912 research outputs found

    Introduction to IP multicast in production networks

    Get PDF
    The objective of this paper is to introduce the reader to the world of IP multicasting. I intend to achieve this goal by providing an introduction that bridges the gap between the existing unicast networks and the developing multicast network. The basics of multicast that is covered in the earlier chapter includes the multicast addressing scheme, different protocols used for multicast transmission, various distribution trees that are formed by these protocols and various aspects of multicast forwarding. We take a look at IGMP which is the protocol that runs between the host devices and their first hop multicast routers, enabling the host to join/leave a multicast group. The protocols used for running IP multicast over networks are discussed in detail with additional emphasis on PIM-SM which is the most common among the available selection. The paper concludes with a general overlook on the avenues where multicasting could play a major role benefitting the Internet Service Providers and eve large corporate networks, and a glance on the pros and cons of multicasting

    Cryptographic Analysis of Secure Messaging Protocols

    Get PDF
    Instant messaging applications promise their users a secure and private way to communicate. The validity of these promises rests on the design of the underlying protocol, the cryptographic primitives used and the quality of the implementation. Though secure messaging designs exist in the literature, for various reasons developers of messaging applications often opt to design their own protocols, creating a gap between cryptography as understood by academic research and cryptography as implemented in practice. This thesis contributes to bridging this gap by approaching it from both sides: by looking for flaws in the protocols underlying real-world messaging applications, as well as by performing a rigorous analysis of their security guarantees in a provable security model.Secure messaging can provide a host of different, sometimes conflicting, security and privacy guarantees. It is thus important to judge applications based on the concrete security expectations of their users. This is particularly significant for higher-risk users such as activists or civil rights protesters. To position our work, we first studied the security practices of protesters in the context of the 2019 Anti-ELAB protests in Hong Kong using in-depth, semi-structured interviews with participants of these protests. We report how they organised on different chat platforms based on their perceived security, and how they developed tactics and strategies to enable pseudonymity and detect compromise.Then, we analysed two messaging applications relevant in the protest context: Bridgefy and Telegram. Bridgefy is a mobile mesh messaging application, allowing users in relative proximity to communicate without the Internet. It was being promoted as a secure communication tool for use in areas experiencing large-scale protests. We showed that Bridgefy permitted its users to be tracked, offered no authenticity, no effective confidentiality protections and lacked resilience against adversarially crafted messages. We verified these vulnerabilities by demonstrating a series of practical attacks.Telegram is a messaging platform with over 500 million users, yet prior to this work its bespoke protocol, MTProto, had received little attention from the cryptographic community. We provided the first comprehensive study of the MTProto symmetric channel as implemented in cloud chats. We gave both positive and negative results. First, we found two attacks on the existing protocol, and two attacks on its implementation in official clients which exploit timing side channels and uncover a vulnerability in the key exchange protocol. Second, we proved that a fixed version of the symmetric MTProto protocol achieves security in a suitable bidirectional secure channel model, albeit under unstudied assumptions. Our model itself advances the state-of-the-art for secure channels

    A Multi-Hop 6LoWPAN Wireless Sensor Network for Waste Management Optimization

    Get PDF
    In the first part of this Thesis several Wireless Sensor Network technologies, including the ones based on the IEEE 802.15.4 Protocol Standard like ZigBee, 6LoWPAN and Ultra Wide Band, as well as other technologies based on other protocol standards like Z-Wave, Bluetooth and Dash7, are analyzed with respect to relevance and suitability with the Waste Management Outsmart European FP7 Project. A particular attention is given to the parameters which characterize a Large Scale WSN for Smart Cities, due to the amount of sensors involved and to the practical application requested by the project. Secondly, a prototype of sensor network is proposed: an Operative System named Contiki is chosen for its portability on different hardware platforms, its Open Source license, for the use of the 6LoW-PAN protocol and for the implementation of the new RPL routing protocol. The Operative System is described in detail, with a special focus on the uIPv6 TCP/IP stack and RPL implementation. With regard to this innovative routing proto col designed specifically for Low Power Lossy Networks, chapter 4 describes in detail how the network topology is organized as a Directed Acyclic Graph, what is an RPL Instance and how downward and upward routes are constructed and maintained. With the use of several AVR Atmel modules mounting the Contiki OS a real WSN is created and, with an Ultrasonic Sensor, the filling level of a waste basket prototype is periodically detected and transmitted through a multi-hop wireless network to a sink nodeope

    On Cooperative Multiple Access Channels with Delayed CSI at Transmitters

    Full text link
    We consider a cooperative two-user multiaccess channel in which the transmission is controlled by a random state. Both encoders transmit a common message and, one of the encoders also transmits an individual message. We study the capacity region of this communication model for different degrees of availability of the states at the encoders, causally or strictly causally. In the case in which the states are revealed causally to both encoders but not to the decoder we find an explicit characterization of the capacity region in the discrete memoryless case. In the case in which the states are revealed only strictly causally to both encoders, we establish inner and outer bounds on the capacity region. The outer bound is non-trivial, and has a relatively simple form. It has the advantage of incorporating only one auxiliary random variable. We then introduce a class of cooperative multiaccess channels with states known strictly causally at both encoders for which the inner and outer bounds agree; and so we characterize the capacity region for this class. In this class of channels, the state can be obtained as a deterministic function of the channel inputs and output. We also study the model in which the states are revealed, strictly causally, in an asymmetric manner, to only one encoder. Throughout the paper, we discuss a number of examples; and compute the capacity region of some of these examples. The results shed more light on the utility of delayed channel state information for increasing the capacity region of state-dependent cooperative multiaccess channels; and tie with recent progress in this framework.Comment: 54 pages. To appear in IEEE Transactions on Information Theory. arXiv admin note: substantial text overlap with arXiv:1201.327

    Delay/Disruption Tolerant Networking for the International Space Station (ISS)

    Get PDF
    Disruption Tolerant Networking (DTN) is an emerging data networking technology designed to abstract the hardware communication layer from the spacecraft/payload computing resources. DTN is specifically designed to operate in environments where link delays and disruptions are common (e.g., space-based networks). The National Aeronautics and Space Administration (NASA) has demonstrated DTN on several missions, such as the Deep Impact Networking (DINET) experiment, the Earth Observing Mission 1 (EO-1) and the Lunar Laser Communication Demonstration (LLCD). To further the maturation of DTN, NASA is implementing DTN protocols on the International Space Station (ISS). This paper explains the architecture of the ISS DTN network, the operational support for the system, the results from integrated ground testing, and the future work for DTN expansion

    The IceCube Neutrino Observatory: Instrumentation and Online Systems

    Get PDF
    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.Comment: 83 pages, 50 figures; updated with minor changes from journal review and proofin

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    Performance and policy dimensions in internet routing

    Get PDF
    The Internet Routing Project, referred to in this report as the 'Highball Project', has been investigating architectures suitable for networks spanning large geographic areas and capable of very high data rates. The Highball network architecture is based on a high speed crossbar switch and an adaptive, distributed, TDMA scheduling algorithm. The scheduling algorithm controls the instantaneous configuration and swell time of the switch, one of which is attached to each node. In order to send a single burst or a multi-burst packet, a reservation request is sent to all nodes. The scheduling algorithm then configures the switches immediately prior to the arrival of each burst, so it can be relayed immediately without requiring local storage. Reservations and housekeeping information are sent using a special broadcast-spanning-tree schedule. Progress to date in the Highball Project includes the design and testing of a suite of scheduling algorithms, construction of software reservation/scheduling simulators, and construction of a strawman hardware and software implementation. A prototype switch controller and timestamp generator have been completed and are in test. Detailed documentation on the algorithms, protocols and experiments conducted are given in various reports and papers published. Abstracts of this literature are included in the bibliography at the end of this report, which serves as an extended executive summary
    • …
    corecore