: 24 Pages, 9 Figures plus Supporting Information 11 page

    A Review on Mechanics and Mechanical Properties of 2D Materials - Graphene and Beyond

    Full text link
    Since the first successful synthesis of graphene just over a decade ago, a variety of two-dimensional (2D) materials (e.g., transition metal-dichalcogenides, hexagonal boron-nitride, etc.) have been discovered. Among the many unique and attractive properties of 2D materials, mechanical properties play important roles in manufacturing, integration and performance for their potential applications. Mechanics is indispensable in the study of mechanical properties, both experimentally and theoretically. The coupling between the mechanical and other physical properties (thermal, electronic, optical) is also of great interest in exploring novel applications, where mechanics has to be combined with condensed matter physics to establish a scalable theoretical framework. Moreover, mechanical interactions between 2D materials and various substrate materials are essential for integrated device applications of 2D materials, for which the mechanics of interfaces (adhesion and friction) has to be developed for the 2D materials. Here we review recent theoretical and experimental works related to mechanics and mechanical properties of 2D materials. While graphene is the most studied 2D material to date, we expect continual growth of interest in the mechanics of other 2D materials beyond graphene

    Developable Rotationally Symmetric Kirigami‐Based Structures as Sensor Platforms

    Full text link
    Developable surfaces based on closed‐shape, planar, rotationally symmetric kirigami (RSK) sheets approximate 3D, globally curved surfaces upon (reversible) out‐of‐plane deflection. The distribution of stress and strain across the structure is characterized experimentally and by finite‐element analysis as a function of the material and cut parameters, enabling the integration with strain gauges to produce a wearable, conformal patch that can capture complex, multiaxis motion. Using the patch, real‐time tracking of shoulder joint and muscle behavior is demonstrated. The facile fabrication and unique properties of the RSK structures potentially enable wearable, textile‐integrated joint monitoring for athletic training, wellness, rehabilitation, feedback control for augmented mobility, motion of soft and traditional robotics, and other applications.This work introduces a new paradigm for realizing 2D to curved, 3D, functional surface transformation using rotationally symmetric kirigami as a platform for deploying wearable sensors; here it is demonstrated for real‐time tracking of complex motion of joints within the body and circumventing longstanding tradeoffs in the design of materials, structures, and devices for conformable, wearable electronics.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153082/1/admt201900563-sup-0001-SuppMat.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153082/2/admt201900563.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153082/3/admt201900563_am.pd

    A kirigami approach for controlling mechanical and sensing properties of films

    Get PDF
    Tuning the layout of elasticity in materials opens new opportunities to add various functionalities into a system, ranging from load-enduring capacity and shape-morphing capability in aeronautics to self-foldability and controlled diffusion rates in drug delivery applications. Recently, the Japanese art of paper cutting technique called kirigami has positioned itself as a simple yet powerful strategy to program unique functionalities into intrinsically inextensible, stiff materials without adjusting chemical compositions, including elastic softening, creation of complex 3D structures, and extreme stretchability. Thus, various applications have been realized by utilizing the kirigami principle. These applications include wearable electronics, sensors, stretchable lithium batteries, solar trackers, and reconfigurable structures. However, coupling the primary geometric deformation modes (i.e., bending and rotation) in kirigami films to control mechanical response as well as electronic properties (e.g., shift in resonant frequency) have been limited. In this thesis, we present a strategy where the inclusion of carefully designed cuts allows for fine tuning of mechanical and electronic properties of materials. Starting from fundamentals of kirigami mechanics, we show that stiffness tunability and deformability of kirigami structures are signicantly infuenced by the addition of minor cuts adjacent to major cuts. The dimension and position of minor cuts relative to major cuts determines geometric deformation modes between bending of beams and hinge rotations, which results in high tunability of mechanical properties. The experimental results are validated by beam mechanics with different boundary conditions (Chapter 2). The sensors for human activity monitoring and soft robotic systems require considerable extents of deformation. Furthermore, reducing or eliminating wiring components allows for more compliant and less complex systems by excluding semirigid wiring or connection points. We create a kirigami-inspired passive resonant sensor where the deformation normal to the planar surface changes the capacitance, inductance, and resonant frequency. This study demonstrates that the device allows for accurate measurements of large deformations (\u3e 10X sensor thickness) in both air and water media (Chapter 3)
    corecore